2015年重庆市中考数学试题(A卷)有答案(扫描版)

合集下载

5重庆市2015年中考(含答案)数学试题(A卷)

5重庆市2015年中考(含答案)数学试题(A卷)

2015年重庆市中考数学试卷(A卷)(5)=2.题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;位于最中间的数是216,则这组数的中位数是216.故选C.8.解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.9.解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.10.解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.二、填空题(共6小题,每小题4分,满分24分)13.解:将37000用科学记数法表示为3.7×104.故答案为:3.7×104.14.解:原式=1﹣2=﹣1.故答案为:﹣1.15.解:∵△ABC∽△DEF,△ABC与△DEF的相似比为4:1,∴△ABC与△DEF对应边上的高之比是4:1,故答案为:4:1.16.解:∵△ACB是等腰直角三角形ABC中,∠ACB=90°,∴∠A=∠B=45°,∵AB=4,∴AC=BC=AB×sin45°=4,∴S△ACB===8,S扇形ACD==2π,∴图中阴影部分的面积是8﹣2π,故答案为:8﹣2π.17.解:∵不等式组的解集是:﹣<x<,∴a的值既是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数y=的自变量取值范围为:2x2+2x≠0,∴在函数y=的自变量取值范围内的有﹣3,﹣2,4;∴a的值既是不等式组的解,又在函数y=的自变量取值范围内的有:﹣3,﹣2;∴a的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是:.故答案为:.18.解:作FK⊥BC′于K点,如图:在Rt△ABD中,由勾股定理,得BD===14设DE=x,CE=4﹣x,由BE平分∠DBC,得=,即=.解得x=,EC=.在Rt△BCE中,由勾股定理,得BE===.由旋转的性质,得BE′=BE=,BC′=BC=10,E′C′=EC=.△BFD是等腰三角形,BF=FD=x,在Rt△ABF中,由勾股定理,得x2=(4)2+(10﹣x)2,解得x=,AF=10﹣=.tan∠ABF===,tan∠FBG===,tan∠ABG=tan(∠ABF+∠FBG)===,tan∠ABG==,AG=×4=,DG=AD﹣AG=10﹣==,故答案为:.,则方程组的解为=4xy+x2;(2)原式=•=.22.解:(1)该镇本次统计的小微企业总个数是:4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数为:×360°=72°;故答案为:25,72;A类小微企业个数为:25﹣5﹣14﹣4=2(个);补全统计图:(2)分别用A,B表示2个来自高新区的,用C,D表示2个来自开发区的.画树状图得:∵共有12种等可能的结果,所抽取的2个发言代表都来自高新区的有2种情况,∴所抽取的2个发言代表都来自高新区的概率为:=.23.解:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:d,c,b,a个位到最高位排列:a,b,c,d.由题意,可得两组数据相同,则:a=d,b=c,则===91a+10b为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则满足:个位到最高位排列:x,y,z.最高位到个位排列:z,y,x.由题意,两组数据相同,则:x=z,故==101x+10y,故===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).24.解:(1)在直角△PEN中,EN=PE=30m,ME==50(m),则MN=EM﹣EN=20(m).答:两渔船M、N之间的距离是20米;(2)过点D作DQ⊥AH于点Q.由题意得:tan∠DAB=4,tanH=,在直角△DAQ中,AQ===6(m),在直角△DHQ中,HQ===42(m).故AH=HQ﹣AQ=42﹣6=36(m).S△ADH=AH•DQ=432(m2).故需要填筑的土石方是V=SL=432×100=43200(m3).设原计划平均每天填筑xm3,则原计划天完成,则增加机械设备后,现在平均每天填筑2xm3.根据题意,得:10x+()•2x=43200,解得:x=864.经检验x=864是原方程的解.答:施工队原计划平均每天填筑土石方864立方米.25.解:(1)∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=2×2=4,∵AD⊥AB,∠CAB=60°,∴∠DAC=30°,∵AH=AC=,∴AD==2,∴BD==2;(2)如图1,连接AF,∵AE是∠BAC角平分线,∴∠HAE=30°,∴∠ADE=∠DAH=30°,在△DAE与△ADH中,,∴△DAE≌△ADH,∴DH=AE,∵点F是BD的中点,∴DF=AF,∵∠EAF=∠EAB﹣∠FAB=30°﹣∠FAB∠FDH=∠FDA﹣∠HDA=∠FDA﹣60°=(90°﹣∠FBA)﹣60°=30°﹣∠FBA,∴∠EAF=∠FDH,在△DHF与△AEF中,,∴△DHF≌△AEF,∴HF=EF;(3)如图2,取AB的中点M,连接CM,FM,在R t△ADE中,AD=2AE,∵DF=BF,AM=BM,∴AD=2FM,∴FM=AE,∵∠ABC=30°,∴AC=CM=AB=AM,∵∠CAE=∠CAB=30°∠CMF=∠AMF﹣∠AMC=30°,在△ACE与△MCF中,,∴△ACE≌△MCF,∴CE=CF,∠ACE=∠MCF,∵∠ACM=60°,∴∠ECF=60°,∴△CEF是等边三角形.26.解:(1)令y=0,则﹣x2+x+3=0,解方程得:x=6或x=﹣2,∴A(﹣2,0),B(6,0),又y=﹣x2+x+3=﹣(x﹣2)2+4,又顶点C(2,4),设直线BC的解析式为:y=kx+b,代入B、C两点坐标得:,解得:,∴y=﹣x+6;(2)如图1,∵点E(m,0),F(m+2,0),∴E′(m,﹣m2+m+3),F′(m+2,﹣m2+4),∴E′M=﹣m2+m+3﹣(﹣m+6)=﹣m2+2m﹣3,F′N=﹣m2+4﹣(﹣m+4)=﹣m2+m,∴E′M+F′N=﹣m2+2m﹣3+(﹣m2+m)=﹣m2+3m﹣3,当m=﹣=3时,E′M+F′N的值最大,∴此时,E′(3,)F′(5,),∴直线E′F′的解析式为:y=﹣x+,∴R(0,),根据勾股定理可得:RF′=10,RE′=6,∴|RF′﹣RE′|的值最大值是4;(3)由题意得,Q点在∠CAB的角平分线或外角平分线上,①如图2,当Q点在∠CAB的角平分线上时,Q′M=Q′N=,AW=,∵△RMQ′∽△WOA,∴∴RQ′=,∴RN=+,∵△ARN∽△AWO,∵∴AN=,∴DN=AD﹣AN=4﹣=,∴S=;②如图3,当Q点在∠CAB的外角平分线上时,∵△Q′RN∽△W AO,∴RQ′=,∴RM=﹣,∵△RAM∽△WOA,∴AM=,在RtQ′MP′中,MP′=Q′M=3,∴AP′=MP′﹣AM=3﹣=,在Rt△AP′S中,P′S=AP′=×,∴S=.。

2023年重庆市中考数学试题(A卷,附答案)

2023年重庆市中考数学试题(A卷,附答案)

2023年重庆市中考数学试题(A卷,附答案)第一部分选择题1. 已知直线l等于数a和数b的和,若a = 3,b = 5,则l的数值为:A. 2B. 3C. 5D. 82. 一辆汽车从A地出发,按时速60km/h行驶,2小时后到达B地,再按时速40km/h行驶,行驶4小时后到达C地。

则从A地到C地共需多长时间?A. 4小时B. 5小时C. 6小时D. 7小时3. 如果已知2x - 5 = 7,那么x的值为:A. 1B. 3C. 6D. 84. 设正方形边长为x,则它的周长为:A. x²B. 2xC. 4xD. 4x²5. 一辆汽车以每小时100km的速度行驶,行驶8小时后,已经行驶了多少公里?A. 400kmB. 600kmC. 800kmD. 1000km第二部分解答题6. 旅行团一行30人,乘坐大巴车出游。

大巴车每小时消耗30升的柴油,行驶一公里消耗1.5升柴油。

已知旅行团行程共200公里,大巴车的油箱容量为360升。

请问,旅行团在这次旅行中,油箱最少需要加多少次油?答案:4次7. 若正整数b + 7 = 3的解为b = -4,则b²的值为多少?答案:168. 一条狗在一口深井的底部向上看,白天看到日间高度的3倍,晚上看到日间高度的一半。

已知白天看到井口离地面的距离是36米,那么晚上看到井口离地面的距离是多少米?答案:9米9. 家住A地的小明参加一次马拉松比赛,比赛在A地的起点开始,一共持续了3个小时。

小明在比赛的前2小时内已经跑了2/3的比赛路程。

求小明需要用多长时间能够完成整个比赛?答案:1小时10. 若一个正三角形的周长为15cm,它的边长是多少厘米?答案:5厘米。

2017重庆中考数学试题及答案(A卷)Word版

2017重庆中考数学试题及答案(A卷)Word版

重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3。

考试结束,由监考人员将试题和答题卡一并收回。

参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-。

一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在实数-3,2,0,-4,最大的数是( B )A 。

-3B .2C 。

0D .-42.下列图形中是轴对称图形的是( C )A B C D3。

计算26x x ÷正确的结果是( C ) A 。

3 B .3x C .4x D 。

8x4.下列调查中,最适合采用全面调查(普查)方式的是( D )A 。

对重庆市初中学生每天阅读时间的调查B 。

对端午节期间市场上粽子质量情况的调查C 。

对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5。

估计110+的值应在( B )A 。

3和4之间B 。

4和5之间C .5和6之间D .6和7之间6。

若13x =-,4y =,则代数式33-+y x 的值为( B )A 。

-6B 。

0C 。

2D 。

6 7。

要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B 。

3=x C 。

3<x D 。

3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A )A 。

3:2B .3:5C 。

9:4D .4:99。

如图,矩形ABCD 的边AB=1,BE 平分∠ABC,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A 。

最新2019年重庆市中考数学试题(A卷)及参考答案(word解析版)

最新2019年重庆市中考数学试题(A卷)及参考答案(word解析版)
2019 年重庆市中考数学试题( A 卷)及参考答案与解析
(满分 150 分,考试时间 120 分钟)
参考公式:抛物线
y=ax
2
+bx+c

a≠
0
)的顶点坐标为
b 4ac b2
,Leabharlann ,对称轴为 x2a 4a
b

2a
一、选择题: (本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为
25600000 人次,请把数
25600000 用科学记数法表示为

15.一个不透明的布袋内装有除颜色外,其余完全相同的
3 个红球, 2 个白球, 1 个黄球,搅匀后,
从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率


16.如图,在菱形 ABCD 中,对角线 AC ,BD 交于点 O,∠ABC = 60°, AB = 2,分别以点 A、点 C 为圆心,以 AO 的长为半
径画弧 分别与 菱形的边相交,则图中阴影 部分 的面积

.(结果保留 π)
17.某公司快递员甲匀速骑车前往某小区送物件, 出发几分钟后, 快递员乙发现甲的手机落在公司, 无法联系, 于是乙匀速骑车去追赶甲. 乙刚出发 2 分钟
时,甲也发现自己手机落在公司, 立刻按原路原速骑车
回公司, 2 分钟后甲遇到乙,乙把手机给甲后立即原路
一半的钱给甲,则甲的数为 50;而甲把其 的钱给乙,则乙的钱数也为 50,问甲、乙各有多少
钱?设甲的钱数为 x,乙的钱数为 y,则可建立方程组为(

A.
B.
C.
D.
8.按如图所示的运算程序,能使输出 y 值为 1 的是(

(完整版)2018年重庆市中考数学试卷(a卷)

(完整版)2018年重庆市中考数学试卷(a卷)

2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。

都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4.00分)2的相反数是( )A.﹣2B.﹣C.D.22.(4.00分)下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.矩形3.(4.00分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4.00分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A.12B.14C.16D.185.(4.00分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为( )A.3cm B.4cm C.4.5cm D.5cm6.(4.00分)下列命题正确的是( )A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4.00分)估计(2﹣)•的值应在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4.00分)按如图所示的运算程序,能使输出的结果为12的是( )A.x=3,y=3B.x=﹣4,y=﹣2C.x=2,y=4D.x=4,y=29.(4.00分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O 相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为( )A.4B.10.(4.00分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为( )(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4.00分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD 的面积为,则k的值为( )A.B.C.4D.512.(4.00分)若数a使关于x 的不等式组有且只有四个整数解,且使关于y 的方程=2的解为非负数,则符合条件的所有整数a的和为( )A.﹣3B.﹣2C.1D.2n 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。

2019年重庆市中考数学试卷(a卷)(附答案,解析)

2019年重庆市中考数学试卷(a卷)(附答案,解析)

2019年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2019•重庆)下列各数中,比1-小的数是()A.2B.1C.0D.2-2.(4分)(2019•重庆)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)(2019•重庆)如图,ABO CDODO=,2BO=,3CD=,则AB的长是()∆∆∽,若6A.2B.3C.4D.54.(4分)(2019•重庆)如图,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连结OD.若50∠的度数为()∠=︒,则AODCA.40︒B.50︒C.80︒D.100︒5.(4分)(2019•重庆)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)(2019•重庆)估计1(2362)3+⨯的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间7.(4分)(2019•重庆)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 8.(4分)(2019•重庆)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =9.(4分)(2019•重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线//BD x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点(2,0)A ,(0,4)D ,则k 的值为( )A .16B .20C .32D .4010.(4分)(2019•重庆)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)1:2.4i =的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=︒(古树CD与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( ) (参考数据:sin480.73︒≈,cos480.67︒≈,tan 48 1.11)︒≈A .17.0米B .21.9米C .23.3米D .33.3米11.(4分)(2019•重庆)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .612.(4分)(2019•重庆)如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B .3217C 7D 13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2019•重庆)计算:011(3)()2π--+= 14.(4分)(2019•重庆)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .15.(4分)(2019•重庆)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .16.(4分)(2019•重庆)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,60ABC ∠=︒,2AB =,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留)π17.(4分)(2019•重庆)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.18.(4分)(2019•重庆)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)(2019•重庆)计算:(1)2()(2)x y y x y +-+(2)2949()22a a a a a --+÷-- 20.(10分)(2019•重庆)如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,连结AD ,BE 平分ABC ∠交AC 于点E ,过点E 作//EF BC 交AB 于点F .(1)若36C ∠=︒,求BAD ∠的度数;(2)求证:FB FE =.21.(10分)(2019•重庆)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100)x ,下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表 年级七年级 八年级 平均数92 92 中位数93 b 众数c 100 方差 5250.4 根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(90)x 的学生人数是多少?22.(10分)(2019•重庆)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数- “纯数”.定义;对于自然数n ,在计算(1)(2)n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算323334++时,各数位都不产生进位;23不是“纯数”,因为计算232425++时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)(2019•重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)||(0)a a a a a ⎧=⎨-<⎩. 结合上面经历的学习过程,现在来解决下面的问题在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函132y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|3|32kx b x -+-的解集.24.(10分)(2019•重庆)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a ,每户物管费将会减少3%10a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a ,每户物管费将会减少1%4a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a ,求a 的值. 25.(10分)(2019•重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM AE ⊥,垂足为E ,交CD 于点M ,AF BC ⊥,垂足为F ,BH AE ⊥,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若24DP AP ==,17CP =,5CD =,求ACD ∆的面积.(2)若AE BN =,AN CE =,求证:22AD CM CE =+.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)(2019•重庆)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴交于点A ,B (点A 在点B 的左侧),交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN BD ⊥,交抛物线于点N (点N 在对称轴的右侧),过点N 作NH x ⊥轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求13HF FP PC ++的最小值; (2)在(1)中,当MN 取得最大值,13HF FP PC ++取得最小值时,把点P 2个单位得到点Q ,连结AQ ,把AOQ ∆绕点O 顺时针旋转一定的角度(0360)αα︒<<︒,得到△A OQ '',其中边A Q ''交坐标轴于点G .在旋转过程中,是否存在一点G ,使得Q Q OG ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比1-小的数是()A.2B.1C.0D.2-【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:2102-<-<<,∴比1-小的数是2-,故选:D.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.3.(4分)如图,ABO CDO∆∆∽,若6BO=,3DO=,2CD=,则AB的长是()A.2B.3C.4D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:ABO CDO∆∆∽,∴BO AB DO DC=,6BO=,3DO=,2CD=,∴632AB =,解得:4AB=.故选:C.4.(4分)如图,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连结OD.若50C∠=︒,则AOD∠的度数为()A.40︒B.50︒C.80︒D.100︒【分析】由切线的性质得出90BAC∠=︒,求出40ABC∠=︒,由等腰三角形的性质得出40ODB ABC∠=∠=︒,再由三角形的外角性质即可得出结果.【解答】解:AC是O的切线,AB AC∴⊥,90BAC∴∠=︒,50C∠=︒,40ABC∴∠=︒,OD OB=,40ODB ABC∴∠=∠=︒,80AOD ODB ABC∴∠=∠+∠=︒;故选:C.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.6.(4分)估计()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:2=+2=+2=+4245<<,627∴<+,故选:C.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.8.(4分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =【分析】根据题意一一计算即可判断.【解答】解:当1m =,1n =时,21213y m =+=+=,当1m =,0n =时,211y n =-=-,当1m =,2n =时,213y m =+=,当2m =,1n =时,211y n =-=,故选:D .9.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线//BD x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点(2,0)A ,(0,4)D ,则k 的值为( )A .16B .20C .32D .40【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设(,4)B x .利用矩形的性质得出E 为BD 中点,90DAB ∠=︒.根据线段中点坐标公式得出1(2E x ,4). 由勾股定理得出222AD AB BD +=,列出方程2222224(2)4x x ++-+=,求出x ,得到E 点坐标,代入k y x=,利用待定系数法求出k .【解答】解://BD x 轴,(0,4)D , B ∴、D 两点纵坐标相同,都为4,∴可设(,4)B x .矩形ABCD 的对角线的交点为E ,E ∴为BD 中点,90DAB ∠=︒.1(2E x ∴,4). 90DAB ∠=︒,222AD AB BD ∴+=,(2,0)A ,(0,4)D ,(,4)B x ,2222224(2)4x x ∴++-+=,解得10x =,(5,4)E ∴.反比例函数(0,0)k y k x x=>>的图象经过点E , 5420k ∴=⨯=.故选:B .10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)1:2.4i =的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=︒(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin480.73︒≈,cos480.67︒≈,tan 48 1.11)︒≈A .17.0米B .21.9米C .23.3米D .33.3米【分析】如图,根据已知条件得到51:2.412CF AF ==,设5CF k =,12AF k =,根据勾股定理得到221326AC CF AF k =+==,求得10AF =,24CF =,得到62430EF =+=,根据三角函数的定义即可得到结论.【解答】解:如图,51:2.412CF AF ==, ∴设5CF k =,12AF k =,221326AC CF AF k ∴=+==,2k ∴=,10AF ∴=,24CF =,6AE =,62430EF ∴=+=,48DEF ∠=︒,tan 48 1.1130DF DF EF ∴︒===, 33.3DF ∴=,33.31023.3CD ∴=-=,答:古树CD 的高度约为23.3米,故选:C .11.(4分)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6 【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,再根据其解集是x a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【解答】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩得:5x a x ⎧⎨<⎩ 解集是x a ,5a ∴<;由关于y 的分式方程24111y a y y y---=--得241y a y y -+-=- 32a y +∴=, 有非负整数解,∴302a +, 3a ∴-,且3a =-,1a =-(舍,此时分式方程为增根),1a =,3a =它们的和为1.故选:B .12.(4分)如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B 321C 7D 13【分析】连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',证ADC '∆为等边三角形,利用解直角三角形求出1DM =,33C M DM '==2BM =,在Rt BMC '∆中,利用勾股定理求出BC '的长,在BDC '∆中利用面积法求出DH 的长.【解答】解:如图,连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,2AD AC ='=,D 是AC 边上的中点,2DC AD ∴==,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',2DC DC '∴==,BC BC '=,CM C M '=,2AD AC DC '∴='==,ADC '∴∆为等边三角形,60ADC AC D C AC '''∴∠=∠=∠=︒,DC DC '=,160302DCC DC C ''∴∠=∠=⨯︒=︒, 在Rt △C DM '中,30DC C '∠=︒,2DC '=,1DM ∴=,33C M DM '312BM BD DM ∴=-=-=,在Rt BMC '∆中,22222(3)7BC BM C M ''=++ 1122BDC S BC DH BD CM '∆'==,∴733DH =⨯,3217DH ∴=, 故选:B .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:011(3)()2π--+= 3 【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式123=+=,故答案为:3.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 72.5610⨯ .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定817n =-=.【解答】解:725600000 2.5610=⨯.故答案为:72.5610⨯.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 15. 【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为61305=. 故答案为:15.16.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,60ABC ∠=︒,2AB =,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 2233π- .(结果保留)π【分析】根据菱形的性质得到AC BD ⊥,1302ABO ABC ∠=∠=︒,120BAD BCD ∠=∠=︒,根据直角三角形的性质求出AC 、BD ,根据扇形面积公式、菱形面积公式计算即可.【解答】解:四边形ABCD 是菱形,AC BD ∴⊥,1302ABO ABC ∠=∠=︒,120BAD BCD ∠=∠=︒, 112AO AB ∴==, 由勾股定理得,223OB AB OA =-2AC ∴=,23BD =∴阴影部分的面积211201222322323603ππ⨯=⨯⨯⨯=, 故答案为:2233π. 17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000(1222)500÷--=米/分, 乙的速度为:400050025002100022+⨯-⨯=+米/分, 乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500(122)500250046000⨯--⨯+⨯=(米),故答案为:6000.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 3:20 .【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为()x y +,川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x 依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可.【解答】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为()x y +,川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x 依题意可得,()5919121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由①得32x y =③, 将③代入②,38z y =,∴贝母的面积与该村种植这三种中药材的总面积之比3383202y z x y y y ===++, 故答案为3:20.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)2()(2)x y y x y +-+(2)2949()22a a a a a --+÷-- 【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)2()(2)x y y x y +-+22222x xy y xy y =++--2x =;(2)2949()22a a a a a --+÷-- (2)(94)22(3)(3)a a a a a a a -+--=-+- 2294(3)(3)a a a a a -+-=+- 2(3)(3)(3)a a a -=+- 33a a -=+. 20.(10分)如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,连结AD ,BE 平分ABC ∠交AC 于点E ,过点E 作//EF BC 交AB 于点F .(1)若36C ∠=︒,求BAD ∠的度数;(2)求证:FB FE =.【分析】(1)利用等腰三角形的三线合一的性质证明90ADB ∠=︒,再利用等腰三角形的性质求出ABC ∠即可解决问题.(2)只要证明FBE FEB ∠=∠即可解决问题.【解答】(1)解:AB AC =,C ABC ∴∠=∠,36C ∠=︒,36ABC ∴∠=︒,BD CD =,AB AC =,AD BC ∴⊥,90ADB ∴∠=︒,903654BAD ∴∠=︒-︒=︒.(2)证明:BE 平分ABC ∠, 12ABE CBE ABC ∴∠=∠=∠, //EF BC ,FEB CBE ∴∠=∠,FBE FEB ∴∠=∠,FB FE ∴=.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100)x ,下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级 七年级 八年级平均数92 92 中位数93 b 众数c 100 方差 5250.4 根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(90)x 的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)3(120%10%)1004010a =---⨯=, 八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,9494942b +∴==; 在七年级10名学生的竞赛成绩中99出现的次数最多,99c ∴=;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(90)x 的学生人数1372046820=⨯=人, 答:参加此次竞赛活动成绩优秀(90)x 的学生人数是468人.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数- “纯数”.定义;对于自然数n ,在计算(1)(2)n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算323334++时,各数位都不产生进位;23不是“纯数”,因为计算232425++时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当2019n =时,12020n +=,22021n +=,个位是90110++=,需要进位,2019∴不是“纯数”; 当2020n =时,12021n +=,22022n +=,个位是0123++=,不需要进位,十位是2226++=,不需要进位,百位为0000++=,不需要进位,千位为2226++=,不需要进位,2020∴是“纯数”; (2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为39113++=,即不大于100的“纯数”的有13个.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)||(0)a a a a a ⎧=⎨-<⎩. 结合上面经历的学习过程,现在来解决下面的问题在函数|3|y kxb =-+中,当2x =时,4y =-;当0x =时,1y =-.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函132y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|3|32kx b x -+-的解集.【分析】(1)根据在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【解答】解:(1)在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-, ∴|23|4|3|1k b b -+=-⎧⎨-+=-⎩,得324k b ⎧=⎪⎨⎪=-⎩, ∴这个函数的表达式是3|3|42y x =--; (2)3|3|42y x =--, 37(2)231(2)2x x y x x ⎧-⎪⎪∴=⎨⎪--<⎪⎩, ∴函数372y x =-过点(2,4)-和点(4,1)-;函数312y x =--过点(0,1)-和点(2,2)-; 该函数的图象如右图所示,性质是当2x >时,y 随x 的增大而增大;(3)由函数图象可得,不等式1|3|32kx b x -+-的解集是14x .24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a,每户物管费将会减少3%10a;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a,每户物管费将会减少1%4a.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a,求a的值.【分析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有50040%200⨯=户参与活动一,80平方米住宅有25020%50⨯=户参与活动一;50平方米住宅每户所交物管费为3100(1%)10a-元,有200(12%)a+户参与活动二;80平方米住宅每户所交物管费为1160(1%)4a-元,有50(16%)a+户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a,列出方程求解即可.【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50280)90000x x⨯+=,解得250x=答:该小区共有250套80平方米的住宅.(2)参与活动一:。

2019-2020学年重庆市中考数学(a卷)试题(有标准答案)(word版)

2019-2020学年重庆市中考数学(a卷)试题(有标准答案)(word版)

重庆市初中毕业暨高中招生考试数学试卷(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项: 1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项; 3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)0(a 2≠++=c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为a bx 2-= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑. 1、在实数2-,2,0,1-中,最小的数是( )A. 2-B. 2C. 0D. 1-2.下列图形中是轴对称的是()AB C D3.计算23a a ⋅正确的是( )A. aB. 5aC. 6a D. 9a4.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市直辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于( )A.120°B.110°C.100°D.80°6.若1,2==b a ,则32++b a 的值为()A.-1B.3C.6D.57.函数21+=x y 中,x 的取值范围是()A. 0≠xB. 2->xC. 2-<xD. 2≠x8.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A. 1:2B. 1:3C. 1:4D. 1:169.如图,以AB 为直径,点O 为圆心的半径经过点C ,若2==BC AB ,则图中阴影部分的面积是()A.4π B.421π+ C.2πD.221π+ 10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为( )(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎪⎩⎪⎨⎧<-≥+03)72(31a x x 无解,且使关于x 的分式方程1323-=----xa x x 有整数解,那么这5个数中所有满足条件的a 的值之和是( ) A.-3B.-2C. 23-D.21 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

历年全国中考数学试题及答案(完整详细版)

历年全国中考数学试题及答案(完整详细版)

班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。

2022年重庆市中考数学试卷(a卷)(解析版)

2022年重庆市中考数学试卷(a卷)(解析版)

2022年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2022•重庆)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)(2022•重庆)下列图形是轴对称图形的是()A.B.C.D.3.(4分)(2022•重庆)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)(2022•重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.411.(4分)(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣1312.(4分)(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)计算:|﹣4|+(3﹣π)0=.14.(4分)(2022•重庆)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)(2022•重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)(2022•重庆)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E 是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.21.(10分)(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)(2022•重庆)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)(2022•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.Ⅷ25.(10分)(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC 上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2022•重庆)5的相反数是()A.﹣5B.5C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2022•重庆)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2022•重庆)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【点评】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.(4分)(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【点评】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【点评】本题考查位似变换,解答本题的关键是明确相似三角形的周长比等于相似比.6.(4分)(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有4n+1个正方形是解题的关键.7.(4分)(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【分析】先计算出原式得6+,再根据无理数的估算可得答案.【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.(4分)(2022•重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=242【分析】设该快递店揽件日平均增长率为x,关系式为:第三天揽件数=第一天揽件数×(1+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.(4分)(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【点评】本题考查正方形的性质、全等三角形的判定与性质,解答本题的关键是求出∠ADF的度数.10.(4分)(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.4【分析】连接OB,则OB⊥AB,由勾股定理可知,AB2=OA2﹣OB2①,由OB和OD是半径,所以∠A=∠D=∠OBD,所以△OBD∽△BAD,AB=BD,可得BD2=OD•AD,所以OA2﹣OB2=OD•AD,设OD=x,则AD=2x+3,OB=x,OA=x+3,所以(x+3)2﹣x2=x(2x+3),求出x的值,即可求出OA和OB的长,进而求得AB的长.【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【点评】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.(4分)(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣13【分析】解不等式组得出,结合题意得出a>﹣11,解分式方程得出y=,结合题意得出a=﹣8或﹣5,进而得出所有满足条件的整数a的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.(4分)(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【分析】根据“加算操作”的定义可知,当只给x﹣y加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【点评】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)计算:|﹣4|+(3﹣π)0=5.【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式=4+1=5.故答案为:5.【点评】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.(4分)(2022•重庆)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE的面积,由S阴影部分=S菱形ABCD﹣2S扇形ADE可得答案.【解答】解:如图,连接BD交AC于点O,则AC⊥BD,∵四边形ABCD是菱形,∠BAD=60°,∴∠BAC=∠ACD=30°,AB=BC=CD=DA=2,在Rt△AOB中,AB=2,∠BAO=30°,∴BO=AB=1,AO=AB=,∴AC=2OA=2,BD=2BO=2,∴S菱形ABCD=AC•BD=2,∴S阴影部分=S菱形ABCD﹣2S扇形ADE=2﹣=,故答案为:.【点评】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确解答的前提.16.(4分)(2022•重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x所以香樟的总量是16x,红枫的总量是20x,设香樟的单价为a,红枫的单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x•b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴==,故答案为:.【点评】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)(2022•重庆)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.(8分)(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E 是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.【分析】根据已知条件依次写出相应的解答过程即可.【解答】解:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【点评】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a=95,b=90,m=20;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【分析】(1)根据众数、中位数概念可求出a、b的值,由B型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m的值;(2)用3000乘30%即可得答案;(3)比较A型、B型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【点评】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.(10分)(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.【分析】(1)根据反比例函数解析式求出A点和B点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C点坐标,根据A点、B点和C点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,∴S△ABC==12.【点评】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.(10分)(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,。

2015年重庆市中考数学试卷(A卷)答案与解析

2015年重庆市中考数学试卷(A卷)答案与解析

2015年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(共 小题,每小题 分,满分 分).( 分)( 重庆)在﹣ , ,﹣ , 这四个数中,最大的数是( ) .﹣ . .﹣ .考点:有理数大小比较.分析:先计算 ﹣ , ﹣ ,根据负数的绝对值越大,这个数越小得﹣ <﹣ ,再根据正数大于 ,负数小于 得到﹣ <﹣ < < .解答:解: ﹣ , ﹣ ,﹣ <﹣ ,﹣ , ,﹣ , 这四个数的大小关系为﹣ <﹣ < < .故选 .点评:本题考查了有理数大小比较:正数大于 ,负数小于 ;负数的绝对值越大,这个数越小..( 分)( 重庆)下列图形是轴对称图形的是( ). . . .考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解: 是轴对称图形,故正确; 不是轴对称图形,故错误;不是轴对称图形,故错误; 不是轴对称图形,故错误.故选 .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合..( 分)( 重庆)化简的结果是( ). . . .考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解: .故选: .点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键. .( 分)( 重庆)计算( ) 的结果是( ). . . .考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法: ( ) ( , 是正整数);( ) ( 是正整数);求出( ) 的结果是多少即可.解答:解:( ) ( )即计算( ) 的结果是 .故选: .点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确: ( ) ( , 是正整数); ( ) ( 是正整数)..( 分)( 重庆)下列调查中,最适合用普查方式的是( ).调查一批电视机的使用寿命情况.调查某中学九年级一班学生的视力情况.调查重庆市初中学生每天锻炼所用的时间情况.调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解: 调查一批电视机的使用寿命情况,调查全局有破坏性,适合抽样调查,故 不符合题意; 调查某中学九年级一班学生的视力情况,适合普查,故 符合题意;调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 不符合题意; 调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故 不符合题意 故选: .点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查..( 分)( 重庆)如图,直线 ,直线 分别与直线 , 相交于点 , .若 ,则 的度数为( ). .. .考点:平行线的性质.分析:根据平行线的性质求出 的度数即可.解答:解: , , ﹣ .故选 .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补..( 分)( 重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为 , , , , ,则这五个数据的中位数为( ). . . .考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序: , , , ,.位于最中间的数是 则这组数的中位数是 .故选 .点评: 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数..( 分)( 重庆)一元二次方程 ﹣ 的根是( ). , ﹣. , . , ﹣. ,考点: 解一元二次方程 因式分解法. 分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答: 解: ﹣ , ( ﹣ ) , , ﹣ , ,,故选 .点评: 本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中..( 分)( 重庆)如图, 是 直径,点 在 上, 是 的切线, 为切点,连接 并延长交 于点 .若 ,则 的度数为( ).. . .考点: 切线的性质. 分析: 由 是 直径, 是 的切线,推出 ,,推出 .解答:解: 是 直径, 是 的切线,, , ﹣ ,故选 .点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接 ,构建直角三角形,求 的度数..( 分)( 重庆)今年 五一 节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为 (分钟),所走的路程为 (米),与 之间的函数关系如图所示.下列说法错误的是( ).小明中途休息用了 分钟.小明休息前爬山的平均速度为每分钟 米.小明在上述过程中所走的路程为 米.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明 分钟爬山 米, ~ 分钟休息, ~ 分钟爬山( ﹣ )米,爬山的总路程为 米,根据路程、速度、时间的关系进行解答即可.解答:解: 根据图象可知,在 ~ 分钟,路程没有发生变化,所以小明中途休息的时间为: ﹣ 分钟,故正确;根据图象可知,当 时, ,所以小明休息前爬山的平均速度为: (米 分钟),故 正确;根据图象可知,小明在上述过程中所走的路程为 米,故错误;小明休息后的爬山的平均速度为:( ﹣ ) ( ﹣ ) (米 分),小明休息前爬山的平均速度为: (米 分钟),> ,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选: .点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题..( 分)( 重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第 个图形中一共有 个小圆圈,第 个图形中一共有 个小圆圈,第 个图形中一共有 个小圆圈, ,按此规律排列,则第 个图形中小圆圈的个数为(). . . .考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入 求解即可.解答:解:观察图形得:第 个图形有 个圆圈,第 个图形有 个圆圈,第 个图形有 个圆圈, 第 个图形有 ( )个圆圈,当 时, ( ) ,故选 .点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大..( 分)( 重庆)如图,在平面直角坐标系中,菱形 在第一象限内,边 与 轴平行, ,两点的纵坐标分别为 , .反比例函数 的图象经过 , 两点,则菱形 的面积为( ). . . .考点:菱形的性质;反比例函数图象上点的坐标特征.分析:过点 作 轴的垂线,与 的延长线交于点 ,根据 , 两点的纵坐标分别为,可得出横坐标,即可求得 , ,再根据勾股定理得出 ,根据菱形的面积公式:底乘高即可得出答案.解答:解:过点 作 轴的垂线,与 的延长线交于点 ,, 两点在反比例函数 的图象上且纵坐标分别为 , , , 横坐标分别为 , , , ,,菱形 底 高 ,故选 .点评:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共 小题,每小题 分,满分 分).( 分)( 重庆)我国 南仓 级远洋综合补给舱满载排水量为吨,把数 用科学记数法表示为 .考点:科学记数法 表示较大的数.分析:科学记数法的表示形式为 的形式,其中 < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值> 时, 是正数;当原数的绝对值< 时, 是负数.解答:解:将 用科学记数法表示为 .故答案为: .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值. .( 分)( 重庆)计算: ﹣ ﹣ .考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式 ﹣ ﹣ .故答案为:﹣ .点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. .( 分)( 重庆)已知 , 与 的相似比为 : ,则 与 对应边上的高之比为 : .考点:相似三角形的性质.分析:根据相似三角形的对应边上的高之比等于相似比得出即可.解答:解: , 与 的相似比为 : , 与 对应边上的高之比是 : ,故答案为: : .点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比..( 分)( 重庆)如图,在等腰直角三角形 中,, .以 为圆心, 长为半径作弧,交于点 ,则图中阴影部分的面积是 ﹣ .(结果保留 )考点:扇形面积的计算;等腰直角三角形.分析:根据等腰直角三角形性质求出 度数,解直角三角形求出和 ,分别求出 的面积和扇形 的面积即可.解答:解: 是等腰直角三角形 中, , ,, ,, 扇形 , 图中阴影部分的面积是 ﹣ 。

2022年重庆市中考数学试卷(a卷)(解析版)

2022年重庆市中考数学试卷(a卷)(解析版)

2022年重庆市中考数学试卷(A卷)(真题)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2022•重庆)5的相反数是()A.﹣5 B.5 C.﹣D.2.(4分)(2022•重庆)下列图形是轴对称图形的是()A.B.C.D.3.(4分)(2022•重庆)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.166.(4分)(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32 B.34 C.37 D.417.(4分)(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)(2022•重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242 B.200(1﹣x)2=242C.200(1+2x)=242 D.200(1﹣2x)=2429.(4分)(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3 B.4 C.3D.411.(4分)(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26 B.﹣24 C.﹣15 D.﹣1312.(4分)(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)计算:|﹣4|+(3﹣π)0=.14.(4分)(2022•重庆)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB 长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)(2022•重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)(2022•重庆)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A90 89 a26.6 40%B90 b90 30 30%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.21.(10分)(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.22.(10分)(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E 在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)(2022•重庆)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P (M)均是整数时,求出所有满足条件的M.24.(10分)(2022•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.Ⅷ25.(10分)(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF 取得最小值,且QK⊥PF时,请直接写出的值.2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2022•重庆)5的相反数是()A.﹣5 B.5 C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2022•重庆)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2022•重庆)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【点评】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.(4分)(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【点评】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【点评】本题考查位似变换,解答本题的关键是明确相似三角形的周长比等于相似比.6.(4分)(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32 B.34 C.37 D.41【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有4n+1个正方形是解题的关键.7.(4分)(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【分析】先计算出原式得6+,再根据无理数的估算可得答案.【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.(4分)(2022•重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242 B.200(1﹣x)2=242C.200(1+2x)=242 D.200(1﹣2x)=242【分析】设该快递店揽件日平均增长率为x,关系式为:第三天揽件数=第一天揽件数×(1+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.(4分)(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【点评】本题考查正方形的性质、全等三角形的判定与性质,解答本题的关键是求出∠ADF的度数.10.(4分)(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3 B.4 C.3D.4【分析】连接OB,则OB⊥AB,由勾股定理可知,AB2=OA2﹣OB2①,由OB和OD是半径,所以∠A=∠D=∠OBD,所以△OBD∽△BAD,AB=BD,可得BD2=OD•AD,所以OA2﹣OB2=OD•AD,设OD=x,则AD=2x+3,OB=x,OA=x+3,所以(x+3)2﹣x2=x(2x+3),求出x的值,即可求出OA和OB的长,进而求得AB的长.【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【点评】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.(4分)(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26 B.﹣24 C.﹣15 D.﹣13【分析】解不等式组得出,结合题意得出a>﹣11,解分式方程得出y=,结合题意得出a=﹣8或﹣5,进而得出所有满足条件的整数a的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.(4分)(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据“加算操作”的定义可知,当只给x﹣y加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n 的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【点评】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)计算:|﹣4|+(3﹣π)0= 5 .【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式=4+1=5.故答案为:5.【点评】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.(4分)(2022•重庆)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB 长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE的面积,由S阴影部分=S菱形ABCD﹣2S扇形ADE可得答案.【解答】解:如图,连接BD交AC于点O,则AC⊥BD,∵四边形ABCD是菱形,∠BAD=60°,∴∠BAC=∠ACD=30°,AB=BC=CD=DA=2,在Rt△AOB中,AB=2,∠BAO=30°,∴BO=AB=1,AO=AB=,∴AC=2OA=2,BD=2BO=2,∴S菱形ABCD=AC•BD=2,∴S阴影部分=S菱形ABCD﹣2S扇形ADE=2﹣=,故答案为:.【点评】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确解答的前提.16.(4分)(2022•重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x所以香樟的总量是16x,红枫的总量是20x,设香樟的单价为a,红枫的单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x•b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴==,故答案为:.【点评】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)(2022•重庆)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.(8分)(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.【分析】根据已知条件依次写出相应的解答过程即可.【解答】解:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【点评】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A90 89 a26.6 40%B90 b90 30 30%根据以上信息,解答下列问题:(1)填空:a=95 ,b=90 ,m=20 ;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【分析】(1)根据众数、中位数概念可求出a、b的值,由B型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m的值;(2)用3000乘30%即可得答案;(3)比较A型、B型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【点评】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.(10分)(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.【分析】(1)根据反比例函数解析式求出A点和B点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C点坐标,根据A点、B点和C点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,∴S△ABC==12.【点评】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.(10分)(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【点评】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.22.(10分)(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿。

2015年重庆市中考数学试题(A卷)及解析

2015年重庆市中考数学试题(A卷)及解析

2015年重庆市中考数学试卷(A卷)一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•重庆)在﹣4,0,﹣1,3这四个数中,最大的数是()A.﹣4 B.0C.﹣1 D.32.(4分)(2015•重庆)下列图形是轴对称图形的是()A.B.C.D.3.(4分)(2015•重庆)化简的结果是()A.4B.2C.3D.24.(4分)(2015•重庆)计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b5.(4分)(2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.(4分)(2015•重庆)如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45°D.35°7.(4分)(2015•重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2098.(4分)(2015•重庆)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=29.(4分)(2015•重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A 为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°10.(4分)(2015•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.(4分)(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.3012.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为.14.(4分)(2015•重庆)计算:20150﹣|2|=.15.(4分)(2015•重庆)已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为.16.(4分)(2015•重庆)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是.(结果保留π)17.(4分)(2015•重庆)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a,a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是.18.(4分)(2015•重庆)如图,在矩形ABCD中,AB=4,AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE 为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题(共2小题,满分14分)19.(7分)(2015•重庆)解方程组.20.(7分)(2015•重庆)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.四、解答题(共4小题,满分40分)21.(10分)(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.22.(10分)(2015•重庆)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.(10分)(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24.(10分)(2015•重庆)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD,大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P 处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25,为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)五、解答题(共2小题,满分24分)25.(12分)(2015•重庆)如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.26.(12分)(2015•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x 轴,交抛物线于点E′,F′,交BC于点M,N,当ME′+NF′的值最大时,在y轴上找一点R,使|RF′﹣RE′|的值最大,请求出R点的坐标及|RF′﹣RE′|的最大值;(3)如图2,已知x轴上一点P(,0),现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止,记平移后的△QPG为△Q′P′G′.设△Q′P′G′与△ADC的重叠部分面积为s.当Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.2015年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•重庆)在﹣4,0,﹣1,3这四个数中,最大的数是()A.﹣4 B.0C.﹣1 D.3考点:有理数大小比较.分析:先计算|﹣4|=4,|﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4<﹣1,再根据正数大于0,负数小于0得到﹣4<﹣1<0<3.解答:解:∵|﹣4|=4,|﹣1|=1,∴﹣4<﹣1,∴﹣4,0,﹣1,3这四个数的大小关系为﹣4<﹣1<0<3.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(4分)(2015•重庆)下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)(2015•重庆)化简的结果是()A.4B.2C.3D.2考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(4分)(2015•重庆)计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出(a2b)3的结果是多少即可.解答:解:(a2b)3=(a2)3•b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).5.(4分)(2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(4分)(2015•重庆)如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45°D.35°考点:平行线的性质.分析:根据平行线的性质求出∠2的度数即可.解答:解:∵AB∥CD,∠1=135°,∴∠2=180°﹣135°=45°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.(4分)(2015•重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序:198,209,216,220,230.位于最中间的数是216,则这组数的中位数是216.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.(4分)(2015•重庆)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.9.(4分)(2015•重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A 为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°考点:切线的性质.分析:由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.解答:解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.10.(4分)(2015•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.解答:解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.11.(4分)(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.解答:解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.12.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4考点:菱形的性质;反比例函数图象上点的坐标特征.分过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为析:3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.解答:解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.点评:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为 3.7×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将37000用科学记数法表示为3.7×104.故答案为:3.7×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(2015•重庆)计算:20150﹣|2|=﹣1.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1﹣2 =﹣1.故答案为:﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(4分)(2015•重庆)已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为4:1.考点:相似三角形的性质.分析:根据相似三角形的对应边上的高之比等于相似比得出即可.解答:解:∵△ABC∽△DEF,△ABC与△DEF的相似比为4:1,∴△ABC与△DEF对应边上的高之比是4:1,故答案为:4:1.点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比.16.(4分)(2015•重庆)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是8﹣2π.(结果保留π)考点:扇形面积的计算;等腰直角三角形.分析:根据等腰直角三角形性质求出∠A度数,解直角三角形求出AC和BC,分别求出△ACB的面积和扇形ACD的面积即可.解答:解:∵△ACB是等腰直角三角形ABC中,∠ACB=90°,∴∠A=∠B=45°,∵AB=4,∴AC=BC=AB×sin45°=4,∴S△ACB===8,S扇形ACD==2π,∴图中阴影部分的面积是8﹣2π,故答案为:8﹣2π.点评:本题考查了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解此题的关键是能求出△ACB和扇形ACD的面积,难度适中.17.(4分)(2015•重庆)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a,a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是.考点:概率公式;解一元一次不等式组;函数自变量的取值范围.分析:由a的值既是不等式组的解,又在函数y=的自变量取值范围内的有﹣3,﹣2,可直接利用概率公式求解即可求得答案.解答:解:∵不等式组的解集是:﹣<x<,∴a的值既是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数y=的自变量取值范围为:2x2+2x≠0,∴在函数y=的自变量取值范围内的有﹣3,﹣2,4;∴a的值既是不等式组的解,又在函数y=的自变量取值范围内的有:﹣3,﹣2;∴a的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.(4分)(2015•重庆)如图,在矩形ABCD中,AB=4,AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE 为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为.考点:旋转的性质.分析:根据角平分线的性质,可得CE的长,根据旋转的性质,可得BC′=BC,E′C′=EC;根据等腰三角形,可得FD、FB的关系,根据勾股定理,可得BF的长,根据正切函数,可得tan∠ABF,tan∠FBG的值,根据三角函数的和差,可得AG的长,根据有理数的减法,可得答案.解答:解:作FK⊥BC′于K点,如图:在Rt△ABD中,由勾股定理,得BD===14设DE=x,CE=4﹣x,由BE平分∠DBC,得=,即=.解得x=,EC=.在Rt△BCE中,由勾股定理,得BE===.由旋转的性质,得BE′=BE=,BC′=BC=10,E′C′=EC=.△BFD是等腰三角形,BF=FD=x,在Rt△ABF中,由勾股定理,得x2=(4)2+(10﹣x)2,解得x=,AF=10﹣=.tan∠ABF===,tan∠FBG===,tan∠ABG=tan(∠ABF+∠FBG)===,tan∠ABG==,AG=×4=,DG=AD﹣AG=10﹣==,故答案为:.点评:本题考查了旋转的性质,利用了勾股定理,旋转的性质,正切函数的定义,利用三角函数的和差得出AG的长是解题关键.三、解答题(共2小题,满分14分)19.(7分)(2015•重庆)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用代入消元法求出解即可.解答:解:,①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(7分)(2015•重庆)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.考点:全等三角形的判定与性质.专题:证明题.分析:根据等式的性质得出BD=CE,再利用SAS得出:△ABD与△FEC全等,进而得出∠ADB=∠FCE.解答:证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.点评:此题考查全等三角形的判定和性质,关键是根据等式的性质得出BD=CE,再利用全等三角形的判定和性质解答.四、解答题(共4小题,满分40分)21.(10分)(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2xy﹣y2+x2+2xy+y2 =4xy+x2;(2)原式=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2015•重庆)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.考点:列表法与树状图法;扇形统计图;条形统计图.分析:(1)由题意可得该镇本次统计的小微企业总个数是:4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数为:×360°=72°;又由A类小微企业个数为:25﹣5﹣14﹣4=2(个);即可补全条形统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所抽取的2个发言代表都来自高新区的情况,再利用概率公式即可求得答案.解答:解:(1)该镇本次统计的小微企业总个数是:4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数为:×360°=72°;故答案为:25,72;A类小微企业个数为:25﹣5﹣14﹣4=2(个);补全统计图:(2)分别用A,B表示2个来自高新区的,用C,D表示2个来自开发区的.画树状图得:∵共有12种等可能的结果,所抽取的2个发言代表都来自高新区的有2种情况,∴所抽取的2个发言代表都来自高新区的概率为:=.点评:此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.考点:因式分解的应用;规律型:数字的变化类.分析:(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:,根据和谐数的定义得到a=d,b=c,则===91a+10b为正整数,易证得任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).解答:解:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:d,c,b,a个位到最高位排列:a,b,c,d.由题意,可得两组数据相同,则:a=d,b=c,则===91a+10b为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则满足:个位到最高位排列:x,y,z.最高位到个位排列:z,y,x.由题意,两组数据相同,则:x=z,故==101x+10y,故===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).点评:本题考查了因式分解的应用.解题的关键是弄清楚“和谐数”的定义,从而写出符合题意的数.24.(10分)(2015•重庆)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD,大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P 处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25,为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?。

2018年重庆市中考数学试卷(A卷)含答案

2018年重庆市中考数学试卷(A卷)含答案

2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。

都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4分)2的相反数是()A.﹣2 B.﹣C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 9.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B 在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。

2023年重庆市中考数学真题(A卷)(答案解析)

2023年重庆市中考数学真题(A卷)(答案解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。

2023年重庆市中考数学真题(A卷)(原卷版和解析版)

2023年重庆市中考数学真题(A卷)(原卷版和解析版)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.估计2810+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,23AB =3BC =,则OC 的长度是()A.3B.23C.13 D.69.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别AB平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中=a ___________,b =___________,m =___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A 款智能玩具飞机200架、B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-【答案】A 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,【答案】C 【解析】【分析】根据题意将各项的坐标代入反比例函数4y x=-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B 【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计2810+的值应在()A.7和8之间B.8和9之间C .9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.28101620=45=+∵25 2.5<<,∴455<<,∴8459<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-【答案】A【解析】【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH ,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023-+=11=1.52+.故答案为1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】19【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.【答案】3【解析】【分析】证明AFC BEA ≌△△,得到,BE AF CF AE ==,即可得解.【详解】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)【答案】25124π-【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到5BD =,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y -+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.【答案】①.4312②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭【答案】(1)21a -(2)11x +【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式2221a a a =-+-21a =-;【小问2详解】原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:a___________,b=___________,m=___________;(1)上述图表中=(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出a,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知10架A款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该a=;组数据的众数为72,即72由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,⨯=(架)则B款智能玩具飞机运行时间合格的架次为:1040%4则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;【小问2详解】B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面90份【解析】【分析】(1)设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解。

2015年中考数学试题及答案(解析版)

2015年中考数学试题及答案(解析版)

中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。

)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2015年初中毕业暨高中招生考试
数学试题(A 卷)参考答案
(全卷共五个大题 满分150分 考试时间120分钟)
一、选择题(本大题12个小题,每小题4分,共48分)
二、填空题(本大题共6个小题,每小题4分,共24分)
13. 43.710⨯ 14. -1 15. 4:1 16.
82π- 17. 25
18. 9817
三、解答题(本大题共2个小题,每小题7分,共14分)
19.
1
2x y =⎧⎨=-⎩ 20.
∵BC=DE ∴BC+CD=DE+CD 即BD=CE
易证:△ABD ≌△FEC 故:ADB FCE ∠=∠
四、解答题(本大题4个小题,每小题10分,共40分)
21.
⑴24x xy +
⑵233
y y y +-
22.
⑴25;72;图略
⑵16
P =
23.
⑴四位“和谐数”:1111,2222,3443,1221等
任意一个四位“和谐数”都能被11整数,理由如下: 设四位“和谐数”是abcd ,则满足: 个位到最高位排列:,,,d c b a 最高位到个位排列:,,,a b c d
由题意,两组数据相同,则:,a d b c == 则
1000100101000100101001110911011111111
abcd a b c d a b b a a b
a b +++++++====+为正整数所以四位“和谐数”abcd 能被11整数
又由于,,,a b c d 的任意性,故任意四位“和谐数”都可以被11整除 ⑵设能被11整除的三位“和谐数”为:zyx ,则满足: 个位到最高位排列:,,x y z 最高位到个位排列:,,z y x 由题意,两组数据相同,则:x z = 故10110zyx xyx x y ==+
10110991122911111111
zyx x y x y x y x y
x y +++--===++
为正整数 故2(14)y x x x =≤≤,为自然数 24.
⑴在Rt △PEN 中,EN=PE=30m
在Rt △PEM 中,50tan31PE
ME m ==︒
∴20m MN EM EN =-=
答:两渔船M 、N 之间的距离为20米 ⑵过点D 作DN ⊥AH 交直线AH 于点N
由题意:tan 4DAB ∠=,4
tan 7
H ∠=
在RT △DAN 中,24
64
tan 3
DN AN DAB =
==∠m 在RT △DHN 中,24
424tan 7
DN HN H
===∠m
故AH=HN-AN=42-6=36m
1
4322
ADH S AH DN =⨯⨯=△2m
故需要填筑的土石方共343210043200V S L m =⨯=⨯=
设原计划平均每天填筑3xm ,则原计划43200
x
天完成;增加机械设备后,现在平均每
天填筑32xm
4320010(1020)243200x x x
+--⨯=
解得:864x =
经检验:864x =是原分式方程的解,且满足实际意义 答:该施工队原计划平均每天填筑8643m 的土石方
五、解答题(本大题共2个小题,每小题12分,共24分)
25.
⑴AB =
BD =⑵连接AF
易证:△DAE ≌△ADH ,故DH=AE 30EAF EAB FAB FAB ∠=∠-∠=︒-∠
60(90)6030FDH FDA HDA FDA FBA FBA ∠=∠-∠=∠-︒=︒-∠-︒=︒-∠ 故EAF FDH ∠=∠ 易证:△DHF ≌△AEF ∴HF=EF
⑶(方法不唯一,有很多,合理即可) (法一)取AB 的中点M ,连接CM 、FM 在RT △ADE 中,AD=2AE
FM 是△ABD 的中位线,故AD=2FM ∴FM=AE
易证△ACM 为等边三角形,故AC=CM
1
302
CAE CAB ∠=∠=︒
30CMF AMF AMC ∠=∠-∠=︒
故△ACE ≌△MCF (手拉手全等模型) 故易证:△CEF 为等边三角形
B
(法二)延长DE 至点N ,使EN=DE ,连接AN ;延长BC 至点M ,使CB=CM ,连接AM ;延长BD 交AM 于点P 易证:△ADE ≌△ANE ,△ABC ≌△AMC
易证:△ADM ≌△ANB (手拉手全等模型),故DM=BN
CF 是△BDM 的中位线,EF 是△BDN 的中位线
故11
22
EF BN DM CF ===
180180260CFE CFD DFE MDP DBN MDP DBA ABN
MDP DBA AMD DPA DBA PAB CAB ∠=∠+∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒-∠=︒-∠=︒
故△CEF 为等边三角形
B
26.
⑴y =+
⑵22'(E M =+++=+-
2
'F N =+
故:2
''E M F N +=+-
当3
m ==
时,''E M F N +最大,
此时E F
∴'':E F y =∴(0R ,max ''
4RF RE -= ⑶由题意,Q 点在CAB ∠的角平分线或外角平分线上 ①当Q
点在CAB ∠的角平分线上时,如图 ''Q M Q
N ==CW
△RMQ ’∽△
RNC ,故'
RQ =
RN =+
△CRN ∽△CWO ,故CN ∴
DN=CD-CN=4 故
S
x
②当Q 点在CAB ∠
的外角平分线上时,如图
△Q ’RN ∽△WCO ,故'Q
R =
RM = △RCM ∽△WCO ,故
在Rt
△Q ’MP ’中,''3AM M ==
,故''
3CP MP CM
=-== 在Rt △CP ’S
中,'P S =故
x。

相关文档
最新文档