简易电容测量仪
简易数字电容测量仪
![简易数字电容测量仪](https://img.taocdn.com/s3/m/ab1f1f09227916888486d7d2.png)
电子技术课程设计报告——简易数字电容测量仪的设计作品40% 报告20%答辩20%平时20%总分100%设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................. 错误!未定义书签。
二、课程设计题目:简易数字电容测量仪的设计错误!未定义书签。
三、课程设计目的及基本要求.... 错误!未定义书签。
四、设计内容提要及说明........ 错误!未定义书签。
4.1设计内容...................................... 错误!未定义书签。
4.2设计说明...................................... 错误!未定义书签。
五、原理图及原理说明 ...................... 错误!未定义书签。
5.1功能模块电路原理图................... 错误!未定义书签。
5.2模块工作原理说明 ...................... 错误!未定义书签。
六、调试...........................................................................错误!未定义书签。
七、设计中涉及的实验仪器和工具.. 错误!未定义书签。
八、课程设计心得体会 ...................... 错误!未定义书签。
九、参考文献 ...................................... 错误!未定义书签。
一、预备知识关于数字式简易数字电容测试仪的设计,我们提出了三种设计方法和思路。
在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即门控法。
本方法的基本理论是单稳态触发器电路的输出脉宽wt与电容C成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电容的一般测试与数字显示。
在本次数电课程设计的同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路的模拟和实际电路的成形有了一定的认识,同时使我们在电子设计方面有了一定的实际动手能力,也为这次数电课程设计打下了坚实的基础。
简易电容测量仪
![简易电容测量仪](https://img.taocdn.com/s3/m/e33d5c8004a1b0717ed5dd4a.png)
简易电容测量仪23系07级 马运聪 PB07210249实验目的:1掌握简易电容测量仪的设计2掌握实验条件下的参数选择方法实验原理:1文氏电桥振荡器设同向端输入和输出分别为)(),(0t u t u i 。
同向端反馈电路构成二阶带通滤波器,有221)()(31)()()(p pP p P o i S Q S S Q s U s U S H ωωω++==- 其中,31,1==p p Q RC ω 设K 为增益常数,仅由反向输入端反馈电路决定,有 1451)(R r R R R K S H D +++== 电路自激振荡时,振荡频率处于带通滤波器的带通频率范围。
当增益常数K 接近31时,振荡幅度最大,振荡频率接近中心频率,即 RCp 10==ωω 因此需要利用滑动变阻器来实现这一目的,否则波形不稳定。
2缓冲级为使输出波形更加稳定,在电路中添加一缓冲级,将RC 振荡电路与后续积分 电路隔开,同时起到调节输出波形幅值的作用。
587R R R A B += 3反向微分电路9R 起到调节输出幅值,避免饱和失真的作用。
x x C C R C R f j A 90902ωπ=-=4带通滤波电路传输系数为111043121110211104311101110312101R R C C R R R S R R C C R SR R R C R R SV V A i o S ++++++-== 中心频率为⎪⎪⎭⎫ ⎝⎛+=11104312011121R R C C R f π带宽为 111043121110111043121110211104311104R R C C R R R R R C C R R R R R C C R R +++⎪⎪⎭⎫ ⎝⎛++=∆ω5参数的设定(1)文氏电桥振荡器Ω≤≤Ω≤≤k R k nF C nF 49.2,11080由于反馈电路需要元件参数匹配,可采用滑动变阻器和变容箱实现。
同时反向 输入段负反馈也接入滑动变阻器实现振荡频率的调节。
电容测试仪TH2617
![电容测试仪TH2617](https://img.taocdn.com/s3/m/05165c98cf2f0066f5335a8102d276a200296005.png)
电容测试仪TH2617电容测试仪是一种测试电容的仪器。
接下来我们将介绍一款电容测试仪TH2617。
1. 电容测试仪的概述电容测试仪是一种测试器具,主要用于测试电容器的参数,能够实现测试容量、损耗、介质电阻和电压等。
TH2617电容测试仪是一款高可靠、高精度、智能化的测试仪器,具有操作简单、显示清晰、可靠性高、误差小等特点。
适用于各种电容测试领域,广泛应用于电子、仪表、五金、电功率、家电、轮船、化工、医疗、通信、军工等领域。
2. 电容测试仪的特点1.测量数据准确可靠 TH2617电容测试仪采用了最新的技术,保证了测试数据的准确性和可靠性。
2.自动测试电容测试仪TH2617具有实时自动测试的功能,能有效地提高测试效率。
3.显示清晰 TH2617电容测试仪采用了大屏幕液晶显示屏,能够清晰地显示测试结果。
4.操作简单电容测试仪的操作非常简单,用户只需要几步即可完成测试。
5.多功能 TH2617电容测试仪具有多种功能,可以测试容量、损耗、介质电阻和电压等参数,可以适用于各种领域的电容测试。
3. 电容测试仪TH2617的技术参数1.测试范围:0.1pF~200μF2.测试电压:0.1V~5V3.测试频率:100Hz、120Hz、1kHz、10kHz、100kHz、1MHz、5MHz、10MHz4.测试精度:±0.05%、±0.1%、±0.25%5.显示:320*240点矩阵液晶显示屏6.电源:AC 220V(±10%) 50~60Hz4. 电容测试仪TH2617的使用方法1.将待测的电容器接入TH2617电容测试仪的测试端口。
2.打开电源,此时仪器显示待测电容的容值。
3.根据实际需要设置测试频率,并启动测试。
测试过程中可以实时查看电容器的参数。
4.测试完成后关闭电源并将电容器从测试端口中拔出。
5. 电容测试仪的应用领域电容测试仪广泛应用于电子、仪表、五金、电功率、家电、轮船、化工、医疗、通信、军工等领域,主要用于对各种电容器的参数进行测试。
电阻电容电感测量仪
![电阻电容电感测量仪](https://img.taocdn.com/s3/m/1c725b639b6648d7c1c746ac.png)
总体原理方框图
• 如图一所示:
被测 电阻
RC振荡 器 单 片 机 msp
430g 2553
三路通道 选择开关
被测 电容
RC 振 荡 器
模 拟 开 关
AD4052
被测 电感
电容三点 式震荡器
数 字 显 示
图一
模块调试分析及数据分析
VCC
电阻电容模块:
利用RC和555定时器组成的多谐振 荡电路,通过测量输出振荡频率的大 小即可求得电阻电容的大小,利用公 1 f 式 ,如果固定电 (ln 2 ) C ( R 2 R ) 阻值,则可测得电容值,固定电容值, 电阻也利用同样的原理测得。该方案 硬件电路实现简单,能测出较宽的电 容电阻范围,完全满足题目的要求。 同时输出波形为TTL电平的方波信号 所以不需要再对信号做电平变换。即 可直接输入单片机处理。测量数据也 满足误差在5%左右,经调试电路改进 误差达到更低。
RST DIS THR TRI CON GND 1
LM555CM
单片机模块:
在系统设计中,以MSP430G225 3单片机为核心的电阻、电容、电感 测试仪,将电阻,电容,电感,使用 对应的振荡电路转化为频率实现各个 参数的测量。由AD4052控制电 阻电容电感的换档测试。通过定时并 且计数可以计算出被测频率,再通过 该频率计算出被测参数。使用C语言 编程编写了系统应用软件;包括主程 序模块、显示模块、电阻测试模块、 电容测试模块和电感测试模块、键盘 模块、整形模块、模拟开关模块。在 测试时将被测参数通过本系统测量出 来的示值与参数的标称值进行对比, 进而可以知道系统的测试精度较高。
VCC L1 100mH R1 100kΩ Q1 C3 100nF C5 2N2222 C1 100nF R2 1.0kΩ 100nF R3 1.0kΩ C6 0.1µF 10nF C4 Q2 R5 100kΩ VCC 5V
简单的电容测量仪设计
![简单的电容测量仪设计](https://img.taocdn.com/s3/m/2bc92571fe4733687f21aa10.png)
电子技术课程设计评分标准电子技术课程设计任务书设计题目:电容测量仪学生姓名:学号:专业班级: 09自动化一、设计条件1.可选元件(1)双运放芯片(),二极晶体管;(2)电阻、电容、电位器等;(3)引脚插座,排针。
2.可用仪器万用表,示波器,直流稳压电源。
二、设计任务及要求1.设计任务根据电路技术要求的指标,制作一个简易电容测量装置,完成选题电路的设计、装配、焊接与调试。
2.设计要求(1)电容测量的范围:1uf~1000uf,100nf~1uf;(2)选择电路方案,完成对确定方案电路的设计。
包括:计算电路元件参数、选择元件、画出总体电路原理图;(3)用软件仿真整体或部分核心实验电路,得出适当结果;(4)装配、调试作品,按规定格式写出课程设计报告书。
三、时间安排1.第9周:布置设计任务,讲解设计要求、实施计划、设计报告等要求,完成选题。
2.第10~14周:完成资料查阅、作品设计、模拟仿真,领取元件、实际制作。
3.第15~16周:制作并调试设计作品。
4.第17周:作品检查、评价、验收,撰写设计报告。
5.第18周:抽选作品答辩,提交设计报告。
指导教师签名:年月日目录摘要 (1)关键词 (1)1 绪论 (1)2 需求分析 (1)2.1 设计任务及要求 (1)2.1.1 设计任务 (1)2.1.2 设计要求 (1)2.2 设计思想 (1)3 设计方案 (1)3.1 方案论证 (1)3.1.1 文氏桥振荡电路 (2)3.1.2 反向比例运算电路 (3)3.1.3 C/ACV转换电路 (3)3.1.4 有源滤波电路 (4)3.2 工作原理 (5)4 电路详细设计 (5)4.1 文氏桥振荡电路分析 (5)4.2 反向比例运算以及C/ACV转换电路分析 (6)4.3 有源滤波电路分析 (7)5 实验结果 (7)5.1 文氏桥振荡实验 (7)5.2 反向比例电路实验 (8)5.3 有源滤波实验 (8)5.4 结果分析 (9)5.4.1 文氏桥振荡以及反向比例运算电路分析 (9)5.4.2 有源滤波以及C/ACV电路分析 (9)6 结论 (10)6.1 设计成果 (10)6.2 设计特点 (10)6.3 存在问题及改进方法 (10)参考文献 (10)致谢 (10)附录A 电路全图 (11)附录B 元器件清单 (11)题目摘要本文主要通过用容抗法来完成一个电路对电容值的测量。
课程设计-简易电容测量仪
![课程设计-简易电容测量仪](https://img.taocdn.com/s3/m/456f8f01fe4733687e21aaba.png)
简易电容测试仪一、系统简介本文设计了一套简易电容系统,能够在误差允许的范围内测量普通电容的容值,并在液晶界面上显示相关信息。
二、系统实现原理系统分模拟部分和数字部分。
模拟部分是由集成运放结电阻和所测电容构成的方波发生器,产生的方波频率与所测试的电容具有函数关系。
因此只要知道产生方波的频率,就能反推出电容的容值。
此外,在方波发生器后面我们添加稳压电路和半波整形电路,使得方波的输入幅度在5V 以下且为正值,而不改变方波的频率。
数字部分是FPGA 作为主控的,负责频率的测量以及液晶的显示。
下面介绍测量频率的原理。
FPGA 测量频率有两种算法,就是常说的测频和测周。
测频是在一段闸门时间内对输入信号周期进行计数,而测周则相反,是在输入信号的时段内,对标准信号周期进行计数。
一般的原则是,高频测频,低频测周。
本系统用的是测频的方法。
我们可以用低频时钟的两个上升沿之间的那段时间作为闸门,对上升沿时间内输入信号周期进行计数。
最后通过计算得到频率。
显示部分我们使用1602液晶屏,通过FPGA 状态机驱动显示。
三、系统结构框图四、硬件电路设计 方波发生器 整形电路 FPGA LCD 显示图示电路产生方波的频率符合f=12R1Cln(1+2R3R2)的关系式,其中C为待测电容。
而且经稳压电路和半波整流电路后的幅度为0~3.3V,能直接输入给FPGA,符合要求。
五、程序设计//顶层文件//top.v`include “cepin.v”`include ”1602.v”module top(clkin,datain,rst,clkout,cnt,fre,rem,clk_LCD, LCD_EN,RS,RW,DB8);fre m1(.clkin(clkin),.datain(datain),.clkout(clkout),.cnt(cnt),.fre(fre),.rem(rem)); LCD_Driver m2(.clkin(clkin), .rst(rst),.fre( fre), .clk_LCD(clk_LCD),.LCD_EN (LCD_EN),.RS(RS),.RW(RW),.DB8(DB8));endmodule//测频模块://cepin.vmodule fre(clkin,datain,clkout,cnt,fre,rem);input clkin; //100Minput datain;output reg clkout = 1'b1;output reg [7:0] cnt = 8'b0;output wire [7:0] fre;output wire [7:0] rem;parameter N=100000; //1khzreg [1:0] datatmp = 0; //不初始化计数会仿真错误reg [15:0] clktmp = 0;reg [7:0] cnttmp = 0;//分频always @(posedge clkin)beginif(clktmp == N/2-1)beginclkout <= ~clkout;clktmp <= 16'b0;endelseclktmp <= clktmp+1'b1;end//拼接符号检测上升沿always @(posedge datain)datatmp = {clkout,datatmp[1]}; //捕获沿的方法//对慢时钟上升沿间的输入信号计数,为高频测频always @(posedge datain)beginif(datatmp == 2'b10) //上升沿begincnt <= cnttmp+1'b1; //加1补偿cnttmp <= 8'b0;endelsecnttmp <= cnttmp +1'b1;end//调用除法核计算电容,参数确定,公式确定LPM_DIVIDa m(.denom(…),.numer(…),.quotient(…),.remain(…)); //……endmodule//显示模块//1602.vmodule LCD_Driver(clkin, rst, fre, clk_LCD,LCD_EN,RS,RW,DB8);input clkin,rst,fre; //rst为全局复位信号(高电平有效)output clk_LCD;output LCD_EN,RS,RW;//LCD_EN为LCD模块的使能信号(下降沿触发)//RS=0时为写指令;RS=1时为写数据//RW=0时对LCD模块执行写操作;RW=1时对LCD模块执行读操作output [7:0] DB8; //8位指令或数据总线reg [7:0] DB8;reg [111:0] Data_First_Buf,Data_Second_Buf; //液晶显示的数据缓存reg RS,LCD_EN_Sel;reg [3:0] disp_count; //用来判断是否已经写满一行reg [3:0] state; //状态机格式//状态机编码parameter Clear_Lcd = 4'b0000, //清屏并光标复位Set_Disp_Mode= 4'b0001, //设置显示模式:8位2行5x7点阵Disp_On =4'b0010, //显示器开、光标不显示、光标不允许闪烁Shift_Down =4'b0011, //文字不动,光标自动右移Write_Addr =4'b0100, //写入显示起始地址Write_Data_First= 4'b0101, //写入第一行显示的数据Write_Data_Second= 4'b0110, //写入第二行显示的数据Idel =4'b0111; //空闲状态parameter Data_First = "频率", //液晶显示的第一行的数据//Data_Second = “” ; //液晶显示的第二行的数据assign RW = 1'b0; //RW=0时对LCD模块执行写操作assign LCD_EN = LCD_EN_Sel ? clk_LCD : 1'b0; //通过LCD_EN_Sel信号来控制LCD_EN的开启与关闭//省去分频部分//……always @(posedge clk_LCD or negedge rst)beginif(!rst)beginstate <=Clear_Lcd; //复位:清屏并光标复位RS <=1'b0; //复位:RS=0时为写指令;DB8 <=8'b0; //复位:使DB8总线输出全0LCD_EN_Sel<= 1'b1; //复位:开启夜晶使能信号disp_count<= 4'b0;endelsecase(state) //初始化LCD模块Clear_Lcd:beginstate <=Set_Disp_Mode;DB8 <=8'b00000001; //清屏并光标复位endSet_Disp_Mode:beginstate <=Disp_On;DB8 <=8'b00111000; //设置显示模式:8位2行5x8点阵endDisp_On:beginstate <=Shift_Down;DB8 <=8'b00001100; //显示器开、光标不显示、光标不允许闪烁endShift_Down:beginstate <=Write_Addr;DB8 <=8'b00000110; //文字不动,光标自动右移endWrite_Addr:beginstate <=Write_Data_First;DB8 <=8'b10000001; //写入第一行显示起始地址:第一行第二个位置Data_First_Buf<= Data_First; //将第一行显示的数据赋给Data_First_Buf endWrite_Data_First: //写第一行数据beginif(disp_count== 14) //disp_count等于14时表示第一行数据已写完beginDB8 <=8'b11000001; //送入写第二行的指令RS <=1'b0;disp_count<= 4'b0;//Data_Second_Buf<= Data_Second;Data_Second_Buf<= fre;state <=Write_Data_Second; //写完第一行进入写第二行状态endelsebeginDB8 <=Data_First_Buf[111:104];Data_First_Buf<= (Data_First_Buf << 8);RS <=1'b1; //RS=1表示写数据disp_count<= disp_count + 1'b1;state <=Write_Data_First;endendWrite_Data_Second: //写第二行数据beginif(disp_count == 14)beginLCD_EN_Sel<= 1'b0;RS <=1'b0;disp_count<= 4'b0;state <=Idel; //写完进入空闲状态endelsebeginDB8 <=Data_Second_Buf[111:104];Data_Second_Buf<= (Data_Second_Buf << 8);RS <=1'b1;disp_count<= disp_count + 1'b1;state <=Write_Data_Second;endendIdel:beginstate <=Idel; //在Idel状态循环enddefault: state <= Clear_Lcd;//若state为其他值,则将state置为Clear_Lcd endcaseendendmodule六、测试验证方法在方波发生电路的电容处设计为插孔式,能插上不同容值的电容。
电容测试仪的使用方法
![电容测试仪的使用方法](https://img.taocdn.com/s3/m/f0ab4dc6846a561252d380eb6294dd88d0d23ded.png)
电容测试仪的使用方法
电容测试仪是一种用于测试电容器容量的工具。
它可以帮助我们判断电容器是否损坏或老化,以及确认其容量是否达到标准。
使用电容测试仪需要注意以下几点:
1. 选择合适的测试模式。
一般来说,电容测试仪有两种模式:手动模式和自动模式。
手动模式需要手动调整测试参数,适合针对特定电容器进行测试;自动模式则可以自动识别并测试电容器,比较适合批量测试。
2. 连接电容器。
首先需要将电容器与测试仪连接。
需要注意的是,连接时应按照电容器的正负极正确连接。
3. 调整测试参数。
在手动模式下,需要手动调整测试参数。
常见的测试参数有测试频率、测试电压等。
在自动模式下,测试仪会自动识别电容器并调整测试参数。
4. 进行测试。
完成以上步骤后,就可以进行测试了。
测试完成后,电容测试仪会显示测试结果,包括电容器的容量值和误差等信息。
5. 断开连接。
测试完成后,应将电容器与测试仪断开连接。
除了以上几点,使用电容测试仪时还需要注意安全问题。
在测试时,应注意避免触电等危险。
此外,还需要保持测试仪干燥、清洁,以确保测试的准确性和可靠性。
- 1 -。
简易电阻、电容、电感测量仪 ppt课件
![简易电阻、电容、电感测量仪 ppt课件](https://img.taocdn.com/s3/m/6421f39952ea551810a687d2.png)
555定时器构成多谐振荡器
▪ 根据555定时器构成多谐振荡器,产生脉冲波形,通过单 片机读取高低电平得出频率,通过公式换算得到电阻阻值。 由
得到公式:
f=1/ [(R1+2R2)*C*In2]
R2=1/2*[1/ (f*c*Ln2)-R1]
▪ 上述四种方案从对测量精度要求而言,方案一的测量精度 极差,方案二电阻测量范围较窄,方案三需要测量的电阻 值多,而且测量调节麻烦,不易操作与数字化,相比较而 言,方案四还是比较符合要求的,由于是通过单片机读取 转化,精确度会明显的提高。故本设计选择了方案四。
这些因素导致电阻测量范围较窄。
▪ 方案三:直流单臂电桥
在《电工基础课》中已经讲到,根据电路平衡原理, 不断调节电位器,使得电表指针指向正中间,1 有以下关系 式成立:
R2
RX=
×R4
R3
Rx R4
R2 R3
D
E
S
图 直流单臂电桥原理图
R1
R3
◆优点:万用表操作简单但精度不高,直流单臂电桥的测
量精度较高;
禁止端 模拟信号接地端 数字信号接地端
电源+
CD4052接口电路
▪ CD4052真值表
▪ CD4052是一个双4选一的多路模拟选择开关,其使用真值 表如
引脚号 1245 11 12 14 15
9 10 3 13 6 7 8 16
CD4052各引脚分布图
CD4052引脚功能说明 符号
IN/N
INH VEE Vss VDD
CD4052引脚功能说明表
功能 Y 通道输入/输出端 X 通道输入/输出端
地址端 Y 公共输出/输入端 X 公共输出/输入端
简易数字电容测量仪
![简易数字电容测量仪](https://img.taocdn.com/s3/m/9964d8ec561252d381eb6e16.png)
电子技术课程设计报告——简易数字电容测量仪的设计设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................... 错误!未定义书签。
二、课程设计题目:简易数字电容测量仪的设计错误!未定义书签。
三、课程设计目的及基本要求...... 错误!未定义书签。
四、设计内容提要及说明.......... 错误!未定义书签。
4.1设计内容........................................ 错误!未定义书签。
4.2设计说明........................................ 错误!未定义书签。
五、原理图及原理说明 ........................ 错误!未定义书签。
5.1功能模块电路原理图..................... 错误!未定义书签。
5.2模块工作原理说明 ........................ 错误!未定义书签。
六、调试...........................................................................错误!未定义书签。
七、设计中涉及的实验仪器和工具.... 错误!未定义书签。
八、课程设计心得体会 ........................ 错误!未定义书签。
九、参考文献 ........................................ 错误!未定义书签。
一、预备知识关于数字式简易数字电容测试仪的设计,我们提出了三种设计方法和思路。
在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即门控法。
本方法的基本理论是单稳态触发器电路的输出脉宽wt与电容C成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电容的一般测试与数字显示。
在本次数电课程设计的同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路的模拟和实际电路的成形有了一定的认识,同时使我们在电子设计方面有了一定的实际动手能力,也为这次数电课程设计打下了坚实的基础。
简易电容测试仪的设计
![简易电容测试仪的设计](https://img.taocdn.com/s3/m/50ede1c30508763231121262.png)
仪 的 设计 与 实现 【 J ] . 硅谷 , 2 0 l l ( 1 ) : 4 7 .
[ 2 】郝鹏 , 王大明. 基 于5 1 单片机的电阻、 电
容、 电感 测 试仪 [ J ] . 科 技致 富 向导 , 2 0 1 1
( 2 0 ) : 9 6 .
【 3 ]渠艳 霞 . 基 于 单 片 机控 制 的 电阻 电 容 测 试 仪的 设计 [ J 】 . 总裁, 2 0 0 9 ( 4 ) : 1 4 1 —1 4 2 . [ 4 ]徐 思 成 . 一 种 基 于单 片 机 智 能 电 容测 试
大小 , 采用4 位7 段 数 码 管进 行 显 示 。 为 增加
数 码 管 亮度 , 选 取7 4 L S 2 4 5 芯 片 增加 驱 动 电
流。
图1 多谐 振荡 器原 理 图
被
_ . j \ I \ 】 多谐振荡 l :
。
—
I \I : : : 极管指示灯 I
①作者 简 介 : 黄璞( 1 9 8 2 一) , 女, 汉, 湖 北 省宜 昌市 人 , 鄂 东 职 业技 术 学 院 , 讲师 , 主要 从 事 工 业 控 制 与检 测 技 术方 面 研 究 。 黎会 鹏( 1 9 8 1 一) , 男, 汉, 湖北省 荆门 市人 , 鄂东 职业 技术 学院 , 讲师, 主要 从事 嵌入 式 系统设 计方 面研 究 。
圆圆
ห้องสมุดไป่ตู้
动 力 与 电 气 工 程
简易 电容 测 试 仪 的设 计 ①
黄璞 黎会鹏 ( 鄂 东职业 技术 学院机 电系 湖北黄 冈
4 3 8 0 0 0 )
摘 要: 介 绍 了一种基于A T8 9 c 5 1 单 片机的电容测试 仪的硬 件结 构和设计思 想 。 该方案是根. tN E5 5 5 芯 片多谐振 荡电路 的应 用特点 , 把电 容的大小转 变成频率的大 小, 进 而可 以通过 单片机 对输 出的频率进行 测量 , 再通 过该频率计算 出被 测参数 。 该 测量仪具有 结构简单, 成本 低廉, 精度 较 高 , 方便 实 用等特 点 。 ’ 关键 词 : 电 容 A T 8 9 C 5 1 N E5 5 5 中 图分 类号 : TP 3 0 4 文 献标 识码 : A 文 章编 号 : 1 6 7 2 -3 7 9 1 ( 2 0 1 3 ) 0 8 ( b ) -0 1 2 2 —0 2
电子技术课程设计简易电容测量仪
![电子技术课程设计简易电容测量仪](https://img.taocdn.com/s3/m/38ad98661ed9ad51f01df299.png)
简易电容测量仪电容是电子线路中最常用的元器件之一,对电容值的测量一般采用利用振荡电路将电容值转换为频率值,再通过频率计数器测量,或利用PWM(脉冲宽度调制)电路将电容值转换为模拟电压值,再通过电压表测量的方法进行。
本题要求利用以上所述两种原理中的一种,设计一个简易电容测量仪。
1.实验目的理解电容的测量原理;掌握利用555集成电路设计振荡器的方法;掌握555单稳态电路的设计方法和应用;理解PWM信号的概念和意义;掌握利用PWM信号发生电路产生模拟直流电压信号的原理和方法;掌握数字电压表或数字频率计的工作原理和设计制作方法。
2.设计要求及技术指标基本部分:(1)系统采用+9V单电源供电;(2)电容测试范围:33~470nF,测量误差≤15%。
(测试时分别对33nF、47nF、100nF、220nF、330nF、470nF等6种电容进行测试);(3)测试结果通过数字电压表(数字万用表直流电压测量档)或自制的数字频率计显示。
采用数字电压表显示时要求电压表示数数值(单位V)为电容值(单位nF)的百分之一。
例如,470nF显示为4.70V,33nF显示为0.33V或330mV;采用自制数字频率计显示时示数直接代表电容值(单位:nF)。
要求示数比较稳定,不乱跳。
(4)在电路板靠边的显著位置焊出被测电容插座和万用表测试孔,用来插被测电容和连接万用表。
电路板焊好后应在每个测试孔的相应位置做出标记。
发挥部分:(1)自制数字电压表,用以代替数字万用表显示被测电容值。
要求所显示数值直接表示被测电容的容值(单位:nF);(2)增加电容测试范围至:1nF~10μF,可手动切换量程;(3)在发挥(2)中要求基础上增加自动量程切换功能;(4)提高测量精度,测量误差≤10%;3.设计任务(1)设计,安装、调试所设计的电路;(2)画出完整电路图,详细说明电路原理,写出设计总结报告。
4.工作原理及设计思路参考555时基电路是一种用途非常广泛的数字-模拟混合集成电路。
简易数字电容测量仪设计
![简易数字电容测量仪设计](https://img.taocdn.com/s3/m/8871bc34f68a6529647d27284b73f242336c319b.png)
简易数字电容测量仪设计引言电容是电子电路中常见的元件之一,用于存储电荷和调节电路的频率响应。
因此,对电容进行准确测量是电子工程师和爱好者常常面临的挑战之一。
本文将介绍一种简易数字电容测量仪的设计,该仪器可以实现对电容的快速、准确测量。
一、设计原理数字电容测量仪的设计基于计时电路的原理。
当一个已知电容通过一个已知电阻充电或放电时,可以测量所需的时间来计算电容的值。
具体而言,我们需要设计一个计时电路,通过测量电容充电或放电所需的时间,然后使用公式 C = t / (R * ln(2)) 来计算电容的值。
二、硬件设计1. 电路图我们的数字电容测量仪的电路图如下所示:2. 元件选择为了简化设计,我们选择了一些常用的元件。
电阻选用1kΩ的标准电阻,电容选用10μF的陶瓷电容。
此外,我们还需要一个微控制器来处理计时和计算电容值。
3. 电路实现根据电路图,我们可以使用常见的电子元件将电路实现。
首先,将电容和电阻按照图中的连接方式进行连接。
然后,将微控制器与电路连接,以便进行计时和计算。
最后,将电路供电,即可完成硬件的设计。
三、软件设计1. 计时和计算我们需要编写一个程序来实现计时和计算电容值。
首先,我们需要初始化计时器,并设置为充电或放电模式。
然后,我们可以使用计时器来测量所需的时间,并存储在一个变量中。
最后,我们使用上述公式来计算电容的值。
2. 显示结果为了方便使用者查看测量结果,我们可以在液晶显示屏上显示电容的值。
我们需要编写一个程序来将计算得到的电容值转换为适当的格式,并将其显示在液晶屏上。
四、实验结果与讨论我们通过使用实际的电容进行测试,验证了我们设计的数字电容测量仪的准确性和可靠性。
实验结果表明,我们的测量仪可以精确地测量电容的值,并将其显示在液晶屏上。
五、总结本文介绍了一种简易数字电容测量仪的设计。
通过使用计时电路和微控制器,我们可以实现对电容的快速、准确测量。
该仪器的设计原理简单,硬件和软件设计也相对简单,适合初学者和爱好者使用。
简易电容电感测量仪的制作
![简易电容电感测量仪的制作](https://img.taocdn.com/s3/m/c40f7620192e45361066f52e.png)
收稿日期:2005—09—10作者简介:纪丽凤(1971-),女,辽宁营口市人,工程师,主要从事电子技术教学研究.【学术研究】简易电容电感测量仪的制作纪丽凤1,张廷辉2(11辽宁信息职业技术学院,辽宁辽阳111000;21辽河油田,辽宁盘锦124000) 摘 要:介绍一种简易电容电感测量仪的原理、制作与使用注意事项.关键词:交流电桥法;信号源;平衡指示器;振荡器中图分类号:T M938 文献标识码:A 文章编号:1008-5688(2005)04-0017-01电容和电感都是构成电路的最基本元件,测量电容和电感可以用伏安计法、电桥法、谐振法等多种方法.本文中设计的电容电感测量仪采用交流电桥法,具有测量范围较宽、精度较高、工作稳定、使用方便的特点,而且制作调试简单容易.1 电容电感测量仪电路组成 电容电感测量仪既可以测量电容,又可以测量电感,由一个测量选择开关决定.电容测量范围为:5pF ~100μF ,共分7档量程;电感测量范围为:5μH ~100H ,共分7档量程;可通过量程开关选择.各档位测量范围见表1.图1为电容电感测量仪电路原理图.电路中使用了4个集成运算放大器,分别构成信号源和平衡指示器.电阻R 10~R 17、电位器R P 、电容器C 5以及被测电容或电感等构成测量电桥.S 1是量程开关,S 2是测量选择开关.构成电桥桥臂的阻容元件阻值或容量必须准确,以保证测量精度. 表1S 1档位测C 测L 1100μF 011mH 210μF 1mH 31μF 10mH 31μF 10mH 4011μF 100mH 50101μF 1mH 61000pF 10H 7100pF 100H 2 测量原理分析211 测量原理测量原理如图2所示.被测元件阻抗Z X 与已知元件阻抗Z A 、Z B 、Z C 构成电桥的4个臂,电桥的一组对角线A 、B 间接交流信号源,另一组对角线C 、D 间接平衡指示器.当Z X Z C =Z A Z B 时,电桥平衡,C 、D 间电(下转75页)第7卷第4期2005年10月 辽宁师专学报Journal of Liaoning T eachers College V ol 17N o 14Oct 12005明:实验组台阶指数成绩高于对照组.说明登山运动处方在实施过程中主要是走、跑交替的耐力性运动,它可以有效提高实验对象的耐力素质.增强学生的心肺功能.31113 登山运动处方对身体素质指标的影响实验前后,实验组在50m 、800m 、腰、腹和下肢各关节灵活性、坐位体前屈几方面素质上有显著提高.其中在耐力和灵活性上呈非常显著性差异,这说明了学生平时参加运动的机会很少,尤其在速度、耐力和灵敏素质方面的锻炼较少.这样一旦运动起来很容易表现出显著性.同时,由于高职学生的专业特点,更加约束了他们参加运动的时间和效果.因此,以灵活多样的运动形式和内容,适时地增加学生参加运动的时间和机会,能够全面发展学生的身体素质.312 登山运动处方对人文知识掌握的影响本实验目的之一是通过本地域登山运动处方的实施,提高学生人文素质.从实验前后28名学生试卷成绩分析来看,说明了对人文知识的掌握还须有一个认识与强化的过程,通过实验组和对照组的成绩提高的差值来看,所施加学生当导游员的因素(导游员准备、导游等过程),也使学生的综合能力得到了充分地培养与提高.比如:语言表达能力,收集和处理材料的能力、随机应变的能力等.同时,在人文知识掌握的全过程中,注重学生智商和情商的有机融合,而同学们人文素质的积累就是情商的本质表现,这个智,的确达到了本次实验的目的.4 结论(1)本论文所设计的登山运动处方可改善高职学生身体状况,减少腹部、腰部皮褶厚度;可明显提高台阶指数,增强心肺功能;学生的耐力、灵活性和下肢爆发力得到明显改善.(2)在登山运动处方实验中,学生当导游员,可以强化学生对本地域人文知识的掌握.提高高职学生热爱家乡,为本地区经济建设服务的意识.(责任编辑 刘国忠,朱成杰)(上接17页)位差为零.由于Z A 、Z B 、Z C 已知,所以可测出Z X .212 电容的测量测量电容采用惠斯顿电桥,见图3.C X 为被测电容,C 0为标准电容,R A 、R B 为标准电阻,U 是交流信号源,P 是做平衡指示用的电流表.电桥平衡条件为C X R A =C 0R B ,当电桥平衡时,C X =(C 0R B )/R A .213 电感的测量测量电感采用马克斯韦电桥,如图4所示.L X 为被测电感,C 0为标准电容,R A 、R B 为标准电阻.电桥平衡条件为L X /C 0=R A R B ,当电桥平衡时,L X =C 0R A R B .为了简化电路、方便使用,本测量仪忽略了电容电感的损耗问题,完全可以满足业余测量对精度的要求.214 信号源和平衡指示器原理集成运放IC l -1等构成文氏桥振荡器,产生116kH z的正弦波作为测量电桥的信号源(见图5).IC i -2为缓冲放大器,以隔离电桥电路对振荡器的影响.IC 2-1和IC 2-2构成两级放大器,将电桥C 、D 间检测到的信号进行放大,总增益68dB (2500倍),使测量仪具有很高的检测灵敏度,易于调节电桥平衡,提高测量精度.放大器的输出接压电蜂鸣器B ,作为电桥平衡指示.电桥完全平衡时,蜂鸣器无声.信号源输出经变压器T 1耦合至电桥AB 间,电桥CD间的检测信号经变压器T 2耦合至平衡指示器,这样信号源与平衡指示器便可以有公共接地点,以便用一组直流电源供电,示意图如图6所示.(责任编辑 王立俊,王 巍)李雪松,等高职学生登山运动处方实践研究75 。
简易电阻、电容和电感测试仪设计原理
![简易电阻、电容和电感测试仪设计原理](https://img.taocdn.com/s3/m/02665f685bcfa1c7aa00b52acfc789eb172d9e6e.png)
简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。
(2)测量精度:±5% 。
)测量精度:±5% 。
(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。
三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。
由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。
的阻值。
E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。
由此得到:,可忽略不计。
由此得到:,可忽略不计。
由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。
电容测量仪的使用教程
![电容测量仪的使用教程](https://img.taocdn.com/s3/m/7f6dc8465bcfa1c7aa00b52acfc789eb172d9e0c.png)
电容测量仪的使用教程电容测量仪是一种常用的电子测量工具,可以用来测试电容器的容值大小。
在电子学和电路设计中,电容测量仪被广泛使用,它不仅可以用于故障排查,还可以用于电路的调试和优化。
本文将介绍电容测量仪的基本原理和使用方法,以帮助读者更好地进行电容测量。
一、电容测量仪的基本原理电容测量仪的基本原理是利用电容器对电源电压的响应来测量其容值大小。
当电容器向恒流源充电或放电时,其电压会随时间变化。
根据电容器的电压变化曲线,我们可以计算出电容器的容值。
电容测量仪通过对电容器的充放电过程进行实时监测,并计算出电容器的容值。
二、电容测量仪的使用方法1. 准备工作首先,我们需要确认电容测量仪的工作状态是否正常。
打开电容测量仪,检查显示屏是否正常显示。
如果显示屏没有显示任何内容,可能是电池电量不足或者出现故障,这时需要更换电池或进行维修。
2. 连接测量仪将测量仪的正负极与待测电容器的两极进行连接。
确保连接稳固,以免影响测量结果。
在连接时,应注意将正负极对应正确,否则会导致测量值出现错误。
3. 进行测量启动电容测量仪,并按照仪器上的操作指南进行操作。
通常,测量仪会给出测量的起始电压和充放电的时间间隔。
按照仪器的提示,进行充放电操作。
4. 读取测量结果测量仪通常会在操作完成后自动显示测量结果。
这些结果可能以数字或者图表形式呈现,显示电容容值的大小。
对于一些高级的测量仪,还可以提供电容器的等效串联电阻(ESR)等参数。
三、使用技巧1. 选择合适的测量仪市场上有各种不同类型的电容测量仪,包括手持式和台式仪器。
根据自己的需要和预算,选择适合的测量仪。
另外,还应注意测量仪的测量范围和精度是否满足实际需求。
2. 确保稳定的电源电容测量仪需要稳定的电源供电,以保证测量结果的准确性。
在进行测量前,应先检查电源是否正常,并避免使用低电量的电池。
3. 注意电容器的极性某些电容器具有极性,即正负极。
在进行测量时,应注意将测量仪的正负极与电容器的正确极性相连接,以免测量出错误的结果。
简易数字式电阻电容和电感测量仪设计方案
![简易数字式电阻电容和电感测量仪设计方案](https://img.taocdn.com/s3/m/c55341723868011ca300a6c30c2259010202f3f3.png)
简易数字式电阻电容和电感测量仪设计方案设计一个简易的数字式电阻、电容和电感测量仪可以分为以下几个步骤:1.设计测量电路:首先,需要设计一个测量电路,电路可以使用基本的电压和电流测量技术。
电阻测量可以使用恒流法或恒压法,电容测量可以使用充放电法或交流法,电感测量可以使用交流法。
根据选择的测量方法设计合适的电路。
2.选取合适的传感器:为了实现数字化测量,需要选择合适的传感器。
电阻可以使用电阻表,电容可以使用电容计,电感可以使用电感表。
根据需要选择合适的传感器并进行调试和校准。
3.连接传感器与微控制器:将选取的传感器与微控制器进行连接,确保传感器的输出信号可以被微控制器读取。
可以使用模拟输入通道或数字接口来连接传感器和微控制器。
4.编写微控制器程序:根据测量电路和传感器的特性,编写微控制器的程序,实现测量功能。
程序中需要包括对传感器信号的处理、测量结果的计算和存储等功能。
5.设计用户界面:为了方便使用,可以设计一个简单的用户界面。
可以使用液晶显示屏、按键或触摸屏等组件来实现用户界面。
用户界面可以用来选择测量类型、显示测量结果等。
6.调试和测试:将硬件和软件部分进行集成,并进行调试和测试。
确保测量准确性和可靠性,对测量仪进行必要的校准和调整。
总结:设计一个简易的数字式电阻、电容和电感测量仪需要选择合适的测量电路和传感器,采集传感器信号并经过微控制器处理、计算和显示。
同时需要设计合适的用户界面,实现用户操作和结果显示。
最后进行调试和测试,确保测量仪的准确性和可靠性。
简易电容值测量仪
![简易电容值测量仪](https://img.taocdn.com/s3/m/9768c39bdaef5ef7ba0d3ca6.png)
简易电容值测量仪设计2012.12.目录第一部分系统设计1.1 设计题目及要求 (1)1.2 总体设计方案 (2)1.2.1 设计思路 (3)1.2.2 方案论证与比较 (5)第二部分单元电路设计2.1标准脉冲信号电路 (6)2.1.1标准脉冲信号电路工作原理2.1.2标准脉冲信号电路元件的选取与计算2.2 多谐振荡器电路 (7)2.2.1标准脉冲信号电路工作原理2.2.2标准脉冲信号电路元件的选取与计算2.3 锁定电路 (7)2.3.1锁定电路工作原理2.3.2锁定电路元件的选取与计算2.4 计数、锁存、译码和数码管显示电路 (7)2.4.1计数、锁存、译码和数码管显示电路工作原理2.4.2计数、锁存、译码和数码管显示电路元件的选取与计算2.5 指示灯显示电路 (7)2.5.1指示灯显示电路工作原理2.5.2指示灯显示电路元件的选取与计算第三部分整机电路3.1 整机电路图 (7)3.2 元件清单 (8)第四部分性能指标的测试4 电路实现的功能和系统使用说明 (13)1.1 设计题目及要求设计一个可测量电容值的电路。
要求: 1.电容测量范围为1000PF-2UF 。
2.能实现电容的测试与显示。
3.电源采用5V 或±5V 供电。
1.2总体设计方案 1.2.1设计思路题目的关键步骤就是如何把电容值转变成为数字量,即利用受电容影响的电路把电容值转变为可测量,可处理的物理量和数字量,然后显示。
1.2.2方案论证与比较从设计思路出发,可以提出以下两个方案:方案1:把锯齿波信号输入到以被测电容为微分电容的微分电路,得出电容C x 和输出电压U x 之间的线性关系,经过整流滤波后,利用A/D 转换把电压量以数字量形式表现出来,最后用显示电路显示。
,如图1-2-1所示图1-2-1方案2:利用多谐振荡器接成单稳态触发器产生由外接电容决定其脉冲宽度的方波信号,用被测电容作为这个外界电容,即可得出被测电容C x 和脉冲宽度t w 之间的关系,将t w 用计数器转为数字量,通过译码后用显示电路显示出来,如图1-2-2所示 计数器方案论证:经过方案的初步比较,方案1采用A/D转换由模块精度确定,加之模拟模拟信号的不稳定性,可能会造成较大误差,而且A/D转换模块价格相对较高;方案2电路以及思路简单,实现精度可控,所以采用方案2。
便携式电容器测试仪的设计
![便携式电容器测试仪的设计](https://img.taocdn.com/s3/m/cb8583244a7302768e99399e.png)
便携式电容器测试仪的设计摘要:利用变频逆变电源配合钳形电流表构成简洁、实用电容测试仪,并介绍其技术指标和使用特点。
0 引言现代电力系统中,广泛采用电容器作为补偿负序、滤波、抽压等装置。
为了增加耐压和容量,电容器往往采取串并联的方法,一旦电容串(并)联连接,对外就呈现出总的容量值,普通的电容测量仪器就无法在线测量出其中某个电容的数值。
要想测得某个电容的容量,就要把该电容从并联系统中拆除下来,实际操作非常复杂,并在恢复时,极易出现保险断裂和接触不良的现象,造成电容器系统投入后,差压保护动作跳闸。
基于此,介绍一种实用电容器测试仪。
1 电容测试仪原理为了实现不拆线、模拟在线运行状态的测量,可以在母线上( 如图1 ,AI 、AI I ) 对并联电容施加交流电压,然后利用电流钳形表分别测量每个被测电容的电流,通过公式X = U /I 计算出电容的容抗;还可以根据公式R x= X c /t a n ( 9 0 °-q) 计算出电容的损耗( R 是电容器的电阻,q是施加电压和电容电流之间的相位角) ,从而判别电容器缺油、碳化以及受潮等情况。
1.1施加电压根据计算,对于牵引供电系统现在使用的4.51F的电容,要想取得1A的电流,施加的工频电压在700 V以上,为了保证操作者的人身安全和测试仪器的安全,必须设法降低施加电压。
设计中采用了变频的方式,如采用100Hz电压时,对于同一电容器,施加电压可降低2倍;采用200Hz电压时,可降低4倍。
为了保证电容器测试后,不储存电荷,施加电压也不宜过高,选用12V。
对1“F电容,在5OHz时的容抗为3. 18k12,采用12V电压时,钳形表所测得的电流约为4mA。
这样用钳形表测量4mA电流时,输出精度就是电容测量的精度。
普通电流表要保证测量毫安级电流的准确度是很容易做到的,但对于钳形电流表来说,却是非常困难的,要受到钳口的大小、闭合缝隙以及导线在钳口中的位置等诸多因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易电容测量仪
电容是电子线路中最常用的元器件之一,对电容值的测量一般采用利用振荡电路将电容值转换为频率值,再通过频率计数器测量,或利用PWM(脉冲宽度调制)电路将电容值转换为模拟电压值,再通过电压表测量的方法进行。
本题要求利用以上所述两种原理中的一种,设计一个简易电容测量仪。
1.实验目的
理解电容的测量原理;掌握利用555集成电路设计振荡器的方法;掌握555单稳态电路的设计方法和应用;理解PWM信号的概念和意义;掌握利用PWM信号发生电路产生模拟直流电压信号的原理和方法;掌握数字电压表或数字频率计的工作原理和设计制作方法。
2.设计要求及技术指标
基本部分:
(1)系统采用+9V单电源供电;
(2)电容测试范围:33~470nF,测量误差≤15%。
(测试时分别对33nF、47nF、100nF、
220nF、330nF、470nF等6种电容进行测试);
(3)测试结果通过数字电压表(数字万用表直流电压测量档)或自制的数字频率计显示。
采用数字电压表显示时要求电压表示数数值(单位V)为电容值(单位nF)的百分
之一。
例如,470nF显示为4.70V,33nF显示为0.33V或330mV;采用自制数字频
率计显示时示数直接代表电容值(单位:nF)。
要求示数比较稳定,不乱跳。
(4)在电路板靠边的显著位置焊出被测电容插座和万用表测试孔,用来插被测电容和连
接万用表。
电路板焊好后应在每个测试孔的相应位置做出标记。
发挥部分:
(1)自制数字电压表,用以代替数字万用表显示被测电容值。
要求所显示数值直接表示
被测电容的容值(单位:nF);
(2)增加电容测试范围至:1nF~10μF,可手动切换量程;
(3)在发挥(2)中要求基础上增加自动量程切换功能;
(4)提高测量精度,测量误差≤10%;
3.设计任务
(1)设计,安装、调试所设计的电路;
(2)画出完整电路图,详细说明电路原理,写出设计总结报告。
4.工作原理及设计思路参考
555时基电路是一种用途非常广泛的数字-模拟混合集成电路。
555时基电路内部结构简单,使用非常灵活,可以组成产生各种波形的脉冲振荡器、定时延时电路、双稳态电路、检测电路、电源变换电路、频率变换电路等。
具有工作电压范围宽、输出驱动能力强、应用范围广等特点,已被广泛应用于自动控制、测量、通信等各种领域。
555时基电路常用有单稳态、双稳态和无稳态等三种电路形式。
其中单稳态和双稳态电路常用于定时,无稳态电路则多用于多谐振荡器。
单稳态电路工作原理见《数字电子技术(第二版)》(侯建军主编,高等教育出版社出版)第八章第四节第三部分(P.396~398)。
可知,
在一定频率和占空比的输入脉冲信号的激励下,该电路输出信号的脉冲宽度t w与电容C成线性关系(t w≈1.1RC),与输入信号脉宽及电源电压无关。
利用该原理可将电容C的大小转换为输出脉冲信号的脉冲宽度,如图1所示。
图1 555单稳态电路示意图
对一个周期脉冲信号来说,其脉冲的宽度和电压幅度决定了该信号的直流分量电压。
可以证明,其信号的直流分量与脉冲的宽度(占空比)之间具有线性关系。
通过一个截止频率很低的低通滤波电路对该信号进行低通滤波,滤除信号的交流成分而只保留其中的直流成分,就可以将该周期脉冲信号的脉冲宽度转换为一个直流信号的电压。
将上述555单稳态电路和低通滤波电路连接在一起,就可以将555单稳态电路中电容C 的大小转换为低通滤波器输出直流信号电压的大小,从而可以实现对电容的测量,其系统结构如图2所示。
电路中应特别注意激励脉冲信号频率和占空比的选择,应根据被测电容的大
小和电容-脉宽转换电路的参数进行合理计算,才能保证测量电路正常工作。
图2 简易电容测试仪系统结构
5.主要参考元器件
NE555、LM324、ICL7107、LED数码管、电阻、电容等。
6.思考题
(1)采用电容-振荡频率-数字频率计原理和电容-脉冲宽度-直流电压-数字电压表这两
种原理测量电容,哪种测量精度更高?为什么?
(2)查阅资料,一般带有电容测量功能的数字万用表中采用何种原理测量电容?
(3)查一查有哪些可以测量电容的仪器?哪种仪器测量精度最高?
(4)图2中激励脉冲信号的频率和占空比应如何选择?如果选得过高或过低会有什么
后果?
(5)什么是PWM信号?有何应用?。