2015年重庆市中考数学试卷(A卷)答案与解析
2023年重庆市中考数学试卷(A卷)解析版
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2b x a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8 C.18 D.18-【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-, D.()22,【答案】C【解析】【分析】根据题意将各项的坐标代入反比例函数4y x =-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x=-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x=-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()。
2024年重庆市中考真题数学试卷(A卷)含答案解析
2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。
2023年重庆市中考数学试卷A卷(带答案及解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框黑。
1.8的相反数是()A.-8B.8C.18D.-182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B. C.D.3.反比例函数y =-4x的图象一定经过的点是()A.1,4B.-1,-4C.-2,2D.2,24.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,AB ∥CD ,AD ⊥AC ,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.估计28+10 的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC是⊙O的切线,B为切点,连接OA,OC。
若∠A=30°,AB=23,BC=3,则OC的长度是()A.3B.23C.13D.69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°。
若∠BAE=α,则∠FEC一定等于()A.2αB.90°-2αC.45°-αD.90°-α10.在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”。
2015年重庆中考数学试题(A卷)(解析版)
故选B.
点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公
式,难度不大.
12.(2015•重庆A)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与 轴平行,A,B两点的纵坐标分别为3,1,反比例函数 的图像经过A,B两点,则菱形对ABCD的面积为()
考点:相似三角形的性质.
分析:根据相似三角形的对应边上的高之比等于相似比得出即可.
解答:解:∵△ABC∽△DEF,△ABC与△DEF的相似比为4:1,
∴△ABC与△DEF对应边上的高之比是4:1,
故答案为:4:1.
点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解
此题的关键,注意:相似三角形的对应边上的高之比等于相似比.
原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将37000用科学记数法表示为3.7×104.
故答案为:3.7×104.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|
<10,n为整数,表示时关键要正确确定a的值以及n的值.
14.(2015•重庆A)计算 。
解答:解:∵△ACB是等腰直角三角形ABC中,∠ACB=90°,
∴∠A=∠B=45°,
∵AB=4 ,
∴AC=BC=AB×sin45°=4,
∴S△ACB= =8,S扇形ACD= =2π,
∴图中阴影部分的面积是8﹣2π,
故答案为:8﹣2π.
点评:本题考查了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,
A.220 B. 218 C. 216 D. 209
2020年重庆市中考数学试卷(A卷)(附答案详解)
2020年重庆市中考数学试卷(A卷)一、选择题(本大题共24小题,共96.0分)1.如图,直线a//b,∠1=50°,则∠2的度数为()A. 40°B. 50°C. 55°D. 60°2.5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为()A. 70×104B. 0.7×107C. 7×105D. 7×1063.如图所示的几何体的左视图是()A.B.C.D.4.关于x的一元二次方程ax2−2x+2=0有两个相等实数根,则a的值为()A. 12B. −12C. 1D. −15.在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是()A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)6.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C. D.7.对于一组数据3,7,5,3,2,下列说法正确的是()A. 中位数是5B. 众数是7C. 平均数是4D. 方差是38.如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A. 50°B. 70°C. 130°D. 160°9.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A. 50°B. 40°C. 30°D. 20°10.函数y=k与y=ax2+bx+c的图象如图所示,则函数xy=kx−b的大致图象为()A.B.C.D.11.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. 80(1+35%)x −80x=40 B. 80(1+35%)x−80x=40C. 80x −80(1+35%)x=40 D. 80x−80(1+35%)x=4012.如图,在平行四边形ABCD中,AD=2,AB=√6,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A. 2B. √5C. 3√22D. 3√3213.下列各数中,最小的数是()A. −3B. 0C. 1D. 214.下列图形是轴对称图形的是()A. B. C. D.15.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×10516.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有①个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 2117.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°18.下列计算中,正确的是()A. √2+√3=√5B. 2+√2=2√2C. √2×√3=√6D. 2√3−2=√319.解一元一次方程12(x+1)=1−13x时,去分母正确的是()A. 3(x+1)=1−2xB. 2(x+1)=1−3xC. 2(x+1)=6−3xD. 3(x+1)=6−2x20.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2√521.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m22.若关于x的一元一次不等式组{3x−12≤x+3,x≤a的解集为x≤a;且关于y的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a的值之积是()A. 7B. −14C. 28D. −5623.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√3324.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A. 6B. 12C. 18D. 24二、填空题(本大题共12小题,共48.0分)25.分解因式:3a2−6ab+3b2=______.26.与√14−2最接近的自然数是______.27.某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):______.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.28.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC//AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为______米(结果保留根号).29.如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为______.30.如图,直线y=−√3x+b与y轴交于点A,与双曲线y=k在第三象限交于B、C两x点,且AB⋅AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=______,前25个等边三角形的周长之和为______.31.计算:(π−1)0+|−2|=______.32.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______.33.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.34.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)35.A,B两地相距240km,甲货车从A地以40km/ℎ的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是______.36.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额,则摆摊的营业额将达到7会增加,其中摆摊增加的营业额占总增加的营业额的25,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还月份总营业额的720需增加的营业额与7月份总营业额之比是______.三、计算题(本大题共1小题,共8.0分))−1.37.计算:|−2|−(√5+π)0+(−16四、解答题(本大题共15小题,共148.0分)38.先化简,再求值:x+1x2−4⋅(1x+1+1),其中x是不等式组{x+1≥05−2x>3的整数解.39.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.40.某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是______人,m=______;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是______;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是______.41.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?42.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x−2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x−(−1)|,所以|x+1|的几何意义就是数轴上x所对应的点与−1所对应的点之间的距离.(ⅰ)发现问题:代数式|x+1|+|x−2|的最小值是多少?(ⅰ)探究问题:如图,点A、B、P分别表示数−1、2、x,AB=3.∵|x+1|+|x−2|的几何意义是线段PA与PB的长度之和,∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+ PB>3.∴|x+1|+|x−2|的最小值是3.请你根据上述自学材料,探究解决下列问题:解决问题:(1)|x−4|+|x+2|的最小值是______;(2)利用上述思想方法解不等式:|x+3|+|x−1|>4;(3)当a为何值时,代数式|x+a|+|x−3|的最小值是2.43.如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PC=√2AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:AF⏜=CF⏜;(2)若tan∠ABC=2√2,证明:PA是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.44.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(−3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;OQ的最小值.②如图2,Q点为y轴上一动点,请直接写出DQ+1445. 计算:(1)(x +y)2+x(x −2y);(2)(1−m m+3)÷m 2−9m 2+6m+9.46. 为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?47.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.48.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6x性质及其应用的部分过程,请x2+1按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx2+1…−1513−2417______ −125−303125______24171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x−1的解集(保留1位小数,误差不超过0.2).49.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.50.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A 的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不a%.求a的值.变.A,B两个品种全部售出后总收入将在去年的基础上增加20951.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(−3,−4),B(0,−1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.52.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】B【知识点】平行线的性质【解析】解:如图所示:∵a//b,∴∠3=∠1=50°,∴∠2=∠3=50°;故选:B.由平行线的性质和对顶角相等即可得出答案.本题考查了平行线的性质和对顶角相等的性质;熟练掌握平行线的性质是解题的关键.2.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:700000用科学记数法表示为7×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【知识点】简单组合体的三视图【解析】解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.根据左视图即从左边观察所得图形.本题主要考查简单组合体的三视图,解题的关键是掌握三视图的定义.4.【答案】A【知识点】根的判别式【解析】解:∵关于x 的一元二次方程ax 2−2x +2=0有两个相等实数根, ∴{a ≠0△=(−2)2−4×a ×2=0, ∴a =12. 故选:A .根据一元二次方程的定义及根的判别式△=0,即可得出关于a 的一元一次不等式及一元一次方程,解之即可得出a 的值.本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 5.【答案】D【知识点】平移中的坐标变化【解析】【分析】此题主要考查了坐标与图形变化−平移,关键是掌握平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.根据平移的方法结合平移中点的坐标变换规律,可以直接算出平移后点的坐标.【解答】解:将点(2,1)向下平移3个单位长度所得点的坐标为(2,1−3),即(2,−2); 故选D .6.【答案】A【知识点】中心对称图形、轴对称图形【解析】解:A 、是轴对称图形,不是中心对称图形,故本选项符合题意; B 、不是轴对称图形,是中心对称图形,故本选项不合题意;C 、既是轴对称图形,又是中心对称图形,故本选项不合题意;D 、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.故选:A .根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】C【知识点】算术平均数、中位数、方差、众数【解析】解:A、把这组数据从小到大排列为:2,3,3,5,7,最中间的数是3,则中位数是3,故本选项错误;B、3出现了2次,出现的次数最多,则众数是3,故本选项错误;C、平均数是:(3+7+5+3+2)÷5=4,故本选项正确;[2×(3−4)2+(7−4)2+(5−4)2+(2−4)2]=3.2,故本选项错误;D、方差是:15故选:C.根据平均数、众数、中位数及方差的定义和公式分别对每一项进行分析,再进行判断即可.此题考查了平均数、众数、中位数及方差的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数;一般地设n个数据,x1,x2,…x n的平均数[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2].为x−,则方差S2=1n8.【答案】C【知识点】余角和补角【解析】解:设这个角是x°,根据题意,得x=2(180−x)+30,解得:x=130.即这个角的度数为130°.故选:C.若两个角的和等于180°,则这两个角互补.结合已知条件列方程求解.此题考查了补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.9.【答案】D【知识点】三角形内角和定理、等腰三角形的性质【解析】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=12(180°−40°)=70°,∴∠ACD=90°−70°=20°,故选:D.根据三角形的内角和和等腰三角形的性质即可得到结论.本题考查了等腰三角形的性质,三角形的内角和定理,正确的理解题意是解题的关键.10.【答案】D【知识点】一次函数图象与系数的关系、二次函数图象与系数的关系、反比例函数的图象【解析】【分析】本题考查了一次函数的图象,反比例函数图象以及二次函数图象与系数的关系的知识,解题的关键是了解三种函数的图象的性质,难度不大.首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.【解答】解:根据反比例函数的图象位于一、三象限知k>0,根据二次函数的图象可知a<0,b<0,∴函数y=kx−b的大致图象经过一、二、三象限,故选D.11.【答案】A【知识点】由实际问题抽象出分式方程【解析】解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为x1+35%万平方米,依题意,得:80x1+35%−80x=40,即80(1+35%)x −80x=40.故选:A.设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为x1+35%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.【答案】B【知识点】勾股定理、平行四边形的性质、全等三角形的判定与性质【解析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x.∵四边形ABCD是平行四边形,∴DQ//BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QFA≌△EFB(AAS),∴AQ=BE=x,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC//AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2−AD2=AB2−BE2,∴(x+2)2−4=6−x2,整理得:2x2+4x−6=0,解得x=1或x=−3(舍弃),∴BE=1,∴AE=√AB2−BE2=√6−1=√5,故选:B.如图,延长EF交DA的延长线于Q,连接DE,设BE=x.首先证明DQ=DE=x+2,利用勾股定理构建方程即可解决问题.本题考查平行四边形的性质,勾股定理,全等三角形的判定和性质等知识,属于中考选择题中的压轴题.13.【答案】A【知识点】有理数大小比较【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.14.【答案】A【知识点】轴对称图形【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.15.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【答案】B【知识点】列代数式、图形规律问题【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据题意,即可得解.本题考查图形规律问题,属于基础题.17.【答案】D【知识点】切线的性质【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.18.【答案】C【知识点】二次根式的混合运算【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.19.【答案】D【知识点】一元一次方程的解法【解析】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.根据等式的基本性质将方程两边都乘以6可得答案.【解答】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.20.【答案】D【知识点】两点间的距离公式*、坐标与图形性质、位似图形及相关概念【解析】【分析】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.21.【答案】B【知识点】解直角三角形的应用【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC =10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴EC =3x =27,DE =4x =36=FB ,∴BE =BC +EC =60+27=87=DF ,在Rt △ADF 中,AF =tan28°×DF ≈0.53×87≈46.11,∴AB =AF +FB =46.11+36≈82.1,故选:B .构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.22.【答案】A【知识点】一元一次不等式组的解法、分式方程的一般解法、分式方程的解【解析】解:不等式组整理得:{x ≤7x ≤a, 由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a ,解得:y =a+23,由y 为正整数解,且y ≠2得到a =1,7,1×7=7,故选A.不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整数方程,由分式方程有正整数解,确定出a 的值即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.【答案】B【知识点】翻折变换(折叠问题)、勾股定理、三角形的面积【解析】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.首先求出△ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据12⋅BD⋅ℎ=12⋅BF⋅DF,求出BD即可解决问题.【解答】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12⋅(AF+DF)⋅BF=4,∴12⋅(3+DF)⋅2=4,∴DF=1,∴DB=√BF2+DF2=√12+22=√5,设点F到BD的距离为h,则有12⋅BD⋅ℎ=12⋅BF⋅DF,∴ℎ=2√55,故选:B.24.【答案】B【知识点】反比例函数图象上点的坐标特征、矩形的性质、反比例函数系数k的几何意义、三角形的面积、平行线的判定与性质【解析】【分析】本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD//AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN//FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12⋅ON⋅AN=12⋅OM⋅FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE//BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE−S△FME=9−3=6=k2,。
精品解析:2022年重庆市中考数学真题(A卷)(解析版)
A B. C. D.
【答案】C
【解析】
【分析】先利用正方形的性质得到 , , ,利用角平分线的定义求得 ,再证得 ,利用全等三角形的性质求得 ,最后利用 即可求解.
【详解】解:∵四边形 是正方形,
∴ , , ,
【答案】
【解析】
【分析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.
【详解】解:根据题意列表如下:
A
B
C
A
AA
BA
CA
B
AB
BB
CB
C
AC
BC
CC
共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,
所以P(抽取的两张卡片上的字母相同)= = .
【答案】C
【解析】
【分析】连接OB,先求出∠A=30°,OB=AC=3,再利用 =tan30°,即可求出AB的长度.
【详解】解:连接OB,
∵OB=OD,
∴△OBD是等腰三角形,
∴∠OBD=∠D,
∵∠AOB是△OBD的一个外角,
∴∠AOB=∠OBD+∠D=2∠D,
∵ 是 切线,
∴OB⊥AB,
∴∠ABO=90°,
2022年重庆市中考数学试卷A卷
一、选择题
1.5的相反数是( )
A. B.﹣ C.5D.﹣5
【答案】D
【解析】
【分析】根据相反数的定义(只有符号不同的两个数互为相反数)即可得.
【详解】解:5的相反数是 ,
故选:D.
【点睛】本题考查了相反数,熟记定义是解题关键.
2015年重庆市中考数学试卷(A卷)答案与解析详解析
﹝机密﹞ 2015 年6月13日11:00前重庆市 2015 年初中毕业暨高中招生考试数学试题( A 卷)(全卷共五个大题,满分150 分,考试时间120 分钟)注意事项:1、试题的答案书写在答题卡上,不得在试卷上直接作答;...2、作答前认真阅读答题卡的注意事项;...3、作图(包含做协助线)请一律用黑色..署名笔达成;4、考试结束,由监考人员将试题和答题卡一并回收....一、选择题(共12 小题,每题 4 分,满分48 分)1.( 4 分)( 2015?重庆)在﹣ 4, 0,﹣ 1, 3 这四个数中,最大的数是()A .﹣ 4B.0C.﹣1D.32.( 4 分)( 2015?重庆)以下图形是轴对称图形的是()A .B .C.D.3.( 4 分)( 2015?重庆)化简的结果是()A .4B .2 C. 3 D. 22 3的结果是()4.( 4 分)( 2015?重庆)计算( a b)6 3 2 3 5 3 6A .a bB .a b C. a b D. a b5.( 4 分)( 2015?重庆)以下检查中,最适适用普查方式的是()A .调查一批电视机的使用寿命状况B .检查某中学九年级一班学生的视力状况C.检查重庆市初中学生每日锻炼所用的时间状况D .调查重庆市初中学生利用网络媒体自主学习的状况6.( 4 分)( 2015?重庆)如图,直线 AB ∥CD ,直线 EF 分别与直线AB , CD 订交于点G,H.若∠ 1=135 °,则∠ 2 的度数为()A .65°B .55°C. 45°D. 35°7.( 4 分)( 2015?重庆)在某校九年级二班组织的跳绳竞赛中,第一小组五位同学跳绳的个数分别为198, 230, 220, 216, 209,则这五个数据的中位数为()A .220B .218C. 216D. 2098.( 4 分)( 2015?重庆)一元二次方程2﹣ 2x=0 的根是()xA.x1=0 , x2=﹣ 2 B .x1=1, x2=2 C. x1=1, x2=﹣2 D. x1=0 , x2=29.( 4 分)(2015?重庆)如图, AB 是⊙ O 直径,点 C 在⊙ O 上, AE 是⊙ O 的切线, A 为切点,连结 BC 并延伸交AE 于点 D.若∠ AOC=80 °,则∠ ADB 的度数为()A .40°B .50°C. 60°D. 20°10.( 4 分)( 2015?重庆)今年“五一”节,小明出门登山,他从山脚爬到山顶的过程中,中途歇息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的行程为s(米),s 与 t 之间的函数关系以下图.以下说法错误的选项是()A.小明半途歇息用了 20 分钟B.小明歇息前登山的均匀速度为每分钟70 米C.小明在上述过程中所走的行程为6600 米D.小明歇息前登山的均匀速度大于歇息后登山的均匀速度11.(4 分)( 2015?重庆)以下图形都是由相同大小的小圆圈按必定规律构成的,此中第①个图形中一共有 6 个小圆圈,第②个图形中一共有9 个小圆圈,第③ 个图形中一共有12个小圆圈,,按此规律摆列,则第⑦ 个图形中小圆圈的个数为()A .21B .24C. 27D. 3012.( 4 分)( 2015?重庆)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC与 x 轴平行, A ,B 两点的纵坐标分别为3,1.反比率函数y=的图象经过 A ,B 两点,则菱形 ABCD 的面积为()A .2B.4C.2D.4二、填空题(共 6 小题,每题 4 分,满分 24 分)13.( 4 分)( 2015?重庆)我国“南仓”级远洋综合补给舱满载排水量为37000 吨,把数 37000用科学记数法表示为 3.7×104.14.( 4 分)( 2015?重庆)计算:20150﹣ |2|=﹣1.15.(4 分)( 2015?重庆)已知△ ABC ∽△ DEF ,△ ABC 与△DEF 的相像比为4:1,则△ABC 与△ DEF 对应边上的高之比为4: 1.16.( 4 分)( 2015?重庆)如图,在等腰直角三角形ABC 中,∠ ACB=90 °, AB=4.以A 为圆心, AC 长为半径作弧,交AB 于点 D ,则图中暗影部分的面积是8﹣2π.(结果保留π)17.( 4 分)( 2015?重庆)从﹣ 3,﹣ 2,﹣ 1, 0,4 这五个数中随机抽取一个数记为a,a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是.18.( 4 分)( 2015?重庆)如图,在矩形 ABCD 中, AB=4 ,AD=10 .连结 BD ,∠ DBC 的角均分线 BE 交 DC 于点 E,现把△ BCE 绕点 B 逆时针旋转,记旋转后的△ BCE 为△BC ′E′.当射线BE ′和射线 BC′都与线段AD 订交时,设交点分别为F,G.若△ BFD 为等腰三角形,则线段DG长为.三、解答题(共 2 小题,满分14 分)19.( 7 分)( 2015?重庆)解方程组.20.(7 分)( 2015?重庆)如图,在△ABD 和△ FEC 中,点 B,C,D, E 在同向来线上,且AB=FE , BC=DE ,∠ B=∠ E.求证:∠ ADB= ∠ FCE.四、解答题(共 4 小题,满分40 分)21.( 10 分)( 2015?重庆)计算:(1) y( 2x﹣ y) +(x+y )2;(2)( y﹣1﹣)÷.22.( 10 分)( 2015?重庆)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内全部的小微公司按年收益 w(万元)的多少分为以下四个种类: A 类( w< 10),B 类( 10≤w <20),C 类( 20≤w< 30),D 类( w ≥30),该镇政府对辖区内全部小微公司的有关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你联合图中信息解答以下问题:(1)该镇本次统计的小微公司总个数是 25 ,扇形统计图中 B 类所对应扇形圆心角的度数为 72度,请补全条形统计图;(2)为了进一步解决小微公司在发展中的问题,该镇政府准备召开一次会谈会,每个公司派一名代表参会.计划从 D 类公司的 4 个参会代表中随机抽取 2 个讲话, D 类公司的 4 个参会代表中有 2 个来自高新区,另 2 个来自开发区.请用列表或画树状图的方法求出所抽取的2 个讲话代表都来自高新区的概率.23.( 10 分)( 2015?重庆)假如把一个自然数各数位上的数字从最高位到个位挨次排出的一串数字,与从个位到最高位挨次排出的一串数字完整相同,那么我们把这样的自然数称为“和谐数”.比如自然数 12321,从最高位到个位挨次排出的一串数字是:1, 2, 3, 2, 1,从个位到最高位挨次排出的一串数字还是:1, 2, 3, 2, 1,所以 12321 是一个“和睦数”,再加22, 545, 3883, 345543,,都是“和睦数”.(1)请你直接写出 3 个四位“和睦数”;请你猜想随意一个四位“和睦数”可否被11整除?并说明原因;(2)已知一个能被11 整除的三位“和睦数”,设其个位上的数字x( 1≤x≤4, x 为自然数),十位上的数字为y,求 y 与 x 的函数关系式.24.( 10 分)( 2015?重庆)某水库大坝的横截面是以下图的四边形ABCD ,此中 AB ∥ CD ,大坝顶上有一眺望台PC,PC 正前面有两艘渔船M ,N.察看员在眺望台顶端P 处观察到渔船 M 的俯角α为 31°,渔船 N 的俯角β为 45°.已知 MN 所在直线与 PC 所在直线垂直,垂足为 E,且 PE 长为 30 米.(1)求两渔船M , N 之间的距离(结果精准到 1 米);(2)已知坝高24 米,坝长 100 米,背水坡AD 的坡度 i=1 : 0.25,为提升大坝防洪能力,请施工队将大坝的背水坡经过填筑土石方进行加固,坝底BA 加宽后变为BH ,加固后背水坡 DH 的坡度 i=1 :1.75,施工队施工10 天后,为赶快达成加固任务,施工队增添了机械设备,工作效率提升到本来的 2 倍,结果比原计划提早20 天达成加固任务,施工队原计划平均每日填筑土石方多少立方米?(参照数据: tan31°≈0.60, sin31°≈0.52)五、解答题(共 2 小题,满分24 分)25.(12 分)( 2015?重庆)如图1,在△ ABC 中,∠ ACB=90 °,∠ BAC=60 °,点 E 是∠ BAC 角均分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连结 DB ,点 F 是 BD 的中点, DH ⊥ AC ,垂足为H,连结 EF, HF.(1)如图 1,若点 H 是 AC 的中点, AC=2,求AB,BD的长;(2)如图 1,求证: HF=EF ;(3)如图 2,连结 CF, CE.猜想:△CEF 是不是等边三角形?假如,请证明;若不是,说明原因.26.( 12 分)( 2015?重庆)如图1,在平面直角坐标系中,抛物线y=﹣2交 x x + x+3轴于 A ,B 两点(点 A 在点 B 的左边),交 y 轴于点 W ,极点为 C,抛物线的对称轴与x 轴的交点为 D .(1)求直线 BC 的分析式;(2)点 E( m,0),F( m+2,0)为 x 轴上两点,此中 2< m< 4,EE′, FF′分别垂直于 x 轴,交抛物线于点 E′, F′,交 BC 于点 M , N,当 ME ′+NF ′的值最大时,在 y 轴上找一点 R,使|RF′﹣ RE′|的值最大,恳求出R 点的坐标及 |RF′﹣ RE′|的最大值;(3)如图 2,已知 x 轴上一点P(,0),现以P为极点,2为边长在x 轴上方作等边三角形 QPG,使 GP⊥ x 轴,现将△ QPG 沿 PA 方向以每秒 1 个单位长度的速度平移,当点 P 抵达点 A 时停止,记平移后的△ QPG 为△ Q′P′G′.设△ Q′P′G′与△ADC 的重叠部分面积为s.当 Q′到 x 轴的距离与点 Q′到直线 AW 的距离相等时,求 s 的值.参照详尽答案:一、选择题(共12 小题,每题 4 分,满分48 分)1.考点:有理数大小比较.版权全部剖析:先计算 |﹣ 4|=4,|﹣ 1|=1 ,依据负数的绝对值越大,这个数越小得﹣4<﹣ 1,再依据正数大于 0,负数小于 0 获得﹣ 4<﹣ 1< 0< 3.解答:解:∵ |﹣ 4|=4, |﹣ 1|=1 ,∴﹣ 4<﹣ 1,∴﹣ 4, 0,﹣ 1, 3 这四个数的大小关系为﹣4<﹣ 1< 0< 3.应选 D.评论:本题考察了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.考点:轴对称图形.版权全部剖析:依据轴对称图形的观点求解.解答:解: A 、是轴对称图形,故正确;B 、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D 、不是轴对称图形,故错误.应选 A.评论:本题考察了轴对称图形的观点:轴对称图形的重点是找寻对称轴,图形两部分沿对称轴折叠后可重合.3.考点:二次根式的性质与化简.版权全部剖析:直接利用二次根式的性质化简求出即可.解答:解:=2.应选: B.评论:本题主要考察了二次根式的性质与化简,正确化简二次根式是解题重点.4.考点:幂的乘方与积的乘方.版权全部剖析:依据幂的乘方和积的乘方的运算方法:①( a m)n =a mn( m,n 是正整数);② ( ab)n=a n b n (n 是正整数);求出( a2b)3的结果是多少即可.解答:解:( a2b)3 = (a2)3?b3 =a6b3即计算( a2b)3的结果是a6b3.应选: A.评论:本题主要考察了幂的乘方和积的乘方,要娴熟掌握,解答本题的重点是要明确:① (a m)n=a mn( m, n 是正整数);②( ab)n =a n b n( n 是正整数).5.考 d 全面检查与抽样检查.版权全部点:剖析:由普查获得的检查结果比较正确,但所费人力、物力和时间许多,而抽样检查获得的检查结果比较近似.解答:解:A 、检查一批电视机的使用寿命状况,检查局有损坏性,合适抽样检查,故 A 不切合题意;B 、检查某中学九年级一班学生的视力状况,合适普查,故 B 切合题意;C、检查重庆市初中学生每日锻炼所用的时间状况,检查范围广,合适抽样检查,故 C 不切合题意;D 、检查重庆市初中学生利用网络媒体自主学习的状况,合适抽样检查,故 D 不切合题意;应选: B.评论:本题考察了抽样检查和全面检查的差别,选择普查还是抽样检查要依据所要考察的对象的特点灵巧采用,一般来说,关于拥有损坏性的检查、没法进行普查、普查的意义或价值不大,应选择抽样检查,关于精准度要求高的检查,事关重要的检查常常采用普查.6.考点:平行线的性质.版权全部剖析:依据平行线的性质求出∠ 2 的度数即可.解答:解:∵ AB ∥ CD ,∠ 1=135 °,∴∠ 2=180 °﹣ 135°=45 °.应选 C.评论:本题考察的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.考点:中位数.版权全部剖析:找中位数要把数据按从小到大的次序摆列,位于最中间的一个数(或两个数的均匀数)为中位数.解答:解:先对这组数据按从小到大的次序从头排序:198 , 209, 216 , 220, 230 .位于最中间的数是216,则这组数的中位数是216.应选 C.评论:本题属于基础题,考察了确立一组数据的中位数的能力.注意找中位数的时候必定要先排好次序,而后依据奇数和偶数的个数来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.8.考点:解一元二次方程-因式分解法.版权全部剖析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解: x2﹣ 2x=0 ,x=0 , x ﹣ 2=0 ,x1=0, x2 =2,应选 D.评论:本题考察认识一元二次方程的应用,解本题的重点是能把一元二次方程转变为一元一次方程,难度适中.9.考点:切线的性质.版权全部剖析:AD ⊥ AB ,∠ DAC= ∠ B= ∠ AOC=40 °,推由 AB 是⊙ O 直径, AE 是⊙ O 的切线,推出出∠ AOD=50 °.解答:解:∵ AB 是⊙ O 直径, AE 是⊙ O 的切线,∴∠ BAD=90 °,∵∠ B= ∠ AOC=40 °,∴∠ ADB=90 °﹣∠ B=50 °,应选 B.评论:本题主要考察圆周角定理、切线的性质,解题的重点在于连结AC ,建立直角三角形,求10.考点:一次函数的应用.版权全部剖析:依据函数图象可知,小明40分钟登山2800 米,40~ 60 分钟歇息, 60~ 100 分钟登山( 3800 ﹣2800)米,登山的总行程为 3800 米,依据行程、速度、时间的关系进行解答即可.解答:解: A 、依据图象可知,在 40~ 60 分钟,行程没有发生变化,所以小明半途歇息的时间为: 60﹣ 40=20 分钟,故正确;B 、依据图象可知,当t=40 时, s=2800,所以小明歇息前登山的均匀速度为:2800÷40=70(米 /分钟),故 B 正确;C、依据图象可知,小明在上述过程中所走的行程为3800 米,故错误;D 、小明歇息后的登山的均匀速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前登山的均匀速度为:2800 ÷40=70 (米 /分钟),70 > 25,所以小明歇息前登山的均匀速度大于歇息后登山的均匀速度,故正确;应选: C.评论:本题考察了函数图象,解决本题的重点是读懂函数图象,获守信息,进行解决问题.11.考点:规律型:图形的变化类.版权全部剖析:认真察看图形,找到图形中圆形个数的通项公式,而后辈入n=7 求解即可.解答:解:察看图形得:第 1 个图形有 3+3×1=6 个圆圈,第2 个图形有 3+3×2=9 个圆圈,第 3个图形有 3+3×3=12 个圆圈,第 n 个图形有 3+3n=3 ( n+1)个圆圈,当 n=7 时, 3×( 7+1 )=24 ,应选 B.评论:本题考察了图形的变化类问题,解题的重点是认真察看图形并找到图形变化的通项公式,难度不大.12.考点:菱形的性质;反比率函数图象上点的坐标特点.版权全部剖析:过点 A 作 x 轴的垂线,与CB 的延伸线交于点E,依据 A , B 两点的纵坐标分别为3, 1,可得出横坐标,即可求得AE , BE ,再依据勾股定理得出AB ,依据菱形的面积公式:底乘高即可得出答案.解答:解:过点 A 作 x 轴的垂线,与CB 的延伸线交于点E,∵ A , B 两点在反比率函数y=的图象上且纵坐标分别为3, 1,∴A, B 横坐标分别为 1, 3,∴AE=2 , BE=2 ,∴AB=2,S 菱形ABCD =底×高 =2×2=4,应选 D.评论:本题考察了菱形的性质以及反比率函数图象上点的坐标特点,熟记菱形的面积公式是解题的重点.二、填空题(共 6 小题,每题 4 分,满分24 分)13.考点:科学记数法—表示较大的数.版权全部剖析:科学记数法的表示形式为a×10n的形式,此中1≤|a|< 10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将 37000 用科学记数法表示为 3.7 ×104.故答案为: 3.7×104.评论:本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a|< 10,n 为整数,表示时重点要正确确立 a 的值以及n 的值.14.考点:实数的运算;零指数幂.版权全部专题:计算题.剖析:原式第一项利用零指数幂法例计算,第二项利用绝对值的代数意义化简,计算即可获得结果.解答:解:原式 =1﹣ 2=﹣1.故答案为:﹣ 1.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.15.考点:相像三角形的性质.版权全部剖析:依据相像三角形的对应边上的高之比等于相像比得出即可.解答:解:∵△ ABC ∽△ DEF ,△ ABC 与△ DEF 的相像比为4: 1,∴△ ABC 与△ DEF 对应边上的高之比是4: 1,故答案为:4:1.评论:本题考察了相像三角形的性质的应用,能娴熟地运用相像三角形的性质进行计算是解本题的重点,注意:相像三角形的对应边上的高之比等于相像比.16.考点:扇形面积的计算;等腰直角三角形.版权全部剖析:依据等腰直角三角形性质求出∠ A 度数,解直角三角形求出AC 和 BC ,分别求出△ ACB 的面积和扇形ACD 的面积即可.解答:解:∵△ ACB 是等腰直角三角形ABC 中,∠ ACB=90 °,∴∠ A= ∠ B=45 °,∵ AB=4,∴ AC=BC=AB ×sin45 °=4,∴ S△ACB ===8, S 扇形ACD ==2π,∴图中暗影部分的面积是8﹣ 2π,故答案为:8﹣2π.评论:本题考察了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解本题的重点是能求出△ ACB 和扇形 ACD 的面积,难度适中.17.考点:概率公式;解一元一次不等式组;函数自变量的取值范围.版权全部剖析:由 a 的值既是不等式组的解,又在函数y=的自变量取值范围内的有﹣ 3,﹣ 2,可直接利用概率公式求解即可求得答案.解答:解:∵不等式组的解集是:﹣<x<,∴ a 的值既是不等式组的解的有:﹣3,﹣ 2,﹣ 1,0,∵函数 y= 的自变量取值范围为:2x2+2x ≠0,∴在函数 y= 的自变量取值范围内的有﹣3,﹣ 2, 4;∴ a 的值既是不等式组的解,又在函数y=的自变量取值范围内的有:﹣ 3,﹣ 2;∴ a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是:.故答案为:.评论:本题考察了概率公式的应用.用到的知识点为:概率=所讨状况数与总状况数之比.18.考旋转的性质.版权全部点:分依据角均分线的性质,可得CE 的长,依据旋转的性质,可得BC ′=BC , E′C′=EC ;依据等析:腰三角形,可得FD、FB的关系,依据勾股定理,可得BF的长,依据正切函数,可得tan∠ ABF,tan∠ FBG 的值,依据三角函数的和差,可得AG 的长,依占有理数的减法,可得答案.解解:作FK ⊥ BC ′于 K 点,如图:答:在 Rt△ ABD 中,由勾股定理,得BD===14设 DE=x , CE=4﹣x,由 BE 均分∠ DBC ,得=,即=.解得 x=,EC=.在 Rt△ BCE 中,由勾股定理,得BE===.由旋转的性质,得BE ′=BE=,BC′=BC=10,E′C′=EC=.△BFD 是等腰三角形, BF=FD=x ,在 Rt△ ABF 中,由勾股定理,得x 2=( 4 )2+ ( 10﹣ x)2,解得 x=,AF=10 ﹣=.tan∠ ABF===,tan∠ FBG===,tan∠ ABG=tan ∠ ABF+tan ∠ FBG===,tan∠ ABF==21,AG=×4=,DG=AD ﹣ AG=10 ﹣==,故答案为:.点本题考察了旋转的性质,利用了勾股定理,旋转的性质,正切函数的定义,利用三角函数评:的和差得出 AG 的长是解题重点.三、解答题(共 2 小题,满分14 分)19.考点:解二元一次方程组.版权全部专题:计算题.剖析:方程组利用代入消元法求出解即可.解答:解:,①代入②得: 3x+2x ﹣ 4=1,解得: x=1,把 x=1 代入①得: y= ﹣ 2,则方程组的解为.评论:本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.考点:全等三角形的判断与性质.版权全部专题:证明题.剖析:依据等式的性质得出BD=CE ,再利用SAS 得出:△ ABD 与△ FEC 全等,从而得出∠ ADB= ∠ FCE .解答:证明:∵ BC=DE ,∴ BC+CD=DE+CD ,即 BD=CE ,在△ABD 与△FEC 中,,∴△ ABD ≌△ FEC( SAS ),∴∠ ADB= ∠ FCE .评论:本题考察全等三角形的判断和性质,重点是依据等式的性质得出BD=CE ,再利用全等三角形的判断和性质解答.四、解答题(共 4 小题,满分40 分)21.考点:分式的混淆运算;整式的混淆运算.版权全部专题:计算题.剖析:( 1)原式利用单项式乘以多项式,以及完整平方公式化简,去括号归并即可获得结果;(2)原式括号中两项通分并利用同分母分式的减法法例计算,同时利用除法法例变形,约分即可获得结果.22 2解答:解:( 1)原式 =2xy ﹣ y +x +2xy+y2=4xy+x;(2)原式 =?=.评论:本题考察了分式的混淆运算,娴熟掌握运算法例是解本题的重点.22.考点:列表法与树状图法;扇形统计图;条形统计图.版权全部剖析:( 1)由题意可得该镇本次统计的小微公司总个数是:4÷16%=25 (个);扇形统计图中 B 类所对应扇形圆心角的度数为:×360°=72°;又由 A 类小微公司个数为:25﹣ 5﹣ 14﹣4=2 (个);即可补全条形统计图;( 2)第一依据题意画出树状图,而后由树状图求得全部等可能的结果与所抽取的 2 个发言代表都来自高新区的状况,再利用概率公式即可求得答案.解答:解:( 1)该镇本次统计的小微公司总个数是:4÷16%=25 (个);扇形统计图中 B 类所对应扇形圆心角的度数为:×360°=72°;故答案为:25, 72;A类小微公司个数为: 25﹣ 5﹣ 14﹣ 4=2 (个);补全统计图:( 2)分别用 A , B 表示 2 个来自高新区的,用C, D 表示 2 个来自开发区的.画树状图得:∵共有12 种等可能的结果,所抽取的 2 个讲话代表都来自高新区的有 2 种状况,∴所抽取的 2 个讲话代表都来自高新区的概率为:=.评论:本题考察了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率 =所讨状况数与总状况数之比.23.考点:因式分解的应用;规律型:数字的变化类.版权全部剖析:( 1)依据“和睦数”的定义(把一个自然数各数位上的数字从最高位到个位挨次排出的一串数字,与从个位到最高位挨次排出的一串数字完整相同)写出四个“和睦数”,设随意四位“和睦数”形式为:,依据和睦数的定义获得a=d, b=c ,则===91a+10b 为正整数,易证得随意四位“和睦数”都能够被11 整除;( 2)设能被11 整除的三位“和睦数”为:,则===9x+y+为正整数.故y=2x ( 1≤x≤4,x 为自然数).解答:解:( 1)四位“和睦数”:1221 , 1331, 1111, 6666(答案不独一)随意一个四位“和睦数”都能被11整除,原因以下:设随意四位“和睦数”形式为:,则知足:最高位到个位摆列:d,c, b, a个位到最高位摆列:a, b, c, d.由题意,可得两组数据相同,则:a=d, b=c,则===91a+10b 为正整数.∴四位“和睦数”能被 11 整数,又∵ a, b, c, d 为随意自然数,∴随意四位“和睦数”都能够被11 整除;( 2)设能被11 整除的三位“和睦数”为:,则知足:个位到最高位摆列:x , y, z.最高位到个位摆列:z, y, x .由题意,两组数据相同,则:x=z ,故==101x+10y ,故= = =9x+y+ 为正整数.故 y=2x ( 1≤x≤4, x 为自然数).评论:本题考察了因式分解的应用.解题的重点是弄清楚“和睦数”的定义,从而写出切合题意的数.24.考点:解直角三角形的应用-仰角俯角问题;分式方程的应用;解直角三角形的应用-坡度坡角问题.版权全部剖析:( 1)在直角△ PEN ,利用三角函数即可求得ME 的长,依据MN=EM ﹣ EN 求解;( 2)过点 D 作 DN ⊥ AH 于点 N ,利用三角函数求得AN 和 AH 的长,从而求得△ ADH的面积,获得需要填筑的土石方数,再依据结果比原计划提早20 天达成,列方程求解.解答:=50( m),解:( 1)在直角△ PEN 中, EN=PE=30m , ME=则 MN=EM ﹣ EN=20 ( m).答:两渔船 M 、 N 之间的距离是20 米;( 2)过点 D 作 DQ ⊥AH 于点 Q.由题意得: tan∠ DAB=4 , tanH= ,在直角△ DAQ 中, AQ= = =6( m),在直角△ DHQ 中, HQ= = =42 ( m).故 AH=HQ ﹣ AQ=42 ﹣ 6=36 ( m).S△ADH =AH ?DQ=432 ( m2).故需要填筑的土石方是V=SL=432 ×100=43200 ( m3).设原计划均匀每日填筑xm3,则原计划天达成,则增添机械设施后,此刻均匀每日填筑 2xm 3.依据题意,得: 10x+ () ?2x=43200 ,解得: x=864 .经查验 x=864 是原方程的解.答:施工队原计划均匀每日填筑土石方864 立方米.评论:本题考察了仰角的定义以及坡度,要修业生能借助仰角结构直角三角形并解直角三角形.五、解答题(共 2 小题,满分24 分)25.考点:全等三角形的判断与性质;等边三角形的判断与性质;三角形中位线定理.版权所有剖析:( 1)依据直角三角形的性质和三角函数即可获得结果;(2)如图 1,连结 AF ,证出△ DAE ≌△ ADH ,△ DHF ≌△ AEF ,即可获得结果;(3)如图 2,取 AB 的中点 M ,连结 CM , FM ,在 R t△ ADE 中, AD=2AE ,依据三角形的中位线的性质获得 AD=2FM ,于是获得 FM=AE ,由∠CAE= ∠ CAB=30 °∠ CMF= ∠ AMF ﹣ AMC=30 °,证得△ ACE ≌△ MCF ,问题即可得证.解答:解:( 1)∵∠ ACB=90 °,∠ BAC=60 °,∴∠ ABC=30 °,∴ AB=2AC=2 ×2 =4,∵AD ⊥ AB ,∠CAB=60 °,∴∠DAC=30 °,∵AH= AC=,∴ AD==2,∴BD==2;(2)如图 1,连结 AF ,∵AE 是∠ BAC 角均分线,∴∠ HAE=30 °,∴∠ ADE= ∠ DAH=30 °,在△ DAE 与△ ADH 中,,∴△ DAE ≌△ ADH ,∴DH=AE ,∵点 F 是 BD 的中点,∴DF=AF ,∵∠ EAF= ∠ EAB ﹣∠ FAB=30 °﹣∠ FAB∠FDH= ∠ FDA ﹣∠ HDA= ∠ FDA ﹣ 60°=( 90°﹣∠ FBA )﹣ 60°=30°﹣∠FBA ,∴∠ EAF= ∠ FDH ,在△DHF 与△AEF 中,,∴△ DHF ≌△ AEF ,∴HF=EF ;( 3)如图 2,取 AB 的中点M ,连结CM , FM ,在 R t△ ADE 中, AD=2AE ,∵ DF=BF , AM=BM ,∴AD=2FM ,∴FM=AE ,∵∠ABC=30 °,∴AC=CM= AB=AM ,∵∠ CAE=∠ CAB=30°∠ CMF=∠ AMF﹣∠ AMC=30°,在△ACE 与△MCF 中,,∴△ ACE ≌△ MCF ,∴CE=CF ,∠ ACE= ∠MCF ,∵∠ ACM=60 °,∴∠ ECF=60 °,∴△ CEF 是等边三角形.评论:本题考察了全等三角形的判断和性质,直角三角形的性质,等边三角形的判断,正确的作出协助线结构全等三角形是解题的重点.26.考点:二次函数综合题.版权全部剖析:( 1)求出抛物线与x 轴的交点坐标和极点坐标,用待定系数法求分析式即可;( 2)先求出 E′、F′的坐标表示,而后求出E′M 、F ′N,用二次函数的极点坐标求出当m=3 时, ME ′+NF ′的值最大,获得E′、 F′的坐标,再求出 E ′F′的分析式,当点 R 在直线 E′F′与y 轴的交点时, |RF′﹣ RE′|的最大值,从而求出R 点的坐标及 |RF′﹣ RE′|的最大值;( 3)分类议论 Q 点在∠ CAB 的角均分线或外角均分线上时,运用三角形相像求出相应线段,在求出△ Q′P′G′与△ ADC 的重叠部分面积为S.解答:x2 + x+3 =0,解:( 1)令 y=0 ,则﹣解方程得: x=6 或 x= ﹣ 2,∴ A(﹣ 2,0),B(6,0),又 y= ﹣x2 + x+3 =﹣( x﹣ 2)2 +4 ,又极点C(2,4 ),设直线BC 的分析式为:y=kx+b ,代入 B 、 C 两点坐标得:,解得:,∴ y= ﹣x+6 ;( 2)如图1,∵点 E( m, 0), F( m+2 , 0),∴ E′( m,﹣m2+m+3 ), F′( m+2,﹣m2+4),∴ E′M= ﹣m2+ m+3 ﹣(﹣m+6 ) =﹣m2+2 m﹣ 3 ,F′N= ﹣m2 +4 ﹣(﹣m+4 ) = ﹣m2 + m,∴ E′M+F ′N= ﹣m2+2 m﹣ 3 + (﹣m2 + m)= ﹣m2 +3 m﹣ 3 ,当 m=﹣=3 时, E′M+F ′N 的值最大,∴此时, E′( 3,)F′(5,),∴直线E′F′的分析式为:y= ﹣x+,∴ R(0,),依据勾股定理可得:RF′=10, RE′=6,∴ |RF′﹣ RE ′|的值最大值是4;(3)由题意得, Q 点在∠ CAB 的角均分线或外角均分线上,①如图 2,当 Q 点在∠ CAB 的角均分线上时,Q′M=Q ′N=,AW=,∵△ RMQ ′∽△ WOA ,∴∴RQ′=,∴RN=+,∵△ ARN ∽△ AWO ,∵∴AN=,∴ DN=AD ﹣ AN=4 ﹣=,∴S=;②如图 3,当 Q 点在∠ CAB 的外角均分线上时,∵△ Q′RN ∽ △ WAO ,∴RQ′=,∴RM=﹣,∵△ RAM ∽△ WOA ,∴AM=,在 RtQ ′MP ′中, MP ′=Q′M=3 ,∴ AP′=MP ′﹣ AM=3 ﹣=,在 Rt△ AP′S 中, P′S=AP ′=×,∴S=.评论:本题主要考察了待定系数法求函数分析式,二次函数的性质,三角形的三边关系,三角形相像的判断与性质以及数形联合和分类议论思想的综合运用,本题牵涉知识面广,综合性强,难度较大.。
重庆市中考数学试卷(a卷)答案及解析
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.的相反数是2 A .2-B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12B .14C .16D .18【答案】C【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,5cm 6cm 9cm 另一个三角形的最短边长为,则它的最长边为2.5cm A. 3cm B. 4cm C. 4.5cm D. 5cm【答案】C【解析】利用相似三角形三边对应成比例解出即可。
2023年重庆市中考数学真题(A卷)(答案解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。
2023年重庆市中考数学真题(A卷)(原卷版和解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.估计2810+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,23AB =3BC =,则OC 的长度是()A.3B.23C.13 D.69.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别AB平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中=a ___________,b =___________,m =___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A 款智能玩具飞机200架、B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-【答案】A 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,【答案】C 【解析】【分析】根据题意将各项的坐标代入反比例函数4y x=-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B 【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计2810+的值应在()A.7和8之间B.8和9之间C .9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.28101620=45=+∵25 2.5<<,∴455<<,∴8459<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-【答案】A【解析】【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH ,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023-+=11=1.52+.故答案为1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】19【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.【答案】3【解析】【分析】证明AFC BEA ≌△△,得到,BE AF CF AE ==,即可得解.【详解】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)【答案】25124π-【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到5BD =,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y -+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.【答案】①.4312②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭【答案】(1)21a -(2)11x +【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式2221a a a =-+-21a =-;【小问2详解】原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:a___________,b=___________,m=___________;(1)上述图表中=(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出a,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知10架A款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该a=;组数据的众数为72,即72由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,⨯=(架)则B款智能玩具飞机运行时间合格的架次为:1040%4则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;【小问2详解】B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面90份【解析】【分析】(1)设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解。
2015年重庆市中考数学试卷(A卷)答案与解析解析
2015年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015?重庆)在-4, 0,- 1, 3这四个数中,最大的数是()A . - 4 B. 0 C. - 1 D. 3考点:有理数大小比较.分析:先计算-4|=4, |- 1|=1,根据负数的绝对值越大,这个数越小得- 4V- 1,再根据正数大于0,负数小于0得到-4 V- 1V 0V 3.解答:解:••• - 4|=4, |- 1|=1 ,•••- 4V- 1,•••- 4, 0,- 1 , 3这四个数的大小关系为- 4V- 1 V 0 V 3.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3. (4 分)(2015?重庆)化简—的结果是()_ _A . 4 二B. 2 二 C . 3 匚 D . 2 -考点:二次根式的性质与化简.分析:- 直接利用二次根式的性质化简求出即可.解答:〕解:..二=2 ■;. 故选:B .点评:J 此题主要考查了一次根式的性质与化简,正确化简一次根式是解题关键.4. (4分)(2015?重庆)计算(a2b)3的结果是()A 6 32 35 36A . a bB . a bC . a bD . a b考点:幕的乘方与积的乘方.分析:根据幕的乘方和积的乘方的运算方法: ①(a m ) n =a mn (m , n 是正整数);②n=a n b n (n 是正整数);求出(a 2b ) 3的结果是多少即可.解答:解:(a 2b ) 32. 33=(a ) ?b6 3 =a b即计算(a 2b ) 3的结果是a 6b 3. 故选:A .点评:此题主要考查了幕的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:(a m ) n =a mn (m , n 是正整数);②(ab ) n =a °b n (n 是正整数).5. ( 4分)(2015?重庆)下列调查中,最适合用普查方式的是( )A .调查一批电视机的使用寿命情况B .调查某中学九年级一班学生的视力情况C .调查重庆市初中学生每天锻炼所用的时间情况D .调查重庆市初中学生利用网络媒体自主学习的情况 考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的 调查结果比较近似.解答::/解: A 、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A不符合题意;B 、 调查某中学九年级一班学生的视力情况,适合普查,故 B 符合题意;C 、 调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C 不符合题意;D 、 调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故 D 不符合题意;故选:B .点评: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义 或价值不大,应选择抽样调查,对于精确度要求咼的调查,事关重大的调查往往选用 普查.6 ( 4分)(2015?重庆)如图,直线 AB // CD ,直线EF 分别与直线 AB , CD 相交于点 G , H .若/ 1=135 °则/ 2的度数为( )(ab )A . 65°B . 55°C . 45°D . 35°考点:平行线的性质.分析::根据平行线的性质求出/ 2的度数即可.解答:: 解 : AB // CD,/ 1=135°•••/ 2=180 °- 135 °45 ° 故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7. (4分)(2015?重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198, 230,220,216,209,则这五个数据的中位数为()A. 220B. 218C. 216D. 209考点:中位数.分析::找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答::/解:先对这组数据按从小到大的顺序重新排序:198, 209, 216, 220, 230. 位于最中间的数是216,则这组数的中位数是216.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力. 注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2& ( 4分)(2015?重庆)一元二次方程x - 2x=0的根是()A . X1=0 , x2= - 2 B. x1=1 , x2=2 C. x1=1 , x2= - 2 D. x1=0 , x2=2考点:解一兀二次方程-因式分解法.分析:: 先分解因式,即可得出两个一兀一次方程,求出方程的解即可.解答:〕、、、2解: x - 2x=0 , x (x - 2)=0, x=0, x - 2=0, x仁0, x2=2, 故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元次方程,难度适中.9. (4分)(2015?重庆)如图,AB是O O直径,点C在O O 上, AE是O O的切线,A为切点,连接BC并延长交AE于点D •若/ AOC=80 °则/ ADB的度数为()考点:切线的性质.分析:由AB 是O O 直径,AE 是O O 的切线,推出 AD 丄AB ,/ DAC= / B=_ / AOC=40 °2推出/ AOD=50 °.•/ AB 是O O 直径,AE 是O O 的切线,BAD=90 ° B=_ / AOC=40 ° 2ADB=90 °-Z B=50 °点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接 AC ,构建直角三角形,求/ B 的度数.10. (4分)(2015?重庆)今年 五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中 途休息了一段时间.设他从山脚出发后所用时间为 t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示•下列说法错误的是()B .小明休息前爬山的平均速度为每分钟 70米C •小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度:一次函数的应用. :根据函数图象可知,小明 40分钟爬山2800米,40〜60分钟休息,60〜100分钟爬山(3800 - 2800)米,爬山的总路程为 3800米,根据路程、速度、时间的关系进行解答即可.:解:A 、根据图象可知,在 40〜60分钟,路程没有发生变化,所以小明中途休息的时 间为:60 - 40=20分钟,故正确;B 、 根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为: 2800韶0=70 (米/分钟),故B 正确;C 、 根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D 、 小明休息后的爬山的平均速度为: (3800 - 2800) - (100 - 60) =25 (米/分),小明休息前爬山的平均速度为: 2800 -^40=70 (米/分钟),70 >25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确; 故选:C .B . 50C . 60°D . 20°解答:解:•••/ 故选B .点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.11. (4分)(2015?重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦ 个图形中小圆圈的个数为()n=7求解即可.① ②A . 21B. 24C. 27D. 30 cPcft) d:仔细观察图形,找到图形中圆形个数的通项公式,然后代入:解:观察图形得:第1个图形有3+3X1=6个圆圈,第2个图形有3+3X2=9个圆圈,第3个图形有3+3X3=12 :规律型: 图形的变化类.个圆圈,第n个图形有3+3n=3 (n+1)个圆圈,当n=7 时,3 X (7+1)=24,故选B.本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.12. (4分)(2015?重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC 与x轴平行,A , B两点的纵坐标分别为3, 1 •反比例函数y :的图象经过A , B两点,则C. 2 :考点:菱形的性质;反比例函数图象上点的坐标特征.分析:过点A作x轴的垂线,与CB的延长线交于点E,根据A , B两点的纵坐标分别为3, 1,可得出横坐标,即可求得AE , BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.解答:解:过点A作x轴的垂线,与CB的延长线交于点E,••• A, B两点在反比例函数y=^的图象上且纵坐标分别为3, 1,••• A, B横坐标分别为1, 3,••• AE=2 , BE=2 ,• AB=2 匚,S 菱形ABCD=底稿=2 .: >2=4 :,故选D .点评:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13. (4分)(2015?重庆)我国南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为 3.7 >04.考点:; 科学记数法一表示较大的数.分析::科学记数法的表示形式为a>0n的形式,其中1弓a|v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答::解:将37000用科学记数法表示为 3.7X104. 故答案为:3.7 >04.点评:. 此题考查科学记数法的表示方法.科学记数法的表示形式为a>0n的形式,其中1<|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.14. (4 分)(2015?重庆)计算:2015°-|2|= —1考点:实数的运算;零指数幕.专题:计算题.分析:原式第一项利用零指数幕法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答::解:原式=1 - 2 =-1 .故答案为:-1 .点评:.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15. (4分)(2015?重庆)已知△ ABC DEF , △ ABC与厶DEF的相似比为4: 1,则厶ABC 与厶DEF对应边上的高之比为4: 1 .考点:相似三角形的性质.分析:根据相似三角形的对应边上的高之比等于相似比得出即可.解答:解:•••△ ABC s\ DEF , △ ABC与厶DEF的相似比为4: 1,•••△ ABC与△ DEF对应边上的高之比是4: 1,故答案为:4: 1 .点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比.16. (4分)(2015?重庆)如图,在等腰直角三角形ABC中,/ ACB=90 ° AB=4伍.以A 为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是8 - 2n .(结果保留n)考点:扇形面积的计算;等腰直角三角形.分析:根据等腰直角三角形性质求出/ A度数,解直角三角形求出AC和BC,分别求出△ ACB的面积和扇形ACD的面积即可.解答:解:•••△ ACB是等腰直角三角形ABC中,/ ACB=90 °•••/ A= / B=45 °T AB=4 逅,•AC=BC=AB 冶in45 °=4,i i 45% * d2•ACB=石咒ACXECp乂4X4=8, S 扇形ACD=—=2 n,•••图中阴影部分的面积是8 - 2 n,故答案为:8 - 2兀点评:本题考查了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解此题的关键是能求出△ ACB和扇形ACD的面积,难度适中.17. (4分)(2015?重庆)从-3, - 2, - 1 , 0 , 4这五个数中随机抽取一个数记为 a , a的2x+3<4 1值既是不等式组; 、的解,又在函数y——的自变量取值范围内的概率是1%一1>一11 2/+2x考点:, 概率公式;解一兀一次不等式组;函数自变量的取值范围.分析:2x+3<4 1由a的值既是不等式组*的解,又在函数y- 厲的自变量取值范围内的有-3, - 2,可直接利用概率公式求解即可求得答案.内的概率是:2. 5故答案为:1.5点评:此题考查了概率公式的应用•用到的知识点为:概率=所求情况数与总情况数之比.18. (4 分)(2015?重庆)如图,在矩形 ABCD 中,AB=4 :, AD=10 .连接 BD ,/ DBC 的角平分线BE 交DC 于点E ,现把△ BCE 绕点B 逆时针旋转,记旋转后的 △ BCE 为△ BC'E'.当射线BE 和射线BC 都与线段AD 相交时,设交点分别为 F , G -若厶BFD 为等 腰三角形,则线段 DG 长为 -.—1厂旋转的性质.根据角平分线的性质,可得 CE 的长,根据旋转的性质,可得 :据等腰三角形,可得 FD 、FB 的关系,根据勾股定理,可得 可得tan / ABF , tan / FBG 的值,根据三角函数的和差,可得解答: 解:•••不等式组f2x+3<4 [Sx- 1>-11的解集是••• a 的值既是不等式组*f2x+3<41>- 11的解的有:-3,- 2,- 1 ,0,2X 2+2X 用,•••函数y= ----- = --- 的自变量取值范围为: 92 x z+2x•在函数y=的自变量取值范围内的有-3,2 X 2+2X2, 4;• a 的值既是不等式组加4的解,又在函数 3—11y =..'-..的自变量取值范围内的有:-3,- 2;• a 的值既是不等式组 (2:x+3<4:-的解,又在函数 y=— 2X ^+2K的自变量取值范围BC '=BC , E C =EC ;根 BF 的长,根据正切函数, AG 的长,根据有理数的减法,可得答案.匚’飞匸亠;一 -'n:,=14设 DE=x , CE=4 *(j - x , 由BE 平分/ DBC ,得BD DE 0n 14 h BC EC 10 -x 解得 x= I '',EC^i-3 3在Rt △ BCE 中,由勾股定理,得△ BFD 是等腰三角形,BF=FD=x , 在Rt △ ABF 中,由勾股定理,得 x 2= (4 ;) 2 + (10 - x ) 2, 解得x==:解 解:作FK 丄BC 于K 点,如图: 答:二在Rt △ ABD 中,由勾股定理,得120 6tan / ABF= =21 ■,BE 沁由旋转的性质,得DG=AD - AG=10 =^L 矢,119 119 17故答案为:空;.[ 17____________________________________________点 本题考查了旋转的性质,利用了勾股定理,旋转的性质,正切函数的定义,利用三角 评:函数的和差得出 AG 的长是解题关键.三、解答题(共2小题,满分14分) 19. (7 分) (2015?重庆)解方程组①[3x+y=l②考点:解二元一次方程组. 专题:计算题. 分析:方程组利用代入消元法求出解即可.① 代入② 得:3x+2x - 4=1 , 解得:x=1 ,把x=1代入①得:y= - 2,(x=l则方程组的解为‘.| Ily=-2点评:此题考查了解二元一次方程组,禾u 用了消元的思想,消元的方法有:代入消元法与加 减消元法.20. (7分)(2015?重庆)如图,在 △ ABD 和厶FEC 中,点B , C , D , E 在同一直线上,且AB=FE , BC=DE ,/ B= / E .求证:/ ADB= / FCE .考点:全等三角形的判定与性质. 专题:证明题.分析:根据等式的性质得出 BD=CE ,再利用SAS 得出:△ ABD 与厶FEC 全等,进而得出/ ADB= / FCE .解答:证明:T BC=DE ,••• BC+CD=DE+CD , 即 BD=CE ,在厶ABD 与厶FEC 中,解答:解:'y=2x - 4① 3x+y=1②1 1ZB 二ZEho=EC•••△ABD 也•••/ △ FEC (SAS), / FCE.点评:」7比题考查全等三角形的判定和性质,关键是根据等式的性质得出等三角形的判定和性质解答.BD=CE,再利用全四、解答题(共4小题,满分40分)21. (10分)(2015?重庆)计算:2(1)y (2x—y)+ (x+y);考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果; (2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:〕解 : (1)原式=2xy - y +x +2xy+y2=4xy+x ;(2)原式=*」「^ ?」'田(y-3)2 =y-3 .点评:J此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22. (10分)(2015?重庆)为贯彻政府报告中全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w (万元)的多少分为以下四个类型:A类(w V 10) , B类(10颈V 20), C类(20颈V 30), D类(w绍0),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(2) (y- 1A B C D 类型(1) 该镇本次统计的小微企业总个数是 数为 72度,请补全条形统计图;(2) 为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业 派一名代表参会•计划从 D 类企业的4个参会代表中随机抽取 2个发言,D 类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取 的2个发言代表都来自高新区的概率.考点:列表法与树状图法;扇形统计图;条形统计图. 分析:(1)由题意可得该镇本次统计的小微企业总个数是:4勻6%=25 (个);扇形统计图中B 类所对应扇形圆心角的度数为: A X 360°=72 °又由A 类小微企业个数为:25 -255 - 14 - 4=2 (个);即可补全条形统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所抽取的 2个发言代表都来自高新区的情况,再利用概率公式即可求得答案.解答:解:(1)该镇本次统计的小微企业总个数是:4^16%=25 (个); 扇形统计图中B 类所对应扇形圆心角的度数为: -2x360 °72 °25故答案为:25, 72;A 类小微企业个数为:25 - 5 - 14 - 4=2 补全统计图:某镇各类那徵企业个数衆形统计图 "'个数(2)分别用A , B 表示2个来自高新区的,用 C , D 表示2个来自开发区的.某卡真各类<J 囁企业个数条形统计图 T 偉各妾型徹小企业个数占该镇小 微企业的百分比扇形统计图145II 出145-A E C D 类毎(个);14414211画树状图得:开始一-一 __AC D/N /N /1\BCD A C D ABDABC•••共有12种等可能的结果,所抽取的 2个发言代表都来自高新区的有 2种情况,•••所抽取的2个发言代表都来自高新区的概率为:.________________________________________ 12 6 ______________________点评:此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图•用到的知识点为:概率=所求情况数与总情况数之比.23. (10分)(2015?重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一 串数字,与从个位到最高位依次排出的一串数字完全相同, 那么我们把这样的自然数称为 和谐数”例如自然数12321,从最高位到个位依次排出的一串数字是: 1, 2, 3, 2, 1,从个位到最高位依次排出的一串数字仍是:1, 2, 3, 2, 1,因此12321是一个 和谐数”再加22, 545, 3883, 345543,…,都是 和谐数”(1) 请你直接写出3个四位 和谐数”;请你猜想任意一个四位 和谐数”能否被11整除?并 说明理由;(2) 已知一个能被11整除的三位 和谐数”设其个位上的数字 x (1纟<4, x 为自然数), 十位上的数字为y ,求y 与x 的函数关系式.解答:解:(1)四位 和谐数”:1221, 1331 , 1111, 6666…(答案不唯一)任意一个四位 和谐数”都能被11整除,理由如下: 设任意四位 和谐数”形式为:盂&,则满足:最高位到个位排列:d , c , b , a 个位到最高位排列:a , b , c , d . 由题意,可得两组数据相同,则:a=d , b=c ,一:…川」一丨I. - -=91a+10b 为正整数•四位和谐数”能被11整数, 又••• a , b , c , d 为任意自然数,:因式分解的应用;规律型:数字的变化类.:(1)根据 和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出 的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个 和谐数”设任意四位 和谐数"形式为:I ,•,根据和谐数的定义得到 a=d , b=c ,则abed 1000a+100b+10c+d1000a+100b+10b+a“一 出工靈痂 曰工/曰/工亠=91a+10b 为正整数,易证得任意11四位 (2) 11zyz11和谐数”都可以被11整除; 设能被11整除的三位 和谐数”为:,则 101x+10v 99x+lljri-2x - y 2s - y-=9x+y+———为正整数.故 y=2x (1$詔,x 为自 H 11然数).1111•••任意四位和谐数”都可以被11整除;(2)设能被11整除的三位和谐数”为:切,则满足:个位到最高位排列:x, y, z .最高位到个位排列:乙y, x.由题意,两组数据相同,则:x=z ,故xy£= xyj<=101x+10y ,故三_U;='=9x+y+=_i为正整数.11 11 11 11故y=2x (1$<4, x为自然数).点评:本题考查了因式分解的应用.解题的关键是弄清楚和谐数”的定义,从而写出符合题意的数.24. (10分)(2015?重庆)某水库大坝的横截面是如图所示的四边形ABCD ,其中AB // CD , 大坝顶上有一瞭望台PC, PC正前方有两艘渔船M , N.观察员在瞭望台顶端P处观测到渔船M的俯角a为31 °渔船N的俯角B为45°已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1 )求两渔船M , N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1 : 0.25,为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1 : 1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31° 0.60, sin31 ° 0.52)考点:解直角三角形的应用-仰角俯角问题;分式方程的应用;解直角三角形的应用-坡度坡角问题.分析:(1)在直角△ PEN,利用三角函数即可求得ME的长,根据MN=EM - EN求解;(2)过点D作DN丄AH于点N,利用三角函数求得AN和AH的长,进而求得△ ADH 的面积,得到需要填筑的土石方数,再根据结果比原计划提前20天完成,列方程求解.解答:解:(1)在直角△ PEN 中,EN=PE=30m , ME^ 1=50 (m),tan31°贝U MN=EM - EN=20 (m).答:两渔船M、N之间的距离是20米;(2)过点D作DQ丄AH于点Q.由题意得:tan/ DAB=4 , tanH=^,7解得:x=864.经检验x=864是原方程的解.答:施工队原计划平均每天填筑土石方864立方米.DF本题考查了仰角的定义以及坡度, 要求学生能借助仰角构造直角三角形并解直角三角 形.五、解答题(共2小题,满分24分)25. (12 分)(2015?重庆)如图 1,在△ ABC 中,/ ACB=90 ° / BAC=60 ° 点 E 是/ BAC 角平分线上一点,过点E 作AE 的垂线,过点A 作AB 的垂线,两垂线交于点 D ,连接DB , 点F 是BD 的中点,DH 丄AC ,垂足为H ,连接EF , HF .(1) 如图1,若点H 是AC 的中点,AC=2 「,求AB , BD 的长; (2) 如图1,求证:HF=EF ;(3) 如图2,连接CF , CE .猜想:△ CEF 是否是等边三角形?若是,请证明;若不是, 说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质;三角形中位线定理.县——=二=6 (m ), 在直角 △ DAQ 中,AQ= _____; __________________________tanz^DAB 4在直角△ DHQ 中,HQ= “= ' =42 ( m ).tanZDAB J7故 AH=HQ - AQ=42 - 6=36 ( m ).S A ADH =丄AH ?DQ=4322故需要填筑的土石方是 (m 2).设原计划平均每天填筑 3V=SL=432 X1OO=432OO (m 3).xm 3,则原计划二_[天完成,则增加机械设备后,现在平均每天填筑2xm 3. 根据题意,得:10x+匕;」 I :: ) ?2x=43200.C分析:(1)根据直角三角形的性质和三角函数即可得到结果;(2)如图1,连接AF,证出△ DAE ADH , △ DHFAEF,即可得到结果;(3)如图2,取AB的中点M,连接CM , FM,在R t△ ADE中,AD=2AE,根据三角形的中位线的性质得到AD=2FM,于是得到FM=AE,由/ CAE=2/ CAB=30 ° CMF= / AMF - AMC=30 ° 证得△ ACE MCF,问题即可2得证.解答:解:(1)vZ ACB=90 ° / BAC=60 °•••/ ABC=30 °••• AB=2AC=2 X2丘=4近,•/ AD 丄AB,/ CAB=60 °•••/ DAC=30 °•/ AH=3A C=V^,2•AD= ——=2 ,cos30°•BD= J肿+胪=2莎;(2)如图1,连接AF ,••• AE是/ BAC角平分线,•••/ HAE=30 °•••/ ADE= / DAH=30 °在厶DAE与厶ADH中,r ZAHD=ZDEA=90'■ ZADE^ZDAH ,AD=ADt•△ DAE ◎△ ADH ,•DH=AE ,•••点F是BD的中点,•DF=AF ,•••/ EAF= / EAB -Z FAB=30。
2017年重庆市中考数学试卷(A卷)(含答案解析)
2017年重庆市中考数学试卷(A卷)一、选择题(每小题4分,共48分)1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x84.(4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(4分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.67.(4分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠38.(4分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E 是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10911.(4分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米12.(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣1)2=.15.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.16.(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB 于点F,求∠AFE的度数.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(10分)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2017•重庆)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x8【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x6÷x2=x4.故选:C.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.4.(4分)(2017•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4分)(2017•重庆)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】首先得出的取值范围,进而得出答案.【解答】解:∵3<<4,∴4<+1<5.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(4分)(2017•重庆)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.7.(4分)(2017•重庆)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.【点评】本题考查的知识点为:分式有意义,分母不为0.8.(4分)(2017•重庆)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.9.(4分)(2017•重庆)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .B .C .D .【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF ,求出答案.【解答】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣×1×1﹣=﹣. 故选:B .【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.10.(4分)(2017•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.11.(4分)(2017•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.12.(4分)(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2017•重庆)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.【解答】解:11000=1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2017•重庆)计算:|﹣3|+(﹣1)2=4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【点评】此题考查了有理数的混合运算以及绝对值,熟练掌握运算法则是解本题的关键.15.(4分)(2017•重庆)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB 的度数是多少即可.【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【点评】此题主要考查了圆周角定理的应用,以及圆的特征和应用,要熟练掌握.16.(4分)(2017•重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【点评】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.(4分)(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B 之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(每小题8分,共16分)19.(8分)(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.20.(8分)(2017•重庆)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.【点评】此题考查了扇形统计图和条形统计图、列表法与树状图法的应用;从统计图中、扇形图中获取信息、画出树状图是解决问题的关键.21.(10分)(2017•重庆)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.【解答】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.【点评】此题考查了分式和整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m ≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.【解答】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和反比例函数的性质解答.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.【点评】本题主要考查全等三角形的判定与性质及勾股定理、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.【点评】本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.。
重庆市2020年中考数学试卷(A卷)(Word版,含答案与解析)
重庆市2020年中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)(共12题;共48分)1.下列各数中,最小的数是()A. ﹣3B. 0C. 1D. 2【答案】A【考点】有理数大小比较【解析】【解答】解:∵﹣3<0<1<2,∴这四个数中最小的数是﹣3.故答案为:A.【分析】有理数的大小比较:越靠近正方向越大,反之,越靠近反方向的越小.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【考点】轴对称图形【解析】【解答】解:B、C、D都不是轴对称图形,A是轴对称图形.故答案为:A.【分析】轴对称图形定义:如果把一个图形沿某条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;常见的轴对称图形:线段、圆、正多边形、矩形、等腰三角形、等腰梯形等.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×105【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:26000=2.6×104.故答案为:C.【分析】用表示大于等于10的数为a×10n,其中(n为正整数,1≤a<10).4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 21【答案】B【考点】探索图形规律【解析】【解答】解:∵第①个图案中黑色三角形的个数为1,第②个图案中数黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故答案为:B.【分析】分别找出图①、②、③中黑色三角形的个数,找到规律代入即可.5.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°【答案】 D【考点】切线的性质【解析】【解答】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°﹣20°=70°.故答案为:D.【分析】根据切线性质:圆的切线垂直于过切点的半径可得∠A=90°,根据直角三角形两锐角互余即可计算∠AOB.6.下列计算中,正确的是()A. √2+ √3=√5B. 2+ √2=2 √2C. √2× √3=√6D. 2 √3﹣2=√3【答案】C【考点】二次根式的乘除法,同类二次根式,二次根式的加减法【解析】【解答】解:A. √2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C. √2× √3=√2×3=√6,此选项计算正确;D.2 √3与﹣2不是同类二次根式,不能合并,此选项错误.故答案为:C.【分析】由经过化简后,被开方数相同的二次根式称为同类二次根式,同类二次根式可进行加减可判断A、B、D;根据二次根式的乘法法则,根指数不变,把被开方数相乘即可判断C.7.解一元一次方程12(x+1)=1﹣13x时,去分母正确的是()A. 3(x+1)=1﹣2xB. 2(x+1)=1﹣3xC. 2(x+1)=6﹣3xD. 3(x+1)=6﹣2x【答案】 D【考点】解含分数系数的一元一次方程【解析】【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故答案为:D.【分析】在方程左右两边同乘6即可.8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2 √5【答案】 D【考点】勾股定理,位似变换【解析】【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2 √5.故答案为:D.【分析】根据△DEF与△ABC以原点为位似中心成位似图形,且相似比为2:1,从而即可由点A,C的坐标得出点D,F的坐标,进而根据两点间的距离公式即可算出DF的长.9.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i =1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】 B【考点】解直角三角形的应用﹣坡度坡角问题,解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt △DEC 中,∵山坡CD 的坡度i =1:0.75,∴ DE EC = 10.75 = 43 ,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE =BC+EC =60+27=87=DF ,在Rt △ADF 中,AF =tan28°×DF≈0.53×87≈46.11,∴AB =AF+FB =46.11+36≈82.1,故答案为:B.【分析】由山坡CD 的坡度i =1:0.75可得DE :EC=4:3,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x 且CD =45即可分别计算DE 、EC ,可得BE ;由“在坡顶D 点处测得居民楼楼顶A 点的仰角为28°”可由AF =tan28°×DF ,即可计算AB.10.若关于x 的一元一次不等式组 {3x−12≤x +3x ≤a的解集为x≤a ;且关于y 的分式方程 y−a y−2 + 3y−4y−2 =1有正整数解,则所有满足条件的整数a 的值之积是( ) A. 7 B. ﹣14 C. 28 D. ﹣56【答案】 A【考点】分式方程的解及检验,一元一次不等式组的应用【解析】【解答】解:不等式组整理得: {x ≤7x ≤a, 由解集为x≤a ,得到a≤7,分式方程去分母得:y ﹣a+3y ﹣4=y ﹣2,即3y ﹣2=a ,解得:y = a+23 ,由y为正整数解,得到a=1,4,7当a=4时,y=2,此时分式方程无解,故a=1,71×7=7.故答案为:A.【分析】由不等式组的解集为x≤a可得a≤7,解分式方程可得y=a+23,由分式方程有正整数解可得y≠2,即a≠4,且a≤7且a+2能整除3,故a=1或7即可得结果.11.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC 交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√33【答案】B【考点】勾股定理,翻折变换(折叠问题)【解析】【解答】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12•(AF+DF)•BF=4,∴12•(3+DF)•2=4,∴DF=1,∴DB=√BF2+DF2=√12+22=√5,点F到BD的距离为h,则有12•BD•h=12•BF•DF,∴h=2√55,故答案为:B.【分析】由三角形的中线平分三角形面积可得S△ADE,再又翻折可得S△ABD,由勾股定理可得BD,由面积公式可得12•BD•h=12•BF•DF即可求解.12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE 的面积为18,则k的值为()A. 6B. 12C. 18D. 24【答案】B【考点】平行线的判定,矩形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12•ON•AN=12•OM•FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD 是矩形,∴OA =OD ,∴∠OAD =∠ODA =∠DAE ,∴AE ∥BD ,∴S △ABE =S △AOE ,∴S △AOE =18,∵AF =EF ,∴S △EOF = 12 S △AOE =9,∴S △FME = 13 S △EOF =3,∴S △FOM =S △FOE ﹣S △FME =9﹣3=6= k 2, ∴k =12.故答案为:B.【分析】先证明OB ∥AE ,得出S △ABE =S △AOE , 设点A (a,k a )可求出点E 、F 坐标,可得S △AOE=12×3a ×k a 即可. 二、填空题:(本大题6个小题,每小题4分,共24分)(共6题;共24分)13.计算:(π﹣1)0+|﹣2|=________.【答案】 3【考点】绝对值及有理数的绝对值,0指数幂的运算性质,有理数的加法【解析】【解答】解:(π﹣1)0+|﹣2|=1+2=3.故答案为:3.【分析】根据任何非0 数的0次幂为1,负数的绝对值等于它的相反数分别计算,再利用有理数加法计算即可.14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是________.【答案】 6【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6.故答案为:6.【分析】由n 边形内角和(n ﹣2)×180°和n 边形外角和360°可列方程求解.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n.则点P (m ,n )在第二象限的概率为________.【答案】 316【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为:316【分析】无放回事件,可列出所有可能情况,找出点在第二象限(横坐标为负,纵坐标为正),利用概率公式即可计算.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为________.(结果保留π)【答案】4﹣π【考点】勾股定理,正方形的性质,扇形面积的计算【解析】【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2 √2,∴OA=OC=√2,∴图中的阴影部分的面积=22﹣90π×(√2)2×2=4﹣π,360故答案为:4﹣π.【分析】由正方形的性质可得AB=BC=2,由勾股定理得AC,即可得扇形半径为AC一半,故图中的阴,其中n=180°,r=AC一半.影部分的面积=正方形面积-扇形面积,再带入扇形面积公式nπr236017.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是________.【答案】 (4,160)【考点】通过函数图象获取信息并解决问题【解析】【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km/h ),∴乙货车从B 地到A 地所用时间为:240÷60=4(小时),当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米),∴点E 的坐标是(4,160).故答案为:(4,160).【分析】由CD 段可得乙货车的速度,再由两车行驶速度分析点E 的意义即可求解。
2017年重庆市中考数学试卷(A卷)及答案解析(含答题卡)
2017年重庆市中考数学试卷(A卷)一、选择题(每小题4分,共48分)1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x84.(4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(4分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.67.(4分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠38.(4分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E 是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10911.(4分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米12.(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣1)2=.15.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.16.(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB 于点F,求∠AFE的度数.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(10分)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2017•重庆)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x8【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x6÷x2=x4.故选:C.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.4.(4分)(2017•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4分)(2017•重庆)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】首先得出的取值范围,进而得出答案.【解答】解:∵3<<4,∴4<+1<5.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(4分)(2017•重庆)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.7.(4分)(2017•重庆)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.【点评】本题考查的知识点为:分式有意义,分母不为0.8.(4分)(2017•重庆)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.9.(4分)(2017•重庆)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .B .C .D .【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF ,求出答案.【解答】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣×1×1﹣=﹣. 故选:B .【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.10.(4分)(2017•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.11.(4分)(2017•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.12.(4分)(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2017•重庆)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.【解答】解:11000=1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2017•重庆)计算:|﹣3|+(﹣1)2=4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【点评】此题考查了有理数的混合运算以及绝对值,熟练掌握运算法则是解本题的关键.15.(4分)(2017•重庆)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB 的度数是多少即可.【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【点评】此题主要考查了圆周角定理的应用,以及圆的特征和应用,要熟练掌握.16.(4分)(2017•重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【点评】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.(4分)(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B 之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(每小题8分,共16分)19.(8分)(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.20.(8分)(2017•重庆)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.【点评】此题考查了扇形统计图和条形统计图、列表法与树状图法的应用;从统计图中、扇形图中获取信息、画出树状图是解决问题的关键.21.(10分)(2017•重庆)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.【解答】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.【点评】此题考查了分式和整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m ≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.【解答】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和反比例函数的性质解答.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.【点评】本题主要考查全等三角形的判定与性质及勾股定理、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.【点评】本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.。
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(a 卷)(答案+解析)2018年重庆市中考数学试卷(A 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是( )A .﹣2B .﹣12C .12D .22.(4分)下列图形中一定是轴对称图形的是( )A .B .C .D .直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A .3cmB .4cmC .4.5cmD .5cm6.(4分)下列命题正确的是( ) A .平行四边形的对角线互相垂直平分 B .矩形的对角线互相垂直平分 C .菱形的对角线互相平分且相等D .正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =﹣4,y =﹣2C .x =2,y =4D .x =4,y =29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2√3C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4 D.512.(4分)若数a使关于x的不等式组{x−12<1+x35x−2≥x+a有且只有四个整数解,且使关于y的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2016年重庆市中考数学试卷及解析(A卷)
A. B. C. D.
【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】解:A、不是轴对称图形,不符合题意;
B、不是轴对称图形,不符合题意;
C、不是轴对称图形,不符合题意;
11.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()
重庆市2016年中考数学试卷(A卷)(word版含解析)
一、选择题(本题共12个小题,每小题4分,共48分)
1.在实数﹣2,2,0,﹣1中,最小的数是()
A.﹣2B.2C.0D.﹣1
【分析】找出实数中最小的数即可.
【解答】解:在实数﹣பைடு நூலகம்,2,0,﹣1中,最小的数是﹣2,
故选A
【点评】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.
D、是轴对称图形,对称轴有两条,符合题意.
故选:D.
【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
3.计算a3a2正确的是()
A.aB.a5C.a6D.a9
【分析】根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.
【解答】解:a3a2=a3+2=a5.
【解答】解:通过观察,得到小圆圈的个数分别是:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年重庆市中考数学试卷(A 卷)答案与解析2015年重庆市中考数学试卷(A 卷)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•重庆)在﹣4,0,﹣1,3这四个数中,最大的数是( )A . ﹣4B . 0C . ﹣1D . 3考点: 有理数大小比较. 分析: 先计算|﹣4|=4,|﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4<﹣1,再根据正数大于0,负数小于0得到﹣4<﹣1<0<3. 解答: 解:∵|﹣4|=4,|﹣1|=1,∴﹣4<﹣1, ∴﹣4,0,﹣1,3这四个数的大小关系为﹣4<﹣1<0<3.故选D .点评: 本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.解答: 解:=2.故选:B . 点评: 此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(4分)(2015•重庆)计算(a 2b )3的结果是( )A . a 6b 3B . a 2b 3C . a 5b 3D . a 6b考点: 幂的乘方与积的乘方. 分析: 根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数);求出(a 2b )3的结果是多少即可.解答: 解:(a 2b )3=(a 2)3•b 3=a 6b 3 即计算(a 2b )3的结果是a 6b 3.故选:A . 点评: 此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n是正整数).5.(4分)(2015•重庆)下列调查中,最适合用普查方式的是( )A . 调查一批电视机的使用寿命情况B . 调查某中学九年级一班学生的视力情况C . 调查重庆市初中学生每天锻炼所用的时间情况D . 调查重庆市初中学生利用网络媒体自主学习的情况考点: 全面调查与抽样调查. 分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答: 解:A.调查一批电视机的使用寿命情况,调查全局有破坏性,适合抽样调查,故A 不符合题意;B.调查某中学九年级一班学生的视力情况,适合普查,故B 符合题意;C.调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D.调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意. 故选:B .点本题考查了抽样调查和全面调查的区别,选评: 择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(4分)(2015•重庆)如图,直线AB ∥CD , 直线EF 分别与直线AB ,CD 相交于点G ,H . 若∠1=135°,则∠2的度数为( )A .65°B .55°C . 45°D .35°考点: 平行线的性质. 分析: 根据平行线的性质求出∠2的度数即可. 解答: 解:∵AB ∥CD ,∠1=135°,∴∠2=180°﹣135°=45°.故选C . 点评: 本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.(4分)(2015•重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A . 220B . 218C . 216D . 209考点: 中位数. 分析: 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答: 解:先对这组数据按从小到大的顺序重新排序:198,209,216,220,230. 位于最中间的数是216.则这组数的中位数是216.故选C .点评: 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.(4分)(2015•重庆)一元二次方程x 2﹣2x=0的根是( )A . x 1=0,x 2=﹣2B . x 1=1,x 2=2C . x 1=1,x 2=﹣2D . x 1=0,x 2=2考点: 解一元二次方程-因式分解法. 分析: 先分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答: 解:x 2﹣2x=0,x (x ﹣2)=0, x=0,x ﹣2=0, x 1=0,x 2=2, 故选D .点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.9.(4分)(2015•重庆)如图,AB 是⊙O 直径, 点C 在⊙O 上,AE 是⊙O 的切线,A 为切点, 连接BC 并延长交AE 于点D .若∠AOC=80°, 则∠ADB 的度数为( )A . 40°B . 50°C . 60°D . 20°考点: 切线的性质. 分析: 由AB 是⊙O 直径,AE 是⊙O 的切线,推出AD ⊥AB ,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.解答:解:∵AB 是⊙O 直径,AE 是⊙O 的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B .点评: 本题主要考查圆周角定理、切线的性质,解题的关键在于连接AC ,构建直角三角形,求∠B 的度数.10.(4分)(2015•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示.下列说法错误的是( )A . 小明中途休息用了20分钟B . 小明休息前爬山的平均速度为每分钟70米C . 小明在上述过程中所走的路程为6600米D . 小明休息前爬山的平均速度大于休息后爬山的平均速度考点: 一次函数的应用. 分析: 根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.解答: 解:A.根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B.根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B 正确;C.根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D.小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C .点评: 本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.11.(4分)(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A . 21B . 24C . 27D . 30考点: 规律型:图形的变化类. 分仔细观察图形,找到图形中圆形个数的通项析: 公式,然后代入n=7求解即可.解答: 解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B .点评: 本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.12.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A ,B 两点,则菱形ABCD 的面积为( )A . 2B . 4C . 2D . 4考菱形的性质;反比例函数图象上点的坐标特点: 征.分析: 过点A 作x 轴的垂线,与CB 的延长线交于点E ,根据A ,B 两点的纵坐标分别为3 1,可得出横坐标,即可求得AE ,BE ,再根据勾股定理得出AB ,根据菱形的面积公式:底乘高即可得出答案. 解答: 解:过点A 作x 轴的垂线,与CB 的延长线交于点E ,∵A ,B 两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A ,B 横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S 菱形ABCD =底×高=2×2=4,故选D .点评: 本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为 3.7×104 .考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:将37000用科学记数法表示为3.7×104.故答案为:3.7×104. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n 的值.14.(4分)(2015•重庆)计算:20150﹣|2|= ﹣1 . 考点:实数的运算;零指数幂.专题: 计算题. 分析: 原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果. 解答: 解:原式=1﹣2=﹣1.故答案为:﹣1. 点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(4分)(2015•重庆)已知△ABC ∽△DEF ,△ABC 与△DEF 的相似比为4:1,则△ABC 与△DEF 对应边上的高之比为 4:1 .考点: 相似三角形的性质. 分析: 根据相似三角形的对应边上的高之比等于相似比得出即可. 解答: 解:∵△ABC ∽△DEF ,△ABC 与△DEF的相似比为4:1,∴△ABC 与△DEF 对应边上的高之比是4:1,故答案为:4:1.点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比.16.(4分)(2015•重庆)如图,在等腰直角三角形ABC 中,∠ACB=90°,AB=4.以A 为圆心,AC 长为半径作弧,交AB 于点D ,则图中阴影部分的面积是 8﹣2π .(结果保留π)考点: 扇形面积的计算;等腰直角三角形. 分析: 根据等腰直角三角形性质求出∠A 度数,解直角三角形求出 AC 和BC ,分别求出△ACB 的面积和扇形ACD 的面积即可.解答: 解:∵△ACB 是等腰直角三角形ABC 中,∠ACB=90°,∴∠A=∠B=45°, ∵AB=4,∴AC=BC=AB ×sin45°=4,∴S △ACB ===8,S 扇形ACD==2π, ∴图中阴影部分的面积是8﹣2π。