2020年吉林省长春市朝阳区中考数学一模试卷
2020年吉林省长春市中考数学一模试卷
中考数学一模试卷一、选择题(本大题共6小题,共18.0分)1.如图,该几何体的俯视图是()A. B. C. D.2.下列事件是随机事件的是()A. 人长生不老B. 明天是2月30日C. 一个星期有七天D. 2020年奥运会中国队将获得45枚金牌3.已知反比例函数y=的图象的两支分别在第二、四象限内,那么k的取值范围是()A. k>-B. k>C. k<-D. k<4.在Rt△ABC中,∠C=90°,sin A=,则cos B的值为()A. B. C. D.5.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=50°,则∠BCD的度数为()A. 30°B. 35°C. 40°D. 45°6.如图,在平行四边形ABCD中,点E在边DC上,连接AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是()A. FC:FB=1:3B. CE:CD=1:3C. CE:AB=1:4D. AE:AF=1:2.二、填空题(本大题共8小题,共24.0分)7.点(-2,5)关于原点对称的点的坐标是______.8.在Rt△ABC中,∠C=90°,如果AB=6,cos A=,那么AC=______.9.抛物线y=5(x-4)2+3的顶点坐标是______.10.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是______.11.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,则的值为______.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为8,则这个反比例函数的解析式为______.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为______.14.已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连结OA、OP.当OA⊥OP时,P点坐标为______.三、解答题(本大题共12小题,共84.0分)15.计算:sin30°+3tan60°-cos245°.16.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.17.如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,tan∠DBC=,且BC=6,AD=4.求cos A的值.18.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)若点C(-3,12)是抛物线上的另一点,求点C关于对称轴为对称的对称点D的坐标.19.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF.(2)求CF的长.21.重庆是一座美丽的山坡,某中学依山而建,校门A处,有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米远的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米.(1)求斜坡AB的坡度i.(2)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.23.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.24.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过OB的中点E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)求三角形DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线解析式.25.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)证明:在P、Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.26.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2,直线y=x-2经过点C,交y轴于点G.(1)求C,D坐标;(2)已知抛物线顶点y=x-2上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.(3)将(2)中抛物线沿直线y=x-2平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:从几何体的上面看可得两个同心圆,故选:D.找到从几何体的上面看所得到的图形即可.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.【答案】D【解析】解:A、人长生不老是不可能事件;B、明天是2月30日是不可能事件;C、一个星期有七天是必然事件;D、2020年奥运会中国队将获得45枚金牌是随机事件;故选:D.根据事件发生的可能性大小判断相应事件的类型.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】C【解析】解:∵函数y=的图象分别位于第二、四象限,∴3k+1<0,解得k<-故选:C.先根据函数y=的图象分别位于第二、四象限列出关于k的不等式,求出k的取值范围即可.本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.4.【答案】C【解析】解:设∠A、∠B、∠C所对的边分别为a、b、c,由于sin A==,∴cos B==故选:C.根据锐角三角函数的定义即可求出答案.本题考查互余的三角函数关系,解题的关键是正确理解锐角三角函数的定义,本题属于基础题型.5.【答案】C【解析】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=50°,∴∠DAB=90°-50°=40°,∴∠BCD=∠DAB=40°.故选:C.先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.6.【答案】C【解析】解:∵在平行四边形ABCD中,∴AD∥BC,∴△ECF∽△ADE,∵AD=3CF,A、FC:FB=1:4,错误;B、CE:CD=1:4,错误;C、CE:AB=1:4,正确;D、AE:AF=3:4.错误;故选:C.由四边形ABCD是平行四边形得AD∥BC,证△ECF∽△ADE,进而判断即可.本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【答案】(2,-5)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-2,5)关于原点过对称的点的坐标是(2,-5).故答案为:(2,-5).根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,比较简单.8.【答案】2【解析】解:如图所示.∵在Rt△ABC中,∠C=90°,AB=6,cos A=,∴cos A==,∴AC=AB=×6=2,故答案为2.利用锐角三角函数定义表示出cos A,把AB的长代入求出AC的长即可.此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.9.【答案】(4,3)【解析】【分析】此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.根据顶点式的坐标点直接写出顶点坐标.【解答】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).10.【答案】k≤1且k≠0【解析】解:∵关于x的一元二次方程kx2-2x+1=0有实数根,∴△=b2-4ac≥0,即:4-4k≥0,解得:k≤1,∵关于x的一元二次方程kx2-2x+1=0中k≠0,故答案为:k≤1且k≠0.根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.【答案】【解析】解:∵l1∥l2∥l3,∴=,∵=,∴=;故答案为:.直接利用平行线分线段成比例定理进而得出=,再将已知数据代入求出即可.此题主要考查了平行线分线段成比例定理,得出=是解题的关键.12.【答案】y=-【解析】解:连接OA,如图所示.设反比例函数的解析式为y=(k≠0).∵AB⊥y轴,点P在x轴上,∴△ABO和△ABP同底等高,∴S△ABO=S△ABP=|k|=8,解得:k=±16.∵反比例函数在第二象限有图象,∴k=-16,∴反比例函数的解析式为y=-.故答案为:y=-.连接OA,设反比例函数的解析式为y=(k≠0),根据△ABO和△ABP同底等高,利用反比例函数系数k的几何意义结合△ABP的面积为4即可求出k值,再根据反比例函数在第二象限有图象,由此即可确定k值,此题得解.本题考查了反比例函数系数k的几何意义以及反比例函数图象,根据反比例函数系数k 的几何意义找出|k|=4是解题的关键.13.【答案】π【解析】【分析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为π.14.【答案】(2,-4)【解析】解:∵抛物线y=ax2+x的对称轴为直线x=2,∴-=2,∴a=-,∴抛物线的表达式为:y=-x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E.如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,-4),故答案为:(2,-4).根据抛物线对称轴列方程求出a,即可得到抛物线解析式,再根据抛物线解析式写出顶点坐标,设对称轴与x轴的交点为E,求出∠OAE=∠EOP,然后根据锐角的正切值相等列出等式,再求解得到PE,然后利用勾股定理列式计算即可得解.本题是二次函数综合题型,主要利用了二次函数的对称轴公式,二次函数图象上点的坐标特征,锐角三角函数的定义,正确的理解题意是解题的关键.15.【答案】解:原式=+3×-()2=+3-=3.【解析】根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.16.【答案】解:∵=,∠AOB=∠EOD(对顶角相等),∴△AOB∽△EOD,∴==,∴=,解得AB=111.6米.所以,可以求出A、B之间的距离为111.6米.【解析】先判定出△AOB和△EOD相似,再根据相似三角形对应边成比例计算即可得解.本题考查了相似三角形的应用,主要利用了相似三角形的判定与相似三角形对应边成比例的性质.17.【答案】解:在Rt△DBC中,∵∠C=90°,BC=6,∴tan∠DBC==.∴CD=8.∴AC=AD+CD=12在Rt△ABC中,由勾股定理得AB=,∴cos A=.【解析】先解Rt△DBC,求出DC的长,然后根据AC=AD+DC即可求得AC,再由勾股定理得到AB,最后再求cos A的值即可.本题主要考查了解直角三角形.熟练掌握三角函数的定义是解题的关键.18.【答案】解:(1)设抛物线的解析式是:y=a(x-1)2-4,根据题意得:a(3-1)2-4=0解得:a=1.则函数的解析式是:y=(x-1)2-4.(2)设点C关于对称轴为对称的对称点D的横坐标是m,则=1解得:m=5则点D的坐标是(5,12).【解析】(1)已知顶点,和经过的一个点,利用待定系数法即可求解;(2)关于对称轴为对称的对称点纵坐标相同,横坐标的平均数是对称轴的值,据此即可求解.本题主要考查了待定系数法求函数解析式,理解关于对称轴对称的两点坐标之间的关系是解决本题的关键.19.【答案】解:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P==,乙获胜的情况有2种,P==,所以,这样的游戏规则对甲乙双方不公平.【解析】(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比20.【答案】(1)证明:∵EF⊥BE,∴∠EFB=90°,∴∠DEF+∠AEB=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°,∴∠DEF=∠ABE,∴△ABE∽△DEF.(2)解:∵AD=12,AE=8,∴DE=4.∵△ABE∽△DEF,∴=,∴DF=,∴CF=CD-DF=6-=.【解析】(1)由同角的余角相等可得出∠DEF=∠ABE,结合∠A=∠D=90°,即可证出△ABE∽△DEF;(2)由AD、AE的长度可得出DE的长度,根据相似三角形的性质可求出DF的长度,将其代入CF=CD-DF即可求出CF的长.本题考查了相似三角形的判定与性质以及矩形的性质,解题的关键是:(1)利用同角的余角相等找出∠DEF=∠ABE;(2)利用相似三角形的性质求出DF的长度.21.【答案】解:(1)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴AB的坡度i==1:2.4;(2)在Rt△BCF中,BF==,在Rt△CEF中,EF==,∵BE=4米,∴BF-EF═-=4,解得:CF=16.∴DC=CF+DF=16+5=21米.【解析】(1)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i.(2)在Rt△BCF中,BF==,在R t△CEF中,EF==,得到方程BF-EF=-=4,解得CF=16,即可求得求DC=21.本题考查了解直角三角形的应用-仰角和俯角问题,解直角三角形的应用-坡度和坡比问题,正确理解题意是解题的关键.22.【答案】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(-6,4).【解析】(1)作出A、C的对应点A1、C1即可解决问题;(2)作出A、B、C的对应点A2、B2、C2即可;本题考查作图-位似变换、旋转变换等知识,解题的关键是熟练掌握位似变换和旋转变换的性质,所以中考常考题型.23.【答案】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.【解析】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.(1)连接OE,证明∠OEA=90°即可;(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH 的长,进而求出CE 的长.24.【答案】解:(1)∵矩形OABC 的顶点B 的坐标是(4,2),E 是矩形ABCD 的对称中心,∴点E 的坐标为(2,1),∵代入反比例函数解析式得=1,解得k =2,∴反比例函数解析式为y =,∵点D 在边BC 上,∴点D 的纵坐标为2,∴y =2时,=2,解得x =1,∴点D 的坐标为(1,2);(2)∵D 的坐标为(1,2),B (4,2),∴BD =3,OC =2.∵点E 是OB 的中点,∴S △DOE =S △OBD =××3×2=;(3)如图,设直线与x 轴的交点为F ,矩形OABC 的面积=4×2=8, ∵矩形OABC 的面积分成3:5的两部分,∴梯形OFDC 的面积为×8=3, 或×8=5, ∵点D 的坐标为(1,2),∴若(1+OF )×2=3, 解得OF =2,此时点F 的坐标为(2,0), 若(1+OF )×2=5, 解得OF =4,此时点F 的坐标为(4,0),与点A 重合,当D (1,2),F (2,0)时,, 解得, 此时,直线解析式为y =-2x +4,当D (1,2),F (4,0)时,, 解得.此时,直线解析式为y=-x+,综上所述,直线的解析式为y=-2x+4或y=-x+.【解析】(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)根据点D的坐标求出BD的长,再由点E是OB的中点可知S△DOE=S△OBD,由此可得出结论;(3)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.本题考查的是反比例函数综合题,涉及到矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(3)难点在于要分情况讨论.25.【答案】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3-3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t-1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.【解析】本题考查了相似性的综合,用到的知识点是相似三角形的性质和判定、平行四边形的性质、解直角三角形、勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力,是一道综合性较强的题,有一定难度.(1)连结AQ、MD,根据平行四边形的对角线互相平分得出AP=DP,代入求出即可;(2)根据已知得出△AMP∽△DQP,再根据相似三角形的性质得出=,求出AM的值,从而得出在P、Q运动的过程中,总有CQ=AM;(3)根据已知条件得出BN=MN,再根据BM=AB+AM,由勾股定理得出BN=MN=(1+t),根据四边形ABCD是平行四边形,得出MN⊥AD,设四边形ANPM的面积为y,得出y=×AP×MN,假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,得出t2+t=×3×,最后进行整理,即可求出t的值.26.【答案】解:(1)令y=2,2=x-2,解得x=4,则OA=4-3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×-2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x-)2+,把点D(1,2)代入得,a=,∴解析式为y=(x-)2+,即,∴M(0,)又∵C(4,2),∴直线CM的解析式为y=过点Q作QH⊥x轴交直线CM于点H设Q(m,m2-m+),则H(m,-m+)∴S△MCQ==所以当m=2时,S△MCQ最大=,此时Q(2,)(3)设顶点E在直线上运动的横坐标为m,则E(m,m-2)(m>0)∴可设解析式为y=(x-m)2+m-2,①若FG=EG时,FG=EG=2m,则F(0,2m-2),代入解析式得+m-2=2m-2,得m=0(舍去),m=-,此时所求的解析式为:y=(x-+)2+3-;②若GE=EF时,FG=2m,则F(0,2m-2),代入解析式得:m2+m-2=2m-2,解得m=0(舍去),m=,此时所求的解析式为:y=(x-)2-;③若FG=FE时,∵平移后抛物线的顶点在y轴右侧,∴∠GEF为钝角,∴此种情况不存在.【解析】(1)先令y=2求出x的值,故可得出OA的长,根据正方形的性质即可得出C、D的坐标;(2)由二次函数对称性得出其顶点坐标,设抛物线解析式为y=a(x-)2+,把点D(1,2)代入求出a的值,故可得出二次函数的解析式,得出点M的坐标.利用待定系数法求出直线CM的解析式,再根据三角形的面积即可得出结论;(3)设顶点E在直线上运动的横坐标为m,则E(m,m-2)(m>0),故可设解析式为y=(x-m)2+m-2,再分FG=EG,GE=EF及FG=FE三种情况进行讨论.本题考查的是二次函数综合题,涉及到轴对称的性质、二次函数图象上点的坐标特点等知识,难度较大.。
2020年吉林省长春市中考数学一模试卷 (解析版)
2020年吉林省长春市中考数学一模试卷一、选择题(共8小题).1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×1033.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.10.因式分解:m2﹣4m+4=.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为.12.如图,一束平行太阳光线照射到正五边形上,则∠1=.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为cm.14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.2.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×103【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:42000=4.2×104,故选:B.3.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.【分析】找到各选项中从左面看不是所给视图的立体图形即可.解:各选项中只有选项D从左面看得到从左往右2列正方形的个数依次为2,1,1,故选:D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.解:移项,得2x≤2,系数化为1,得x≤1,不等式的解集在数轴上表示如下:.故选:D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.解:设有x匹大马,y匹小马,根据题意得,故选:C.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【分析】如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.【分析】作BC⊥AC,垂足为C,在Rt△ABC中,利用三角函数解答即可.解:如图,作BC⊥AC,垂足为C.在Rt△ABC中,∠ACB=90°,∠BAC=32°,AB=50×16=800(米),sin∠BAC=,∴BC=sin∠BAC•AB=800•sin32°.故选:A.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2【分析】过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(﹣a),进而可得出结论.解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOM:S△BON=1:(﹣a),∴AO:BO=1:,∵OB:OA=2,∴a=﹣4,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.解:原式=2﹣=.故答案为:.10.因式分解:m2﹣4m+4=(m﹣2)2.【分析】原式利用完全平方公式分解即可.解:原式=(m﹣2)2.故答案为:(m﹣2)2.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为﹣.【分析】根据关于x的方程2x2﹣3x﹣k=0有两个相等的实数根可得△=(﹣3)2﹣4×2(﹣k)=0,求出k的值即可.解:∵关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,∴△=(﹣3)2﹣4×2(﹣k)=0,∴9+8k=0,∴k=﹣.故答案为:﹣.12.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为(16+3)cm.【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出FA″=3,得出答案即可.解:∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点55分时,∠A″OA′=45°,∴FA″=3,∴A点距桌面的高度为:16+3(cm).故答案为:().14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=a2﹣2a+1﹣2a2+2a+4a2﹣1=3a2,当a=时,原式=3×5=15.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.【分析】首先根据题意列表求得所有等可能的结果与抽到的两张卡片上的数字之和为偶数的情况,再利用概率公式即可求得答案.解:根据题意,列表如下:1271238234978914所以P(两次抽取的卡片上数字之和为偶数)=.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.【分析】设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为1.4x 元/个,根据数量=总价÷单价结合第二次比第一次多购进了10000个,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为 1.4x 元/个,依题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.答;该爱心人士第一次购进口罩的单价为5元/个.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠CAD=∠ODA,由∠ODA=∠OAD,所以∠CAD=∠DAE;(2)由(1)知,∠FAE=50°,由弧长公式可得答案.解:(1)如图,连结OD,∵⊙O与边BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠C=∠ODB=90°,∴OD∥AC.∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)如图,连结OF,∵AD平分∠BAC,且∠CAD=25°,∴12﹣3=9,∴∠EOF=100°,∴的长为.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.【分析】(1)根据线段垂直平分线的性质画图即可;(2)根据相似三角形的性质,构造相似三角形即可;(3)由相似三角形的性质,构造相似三角形即可.解:(1)如图①所示,点C即为所求;(2)如图②所示,点M即为所求;(3)如图③所示,点P即为所求.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为20米/分,无人机在40米的高度上飞行了3分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.【分析】(1)利用图象信息,根据速度=计算即可解决问题;(2)利用待定系数法即可解决问题;(3)求出无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),分两种情形构建方程即可解决问题;解:(1)无人机上升的速度为=20米/分,无人机在40米的高度上飞行了6﹣1﹣2=3分.故答案为20,3;(2)设y=kx+b,把(9,60)和(12,0)代入得到,解得,∴无人机下落过程中,y与x之间的函数关系式为y=﹣20x+240.(3)易知无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),由20x﹣60=50,解得x=5.5,由﹣20x+240=50,解得x=9.5,综上所述,无人机距地面的高度为50米时x的值为5.5和9.5.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为6.【分析】教材呈现:如图①中,证明△PAC≌△PBC即可解决问题.定理应用:(1)如图②中,设直线l、m交于点O,连结AO、BO、CO.利用线段的垂直平分线的判定和性质解决问题即可.(2)连接BD,BE,证明△BDE是等边三角形即可.【解答】教材呈现:解:如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)证明:如图②中,设直线l、m交于点O,连结AO、BO、CO.∵直线l是边AB的垂直平分线,∴OA=OB,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(2)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=18,∴DE=AC=6.故答案为6.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°,BC=4,∴CD′=BD′=4,∴AD′===3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3;(2)①如图2中,当点N在AC上时,∵MN∥AD,∴,∴,解得t=;②如图3中,当点N在BC上时,∵MN∥BD,∴,∴,解得t=5;综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,S=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣t+;②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,S=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,S=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,S=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴,则,解得t=1;如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴,∴,解得t=;如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.【分析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,CD=DD′,即可求解;(4)通先分段表示出y',进而确定出最大值,最后用m的范围建立不等式组,即可得出结论.解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx+3图象上,∴k+3=2,解得:k=﹣1∴一次函数解析式为y=﹣x+3②m<0时,m+1=﹣2,m=﹣3∴B(﹣3,﹣2)∵点B在一次函数y=kx+3图象上,∴﹣3k+3=﹣2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,∴点C的坐标为(n,﹣n2+4),∴点D的坐标为(﹣n,﹣n2+4),D′(﹣n,n2﹣4)∵CD=DD′,∴2n=2(﹣n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)当﹣1≤x≤0时,y'=x2﹣n,此时,﹣n≤y'≤1﹣n,当0≤x≤2时,y'=﹣x2+n,此时,n﹣4≤y'≤n,当n≥1﹣n时,即:n≥,y'的最大值是n,①∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤n≤3,当n<时,y'最大值为1﹣n,②∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤1﹣n≤3,∴﹣2≤n≤0,∴n的取值范围应为1≤n≤3或﹣2≤n≤0.。
2020年吉林省吉林市中考数学一模试卷(含答案解析)
2020年吉林省吉林市中考数学⼀模试卷(含答案解析)2020年吉林省吉林市中考数学⼀模试卷⼀、选择题(本⼤题共6⼩题,共12.0分)1.下列计算错误的是()A. (?1)2018=1B. ?3?2=?1C. (?1)×3=?3D. 0×2017×(?2018)=02.下图是⼀个由4个相同的正⽅体组成的⽴体图形,它的左视图是()A. B. C. D.3.计算(x2)2的结果是()A. x2B. x4C. x6D. x84.如图,直线AB//CD,如果∠1=70°,那么∠BOF的度数是()A. 70°B. 100°C. 110°D. 120°5.如图,△ABC是⊙O的内接三⾓形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A. 45°B. 85°C. 90°D. 95°6.如图,在菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线交于点F,若∠BCF=90°,则∠D的度数为()A. 30°B. 45°C. 60°D. 75°⼆、填空题(本⼤题共8⼩题,共24.0分)7.近年来,党和国家⾼度重视精准扶贫,收效显著,据不完全统计约有65000000⼈脱贫,65000000⽤科学记数法表⽰为_______.8.因式分解:2a3?32a=______.=______.9.计算:2√48÷√6?2√2?110.不等式组{x?2≤1x+3>2的解集为______.11.在墙壁上固定⼀根横放的⽊条,则⾄少需要2枚钉⼦,正确解释这⼀现象的数学知识是______.12.如图∠AOB=30°,点C在OB上,OC=8,以点C为圆⼼、R为半径的圆与OA相切,则R=______.13.已知点A(4,x),B(y,?3),若AB//x轴,且线段AB的长为5,则xy=______.14.如图,矩形纸⽚ABCD中,AB=6,BC=9,将矩形纸⽚ABCD折叠,使点C与点A重合,则折痕EF的长为________.三、解答题(本⼤题共12⼩题,共84.0分)15.先化简,再求值:(1a+2?1)÷a2?1a+2,其中a=√3+116.《孙⼦算经》是中国传统数学中最重要的著作,其中记载了这样⼀个问题:“今有⽊,不知长短.引绳度之,余绳四尺五,屈绳量之,不⾜⼀尺.问⽊长⼏何?”译⽂:“⽤⼀根绳⼦去量⼀根长⽊,绳⼦还剩余4.5尺,将绳⼦对折再量长⽊,长⽊还剩余1尺,问长⽊长多少尺?”17.⼀个不透明的⼝袋中有三个⼩球,上⾯分别标有数字1,2,3,每个⼩球除数字外其他都相同.甲先从袋中随机取出1个⼩球,记下数字后放回;⼄再从袋中随机取出1个⼩球记下数字.(1)⽤画树形图或列表的⽅法,求取出的两个⼩球上的数字之和为3的概率;(2)求取出的两个⼩球的数字之和⼤于4的概率.18.已知:如图,在Rt△ABC中,∠B=90°,AE⊥CA,且AE=BC,点D在AC上,且AD=AB,求证:DE//AB.19.如图所⽰,在边长为1个单位的正⽅形⽹格中建⽴平⾯直⾓坐标系,△ABC的顶点均在格点上.(1)△A1B1C1与△ABC关于y轴对称,画出△A1B1C1(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1;并直接写出点A2、B2的坐标.20.每年11⽉9⽇为消防宣传⽇,今年“119”消防宣传⽉活动的主题是“全民参与,防治⽕灾”.为响应该主题,吴兴区消防⼤队到某中学进⾏消防演习.图1是⼀辆登⾼云梯消防车的实物图,图2是其⼯作⽰意图,AC是可以伸缩的起重臂,其转动点A离地⾯BD的⾼度AH为5.2m.当起重臂AC长度为16m,张⾓∠HAC为130°时,求操作平台C离地⾯的⾼度(结果精确到0.1m)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)21.某校组织九年级的三个班级进⾏趣味数学竞赛活动,各班根据初赛成绩分别选拔了10名同学参加决赛,决赛成绩(满分:10分)如下表所⽰:班级决赛成绩(单位:分)⼀班55677888910⼆班46777999 10 10三班567789991010(1)把下表补充完整(单位:分),其中a=______,b=______,c=______;班级平均分中位数众数⼀班7.3a8⼆班7.88b三班c8.59(2)8统计量进⾏说明;(3)为了在全市竞赛中取得好成绩,你认为应选派哪个班级代表学校去参加全市的竞赛?为什么?22.如图1,直线y=kx?2k(k<0)与y轴交于点A,与x轴交于点B,AB=2√5.(1)求A、B两点的坐标.(2)如图2,以AB为边,在第⼀象限内画出正⽅形ABCD,并求直线CD的解析式.23.甲、⼄两组同时加⼯某种零件,⼄组⼯作中有⼀次停产更换设备,更换设备后,⼄组的⼯作效率是原来的2倍.两组各⾃加⼯零件的数量y(件)与时间x(时)的函数图象如图所⽰.(1)直接写出甲组加⼯零件的数量y与时间x之间的函数关系式______;(2)求⼄组加⼯零件总量a的值;(3)甲、⼄两组加⼯出的零件合在⼀起装箱,每满300件装⼀箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?24.如图1,直⾓三⾓形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.25. 如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm.点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t(s).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.26. 23.已知⼆次函数y =x 2+bx ?34的图像经过点(2,54).(1)求这个⼆次函数的函数解析式;(2)若抛物线交x 轴于A ,B 两点,交y 轴于C 点,顶点为D ,求以A 、B 、C 、D 为顶点的四边形⾯积.。
吉林省长春市2020年中考数学一模试卷D卷
吉林省长春市2020年中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·阳信模拟) 下列各数中,负数是()A . -(-5)B .C .D .2. (2分) (2019七上·丹东期中) 如图是由若干个同样大小的正方体搭成几何体从上往下看到的图形,小正方形中的数字表示该位置立方体的个数,则这个几何体从正面看应该是()A .B .C .D .3. (2分)化简(2x﹣3y)﹣3(4x﹣2y)结果为()A . ﹣10x﹣3yB . ﹣10x+3yC . 10x﹣9yD . 10x+9y4. (2分) (2019七上·昌平期中) 若(a﹣2)2+|b+3|=0,则(a+b)2013的值是()A . 0B . 1C . ﹣1D . 20075. (2分) (2016七上·乳山期末) 已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1 , y2大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 不能比较6. (2分)如图所示,在△ABC中,∠B、∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,那么下列结论不正确的是()A . △BDF,△CEF都是等腰三角形B . DE=DB+CEC . AD+DE+AE=AB+ACD . BF=CF7. (2分)若ab<0,bc>0,则一次函数ax-by=c的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务,设原计划每天固沙造林x公顷,根据题意,下列方程正确的是()A .B . -5=C .D .9. (2分)如图,OA=OB,则数轴上点A所表示的数是()A . 1.5B .C . 2D .10. (2分) (2016九上·宾县期中) 已知二次函数y=kx2﹣2x﹣1的图象和x轴有交点,则k的取值范围是()A . k>﹣1B . k<1C . k≥﹣l且k≠0D . k<1且k≠0二、填空题 (共6题;共7分)11. (1分)(2017·蜀山模拟) 把多项式4x2y﹣4xy2﹣x3分解因式的结果是________.12. (1分) (2017八下·宾县期末) 若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是________.13. (2分)某瓜弄采用大棚栽培技术种植了一亩良种西瓜,约产800个,在西瓜上市前该瓜弄随机地摘了10个西瓜,称重量如下:重量(单位:千克) 6.4 7.1 7.5 8.4数量(单位:个) 3 4 2 1计算这10个西瓜平均重________千克,估计这亩地共产西瓜约________千克.14. (1分) (2017八上·深圳期中) 若一次函数y=kx+b 的图象如图所示,则y<0时自变量 x 的取值范围是________;15. (1分)(2016·张家界) 若关于x的一元二次方程x2﹣2x+k=0无实数根,则实数k的取值范围是________ .16. (1分) (2019八上·建湖月考) 一直角三角形两边分别为5,12,则这个直角三角形第三边的长________.三、解答题 (共9题;共97分)17. (15分)解下列方程.(1) 2x(x﹣3)=5(x﹣3)(2)(x﹣5)(x+2)=8(3) 2x2﹣7x﹣4=0(用配方法)18. (5分) (2019八上·同安期中) 如图,点A、B、C、D在同一条直线上,BE∥DF ,∠A=∠F , AB=FD .求证:△ABE≌△FDC .19. (5分) (2017七下·农安期末) 不等式组的解集是0<x<2,求ab的值.20. (11分)在一个不透明的口袋里,装有9个颜色不同其余都相同的球,其中有6个红球,2个蓝球和1个白球,将它们在口袋里搅匀;(1)从口袋一次任意取出4个球,一定有红球,这是一个________事件(2)从口袋任意取出1个球,恰好红球的概率是多少?(3)从上述9个球中任取几个来设计一个游戏,使得摸到红球的概率为.写出你的设计方案.21. (10分) (2019八上·交城期中) 如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E,连接DE交AB于点F.求证:(1) CD=BE;(2) AB垂直平分DE.22. (10分)(2017·历下模拟) 计算下列各题(1)计算:| |+()﹣1﹣2cos45°(2)解不等式组,并把解集在数轴上表示出来.23. (11分)(2018·菏泽) 问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD 沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是________.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△A BC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.24. (15分) (2017九上·拱墅期中) 平面内,如图,在平行四边形中,,,,点为边上任意一点,连接,将绕点逆时针旋转得到线段.(1)当时,求的大小.(2)当时,求点与点间的距离(结果保留根号).(3)若点恰好落在平行四边形的边所在的条直线上,直接写出旋转到所扫过的面积(结果保留).25. (15分)(2017·罗平模拟) 如图,在平面直角坐标系xoy中,直线y= x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求四边形PAOC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△AOC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共97分)17-1、17-2、17-3、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
2020年吉林省长春市新区中考数学一模试卷 (解析版)
2020年吉林省长春市新区中考数学一模试卷一、选择题(共8小题).1.(3分)如图,数轴上被遮挡住的整数的相反数是()A.1B.﹣3C.﹣1D.02.(3分)据长春海关统计数据显示,2020年一季度,全省出口总额为7 810 000 000元,7 810 000 000这个数用科学记数法表示为()A.0.781×103B.7.81×109C.78.1×109D.7.81×1010 3.(3分)如图是由6个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a25.(3分)《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x只,怪鸟为y只,可列方程组为()A.B.C.D.6.(3分)小致利用测角仪和皮尺测量学校旗杆的高度,如图,小致在D处测得顶端P的仰角∠PDC=α,D到旗杆的距离CD=5米,测角仪BD的高度为1米,则旗杆PA的高度表示为()A.5tanα+1B.5sinα+1C.5cosα+1D.+1 7.(3分)如图,在△ABC中,按以下步骤作图:①以B为圆心,适当长度为半径作弧,交AB于点D,交BC于点E;②分别以D,E为圆心,以大于长为半径作弧,两弧交于点M;③作射线BM交AC于点N,若AB=BN,∠A=74°,则∠C的大小为()A.32°B.42°C.37°D.40°8.(3分)如图,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴,函数y=(k >0,x>0)的图象经过OA的中点D,与直角边AB交于点C,若点A的坐标为(4,3),则△AOC的面积为()A.5B.3C.D.4.5二、填空题(共6小题,每小题3分,共18分)9.(3分)比较大小:2(填“>”、“<”或“=”)10.(3分)分解因式:a2﹣9=.11.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是(写出一个即可).12.(3分)如图,直线PQ∥MN,将一个有30°角的三角尺按如图所示的方式摆放,若∠CBA=43°,则∠PAC的大小为度.13.(3分)如图,在矩形ABCD中,AB=3,AD=5,E是AB上一点,连结CE,将△BCE沿CE翻折,使点B的对应点F落在边AD上,则△AEF的面积为.14.(3分)如图是一座截面边缘为抛物线的拱形桥,当拱顶离水面2米高时,水面l为4米,则当水面下降1米时,水面宽度增加米.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣3,b=.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字﹣2、0、1,每个小球除数字不同外其余均相同,小致先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求小致两次摸出的小球的数字之和是负数的概率.17.(6分)某市为落实“2020脱贫攻坚政策”,甲工程队计划将该市的900套老旧房屋进行翻新改造,为尽快完成任务,实际每天翻新改造的数量是原来计划的1.5倍,结果提前30天完成任务,求甲工程队原计划每天翻新改造老旧房屋的数量.18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,则线段BP的长为.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.(1)在图①中以线段AB为边画一个直角△ABM;(2)在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.20.(7分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起*4247*4752*49坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.21.(8分)甲、乙两车沿同一条道路从A地出发向1200km外的B地输送紧急物资,甲在途中休息了3小时,休息前后的速度不同,最后两车同时到达B地,如图甲、乙两车到A地的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)甲车休息前的行驶速度为千米/时,乙车的速度为千米/时;(2)当9≤x≤15,求甲车的行驶路程y与x之间的函数关系式;(3)直接写出甲出发多长时间与乙在途中相遇.22.(9分)问题呈现:下图是小致复习全等三角形时遇到的一个问题并引发的思考,请帮助小致完成以下学习任务.如图,OC平分∠AOB,点P在OC上,M、N分别是OA、OB上的点,OM=ON,求证:PM=PN.小致的思考:要证明PM=PM,只需证明△POM≌△PON即可.请根据小致的思路,结合图①,解出完整的证明过程.结论应用:(1)如图②,在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上点P,求证:PC=PD.(2)在(1)的条件下,如图③,若AB=10,tan∠PAB=,当△PBC有一个内角是45°时,△PAD的面积是.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=12,AB=20.点P从点B出发,以每秒5个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以相同速度沿AB向终点B运动.过点P作PQ⊥AB于点Q,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与△ABC重叠部分图形的面积为S(S >0),点P的运动时间为t秒.(1)①BC的长为;②用含t的代数式表示线段PQ的长为.(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.24.(12分)如图,在平面直角坐标系中,矩形ABCD的四个顶点坐标分别是A(﹣1,﹣1)、B(4,﹣1)、C(4,1),D(﹣1,1).函数y=(m为常数).(1)当此函数的图象经过点D时,求此函数的表达式.(2)在(1)的条件下,当﹣2≤x≤2时,求函数值y的取值范围.(3)当此函数的图象与矩形ABCD的边有两个交点时,直接写出m的取值范围.(4)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m的取值范围.参考答案一、选择题(共8小题).1.(3分)如图,数轴上被遮挡住的整数的相反数是()A.1B.﹣3C.﹣1D.0【分析】被遮挡的左边是整数﹣2,右边是0,因此被遮挡的整数是﹣1,再求相反数即可.解:被遮住的左边是整数﹣2,右边是0,因此被遮挡的整数是﹣1,﹣1的相反数是1,故选:A.2.(3分)据长春海关统计数据显示,2020年一季度,全省出口总额为7 810 000 000元,7 810 000 000这个数用科学记数法表示为()A.0.781×103B.7.81×109C.78.1×109D.7.81×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:7 810 000 000=7.81×109.故选:B.3.(3分)如图是由6个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:这个立体图形的俯视图有两层,上层三个正方形,下层一个正方形,右齐.故选:D.4.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【分析】根据同底数幂的乘法、幂的乘方、同底数幂的除法分别计算可得.解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.5.(3分)《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x只,怪鸟为y只,可列方程组为()A.B.C.D.【分析】根据怪兽和怪鸟的头数及脚数,即可得出关于x,y的二元一次方程,此题得解.解:依题意,得:.故选:C.6.(3分)小致利用测角仪和皮尺测量学校旗杆的高度,如图,小致在D处测得顶端P的仰角∠PDC=α,D到旗杆的距离CD=5米,测角仪BD的高度为1米,则旗杆PA的高度表示为()A.5tanα+1B.5sinα+1C.5cosα+1D.+1【分析】根据题意可得,四边形ABDC是矩形,根据锐角三角函数即可表示旗杆PA的高度.解:根据题意可知:四边形ABDC是矩形,∴∠PCD=90°,AC=BD=1,在Rt△PCD中,PC=CD tanα=5tanα,∴PA=PC+AC=5tanα+1.答:旗杆PA的高度表示为5tanα+1.故选:A.7.(3分)如图,在△ABC中,按以下步骤作图:①以B为圆心,适当长度为半径作弧,交AB于点D,交BC于点E;②分别以D,E为圆心,以大于长为半径作弧,两弧交于点M;③作射线BM交AC于点N,若AB=BN,∠A=74°,则∠C的大小为()A.32°B.42°C.37°D.40°【分析】依据等腰三角形的性质即可得到∠ABN的度数,再根据角平分线的定义以及三角形内角和定理,即可得到∠C的度数.解:∵AB=BN,∠A=74°,∴∠ANB=74°,∠ABN=180°﹣2×74°=32°,由作图痕迹可得,BN平分∠ABC,∴∠ABC=2∠ABN=64°,∴△ABC中,∠C=180°﹣∠A﹣∠ABC=180°﹣74°﹣64°=42°,故选:B.8.(3分)如图,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴,函数y=(k >0,x>0)的图象经过OA的中点D,与直角边AB交于点C,若点A的坐标为(4,3),则△AOC的面积为()A.5B.3C.D.4.5【分析】直接根据点D是OA的中点即可求出D点坐标,由D点坐标即可求出反比例函数的解析式,故可得出△OBC的面积,由S△AOC=S△AOB﹣S△OBC即可得出结论.解:∵D是OA的中点,点A的坐标为(4,3),∴D(2,),把D(2,)代入反比例函数y=的图象上,∴k=2×=3,∵点C在反比例函数y=的图象上,∴S△OBC=×3=,∴S△AOC=S△AOB﹣S△OBC=×4×3﹣=.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)比较大小:<2(填“>”、“<”或“=”)【分析】首先利用二次根式的性质可得2=,再比较大小即可.解:∵2=,∴<2,故答案为:<.10.(3分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).11.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是0(写出一个即可).【分析】先利用判别式的意义得到22﹣4k>0,再解不等式确定k的范围,然后在此范围内取一个值即可.解:根据题意得△=22﹣4k>0,解得k<1.所以k可以取0.故答案为0.12.(3分)如图,直线PQ∥MN,将一个有30°角的三角尺按如图所示的方式摆放,若∠CBA=43°,则∠PAC的大小为107度.【分析】根据平行线的性质得到∠BAP=137°,由角的和差关系得到∠PAC的大小即可.解:∵PQ∥MN,∴∠BAP=180°﹣∠CBA=137°,∴∠PAC=137°﹣30°=107°.故答案为:107.13.(3分)如图,在矩形ABCD中,AB=3,AD=5,E是AB上一点,连结CE,将△BCE沿CE翻折,使点B的对应点F落在边AD上,则△AEF的面积为.【分析】根据矩形的性质得到∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,根据折叠的性质得到CF=CB=5,EF=BE,根据勾股定理得到DF==4,AE =,于是得到结论.解:∵在矩形ABCD中,AB=3,AD=5,∴∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,∵将△BCE沿CE翻折,使点B的对应点F落在边AD上,∴CF=CB=5,EF=BE,∴DF==4,∴AF=AD﹣DF=5﹣4=1,∵EF2=AE2+AF2,∴(3﹣AE)2=AE2+12,解得:AE=,∴△AEF的面积=AE•AF=×1=故答案为:.14.(3分)如图是一座截面边缘为抛物线的拱形桥,当拱顶离水面2米高时,水面l为4米,则当水面下降1米时,水面宽度增加(2﹣4)米.【分析】建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.解:建立平面直角坐标系如图:则抛物线顶点C坐标为(0,2),设抛物线解析式y=ax2+2,将A点坐标(﹣2,0)代入,可得:0=4a+2,解得:a=﹣,故抛物线解析式为y=﹣x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,将y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度为2米,故水面宽度增加了(2﹣4)米,故答案为:(2﹣4).三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣3,b=.【分析】直接利用完全平方公式以及单项式乘以多项式计算得出答案.解:a(a﹣2b)+(a+b)2=a2﹣2ab+a2+b2+2ab=2a2+b2,当a=﹣3,b=时,原式=2a2+b2=2×(﹣3)2+()2=23.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字﹣2、0、1,每个小球除数字不同外其余均相同,小致先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求小致两次摸出的小球的数字之和是负数的概率.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是负数的概率.解:列表得:﹣201和﹣2﹣4﹣2﹣10﹣2011﹣112共有9种等情况数,其中小致两次摸出的小球的数字之和是负数的有5种,则小致两次摸出的小球的数字之和是负数的概率是.17.(6分)某市为落实“2020脱贫攻坚政策”,甲工程队计划将该市的900套老旧房屋进行翻新改造,为尽快完成任务,实际每天翻新改造的数量是原来计划的1.5倍,结果提前30天完成任务,求甲工程队原计划每天翻新改造老旧房屋的数量.【分析】设甲工程队原计划每天翻新改造老旧房屋x套,则实际每天翻新改造老旧房屋1.5x套,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设甲工程队原计划每天翻新改造老旧房屋x套,则实际每天翻新改造老旧房屋1.5x 套,依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:甲工程队原计划每天翻新改造老旧房屋10套.18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,则线段BP的长为.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=,故答案为:.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.(1)在图①中以线段AB为边画一个直角△ABM;(2)在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.【分析】(1)根据网格即可在图①中以线段AB为边画一个直角△ABM;(2)根据网格和勾股定理即可在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)根据网格和梯形面积公式即可在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.解:(1)图①中直角△ABM即为所求;(2)图②中△CDN即为所求;(3)图③中四边形EFGH即为所求.20.(7分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9;②一分钟仰卧起坐成绩的中位数为45;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起坐*4247*4752*49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【分析】(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.21.(8分)甲、乙两车沿同一条道路从A地出发向1200km外的B地输送紧急物资,甲在途中休息了3小时,休息前后的速度不同,最后两车同时到达B地,如图甲、乙两车到A地的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)甲车休息前的行驶速度为120千米/时,乙车的速度为80千米/时;(2)当9≤x≤15,求甲车的行驶路程y与x之间的函数关系式;(3)直接写出甲出发多长时间与乙在途中相遇.【分析】(1)根据甲在途中休息了3小时,结合函数图象可求出b的值,进而由路程÷时间=速度,便可求得结果;(2)用待定系数法进行解答便可;(3)设甲出发x小时与乙在途中相遇,分两种情况:在甲中途休息前相遇,甲中途休息时相遇.分别列出一元一次方程解答.解:(1)由题意知,b=9﹣3=6,∴甲车休息前的行驶速度为:600÷(b﹣1)=600÷(6﹣1)=120(千米/时),乙车的速度为:1200÷15=80(千米/时),故答案为:120;80;(2)设当9≤x≤15时,甲车的行驶路程y与x之间的函数关系式为y=kx+b(k≠0),把(9,600),(12,1200)代入得,,解得,,∴当9≤x≤15时,甲车的行驶路程y与x之间的函数关系式为:y=100x﹣300;(3)设甲出发x小时与乙在途中相遇,根据题意得,①在甲途中休息前相遇,有120x﹣80x=80×1,解得,x=2;②在甲途中休息时相遇,有80(x+1)=600,解得,x=6.5,综上,甲出发2小时或6.5小时与乙在途中相遇.22.(9分)问题呈现:下图是小致复习全等三角形时遇到的一个问题并引发的思考,请帮助小致完成以下学习任务.如图,OC平分∠AOB,点P在OC上,M、N分别是OA、OB上的点,OM=ON,求证:PM=PN.小致的思考:要证明PM=PM,只需证明△POM≌△PON即可.请根据小致的思路,结合图①,解出完整的证明过程.结论应用:(1)如图②,在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上点P,求证:PC=PD.(2)在(1)的条件下,如图③,若AB=10,tan∠PAB=,当△PBC有一个内角是45°时,△PAD的面积是8或.【分析】问题呈现:由“SAS”可证△MOP≌△NOP,可得PM=PN;结论应用:(1)在AB上截取AE=AD,连接PE,由“SAS”可证△ADP≌△AEP,△BPC≌△BPC,可得PD=PE=PC;(2)延长AP,BC交于点H,由“ASA”可证△ADP≌△HCP,可得CP=DP,AD=CH,S△ADP=S△CPH,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.解:问题呈现:∵OC平分∠AOB,∴∠AOC=∠BOC,又∵OP=OP,OM=ON,∴△MOP≌△NOP(SAS),∴PM=PN;结论应用:(1)如图②,在AB上截取AE=AD,连接PE,∵AP平分∠DAB,∴∠DAP=∠BAP,又∵AD=AE,AP=AP,∴△ADP≌△AEP(SAS),∴DP=PE,∠D=∠AEP,∵AB=AD+BC,AB=AE+BE,∴BE=BC,∵BP平分∠ABC,∴∠ABP=∠CBP,又∵BP=BP,∴△BPC≌△BPE(SAS),∴CP=PE,∠PCB=∠PEB,∴PC=PD=PE;(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∴∠DAC+∠ABC=180°,∵∠DAB的平分线和∠ABC的平分线交于CD边上点P,∴∠DAC=2∠PAB,∠ABC=2∠ABP,∴2∠PAB+2∠ABP=180°,∴∠PAB+∠ABP=90°,∴∠APB=90°,∵AB=10,tan∠PAB==,∴PA=2PB,∵PA2+PB2=AB2,∴PB=2,PA=4,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=4,∵∠DAP=∠H,AP=PH,∠DPA=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM=CN,∵S△PBH=×BP×PH=×BP×CN+×PH×CM,∴CM=CN=,∴S△PCH=×4×==S△ADP;若∠PCB=45°时,如图⑤,过点P作PF⊥BC于F,∵∠PAB=∠H,∴tan H=tan∠PAB=,∴,∴FH=2PF,∵PF2+FH2=PH2=80,∴PF=4,FH=8,∵PF⊥BC,∠BCP=45°,∴∠PCB=∠FPC=45°,∴CF=PF=4,∴CH=4,∴S△ADP=S△CPH=×4×4=8,故答案为:8或.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=12,AB=20.点P从点B出发,以每秒5个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以相同速度沿AB向终点B运动.过点P作PQ⊥AB于点Q,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与△ABC重叠部分图形的面积为S(S >0),点P的运动时间为t秒.(1)①BC的长为16;②用含t的代数式表示线段PQ的长为3t.(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.【分析】(1)①由勾股定理可求解;②由锐角三角函数可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由锐角三角函数可求解.解:(1)①∵∠ACB=90°,AC=12,AB=20,∴BC===16,故答案为:16;②∵sin B=,∴,∴PQ=3t,故答案为:3t;(2)在Rt△PQB中,BQ==4t,当点M与点Q相遇,20=4t+5t,∴t=,当0<t<时,MQ=AB﹣AM﹣BQ,∴20﹣4t﹣5t=10,∴t=,当<t≤时,MQ=AM+BQ﹣AB,∴4t+5t﹣20=10,∵>,∴不合题意舍去,综上所述:当QM的长度为10时,t的值为;(3)当0<t<时,S=3t×(20﹣9t)=﹣27t2+60t;当<t≤时,如图,∵四边形PQMN是矩形,∴PN=QM=9t﹣20,PQ=3t,PN∥AB,∴∠B=∠NPE,∴tan B=tan∠NPE,∴,∴NE==﹣15,∴S=3t×(9t﹣20)﹣×(9t﹣20)×(﹣15)=﹣;(4)如图,若NQ⊥AC,∴NQ∥BC,∴∠B=∠MQN,∴tan B=tan∠MQN,∴=,∴t=,如图,若NQ⊥BC,∴NQ∥AC,∴∠A=∠BQN,∴tan A=tan∠BQN,∴,∴,∴t=综上所述:当t=s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.24.(12分)如图,在平面直角坐标系中,矩形ABCD的四个顶点坐标分别是A(﹣1,﹣1)、B(4,﹣1)、C(4,1),D(﹣1,1).函数y=(m为常数).(1)当此函数的图象经过点D时,求此函数的表达式.(2)在(1)的条件下,当﹣2≤x≤2时,求函数值y的取值范围.(3)当此函数的图象与矩形ABCD的边有两个交点时,直接写出m的取值范围.(4)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m的取值范围.【分析】(1)根据矩形的性质结合平面直角坐标系先确定点D的坐标,再判断出经过点D的函数,代入点D的坐标求出m的值即可;(2)当﹣2≤x≤2时分﹣2≤x<和≤x≤2两种情况,结合函数图象进一步确定函数的取值范围;(3)首先确定当x<m时,y有最小值为﹣(x﹣m)2+3,再根据m的不同取值,结合图象与矩形的边的交点个数确定m的取值范围;(4)根据x的不同取值,分别得到关于m的不等式(组),求解不等式(组)即可.解:(1)由题意得,点D的坐标为(﹣1,1),当x=﹣1时,y=,∴函数的图象不经过点D,∴函数y=x2﹣2mx+2m+2(x<m)的图象经过点D,∴(﹣1)2﹣2m×(﹣1)+2m+2=1,解得,,∴;(2)由(1)可知,当﹣2≤x≤2时,分段讨论:①当﹣2≤x<时,y=x2+x+1,该二次函数的对称轴为直线x=﹣,且开口向上,如图,∴当﹣2≤x<时,y随x的增大而减小,当x=﹣2时,y取最大值,最大值=4﹣2+1=3;当x=﹣时(取不到),y最小值=;所以,<y≤3;②当﹣≤x≤2时,,二次函数的对称轴为x=2,开口向下,如图所示,∴﹣≤x≤2时,y随x的增大而增大,当x=﹣时,y最小值=﹣,当x=2时,y最大值是1,∴.综上,当﹣2≤x<时,<y≤3;当﹣≤x≤2时,;∴y的取值范围是:;(3)过点E(0,﹣1),F(2,1),B(4,﹣1)三点,=(x﹣m)2﹣(m﹣1)+3恒过(1,3),对称轴为直线x=m,在x<m时,y随x的增大而减小,y有最小值,最小值=m2﹣2m2+2m+2=﹣(m﹣1)2+3.①若m≤0,x≥0时,则y1与矩形的边有3个交点,不符合题意;②若0<m≤2时,y1与矩形的边有F、B两个交点,即y2与矩形的边无交点,∴y最小值≥1,∴﹣(m﹣1)2+3≥1,解得,,即:0<m≤2;③若2<m≤4,x≥m时,y1与矩形的边的交点只有B,∴y2有且只有一个交点,∴﹣1≤﹣(m﹣1)2+3<1,解得,﹣1≤﹣(m﹣1)2+3<1,解得:或,∴,④若m>4,y1与矩形的边无交点,则y2与矩形的边有两个交点,即:当x=4时,y2<1,有两个交点,即16﹣8m+2m+2<1,∴m>,∴m>4,综上,m的取值范围是:0<m≤2或或m>4;(4)①当m≤x≤m+1时,,若存在1≤y0≤2,仅有y0=1,即x=2时,y1=1,∴m≤2≤m+1,∴1≤m≤2;②当m﹣1≤x <m时,,若存在1≤y 0≤2,则,即满足最小值小于2,最大值大于等于1即可,∴,∴或;综合①、②得:或.。
2020年吉林省吉林市中考数学一模试卷
2020年吉林省吉林市中考数学一模试卷题号一二三总分得分一、选择题(本大题共6小题,共12.0分)1.计算|−3+2|的结果是()A. −5B. 5C. −1D. 12.如图所示,由7个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C.D.3.下列运算中,正确的是()A. x2+2x2=3x4B. x2⋅x3=x6C. (x2)3=x6D. (xy)3=xy34.不等式x+1<−1的解集在数轴上表示正确的是()A. B. C. D.5.如图,矩形OABC的顶点A在x轴上,点B的坐标为(1,2).固定边OA,向左“推”矩形OABC,使点B落在y轴的点B′的位置,则点C的对应点C′的坐标为()A. (−1,√3)B. (√3,−1)C. (−1,2)D. (2,−1)6.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,若∠BCO=α,则∠P的度数为()A. 2αB. 90°−2αC. 45°−2αD. 45°+2α二、填空题(本大题共8小题,共24.0分)7.计算√9−√8=______.8.吉林市北山四季越野滑雪场是亚洲首个具有国际水平,可进行全天候标准化越野滑雪专业训练场地,总投资约为990000000元.数字990000000用科学记数法表示为______.9.某网店去年的营业额是a万元,今年比去年增加10%,今年的营业额是______万元.10.方程2x =1x−3的解为______.11.关于x的一元二次方程x2+x−k4=0有两个不相等的实数根,则k的值可以为______(写出一个即可).12.如图,在▱ABCD中,AD=3,AB=5.AD⊥AC.若AB的垂直平分线分别交AB,AC于点E,点F,则FC+FB=______.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,连接CC′.若AB//CC′,则旋转角的度数为______°.14.图①中特种自行车的轮子形状为“勒洛三角形”,图②是其一个轮子的示意图,“勒洛三角形”是分别以等边三角形ABC三个顶点A,B,C为圆心,以边长为半径的三段弧围成的图形.若这个等边三角形ABC的边长为30cm,则这种自行车一个轮子的周长为______cm.三、解答题(本大题共12小题,共84.0分)15.先化简.再求值:(a+3)(a−3)+2(a2+4).其中a=√3.16.一个不透明的口袋中有三个小球,颜色分别为红、黄、蓝.除颜色外其余均相同.从口袋中随机摸出一个小球,记下小球颜色后放回并搅匀;再从口袋中随机摸出一个小球记下颜色.用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.17.李老师为学校购买口罩,第一次用3350元购买医用外科口罩1000个,KN95型口罩50个;第二次用5200元购买医用外科口罩1500个,KN95型口罩100个.若两次购买的同类口罩单价相同,求这两种口罩的单价.18.如图,四边形ABCD是正方形,分别以B,C为圆心,BC长为半径画弧,两弧交于点E,连接AE,BE,CE,DE.求证:△ABE≌△DCE.19.李老师为了准备网课直播,购买了一个三脚架,如图①所示,图②为其截面示意图.测得OC=OD=60cm,AO=100cm,∠COB=∠DOB=32°.求点A到地面CD的高度(结果精确到1cm).(参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62.)(x>0)的图象上,20.如图,点A(1,6)和点B在反比例函数y=kxAD⊥x轴于点D,BC⊥x轴于点C,BE⊥y轴于点E,交AD于点F.(1)求反比例函数的解析式;(2)若DC=5,求四边形DFBC的面积.21.图①,图②,图③都是由12个全等的小矩形构成的网格,每个小矩形较短的边长为1,每个小矩形的顶点称为格点,线段AB的端点在格点上.(1)在图①中画∠ABC=45°.使点C在格点上;(2)在图②中以AB为边画一个面积为5的平行四边形,且另外两个顶点在格点上;(3)在图③中以AB为边画一个面积最大的平行四边形,且另外两个顶点在格点上.22.为了调查八年级学生网课期间体育锻炼的时间情况,某校在八年级350名学生中随机抽取了男生,女生各18名,收集得到了以下数据:(单位:分钟)女生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105.男生:37,48,78,99,56,62,35,109,29,87,88,69,73,55,90,98,69,72.整理数据:制作了如下统计表.时间x0≤x≤3030<x≤6060<x≤90x>90女生2m74男生15n3分析数据:两组数据的平均数,中位数、众数如表所示.平均数中位数众数女生66.7a70男生69.770.5b(1)请将上面的表格补充完整:m=______,n=______,a=______,b=______;(2)若该校学生60%为男生,根据调查的数据,估计八年级居家体育锻炼的时间在90分钟以上(不包含90分钟)的男生约有多少名?(3)体育老师分析表格数据后,认为八年级的男生居家体育锻炼做得比女生好,请你结合统计数据,写出一条同意体育老师观点的理由.23.在抗击“新冠肺炎”疫情期间,需要印刷一批宣传单.某印刷厂由甲、乙两台机器同时印刷,甲机器印刷一段时间后,出现故障,停下来维修,推除故障后继续以原来的速度印刷.两台机器还需印刷总量y(份)与印刷时间x(分钟)的函数关系如图所示.(1)甲机器维修的时间是______分钟,甲乙两台机器一分钟共印宣传单______份;(2)求线段AB的函数解析式,并写出自变量的取值范围;(3)若甲机器没有发生故障,可提前多少分钟印刷完这批宣传单.24.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B′.(1)如图①,连接CD,则CD的长为______;(2)如图②,B′E与AC交于点F,DB′//BC.①求证:四边形BDB′E为菱形;②连接B′C,则△B′FC的形状为______;(3)如图③,则△CEF的周长为______.25.如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,AD=4cm,过点D作DE//AC,交AB于点E,DF//AB,交AC于点F.动点P从点A出发以1cm/s的速度向终点D运动,过点P作MN//BC,交AB于点M,交AC于点N.设点P运动时间为x(s),△AMN与四边形AEDF重叠部分面积为y(cm2).(1)AE=______cm,AF=______cm;(2)求y关于x的函数解析式,并写出x的取值范围;(3)若线段MN中点为O,当点O落在∠ACB平分线上时,直接写出x的值.26.如图,抛物线y=ax2+bx+c(a<0)与x轴交于点A(−2,0)和点B,与y轴交于点C,对称轴为直线x=1;连接AC,BC,S△ABC=15.2(1)求抛物线的解析式;(2)①点M是x轴上方抛物线上一点,且横坐标为m,过点M作MN⊥x轴,垂足为点N.线段MN有一点H(点H与点M,N不重合),且∠HBA+∠MAB=90°,求HN的长;②在①的条件下,若MH=2NH,直接写出m的值;(3)在(2)的条件下,设d=S△MAN,直搂写出d关于m的函数解析式,并写出m的S△NBH取值范围.2020年吉林省吉林市中考数学一模试卷答案和解析【答案】1. D2. D3. C4. A5. A6. B7. 3−2√2 8. 9.9×108 9. 1.1a 10. x =6 11. 3(答案不唯一) 12. 4 13. 100 14. 30π15. 解:原式=a 2−9+2a 2+8=3a 2−1, 当a =√3时, 原式=9−1=8.16. 解:根据题意画图如下:共有9种等可能的情况数,其中两次摸出的小球颜色相同的有3种, 则两次摸出的小球颜色相同的概率是39=13.17. 解:设医用外科口罩的单价为x 元/个,KN 95型口罩的单价为y 元/个,依题意,得:{1000x +50y =33501500x +100y =5200,解得:{x =3y =7.答:医用外科口罩的单价为3元/个,KN 95型口罩的单价为7元/个.18. 证明:由题意可得,BE =BC =CE , 则△BCE 是等边三角形, 故∠EBC =∠ECB =60°, ∵四边形ABCD 是正方形,∴∠ABC =∠DCB =90°,AB =DC , ∴∠ABE =∠DCE =30°,在△ABE和△DCE中,{AB=DC∠ABE=∠DCE BE=CE,∴△ABE≌△DCE(SAS).19. 解:如图所示:延长OB交DC与点E,∵OC=OD=60cm,∠COB=∠DOB=32°,∴AO⊥CD,∴cos32°=OECO =OE60,解得:OE=60×0.85=51(cm),则AO+EO=100+51=151(cm).答:点A到地面CD的高度约为151cm.20. 解:(1)∵点A(1,6)和点B在反比例函数图象上,∴k=1×6=6,∴反比例函数的表达式为:y=6x;(2)∵AD⊥x轴于点D,∴D(1,0),∵BC⊥x轴于点C,DC=5.∴B的横坐标为6,将x=6代入y=6x解得,y=1,即BC=1,∵BC⊥x轴,AD⊥y轴,∴四边形DFBC是矩形,∴四边形DFBC的面积=DC⋅BC=5×1=5.21. 解:(1)如图①,点C即为所求;(2)如图②,平行四边形ABCD即为所求;(3)如图③,平行四边形ABEF即为所求.22. 5 9 68.56923. 10 40024. 5 等腰三角形5√225. 2 2√326. 解:(1)∵点A(−2,0),对称轴为直线x=12,则点B(3,0),则AB=5,∵S△ABC=15=12×AB⋅OC=12×5×OC,解得OC=6,故点C(0,6),则设抛物线的表达式为y=a(x−x1)(x−x2)=a(x+2)(x−3),将点C的坐标代入上式得:6=a(0+2)(0−3),解得a=−1,故抛物线的表达式为y=−x2+x+6;(2)如图,∵A(−2,0),B(3,0),设M(m,−m2+m+6),则N(m,0),①∵MN⊥x轴,∴∠HNB=∠ANM=90°,∴∠BHN+∠HBN=90°,又∵∠HBA+∠MAB=90°,∴∠BHN=∠MAB,∴△BNH∽△MNA,∴HNAN =BNMN,∴HMm+2=3−m−m2+m+6,整理得:HN=1;②∵MH=MN−HN=MN−2=2HN=2,即MN=3,则−m2+m+6=3,解得m=1±√132;(3)∵S△MAN=12×MN⋅AN=12×(−m2+m+6)(m+2)=−12(m+2)2(m−3),而S△NBH=12×BN⋅HN=12×(3−m)×1=−12(m−3),则d=S△MANS△NBH=(m+2)2(m≠3).【解析】1. 解:|−3+2|=|−1|=1,故选:D.先利用有理数加法法则计算,再根据绝对值的性质可求解.本题主要考查有理数的加法及绝对值,属于基础题.2. 解:从上面看:共分3列,从左往右分别有2,2,1个小正方形.故选:D.找到从上面看所得到的图形即可.考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3. 解:A.结果是3x2,故本选项不符合题意;B.结果是x5,故本选项不符合题意;C.结果是x6,故本选项符合题意;D.结果是x3y3,故本选项不符合题意;故选:C.根据合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方求出每个式子的值,再判断即可.本题考查了合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.4. 解:∵x+1<−1,∴x<−2,故选:A.根据解一元一次不等式基本步骤:移项、合并同类项可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5. 解:∵四边形OABC是矩形,点B的坐标为(1,2),∴OA=1,AB=2,由题意得:AB′=AB=2,四边形OAB′C′是平行四边形,∴OB′=√AB′2−OA2=√22−12=√3,B′C′=OA=1,∴点C的对应点C′的坐标为(−1,√3);故选:A.由矩形的性质得OA=1,AB=2,由题意得AB′=AB=2,四边形OAB′C′是平行四边形,得B′C′=OA=1,由勾股定理求出OB′,即可得出答案.本题考查了矩形的性质、坐标与图形性质、平行四边形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和勾股定理是解题的关键.6. 解:∵OC=OB,∴∠BCO=∠ABC=α,∴∠AOP=2∠ABC=2α,∵PA是⊙O的切线,∴PA⊥AB,∴∠PAO=90°,∴∠P=90°−∠AOP=90°−2α,故选:B.由圆周角定理可求得∠AOP的度数,由切线的性质可知∠PAO=90°,则可中求得∠P.本题主要考查切线的性质及圆周角定理,根据圆周角定理可切线的性质分别求得∠AOP 和∠PAO的度数是解题的关键.7. 解:原式=3−2√2.故答案为:3−2√2.直接化简二次根式进而得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.8. 解:将990000000用科学记数法表示为:9.9×108.故答案为:9.9×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9. 解:由题意可得,今年的营业额是a(1+10%)=1.1a(万元),故答案为:1.1a.根据题意,可以用含a的代数式表示出今年的营业额.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.10. 解:去分母得:2x−6=x,解得:x=6,经检验x=6是分式方程的解,故答案为:x=6分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.=0有两个不相等的实数根,11. 解:∵关于x的一元二次方程x2+x−k4)=1+k>0,∴△=12−4×1×(−k4解得k>−1,取k=3,故答案为:3(答案不唯一).先根据根的判别式求出k的范围,再在范围内取一个符合的数即可.本题考查了根的判别式,能根据根的判别式的内容得出关于k的不等式是解此题的关键.12. 解:∵四边形ABCD是平行四边形,∴CD=AB=5,∵∠DAC=90°,AD=3,∴AC=√CD2−AD2=√52−32=4,∵AB的垂直平分线分别交AB,AC于点E,点F,∴AF=BF,∴FC+BF=AF+FC=4,故答案为:4.根据平行四边形的性质得出DC=AB=5,利用勾股定理得出AC的长,进而利用线段垂直平分线的性质解答即可.本题考查了平行四边形性质,勾股定理,线段垂直平分线的性质的应用,关键是求出AC.13. 解:∵AB//CC′,∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°−∠ACB=90°−50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°−40°−40°=100°,即旋转角为100°.故答案为100.先利用平行线的性质得到∠C′CB=90°,则可计算出∠ACC′=40°,再根据旋转的性质得AC=AC′,∠C′AC等于旋转角,然后根据等腰三角形的性质和三角形内角和计算出∠C′AC 即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行线的性质.=30π(cm).14. 解:自行车一个轮子的周长=3×60π⋅30180故答案为30π.直接利用弧长公式计算即可.(弧长为l,圆心角度数为n,圆的半径为R).也考查了等本题考查了弧长公式:l=n⋅π⋅R180边三角形的性质.15. 根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16. 根据题意画出树状图得出所有等可能的情况数,找出符合题意的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.17. 设医用外科口罩的单价为x元/个,KN95型口罩的单价为y元/个,根据“第一次用3350元购买医用外科口罩1000个,KN95型口罩50个;第二次用5200元购买医用外科口罩1500个,KN95型口罩100个”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18. 根据题意,可以得到△BEC时等边三角形,再根据正方形的性质,即可得到△ABE≌△DCE的条件,从而可以证明结论成立.本题考查正方形的性质、等边三角形的性质、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.19. 直接根据题意得出O到地面的距离进而得出答案.此题主要考查了解直角三角形的应用,正确得出O到地面的距离是解题关键.20. (1)根据待定系数法即可求得反比例函数的解析式组,进而确定出B横坐标坐标,横坐标代入即可确定出纵坐标;(2)求出D点的坐标,由反比例函数解析式求出BC,根据矩形面积公式可求得结论.此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征以矩形的面积等,熟练掌握待定系数法是解本题的关键.21. (1)根据网格线画出AB的垂线AC,进而可得∠ABC=45°;(2)根据网格可得符号条件的平行四边形;(3)根据网格可得符合条件的平行四边形.本题考查了作图−应用与设计作图、全等图形,解决本题的关键是利用网格准确画图.22. 解:(1)由统计女生数据,可得在30<x≤60组的频数m=5,由统计男生数据,可得在60<x≤90组的频数n=9;=68.5,因此将女生数据从小到大排列后,处在第9、10位的两个数的平均数为68+692中位数a=68.5,男生数据出现次数最多的是69,因此众数是69,即b=69;故答案为:5,9,68.5,69;(2)由题意得:八年级350名学生中男生人数为350×60%=210(人),=35(人);由数据可得锻炼时间在90分钟以上的男生有3人,210×318即估计八年级居家体育锻炼的时间在90分钟以上(不包含90分钟)的男生约有35名;(3)理由一:因为69.7>66.7,所以男生锻炼时间的平均时间更长,因此男生周末做得更好.理由二:因为70.5>68.5,所以从中位数看男生比女生成绩更好,因此男生周末做得更好.(1)根据频数统计方法,可得出各个分组的频数,进而确定m 、n 的值,通过对男生、女生数据的整理,求出中位数、众数即可;(2)求出该校八年级男生人数,再求出男生锻炼时间超过90分钟的人数所占的百分比,用210去乘这个百分比即可;(3)通过比较男女生的中位数、平均数得出理由.本题考查频数分布表、中位数、众数、平均数的意义和计算方法,理解各个统计量的意义,是正确计算的前提,样本估计总体是统计常用的方法.23. 解:(1)由图象可知,甲机器维修的时间是:40−30=10(分钟),甲乙两台机器一分钟共印宣传单:20000−800030=400(份),故答案为:10;400;(2)设甲机器每分钟印宣传单x 张,则乙机器每分钟印宣传单(400−x)张,根据题意得: 8000−(55−30)×(400−x)=(55−40)x ,解得x =200,所以甲机器每分钟印宣传单200张,乙机器每分钟印宣传单:400−200=200(张), ∴m =8000−200×10=6000,设线段AB 的函数解析式为y =kx +b ,根据题意得:{30k +b =800040k +b =6000, 解得{k =−200b =14000, ∴线段AB 的函数解析式为:y =−200x +14000(30≤x ≤40);(3)若甲机器没有发生故障,所需时间为:20000÷400=50(分),55−50=5(分),答:若甲机器没有发生故障,可提前5分钟印刷完这批宣传单.(1)根据图象的特殊点的坐标求解即可;(2)先求出m 的值,利用待定系数法求解即可;(3)根据甲、乙两台机器的工作效率和解答即可.本题考查了一次函数的应用:利用待定系数法求一次函数解析式,然后根据一次函数性质解决实际问题.注意自变量的取值范围.24. (1)解:∵△ABC是等腰直角三角形,点D是斜边AB的中点,AB=10,AB=5,∴CD=12故答案为:5;(2)①证明:由折叠的性质得:B′D=BD,B′E=BE,∠B′DE=∠BDE,∵DB′//BC,∴∠B′DE=∠BED,∴∠BDE=∠BED,∴BD=BE,∴B′D=BE,∴四边形BDB′E是平行四边形,又∵B′D=BD,∴四边形BDB′E为菱形;②解:∵△ABC是等腰直角三角形,点D是斜边AB的中点,AB=BD,∴CD=12由折叠的性质得:B′D=BD,∴CD=B′D,∴∠DCB′=∠DB′C,∵∠ACB=90°,∴AC⊥BC,∵DB′//BC,∴DB′⊥AC,∴∠ACB′=90°−∠DB′C,由①得:四边形BDB′E为菱形,∴AB//B′E,∵CD⊥AB,∴CD⊥B′E,∴∠EB′C=90°−∠DCB′,∴∠ACB′=∠EB′C,∴FB′=FC,即△B′FC为等腰三角形;故答案为:等腰三角形;(3)解:连接B′C,如图③所示:∵△ABC是等腰直角三角形,点D是斜边AB的中点,AB=10,∴BC=√22AB=5√2,∠B=45°,CD=12AB=BD,∠ACD=12∠ACB=45°,由折叠的性质得:B′D=BD,∠B′=∠B=45°,∴CD=B′D,∴∠DCB′=∠DB′C,∴∠FCB′=∠FB′C,∴CF=B′F,∴△CEF的周长=EF+CF+CE=EF+B′F+CE=B′E+CE=BE+CE=BC=5√2;故答案为:5√2.(1)由直角三角形斜边上的中线性质即可得出答案;(2)①由折叠的性质得B′D=BD,B′E=BE,∠B′DE=∠BDE,证出B′D=BE,得四边形BDB′E是平行四边形,进而得出结论;②证出CD=B′D,得∠DCB′=∠DB′C,证出DB′⊥AC,则∠ACB′=90°−∠DB′C,证出CD⊥B′E,则∠EB′C=90°−∠DCB′,得∠ACB′=∠EB′C,即可得出结论;(3)连接B′C,由等腰直角三角形的性质得BC=√22AB=5√2,∠B=45°,CD=12AB=BD,∠ACD=12∠ACB=45°,证出CF=B′F,进而得出答案.本题是四边形综合题目,考查了菱形的判定与性质、平行四边形的判定与性质、等腰直角三角形的性质、折叠的性质、等腰三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,熟练掌握菱形的判定与性质和等腰三角形的判定与性质是解题的关键.25. 解:(1)∵∠B=30°,AD⊥BC于D,∴∠BAD=60°∵∠BAC=90°,∴∠CAD=30°,∵DE//AC,DF//AB,∴∠AED=∠AFD=90°,∵AD=4cm,∴AE=AD⋅cos60°=2cm,AF=AD⋅cos30°=2√3cm,故答案为:2;2√3;(2)过点E作EG⊥AD于点G,过点F作FH⊥AD于点H,如图1,∴EG=AE⋅cos60°=√3cm,AH=AF⋅cos30°=3cm,当0≤x≤√3时,如图1,则AP=xcm,∵MN//BC,∴∠AMN=∠B=30°,∴AM=2AP=2x,∴AN=AM⋅tan30°=2x⋅√33=2√33x(cm),∴y=12AM⋅AN=2√33x2,即y=2√33x2(0≤x≤1);当1<x≤3时,如图2,则ME=AM−AE=2x−2(cm),∴EH=ME⋅tan∠EMH=√33(2x−2)(cm),∴S△MEH=12ME⋅EH=4√33(x−1)2,∴y=S△AMN−S△MEH=2√33x2−4√33(x−1)2=−2√33x2+8√33x−4√33,即y==−2√33x2+8√33x−4√33(√3<x≤3);当3<x≤4时,如图3,∴AN=APcos30∘=x√32=2√33x(cm),∵MN//BC,∴∠ANG=∠C=60°,∵NF=AN−AF=2√33x−2√3(cm),∴FG =FN ⋅tan60°=2x −6(cm),∴S △FGN =12FG ⋅FN =2√33(x −3)2, ∴y =S △AMN −S △EMH −S △FNG =2√33x 2−4√33(x −1)2−2√33(x −3)2, 即y =−4√33x 2+2√33x −22√33(3<x ≤4);综上,y ={ 2√33x 2(≤x ≤1)−2√33x 2+8√33x −4√33(1<x ≤3)−4√33x 2+2√33x −22√33(3<x ≤4); (3)过点O 作OH ⊥BC 于点H ,OG ⊥AC 于点G ,OK ⊥AB 于点K ,连接OA ,OB ,如图4,∵OC 平分∠ACB ,∴OH =OG ,∵MN//BC ,∴∠AMN =∠ABC =30°,∠ANM =∠ACB =60°,∴OK =OM ⋅sin30°=12OM , OG =ON ⋅sin60°=√32ON , ∵OM =ON ,∴OG =√3OK ,∵AC =AB ⋅tan30°=8√33,BC =2AC =16√33, ∵S △ABC =12AB ⋅AC =12AB ⋅OK +12AC ⋅OG +12BC ⋅OH ,∴8×8√33=8OK +8√33×√3OK +16√33×√3OK , ∴OK =23√3,∴PD =OH =√3OK =2,∴AP =2,∴x=2.(1)利用直角三角形的性质求出∠BAD和∠CAD的度数,再解直角三角形求得AE和AF;(2)过点E作EG⊥AD于点G,过点F作FH⊥AD于点H,解直角三角形得AP=√3,AH= 3,则分三种情况:0≤x≤√3;√3<x≤3;3<x≤4.分别画出图形,结合图形列出函数解析式;(3)过点O作OH⊥BC于点H,OG⊥AC于点G,OK⊥AB于点K,连接OA,OB,如图4,证明OH=OG=√3OK,由三角形的面积公式列出OK的方程,求得OK,进而求得AP便可.本题主要考查了直角三角形的性质,解直角三角形,角平分线的性质,求函数的解析式,第(2)题关键是分情况进行讨论.26. (1)由S△ABC=15=12×AB⋅OC=12×5×OC,解得OC=6,故点C(0,6),再用待定系数法即可求解;(2)①证明△BNH∽△MNA,则HNAN =BNMN,即HMm+2=3−m−m2+m+6,即可求解;②∵MH=MN−HN=MN−2=2HN=2,即MN=3,进而求解;(3)∵S△MAN=12×MN⋅AN=12×(−m2+m+6)(m+2)=−12(m+2)2(m−3),而S△NBH=12×BN⋅HN=12×(3−m)×1=−12(m−3),即可求解.本题是二次函数的综合题:主要考查了二次函数图象上点的坐标特征、二次函数的性质,用待定系数法求函数解析式,考查了相似三角形的性质与判定,考查了利用数形结合的思想解决数学问题.。
吉林省长春市2020年(春秋版)中考数学一模试卷(II)卷
吉林省长春市2020年(春秋版)中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2018七上·南召期中) 有理数,,在数轴上对应的点如图所示,则下列式子① ②③ ④ 其中正确的是()A . ①②③④B . ①②④C . ①③④D . ②③④2. (2分) (2017七下·永春期中) 下列长度的各组线段能组成三角形的是()A . 3 、8 、5 ;B . 12 、5 、6 ;C . 5 、5 、10 ;D . 15 、10 、7 .3. (2分) (2019九上·南阳月考) sin30°的相反数()A .B . ﹣C .D .4. (2分) (2018八上·汽开区期末) 小宁同学根据全班同学的血型绘制了如图所示的扇形统计图,该班血型为A型的有20人,那么该班血型为AB型的人数为()A . 2人B . 5人C . 8人D . 10人5. (2分)截去四边形的一个角,剩余图形不可能是()A . 三角形B . 四边形C . 五边形D . 圆6. (2分)(2018·曲靖) 如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A .B .C .D .二、填空题 (共6题;共6分)7. (1分)(2018·永州) 截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为________.8. (1分)(2017·黄石模拟) 分解因式2x2﹣ =________.9. (1分)若一组数据2,3,5,a的平均数是3;数据3,7,a,b,8的平均数是5;数据a,b,c,9的平均数是5,则数据a,b,c,9的方差是________10. (1分) (2019九上·海门期末) 关于x的方程x2+mx+n=0的两根为﹣2和3,则m+n的值为________.11. (1分)(2018·建邺模拟) 如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°12. (1分) (2019九上·阳新期末) 如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,已知∠P=50°,则∠ACB=________度.三、解答题 (共11题;共106分)13. (10分) (2017九上·青龙期末) 计算或解方程:(1)(﹣)0|﹣4tan45°+6cos60°﹣|﹣5|(2) x2﹣3x=5(x﹣3)14. (5分) (2016八上·余杭期中) 如图,在内部找一个点,使点到、两点的距离相等且到两边的距离也相等,请做出点(尺规作图,不要求写做法,保留作图痕迹).15. (5分)(2016·十堰模拟) 化简,求值:,其中m= .16. (15分) (2017八下·黄山期末) 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.17. (10分)(2018·温州模拟) 某校活动课要求每位同学在乒乓球、篮球、排球、羽毛球4类体育项目中任选一项参加.为了解同学对这4类体育项目的报名情况,学校对本校50名学生进行抽样调查,并绘制统计图.请根据统计图回答下列问题:(1)已知全校共有500名学生,估计报名参加乒乓球项目的学生有多少人.(2)甲、乙、丙三人的乒乓球水平相当,学校决定从这三名同学中任选两名参加市乒乓球比赛,请用画树状图或列表法求甲被选中的概率.18. (10分) (2017七下·黔南期末) 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?19. (15分)(2018·深圳模拟) 已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.(1)直接写出乙每天加工的零件个数;(用含x的代数式表示)(2)求甲、乙每天各加工零件多少个?(3)根据市场预测,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A 型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值和最小值.20. (10分) (2018九上·抚顺期末) 一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?21. (1分)某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x ,则x=________。
2020年吉林省吉林市中考数学一模试卷(含答案解析)
2020年吉林省吉林市中考数学一模试卷一、选择题(本大题共6小题,共12.0分)1.计算−|−5|+3的结果是()A. −8B. 8C. 2D. −22.如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为()A.B.C.D.3.下列运算中,正确的是()A. a+a=a2B. a⋅a2=a2C. (2a)2=2a2D. a+2a=3a4.不等式1+x<0的解集在数轴上表示正确的是()A. B.C. D.5.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. √3B. 2C. √5D. √66.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠ABC=25∘,则∠P的度数为()A. 50°B. 40°C. 65°D. 55°二、填空题(本大题共8小题,共24.0分)7.计算:2√12−√27=______.8.亚洲陆地面积约为44000000万平方千米,将44000000用科学记数法表示为________.9.某企业今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,如果假设3月份到5月份该企业的营业额月平均增长率为x,则5月份营业额y(万元)用含有x的代数式表示为___________.10.方程x−1x =x+1x−1的解是______.11.若关于x的一元二次方程(x+3)2=c有实数根,则c的取值范围______12.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是______ .13.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′//BB′,则∠CAB′的度数为______.14.如图,已知正三角形ABC,分别以A、B、C为圆心,以AB长为半径画弧,得到的图形我们称之为弧三角形.若正三角形ABC的边长为1,则弧三角形的周长为______.三、解答题(本大题共12小题,共84.0分)15.先化简,再求值.x2(x−1)−(x−1)2−(x+3)(x−3),其中x=12.16.甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.17.某学校准备购买若干台A型电脑和B型打印机,如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.求每台A 型电脑和每台B型打印机的价格分别是多少元.18.如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE,AF,求证:BE=AF.19.如图,小刚为测量一古塔AB的高度,他先在点D处用高1.5米的测角仪CD测得∠ACF=35°,然后沿DE方向前行50m到达点E处,在点E处用高1.5米的测角仪EF测得∠AFG=60°.请求古塔AB的高度?(结果精确到0.1m)(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700,√3≈1.732)20.在平面直角坐标系中,点O是坐标原点,矩形OABC的边OA、OC分别在x轴和y轴上,OA=8,OC=4;点D是BC的四等(x>0)的图象经过点D,交分点,且CD<BD.反比例函数y=kxAB于点E.连接OE、OB.(1)求反比例函数的解析式;(2)求△BOE的面积.21.如图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.22.距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=______,b=______,c=______;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟(含)以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.甲、乙两名工人分别加工a个同种零件.甲先加工一段时间,由于机器故障进行维修后继续按原来的工作效率进行加工,当甲加工43小时后.乙开始加工,乙的工作效率是甲的工作效率的3倍.下图分别表示甲、乙加工零件的数量y(个)与甲工作时间x(时)的函数图象.解读信息:(1)甲的工作效率为______个/时,维修机器用了______小时(2)乙的工作效率是______个/时;问题解决:①乙加工多长时间与甲加工的零件数量相同,并求此时乙加工零件的个数;②若乙比甲早10分钟完成任务,求a的值.24.正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.若△AEB′为等边三角形,则∠BEF等于多少度.(2)在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(3)如图2,连接CB′,求△CB′F周长的最小值.25.如图,在矩形ABCD中,O是对角线AC的中点,sin∠BAC=3,BC=6,点P是射线AC上的5一个动点,点Q在射线BC上,且满足PB=PQ,过点Q作QE//OB,交射线AC于点E.(1)求证:PE=OB.(2)如图1,当点E在线段AC上时,设AP=x,四边形PBQE的面积为y,求y关于x的函数解析式,并写出它的定义域.(3)当AP⊥PQ时,求CE的长.26.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图②,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)如图②,若点D是抛物线上一动点,在BC的上方,是否存在一点使△BCD的面积最大?若存在,求出D点坐标;不存在,请说明理由?【答案与解析】1.答案:D解析:解:−|−5|+3=−5+3=−2,故选:D.先计算绝对值,再计算加法即可得.本题主要考查有理数的加法,解题的关键是掌握有理数的加法运算法则与绝对值的性质.2.答案:D解析:解:俯视图如选项D所示,故选:D.根据从上面看得到的图象是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.3.答案:D解析:解:A、应为a+a=2a,故本选项错误;B、应为a⋅a2=a1+2=a3,故本选项错误;C、(2a)2=22⋅a2=4a2,故本选项错误;D、a+2a=(1+2)a=3a,正确.故选D.根据整式的运算及幂的运算法则.本题主要考查合并同类项的法则,同底数幂的乘法,积的乘方,熟练掌握运算法则和性质是解题的关键.4.答案:A解析:解:移项,得:x<−1,故选:A.移项即可得.。
吉林省长春市朝阳区2020届九年级中考一模数学试题(扫描版)
2019—2020学年度九年级模拟练习(数学)答案阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、选择题(每小题3分,共24分)1.A 2.B 3.B 4.C 5.B 6.C 7.C 8.D二、填空题(每小题3分,共18分)9.3610.0.6x11.30 12.答案不唯一,0<m<4的数均可.如:1 13.10 14.5评分说明:(1)第10题写成60%x或35x可得分.(2)第10题、第11题、第13题和第14题带不带单位均可得分.三、解答题(本大题10小题,共78分)15.原式=4a2-4a+1+6a-4a2(2分)=2a+1.(4分)当a=2020时,原式=2×2020+1=4041.(6分)16.树状图如下:(4分)P(小明摸出的两个小球上的数字之和为4的倍数)29.(6分)甲袋数值乙袋1 2 7甲袋127456456456乙袋列表如下:(4分) P (小明摸出的两个小球上的数字之和为4的倍数)29=. (6分)17.设B 种服装每件的进价为x 元. (1分)由题意,得100080010x x =+.(3分)解得x =40. (4分)经检验,x =40为原方程的解,且符合题意. (5分)答:B 种服装每件的进价为40元. (6分)评分说明:设不带单位不得分,答不带单位可得分.18.(1)如图,连结AD .∵AC 切O e 于点A ,∴∠CAB =90°. ∴∠CAD +∠BAD =90°.(2分) ∵AB 为O e 的直径, ∴∠ADB =90°. (3分) BA∴∠C +∠CAD =90°.∴∠C =∠BAD. (4分)∵∠BED =∠BAD ,∴∠C =∠BED . (5分)(2)59 (7分)评分说明:连结辅助线用实线可得分.19.(1)11 (2分)(2)网络授课 (3分) 理由:网络授课问题的发言次数的平均数、中位数大于“家庭教育”问题的发言次数的平均数、中位数,反映了参会教师网络授课的发言次数高于“家庭教育”的发言次数.因此参会教师更感兴趣的的问题是网络授课. (5分)(3)600×4260=420人. (7分)答:发言次数超过8次的参会教师有420人.评分说明:(1)第(2)题理由叙述合理可得分.(2)第(3)题不带单位可得分.20.(1)如图①. (2分)图① 图② 图③ 图④ B A C D B A D D B A B A(2)答案不唯一,如图②、图③、图④.(5分)(3)答案不唯一,如图⑤、图⑥.(7分)评分说明:(1)不标字母或标重字母可得分.(2)作图痕迹和画图中实线或虚线可得分.21.(1)20(1分)(2)设该容器水面没过长方体后y与x之间的函数关系为y=kx+b.由题意,得330,1510.k bk b+=⎧⎨+=⎩(3分)解得5,335. kb⎧=-⎪⎨⎪=⎩(4分)∴该容器水面没过长方体后y与x之间的函数关系为y=53-x+35.(5分)(第20题)图⑤图⑥E EBABA当y=0时,53x+35=0.解得x=21.∴自变量x的取值范围为3≤x≤21.(6分)(3)300 cm2.(8分)评分说明:(1)第(1)题带单位可得分.(2)第(3)题不带单位可得分.22.【教材呈现】∵四边形ABCD是矩形,∴AE∥CF.∴∠EAO=∠FCO.(1分)∵EF平分AC.∴AO=CO.(2分)∵∠AOE=∠COF=90°,∴△AOE≌△COF.(3分)∴OE=OF.(4分)∴四边形AFCE是平行四边形.(5分)∵EF⊥AC,∴四边形AFCE是菱形.(6分)【应用】43 4(8分)(9分)23.(1)如图①,过点A作AH⊥BC于点H.在Rt△ABH中,∠AHB=90°,AB= 15,sin B =45 AHAB=.∴AH=44151255AB=⨯=.(1分)(2)如图②.在Rt△BDP中,∠BPD=90°,BP= 3t,sin B=45 PDBD=.∴cos B=35 BPBD=.∴BD=5t,PD=4t.∴DE=DG=2t,CD=15-5t.∴15-5t=2t.∴157t=.(3分)(3)当157t<≤时,22(2)4S t t==.当15572t<≤时,2224(715)45210225S t t t t=--=-+-.当532t<≤时,212(154155)9302S t t t t t=⨯-+-=-+.(7分)(4)5 2t=或3011t=或103t=.(10分)HPGFED CBA图①AB CDEFGP图②【提示】如图③、图④、图⑤.24.(1)2221(),1+1()2x x x m y x x x m ⎧--⎪=⎨-+<⎪⎩≥. (2分)(2)当m =3时,函数关系式为2221(3),1+1(3)2x x x y x x x ⎧--⎪=⎨-+<⎪⎩≥.当x =3时,y =9-6-1=2.当2-≤x <3时,将21+12y x x =-+配方,得213(1)+22y x =--.当x =1时,y 取得最大值为32. 当x =-2时,y 取得最小值为-3. (4分)所以最高点的坐标为(3,2),最低点的坐标为(-2,-3). (5分)(3)m 的取值范围为1727m -<-≤或112m -≤≤或1+72+7m <≤. (8分)(4)当m >1时,x=m 左侧的最高点的坐标为(1,32),x =m 右侧图象的最低点的坐标为(m ,m 2-2m -1).∵点Q 的纵坐标y 0的取值范围是y 0≥k 或y 0≤n , ∴y 0≥m 2-2m -1或y 0≤32. ∴k = m 2-2m -1,n =32. 图③ 图④ 图⑤MNNMO OABCDEFGPO PGF E D CBAPGFEDC BA当k∵k>n,(11分)当m≤1时,x=m左侧图象无最高点,x=m右侧图象的最低点的坐标为(1,-2).没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.(12分)综上所述,s与m之间的函数关系式为s评分说明:(1)第(1)题写对一个函数关系式得1分.(2)第(3)题每写对一个取值范围得1分.(3)第(3)题和(4)题的字母m写成x不得分.。
2020年吉林省长春市朝阳区中考数学一模试卷 (含解析)
2020年吉林省长春市朝阳区中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.利用数轴,比较1,√2,−1.5,−√5,|−π|,√2−1的大小正确的是()2A. −√5<−1.5<√2−1<1<√2<|−π|2B. −1.5<−√5<1<√2−1<√2<|−π|2C. −√5<−1.5<√2−1<√2<1<|−π|2D. −√5<−1.5<1<√2−1<|−π|<√222.某水利枢纽工程于2014年9月25日竣工,该工程设计的年发电量为32.25亿度,32.25亿这个数用科学记数法表示为()A. 32.25×108B. 3.225×109C. 322.5×107D. 3225×1063.下图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.4.下列计算结果正确的是()A. 3a−(−a)=2aB. a3⋅(−a)2=a5C. a5÷a=aD. (−a2)3=a65.“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?”这是我国古代名著九章算术中记载的古典名题,其题意是:有若干人一起买鸡.如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价格各是多少?若设买鸡的人数为x人,则列方程正确的是()A. 9x+11=6x+16B. 9x+11=6x−16C. 9x−11=6x+16D. 9x−11=6x−166.某校八年级生物兴趣小组租两艘快艇去微山湖生物考察,他们从同一码头出发,第一艘快艇沿北偏西70°方向航行50千米,第二艘快艇沿南偏西20°方向航行50千米,如果此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇航行的方向和距离分别是()A. 南偏东25°,50√2千米B. 北偏西25°,50√2千米C. 南偏东70°,100千米D. 北偏西20°,100千米7.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C(x>0)的图象上,则△OAB的面积等于()在反比例函数y=2xA. 2B. 3C. 4D. 68.用直尺和圆规作一个直角三角形斜边上的高,作图错误的是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.√2+√18=______.10.一件商品的原价为a元,提高50%后标价,再按标价打七折销售,则此时售价为______元.11.如图,直线AB//EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF=度.12.点A(−1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1−y2 ___0(填“>”或“<”).13.如图,从边长为(a+2)cm的正方形纸片中剪去一个边长为(a−1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该长方形的周长是___________cm.x2,当水位上涨14.在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=−13 1m时,水面宽CD为2√6m,则桥下的水面宽AB为______m.三、解答题(本大题共10小题,共78.0分)15.先化简,再求值:(2a+1)2−4a(a−1),其中a=1.816.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?17.六⋅一前夕某幼儿园园长到厂家选购A、B两种品牌的儿童服装每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍,求A、B两种品牌服装每套进价分别为多少元?18.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,∠C=35°(1)求∠A的度数.(2)求BC⏜的长.19.某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下:选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下:七年级 85 79 89 83 89 98 68 89 79 5999 87 85 89 97 86 89 90 89 77八年级 71 94 87 92 55 94 98 78 86 9462 99 94 51 88 97 94 98 85 91分组整理,描述数据(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;分析数据,计算填空(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;年级平均数中位数众数优秀率七年级85.3888920%八年级85.4______ ______ ______ 得出结论,说明理由.(3)估计八年级成绩优秀的学生人数约为______人.(4)整体成绩较好的年级为______,理由为______(至少从两个不同的角度说明合理性).20.如图,在正方形网格上有一个△ABC,A、B、C均为小正方形的顶点.(1)画△ABC关于直线a的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求所画出的对称图形的面积.21.如图①所示,空圆柱形容器内放着一个实心的“柱锥体”(由一个圆柱和一个同底面的圆锥组成的几何体).现向这个容器内匀速注水,水流速度为5cm3/s,注满为止.已知整个注水过程中,水面高度ℎ(cm)与注水时间t(s)之间的关系如图②所示.请你根据图中信息,解答下列问题:(1)圆柱形容器的高为______ cm,“柱锥体”中圆锥体的高为______ cm;(2)分别求出圆柱形容器的底面积与“柱锥体”的底面积.22.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG//CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;AF⋅GF;(2)求证:EG2=12(3)若AG=6,EG=2√5,求BE的长.23.如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC,(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=√2DG.24.已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒√2个单位长度的速度由点P向点O运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S 关于t的函数关系式.【答案与解析】1.答案:A解析:[分析]利用绝对值的性质化简,再在数轴上表示出各数所在的位置,即可得出答案.[详解]解:|−π|=π,如图示,所以.故选A.[点评]此题主要考查了实数与数轴、实数的大小比较以及绝对值的性质,在数轴上正确表示出各数是解题关键.2.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:将32.25亿这用科学记数法表示为:3.225×109.故选:B.3.答案:B解析:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.根据从正面看得到的图形是主视图,可得答案.解析:解:从正面看下层是三个小正方形,上层右边一个小正方形,故选B.4.答案:B解析:本题主要考查同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项.利用同底数幂乘法,除法,幂的乘方,合并同类项的运算法则计算即可.解:A.3a−(−a)=4a,故A错误;B.a3⋅(−a)2=a5,故B正确;C.a5÷a=a4,故C错误;D.(−a2)3=−a6,故D错误.故选B.5.答案:C解析:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.设买鸡的人数为x人,根据鸡的价钱不变,即可得出关于x的一元一次方程,此题得解.解:设买鸡的人数为x人,根据题意得:9x−11=6x+16.故选C.6.答案:B解析:解:∵第一艘快艇沿北偏西70°方向,第二艘快艇沿南偏西20°方向,∴∠BOA=90°,∵BO=AO=50km,∴AB=50√2km,∠B=∠OAB=45°,∵第二艘快艇沿南偏西20°方向,∴∠1=∠CAO=20°,∴∠2=45°−20°=25°,∴第二艘快艇航行的方向和距离分别是:北偏西25°,50√2千米.故选:B.根据题意得出AO=BO以及∠BOA=90°,进而得出第二艘快艇航行的方向和距离.此题主要考查了方向角以及勾股定理,正确把握方向角的定义是解题关键.7.答案:B解析:本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,平行线分线段成比例定理,求得BD,OA的长是解题关键.过点B、点C作x轴的垂线,垂足为D,E,则BD//CE,得出∴CEBD =AEAD=ACAB,设CE=x,则BD=2x,根据反比例函数的解析式表示出OD=1x,OE=2x,OA=3x,然后根据三角形面积公式求解即可.解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD//CE,∴CEBD =AEAD=ACAB,∵OC是△OAB的中线,∴CEBD =AEAD=ACAB=12,设CE=x,则BD=2x,∴C的横坐标为2x ,B的横坐标为1x,∴OD=1x ,OE=2x,∴DE=OE−OD=1x,∴AE=DE=1x,∴OA=OE+AE=3x,∴S△OAB=12OA⋅BD=12×3x×2x=3.故选:B.8.答案:B解析:本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).根据基本作图对A、B、D进行判断;根据圆周角定理对C进行判断.解:A选项通过作线段的垂直平分线得到斜边上的高,C选项通过作90度的圆周角得到斜边上的高,D选项通过画图得到菱形,即可得到斜边上的高,B选项无法保证斜边所对的顶点在所画线段的垂直平分线上,故选:B.9.答案:4√2解析:解:原式=√2+3√2=4√2.故答案为:4√2.首先化简二次根式,进而计算得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.10.答案:1.05a解析:解:由题意得标价为(1+50%)a=1.5a元,则实际售价为1.5a×0.7=1.05a元.故答案为:1.05a.一件商品的原价为a元,提高50%后标价,则标价为(1+50%)a=1.5a元,再用标价×0.7即可求出实际售价.此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量之间的关系.11.答案:120解析:此题主要考查了平行线的性质以及三角形的内角和定理,正确掌握平行线的性质是解题关键.直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形内角和定理及平角的定义得出答案.解:延长FE交DC于点N,∵直线AB//EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEN=180°−95°−25°=60°,∴∠DEF=180°−60°=120°.故答案为120.12.答案:>解析:本题考查了一次函数图象上点的坐标特征,主要利用了一次函数的增减性.根据k<0可知,一次函数的函数值y随x的增大而减小.解:∵直线y=kx+b的k<0,∴函数值y随x的增大而减小,∵点A(−1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,∵−1<3,∴y1>y2,∴y1−y2>0.故答案为>.13.答案:4a+8解析:此题考查图形的剪拼,整式的运算,正确使用完全平方公式是解决问题的关键.矩形的长就是边长是a+2的正方形与边长是a−1的正方形的边长的和,矩形的宽就是边长是a+2的正方形与边长是a−1的正方形的边长的差,列出代数式进行化简即可.解:由题意得矩形的长为a+2+a−1=(2a+1)cm,矩形的宽为a+2−(a−1)=3cm,所以矩形的周长=2【(2a+1)+3】=(4a+8)cm,故答案为(4a+8).14.答案:6解析:本题考查点二次函数的实际应用,解题的关键是要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.由x2,可以求二次函数图象的对称性可知D点的横坐标为√6,把x=√6代入二次函数关系式y=−13x2,即可求出B的横坐标,出对应的纵坐标,进而求出点B的纵坐标,再把B的纵坐标代入y=−13即AB长度的一半.解:∵水面宽CD为2√6m,y轴是对称轴,∴D点的横坐标为√6,×(√6)2=−2,∴D的纵坐标为y=−13∵水位上涨1m时,水面宽CD为2√6m,∴B的纵坐标为−2−1=−3,x2得:把x=−3代入解析式y=−13×(−3)2=−3,∴B的横坐标为y=−13∴桥下的水面宽AB为3×2=6米,故答案为6.15.答案:解:原式=4a2+4a+1−4a2+4a=8a+1,当a=18时,原式=8a+1=2.解析:直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.16.答案:解:(1)或甲袋和乙袋23424564678摸出的两个球上数字之和为5的概率为16.(2)从表看,摸出的两个球上数字之和为6时概率最大.解析:依据题意先用列表法或画树状图法分析所有等可能和达到某种效果的可能,然后根据概率公式求出该事件的概率.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.答案:解:设A品牌服装每套进价为x元,则B品牌服装每套进价为(x−25)元,由题意得:2000x =2×750x−25解得:x=100,经检验:x=100是原分式方程的解,x−25=100−25=75,答:A、B两种品牌服装每套进价分别为100元、75元;解析:本题考查了分式方程组的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x−25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可.18.答案:解:(1)由圆周角定理得,∠AOP=2∠C=70°∵PA切⊙O于点P,∴∠APO=90°,∴∠A=20°;(2)∠BOC=180°−∠AOP=110°,∴BC⏜=110π×2180=119π.解析:(1)根据圆周角定理求出∠AOP,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.19.答案:解:(1)补全八年级20名学生安全教育频数分布直方图如图所示,(2)91.5,94,55%;(3)220;(4)八年级八年级的中位数和优秀率都高于七年级.解析:解:(1)见答案(2)八年级20名学生安全教育考试成绩按从小到大的顺序排列为:51 55 62 71 78 85 86 87 88 91 92 94 94 94 94 94 97 98 98 99∴中位数=91+922=91.5分;∵94分出现的次数最多,故众数为94分;优秀率为:1120×100%=55%,故答案为:91.5,94,55%;(3)400×55%=220(人),答:八年级成绩优秀的学生人数约为220人;故答案为:220;(4)整体成绩较好的年级为八年级,理由为八年级的中位数和优秀率都高于七年级.故答案为:八年级,八年级的中位数和优秀率都高于七年级.(1)由收集的数据即可得;根据题意补全频数分布直方图即可;(2)根据众数和中位数和优秀率的定义求解可得;(3)根据题意列式计算即可;(4)八年级的中位数和优秀率都高于七年级即可得结论.本题考查了频数分布直方图,平均数,中位数,众数的定义,正确的理解题意是解题的关键.20.答案:解:(1)如图所示,△DEF即为所求;(2)由图可得,S=4×2−12×2×1−12×3×1−12×4×1=3.5解析:(1)依据轴对称的性质,即可得到△ABC关于直线a的对称图形;(2)利用割补法,即可得到所画出的对称图形的面积.此题主要考查了利用轴对称变换进行作图以及三角形面积求法,利用结合网格解题是关键.21.答案:解:(1)12;3;(2)设圆柱形容器的底面积为S,则S(12−8)=(42−26)×5,解得,S=20,设“柱锥体”的底面积为S柱锥,×5=20×5−15×5,S柱锥解得,S柱锥=5,即圆柱形容器的底面积是20cm2,“柱锥体”的底面积是5cm2.解析:本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据函数图象可以直接得到圆柱形容器的高和“柱锥体”中圆锥体的高;(2)根据题意和函数图象可以求得圆柱形容器的底面积与“柱锥体”的底面积.解:(1)由题意和函数图象可得,圆柱容器的高为12cm,“柱锥体”中圆锥体的高为:8−5=3cm,故答案为12;3;(2)见答案.22.答案:解:(1)证明:∵GE//DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)证明:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=12GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴DFAF =FODF,即DF2=FO⋅AF.∵FO=12GF,DF=EG,∴EG2=12GF⋅AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=12GF⋅AF,AG=6,EG=2√5,∴20=12FG(FG+6),整理得:FG2+6FG−40=0.解得:FG=4,FG=−10(舍去).∵DF=GE=2√5,AF=10,∴AD=√AF2−DF2=4√5.∵GH⊥DC,AD⊥DC,∴GH//AD.∴△FGH∽△FAD.∴GHAD =FGAF,即4√5=410.∴GH=8√55.∴BE=AD−GH=4√5−8√55=12√55.解析:本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO⋅AF 是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO⋅AF,于是可得到结果;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE= AD−GH求解即可.23.答案:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP,∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°,∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°,∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC,∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH,∵在△ADE和△DCH中,{∠AED=∠DHC ∠ADE=∠DCH AD=DC∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH,∴CG=√2GH,∵AG=√2EG,∴AG=√2DH,∴CG+AG=√2GH+√2HD,∴CG+AG=√2(GH+HD),即CG+AG=√2DG.解析:本题考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=√2GH,AG=√2DH,计算即可.24.答案:方法一:解:(1)设二次函数的解析式为y =ax 2+bx +c由题意得{−b 2a =4c =124a +2b +c =0,解得{a =1b =−8c =12,∴二次函数的解析式为y =x 2−8x +12,点P 的坐标为(4,−4);(2)存在点D ,使四边形OPBD 为等腰梯形.理由如下:当y =0时,x 2−8x +12=0,∴x 1=2,x 2=6,∴点B 的坐标为(6,0),设直线BP 的解析式为y =kx +m则{6k +m =04k +m =−4,解得{k =2m =−12∴直线BP 的解析式为y =2x −12∴直线OD//BP ,∵顶点坐标P(4,−4),∴OP =4√2设D(x,2x)则BD 2=(2x)2+(6−x)2当BD =OP 时,(2x)2+(6−x)2=32,解得:x 1=25,x 2=2,当x 2=2时,OD =BP =2√5,四边形OPBD 为平行四边形,舍去,∴当x =25时四边形OPBD 为等腰梯形,∴当D(25,45)时,四边形OPBD 为等腰梯形;(3)①当0<t ≤2时,∵运动速度为每秒√2个单位长度,运动时间为t 秒,则MP =√2t ,∴PH =t ,MH =t ,HN =12(4−t),∴MN =MH +HN =2+12t , ∴S =34t 2; ②当2<t <4时,P 1G =2t −4,P 1H =t ,∵MN//OB∴△P 1EF∽△P 1MN ,∴S △P 1EF S△P 1MN =(P 1G P 1H )2, ∴S △P 1EF34t 2=(2t−4t)2, ∴S △P 1EF =3t 2−12t +12,∴S =34t 2−(3t 2−12t +12)=−94t 2+12t −12, ∴当0<t ≤2时,S =34t 2,当2<t <4时,S =−94t 2+12t −12.方法二:(1)略.(2)设D(t,2t),O(0,0),P(4,−4),B(6,0),∴K BP =0+46−4=2,K OD =2t−0t−0=2,∴K BP =K OD ,∴BP//OD ,∵四边形OPBD 为等腰梯形,∴DB =OP ,(t −6)2+(2t −0)2=(4−0)2+(−4−0)2,∴t 1=2(舍),t 2=25,∴D(25,45).(3)O(0,0),P(4,−4),∴l OP :y =−x ,∴M(4−t,t −4),∵B(6,0),∴l BP :y =2x −12,∴N(t+82,t−4),①当0<t≤2时,S=12MN(N Y−P Y)=12(t+82−4+t)(t−4+4)=34t2,②当2<t<4时,∵△PMN与△P′MN关于MN对称,∴K MP′+K MP=0,K NP′+K NP=0,∴l MP′:y=x+2t−8,l NP′:y=−2x+2t+4,∴D(8−2t,0),C(t+2,0),∴S=12(CD+MN)|M Y|=12(t+2−8+2t+t+82−4+t)(4−t)=−94t2+12t−12.解析:(1)利用对称轴公式,A、C两点坐标,列方程组求a、b、c的值即可;(2)存在.由(1)可求直线PB解析式为y=2x−12,可知PB//OD,利用BD=PO,列方程求解,注意排除平行四边形的情形;(3)由P(4,−4)可知直线OP解析式为y=−x,当P1落在x轴上时,M、N的纵坐标为−2,此时t=2,按照0<t≤2,2<t<4两种情形,分别表示重合部分面积.本题考查了二次函数的综合运用.求出二次函数解析式,研究二次函数的顶点坐标及相关图形的特点,是解题的关键.。
2020年吉林省吉林市中考数学一模试卷-
【答案】A
【分析】
根据矩形的性质和勾股定理求出 的长,得到点 的坐标.
【详解】
解:∵四边形OABC是矩形,点B的坐标为(1,2),
∴OA=1,AB=2,
由题意得:AB'=AB=2,四边形OAB'C'是平行四边形,
∴ , ,
∴点C的对应点 的坐标为 .
【答案】树状图或列表见解析,
【分析】
列举出所有情况,看两次摸出小球的颜色相同的情况占总情况的多少即可.
【详解】
解:树状图:
根据题意,可以画出如下树状图:
从树状图可以看出,所有等可能出现的结果共有 种,其中小球颜色相同的有 种,
列表法:根据题意,列表如下:
从表中可以看出,所有等可能出现的结果共有 种,其中小球颜色相同的有 种,
12.如图,在 中, .若 的垂直平分线分别交 于点 点 ,则 _________.
【答案】4
【分析】
先根据平行四边形的性质求出CD的长, 再根据勾股定理求AC得长度,根据线段垂直平分线的性质可得 ,进而可得答案.
【详解】
∵在 中, .
∴ .
∵ .
∴在Rt△DAC中, .
∵ 的垂直平分线分别交 于点 点 .
【详解】
∵ ,
∴
∵
∴
根据旋转可知
∴
∴
∴旋转角的度数为 .
故答案为:100.
【点睛】
本题主要考查了旋转的性质,平行线的性质,三角形的内角和定理,等腰三角形的性质等相关内容,熟练掌握相关角的计算方法是解决本题的关键.
14.图①中特种自行车的轮子形状为“勒络三角形”,图②是其一个轮子的示意图,“勒络三角形”是分别以等边三角形 三个顶点 为圆心,以边长为半径的三段弧围成的图形、若这个等边三角形 的边长为 则这种自行车一个轮子的周长为________ .
吉林省长春市2020年(春秋版)数学中考一模试卷C卷
吉林省长春市2020年(春秋版)数学中考一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分)(2019·株洲模拟) |﹣3|=()A .B . ﹣C . 3D . ﹣32. (3分)如图,是由四个相同的正方体组合而成的两个几何体,则下列表述正确的是()A . 图甲的主视图与图乙的左视图形状相同B . 图甲的左视图与图乙的俯视图形状相同C . 图甲的俯视图与图乙的俯视图形状相同D . 图甲的主视图与图乙的主视图形状相同3. (3分) (2017七上·忻城期中) 用科学记数法表示:18010000正确的是()A . 1.801×107B . 1.801×108C . 18.01×106D . 1801×1044. (3分)下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (3分)(2019·河池模拟) 以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80859095人数/人1252则这组数据的中位数和平均数分别为()A . 90,90B . 90,89C . 85,89D . 85,906. (3分)不等式组的解在数轴上表示为()A .B .C .D .7. (3分) (2020八上·息县期末) 甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A . 17小时B . 14小时C . 12小时D . 10小时8. (3分)(2020·南漳模拟) 小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A . ∠A=60°B . △ACD是直角三角形C . BC= CDD . 点B是△ACD的外心9. (3分)(2020·西宁模拟) 如图,在矩形ABCD中,AB=2 ,BC=10,E、F分别在边BC,AD上,BE =DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG、CH分别平分∠EAD,∠FCB,则GH长为()A . 3B . 4C . 5D . 710. (3分) (2019八下·江苏月考) 如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点(P 不与B、C重合),PE⊥AB于E,PF⊥AC于F,则EF的最小值是()A . 3B . 4C . 4.8D . 无法确定二、填空题 (共6题;共24分)11. (4分) (2019七下·郴州期末) 因式分解: ________.12. (4分)(2018·金乡模拟) 如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为________米。
2020年吉林省长春市中考数学一模试卷 (含答案解析)
2020年吉林省长春市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.如图,在数轴上点M表示的数可能是()A. 1.5B. 2.5C. −1.5D. −2.52.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长55公里,建成后将成为世界最长的跨海大桥,整座大桥计划投资720亿元,预计将在2018年7月1日正式通车,请将720亿用科学记数法表示为()A. 7.2×108B. 7.2×109C. 72×109D. 7.2×10103.下列选项的四个图形中是如图所示的侧面展开图的是()A.B.C.D.4.不等式2x≥x−1的解集在数轴上表示正确的是()A. B.C. D.5.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx6.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A. 54°B. 64°C. 27°D. 37°AC的长为半径画7.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于12弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A. 50°B. 60°C. 70°D. 80°8.反比例函数y=k的图象经过点A(−2,−5),则当1<x<2时,y的取值范围是()xA. −10<y<−5B. −2<y<−1C. 5<y<10D. y>10二、填空题(本大题共6小题,共18.0分)9.小明买了单价为10元的练习本a本和单价为5元的钢笔b支,他一共花费______元.10.分解因式:16a2−1=______ .11.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是______.12.正五边形的一个外角等于______°.13.如图,△ABC中,∠C=90°,AC=BC=8,D为边AB中点.以B为圆心,BD为半径作弧,交BC于点E;以C为圆心,CD为半径作弧,交AC于点F.则图中阴影部分的面积为______.(x−3)2−1的顶点为14.如图,在平面直角坐标系中,抛物线y=14A,直线l过点P(0,m)且平行于x轴,与抛物线交于点B和点C.若AB=AC,∠BAC=90°,则m=____.三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共9小题,共72.0分)16.京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)17.如图,在小正方形的边长为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为10;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为2,DF与(1)中所画线段AE平行,连接AF,请直接写出线段AF的长.18.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.19.如图,已知平行四边形ABCD中,E是边CD的中点,连接AE并延长交BC的延长线于点F,连接AC.(1)求证:AD=CF;(2)若AB⊥AF,且AB=6,BC=4,求sin∠ACE的值.20.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω) 30 40 70 80 90 110 120 140天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数______,中位数______;(2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动.请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?21.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为______千米/时,a=______,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.22.22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)如图1,点E在BC上,线段AE与BD的关系是________;(2)把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A,E,D三点在直线上时,请直接写出AD的长.24.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=−3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是√2?2-------- 答案与解析 --------1.答案:C解析:此题考查了数轴.看清数轴上点的位置是解本题的关键.根据数轴上点M的位置,可得点M表示的数.解:∵点M表示的数大于−2且小于−1,∴A、B、D三选项错误,C选项正确.故选C.2.答案:D解析:解:将720亿用科学记数法表示为7.2×1010.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:C解析:【试题解析】本题主要考查几何体侧面展开图的知识,解答本题的关键是知道几何体侧面展开图的特点.解:根据几何体侧面展开图的特点,知道的侧面展开图是.故选C.4.答案:A解析:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.根据解一元一次不等式基本步骤:移项、合并同类项可得.解:移项,得:2x−x≥−1,合并同类项,得:x≥−1,故选:A.5.答案:D解析:本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意,过点A作AE⊥OB于点E,然后利用锐角三角函数即可表示出BE和BO的长度,则点A 到OC的距离等于BE+BO,本题得以解决.解:过点A作AE⊥OB于点E,因为∠ABC=90∘,所以∠ABE+∠OBC=90∘.因为∠BOC=90∘,所以∠OBC+∠BCO=90∘.所以∠ABE=∠BCO=x.在Rt△ABE中,BE=AB⋅cos∠ABE=acos x.在Rt△BCO中,BO=BC⋅sinx=AD⋅sinx=bsinx.故点A到OC的距离等于BE+OB=acosx+bsinx.故选D.6.答案:C解析:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.解:∵∠AOC=126°,∴∠BOC=180°−∠AOC=54°,∠BOC=27°.∵∠CDB=12故选:C.7.答案:C解析:本题主要考查作图−基本作图、三角形内角和定理及线段垂直平分线的性质,熟练掌握中垂线的作图和性质是解题的关键.根据内角和定理求得∠BAC=100°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.解:在△ABC中,∵∠B=50°,∠C=30°,∴∠BAC=180°−∠B−∠C=100°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC−∠DAC=70°,故选C.8.答案:C解析:解:∵反比例函数y=k的图象经过点A(−2,−5),x∴−5=k,解得:k=10,−2∴反比例函数解析式为y=10.x当x>0时,反比例函数单调递减,=10;当x=1时,y=101=5.当x=2时,y=102∴当1<x<2时,5<y<10.故选C.将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x的值即可得出结论.9.答案:(10a+5b)解析:小明一共花费的钱数=练习本的单价×练习本的数量+钢笔的单价×钢笔的数量.本题考查了列代数式,掌握总价=单价×数量是解题的关键.解:∵小明买了单价为10元的练习本a本和单价为5元的钢笔b支,∴他一共花费:(10a+5b)元.故答案为:(10a+5b).10.答案:(4a+1)(4a−1)解析:解:16a2−1=(4a+1)(4a−1).符合平方差公式分解因式的特点,利用平方差公式进行分解因式.本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.答案:1解析:解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22−4m=0,∴m=1,故答案为:1.由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.12.答案:72解析:解:正五边形的一个外角=360°5=72°,故答案为:72.根据多边形的外角和是360°,即可求解.本题考查多边形的内角与外角,正确理解多边形的外角和是360°是关键.13.答案:16解析:解:∵在△ABC中,∠C=90°,AC=BC=8,D为边AB中点,∴∠B=∠A=45°,AB=8√2,∴BD=AD=CD=4√2,∠DCF=45°连接CD,∵BD=CD,∠DCF=∠B,∴S扇形DCF=S扇形DBE∴阴影部分的面积=S三角形BDC =8×82×12=16,故答案为:16.根据题意,可以求得AB、AD、BD、CD的长,然后根据割补法以及三角形的面积即可解答本题.本题考查扇形面积的计算、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.14.答案:3解析:本题考查了二次函数的性质,二次函数图象上点的坐标特征,函数和方程的关系,等腰直角三角形的性质,根据根与系数的关系列出关于m的方程是解题的关键.(x−3)2−1=m,作AD⊥BC于D,易证得BC=2AD=2(m+1),设B(x1,m),C(x2,m),解方程14根据根与系数的关系得出x1+x2=6,x1x2=5−4m,即可得出(x2−x1)2+4x1x2=36,即(2+ 2m)2+4(5−4m)=36,解关于m的方程求得即可.解:如图,作AD⊥BC于D,∵AB=AC,∠BAC=90°,∴AD=CD=BD,∴BC=2AD,(x−3)2−1的顶点为A,∵抛物线y=14∴A(3,−1),∵点P(0,m),∴AD=1+m,∴BC=2+2m,设B(x1,m),C(x2,m),∴x2−x1=2+2m,(x−3)2−1=m整理得:x2−6x+5−4m=0,解14∴x1+x2=6,x1x2=5−4m,∴(x2−x1)2+4x1x2=36,∴(2+2m)2+4(5−4m)=36,解得m=3和m=−1(舍去),故答案为3.15.答案:解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.解析:根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.16.答案:解:画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,,所以P(两张都是“红脸”)=49答:抽出的两张卡片上的图案都是“红脸”的概率是4.9解析:根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.此题主要考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.17.答案:解:(1)如图所示:△ABE即为所求;(2)如图所示:△CDF即为所求,AF=√17.解析:(1)直接利用勾股定理结合网格得出符合题意的答案;(2))直接利用勾股定理结合网格得出符合题意的答案.此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.18.答案:解:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,由题意得,100000x+500=100000(1−10%)x解得:x=4500,经检验,x=4500是原分式方程的解,且符合题意.答:今年每部手机的售价是4500元.解析:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,根据今年的销售总额比去年减少10%,列方程求解.19.答案:(1)证明:∵四边形ABCD是平行四边形∴AD//BC∴∠D=∠ECF,∠DAE=∠F,∵E是CD的中点∴DE=CE,∴△ADE≌△FCE(AAS)∴AD=CF,(2)∵四边形ABCD是平行四边形∴AD=BC=4∵△ADE≌△FCE∴AD=CF=BC=4,∵AB⊥AF∴AC=12BF=4AF=√BF2−AB2=√82−62=2√7∴AE=EF=12AF=√7∵AB//CD,∴CD⊥AF∴sin∠ACE=AEAC =√74.解析:(1)根据平行四边形的性质和全等三角形的判定和性质证明即可;(2)根据勾股定理和三角函数解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定和性质解答.20.答案:解:(1)90;90;(2)由题意,得轻度污染的天数为:30−3−15=12天.补全条形统计图如图.(3)由题意,得优所占的百分比为:3÷30=10%,优所占的圆心角的度数为:10%×360=36°,良所占的百分比为:15÷30=50%,良所占的圆心角的度数为:50%×360=180°,轻度污染所占的百分比为:12÷30=40%,轻度污染所占的圆心角的度数为:40%×360=144°,补全扇形统计图如图;(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.解析:本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.(1)根据众数的定义就可以得出这组数据的众数为90,由30个数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据计算出轻度污染的天数即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)利用样本估计总体的方法,求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)见答案;(3)见答案;(4)见答案.21.答案:75 3.6 4.5解析:解:(1)乙车的速度为:(270−60×2)÷2=75千米/时,a =270÷75=3.6,b =270÷60=4.5.故答案为:75;3.6;4.5;(2)60×3.6=216(千米),当2<x ≤3.6时,设y =k 1x +b 1,根据题意得:{2k 1+b 1=03.6k 1+b 1=216,解得{k 1=135b 1=−270, ∴y =135x −270(2<x ≤3.6);当3.6<x ≤4.6时,设y =60x ,∴y ={135x −270(2<x ≤3.6)60x(3.6<x ≤4.5);(3)甲车到达距B 地70千米处时行驶的时间为:(270−70)÷60=206(小时), 此时甲、乙两车之间的路程为:135×206−270=180(千米).答:当甲车到达距B 地70千米处时,求甲、乙两车之间的路程为180千米.(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)运用待定系数法解得即可;(3)求出甲车到达距B 地70千米处时行驶的时间,代入(2)的结论解答即可.此题主要考查了一次函数的应用问题,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程.22.答案:(1)证明见解析;(2)当∠BAE =30°时,四边形AECF 是菱形解析:(1)首先证明△ABE≌△CDF ,则DF =BE ,然后可得到AF =EC ,依据一组对边平行且相等四边形是平行四边形可证明AECF 是平行四边形;(2)由折叠性质得到∠BAE =∠CAE =30°,求得∠ACE =90°−30°=60°,即∠CAE =∠ACE ,得到EA =EC ,于是得到结论.【详解】解:(1)∵四边形ABCD 为矩形,∴AB =CD ,AD//BC ,∠B =∠D =90°,∠BAC =∠DCA .由翻折的性质可知:∠EAB =12∠BAC ,∠DCF =12∠DCA .∴∠EAB =∠DCF .在△ABE 和△CDF 中{∠B =∠D AB =CD ∠EAB =∠DCF, ∴△ABE≌△CDF(ASA),∴DF =BE .∴AF =EC .又∵AF//EC ,∴四边形AECF 是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°−30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.答案:(1)AE=BD;AE⊥BD.(2)结论成立:理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)17或7.解析:本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的射线思考问题,(1)如图1中,延长AE交BD于H.只要证明△ACE≌△BCD即可;(2)结论不变.如图2中,延长AE交BD于H,交BC于O.只要证明△ACE≌△BCD即可;(3)分两种情形分别求解即可解决问题;解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)见答案.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,DE=5,∴EH=DH,CH=12在Rt△ACH中,∵AC=13,CH=5,∴AH=√132−52=12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH−DH=12−5=7,综上所述,满足条件的AD的值为17或7故答案为17或7.24.答案:解:(Ⅰ)当a=1,m=−3时,抛物线的解析式为y=x2+bx−3.∵抛物线经过点A(1,0),∴0=1+b−3,解得b=2,∴抛物线的解析式为y=x2+2x−3.∵y=x2+2x−3=(x+1)2−4,∴抛物线的顶点坐标为(−1,−4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=−m−1.∴抛物线的解析式为y=x2−(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt △EAH 中,EH =1−(m +1)=−m ,HA =0−m =−m ,∴AE =√EH 2+HA 2=−√2m ,∵AE =EF =2√2,∴−√2m =2√2,解得m =−2.此时,点E(−1,−2),点C(0,−2),有EC =1.∵点F 在y 轴上,∴在Rt △EFC 中,CF =√EF 2−EC 2=√7.∴点F 的坐标为(0,−2−√7)或(0,−2+√7).②由N 是EF 的中点,得CN =12EF =√2.根据题意,点N 在以点C 为圆心、√2为半径的圆上,由点M(m,0),点C(0,m),得MO =−m ,CO =−m ,∴在Rt △MCO 中,MC =√MO 2+CO 2=−√2m.当MC ≥√2,即m ≤−1时,满足条件的点N 在线段MC 上.MN 的最小值为MC −NC =−√2m −√2=√22,解得m =−32; 当MC <√2,即−1<m <0时,满足条件的点N 落在线段CM 的延长线上,MN 的最小值为NC −MC =√2−(−√2m)=√22, 解得m =−12.∴当m 的值为−32或−12时,MN 的最小值是√22.解析:(Ⅰ)将A(1,0)代入抛物线的解析式求出b =2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a =1,b =−m −1.求出抛物线的解析式为y =x 2−(m +1)x +m.则点C(0,m),点E(m +1,m),过点A 作AH ⊥l 于点H ,由点A(1,0),得点H(1,m).根据题意求出m 的值,可求出CF 的长,则可得出答案;②得出CN =12EF =√2.求出MC =−√2m ,当MC ≥√2,即m ≤−1时,当MC <√2,即−1<m <0时,根据MN 的最小值可分别求出m 的值即可.本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.。
吉林省长春市朝阳区九年级2019-2020学年下中考第一次模拟试题数学试卷(Word版,含答案)
2019—2020学年度九年级模拟练习(数学)本试卷包括三道大题,共24小题,共6页,全卷满分120分,考试时间为120分钟. 注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分) 1.实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )(A )a (B )b (C )c (D )d2.2019年12月24日,第八次中、日、韩领导人会议在四川成都举行,数据表明2018Ian 三国间贸易总额超过720 000 000 000美元,数据720 000 000 000用科学记数法表示为( )(A )7.2×1012 (B )7.2×1011 (C )7.2×1010 (D )72×10103.由5个完全相同的正方体组成的立体图形如图所示,它的主视图是( )(A ) (B ) (C ) (D )4.下列计算正确的是( )(A )a ·a 2=a 2 (B )a 3÷a =a 3 (C )(aa 2)2=a 2b 4 (D )(a 3)2=a 55.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐,问人数和车数各多少?设车x 辆,则下列所列方程正确的是( )(A )3x −2=2x +9 (B )3(x −2)=2x +9 (C)x 3+2=x 2-9 (D )3(x −2)=2(x −9) 6.如图,在相距am 的东西两座炮台A 、B 处同时发现入侵敌舰C ,在炮台A 处测得敌舰C 在它的南偏东α度的方向,在炮台B 测得敌舰在它的正南方,则敌舰C 与炮台B 之间的距离为( )(A )asinαm (B )asinαm (C )atanαm (D )atanαm7.如图,在平面直角坐标系中,点A 、B 在函数y =3x (x >0)的图象上,分别过点A 、B 作x轴的垂线交函数y =kx (x >0,k >0)的图象于点C 、D ,E 是y 轴上的点,连结AB 、AD 、AE 、CE ,若点A 、B 的横坐标分别为2、3,△ACE 与△ABD 的面积之和为2,则k 的值为( )(A )92 (B )5 (C )6 (D )12 (第1题)d a c b8.如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()二、填空题(每小题3分,共18分)9.计算:√6+√24= .10.原价为x元的衬衫,若打六折销售,则现在的售价为元(用含x的代数式表示)11.为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产—“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图①所示,若将图①抽象成图②的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是度.12.如图,在平面直角坐标系中,直线y=−x+3分别交x轴、y轴于A、B两点,点P(m,1)在△AOB的内部(不包含边界),则m的值可能是(写一个即可)13.把边长为2的正方形纸片ABCD分割成如图的三块吗,其中点O为正方形的中心,E为AD 的中点,用这三块纸片拼成与该正方形不全等且面积相等的四边形MNPQ(要求这三块纸片不重叠无缝隙),若四边形MNPQ为矩形,则四边形MNPQ的周长是 .14.如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/ℎ的速度匀速上涨,那么达到警戒水位后,在过 h水位达到桥拱最高点O.三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:(2a−1)2+2a(3−2a),其中a=2020.16.(6分)甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余均相同,甲袋中三个小球上分别标有数字1、2、7,乙袋中三个小球上分别标有数字4、5、6,小明分别从甲、乙口袋中通随机摸出一个小球,用画树状图(或列表)的方法,求小明摸出两个小球上的数字之和为4的倍数的概率.17.(6分)为迎接五·一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.18.(7分)如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交⊙O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE、BE.(1)求证:∠C=∠BED̂的长为(结果保留π)(2)若∠C=50°,AB=2,则BD19.(7分)2020年2月21日,某市有600名教师参加了“网络”培训活动,会议就“网络授课”和 “家庭教育”这两个问题随机调查了60为教师,并对数据进行了整理、描述和分析,下面给出了部分信息:a 、关于“网络授课”问题发言次数的频数分布直方图如下:(数据分成6组:0≤x <4,4≤x <8,8≤x <12,12≤x <16,16≤x <20,20≤x ≤24)b .关于“网络授课”问题发言次数在8≤x <12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11 c根据以上信息,回答下列问题:(1)上表中m 的值为 .(2)在这次培训会中,参会教师更感兴趣的问题是 (填“网络授课”或“家庭教育”),并说明理由.(3)如果参加这次培训的600名教师都接受调查,估计在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.20.(7分)图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上,在图①、图②、图③中,分别以AB 为边画一个面积为152的三角形,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹吗,不要求写画法.(1)在图①中画△ABC ,使∠BAC =45°(2)在图②中画△ABD ,使△ABD 是轴对称图形.(3)在图③中画△ABE ,使AB 边上的高将△ABE 分成面积比为1:2的两部分.21.(8分)如图①,一个底面是正方形的长方体铁块放置在高为50cm的圆柱形容器内,现以一定的速度往容器内注水,注满容器为止,容器顶部离水面的距离y(cm)与注水时间x (min)之间的函数图象如图②所示.(1)长方体的高度为cm.(2)求该容器水面没过长方体后y与x之间的函数关系式,并写出自变量x的取值范围. (3)若该长方体的底面边长为15cm,直接写出该圆柱形容器的底面积.22.(9分)【教材呈现】下图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图②,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为 .【拓展】如图③,直线EF分别交□ABCD的边AD、BC于点E、F,将□ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=2√2,BC=4,∠C=45°,则EF的长为 .23.如图,在△ABC中,AB=BC=15,sinB=45,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒.(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.24.(12分)定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若y0={y−1(x≥m)−12y+1(x<m),则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数y={x−1(x≥m)−12x+1(x<m)的图象上,设点P(m,y)在函数y=x2−2x的图象上。
长春市2020版数学中考一模试卷(II)卷
长春市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若,则的值是()A .B .C .D .2. (2分)如果,则a必须满足()A . a≠0B . a<0C . a>0D . a为任意数3. (2分) (2020九下·无锡月考) 如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若△AFD的周长为12,△ECF的周长为3,四边形纸片ABCD的周长为()A . 14B . 15C . 16D . 204. (2分)(2020·天台模拟) 甲口袋有x个黑球与若干个白球,乙口袋有若干个黑球与x个白球. 现交换甲乙口袋中的小球,每次交换的数量相等. 交换数次后,下列说法错误的是()A . 甲口袋中的黑球数量与乙口袋中的白球数量之和始终为2x个B . 甲口袋中的黑球数量与乙口袋中的白球数量之差可能为1个C . 甲口袋中的黑球数量可能是乙口袋中的白球数量的2倍D . 甲口袋中的黑球数量与乙口袋中的白球数量始终相等5. (2分)(2019·相城模拟) 适合条件∠A=∠B=∠C的△ABC是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等边三角形6. (2分)某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A . 20(1+x)2=90B . 20+20(1+x)2=90C . 20(1+x)+20+(1+x)2=90D . 20+20(1+x)+20(1+x)2=907. (2分)(2019·杭州模拟) 如图,是⊙O 的直径,是⊙O 的切线,为切点,,则等于()A . 25°B . 50°C . 30°D . 40°8. (2分)如图所示的图案中,是轴对称图形的是()A .B .C .D .9. (2分)观察下列个图中小圆点的摆放规律,按这样的规律急促摆放下去,则第⑦个图形的小圆点的个数为()A . 62B . 64C . 66D . 6810. (2分)(2017·昆都仑模拟) 菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A . (3,1)B . (3,﹣1)C . (1,﹣3)D . (1,3)二、填空题 (共6题;共6分)11. (1分) (2019八上·右玉月考) 分解因式:3x2y-6xy+3y=________.12. (1分) (2019八下·廉江期末) 若点A(x1 , y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1________y2(选择“>”、“<”或“=”填空).13. (1分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中________14. (1分)(2020·许昌模拟) 在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为________.15. (1分) (2018九上·紫金期中) 如图,某中学准备围建一个矩形面积为72m2的苗圃园,其中一边靠墙,另外三边周长为30m的篱笆围成.设这个苗圃园垂直于墙的一边长为xm,可列方程为________.16. (1分)若,,则x+y=________.三、解答题 (共8题;共95分)17. (10分) (2016七下·马山期末) 计算: + +| -2|18. (5分)综合题。
2020年吉林省长春市朝阳区中考数学一模试卷(解析版)
2020年吉林省长春市朝阳区中考数学一模试卷一.选择题(共8小题)1.实数a、b、c、d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d2.12月24日,第八次中日韩领导人会议在四川成都举行,数据表明2018年三国间贸易总额超过7200亿美元,请将数据7200亿用科学记数法表示为()A.7.2×1010B.72×108C.72×109D.7.2×10113.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.4.下列计算正确的是()A.a•a2=a2B.a3÷a=a3C.(ab2)2=a2b4D.(a3)2=a55.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)6.如图,在相距am的东西两座炮台A、B处同时发现入侵敌舰C,在炮台A处测得敌舰C 在它的南偏东α度的方向,在炮台B测得敌舰在它的正南方,则敌舰C与炮台B之间的距离为()A.B.a sinαm C.D.a tanαm7.如图,在平面直角坐标系中,点A、B在函数y=(x>0)的图象上,分别过点A、B 作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,E是y轴上的点,连结AB、AD、AE、CE,若点A、B的横坐标分别为2、3,△ACE与△ABD的面积之和为2,则k 的值为()A.B.5C.6D.128.如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()A.B.C.D.二.填空题(共6小题)9.计算:=.10.原价为x元的衬衫,若打六折销售,则现在的售价为元(用含x的代数式表示)11.为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产﹣“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图1所示,若将图1抽象成图2的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是度.12.如图,在平面直角坐标系中,直线y=﹣x+3分别交x轴、y轴于A、B两点,点P(m,1)在△AOB的内部(不包含边界),则m的值可能是(写一个即可).13.把边长为2的正方形纸片ABCD分割成如图的三块,其中点O为正方形的中心,E为AD的中点,用这三块纸片拼成与该正方形不全等且面积相等的四边形MNPQ(要求这三块纸片不重叠无缝隙),若四边形MNPQ为矩形,则四边形MNPQ的周长是.14.如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/h的速度匀速上涨,那么达到警戒水位后,再过h水位达到桥拱最高点O.三.解答题(共10小题)15.先化简,再求值:(2a﹣1)2+2a(3﹣2a),其中a=2020.16.甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余均相同,甲袋中三个小球上分别标有数字1、2、7,乙袋中三个小球上分别标有数字4、5、6,小明分别从甲、乙口袋中通随机摸出一个小球,用画树状图(或列表)的方法,求小明摸出两个小球上的数字之和为4的倍数的概率.17.为迎接五•一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.18.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)19.2020年2月21日,某市有600名教师参加了“网络”培训活动,会议就“网络授课”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析,下面给出了部分信息:a.关于“网络授课”问题发言次数的频数分布直方图如下:(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24)b.关于“网络授课”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“网络授课”和“家庭教育”这两问题发言次数的平均数、中位数、众数如下:问题平均数(单位:次)中位数(单位:次)众数(单位:次)网络授课12m10家庭教育11109根据以上信息,回答下列问题:(1)上表中m的值为.(2)在这次培训会中,参会教师更感兴趣的问题是(填“网络授课”或“家庭教育”),并说明理由.(3)如果参加这次培训的600名教师都接受调查,估计在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.20.图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在图①、图②、图③中,分别以AB 为边画一个面积为的三角形,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使∠BAC=45°.(2)在图②中画△ABD,使△ABD是轴对称图形.(3)在图③中画△ABE,使AB边上的高将△ABE分成面积比为1:2的两部分.21.如图①,一个底面是正方形的长方体铁块放置在高为50cm的圆柱形容器内,现以一定的速度往容器内注水,注满容器为止,容器顶部离水面的距离y(cm)与注水时间x(min)之间的函数图象如图②所示.(1)长方体的高度为cm.(2)求该容器水面没过长方体后y与x之间的函数关系式,并写出自变量x的取值范围.(3)若该长方体的底面边长为15cm,直接写出该圆柱形容器的底面积.22.【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图②,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.【拓展】如图③,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=,BC=4,∠C=45°,则EF的长为.23.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.24.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m 为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k ﹣n,求s与m之间的函数关系式,并写出m的取值范围.参考答案与试题解析一.选择题(共8小题)1.实数a、b、c、d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【分析】直接利用绝对值的性质结合各字母的位置进而得出答案.【解答】解:由数轴可得:|a|>3,|b|=1,|c|=0,1<|d|<2,故这四个数中,绝对值最大的是:a.故选:A.2.12月24日,第八次中日韩领导人会议在四川成都举行,数据表明2018年三国间贸易总额超过7200亿美元,请将数据7200亿用科学记数法表示为()A.7.2×1010B.72×108C.72×109D.7.2×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7200亿=7200 0000 0000=7.2×1011,故选:D.3.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:B.4.下列计算正确的是()A.a•a2=a2B.a3÷a=a3C.(ab2)2=a2b4D.(a3)2=a5【分析】根据同底数幂的乘法运算法则和除法运算法则,积的乘方的性质、幂的乘方的性质进行计算即可.【解答】解:A、a•a2=a3,故原题计算错误;B、a3÷a=a2,故原题计算错误;C、(ab2)2=a2b4,故原题计算正确;D、(a3)2=a6,故原题计算错误;故选:C.5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)【分析】设车x辆,根据乘车人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设车x辆,根据题意得:3(x﹣2)=2x+9.故选:B.6.如图,在相距am的东西两座炮台A、B处同时发现入侵敌舰C,在炮台A处测得敌舰C 在它的南偏东α度的方向,在炮台B测得敌舰在它的正南方,则敌舰C与炮台B之间的距离为()A.B.a sinαm C.D.a tanαm【分析】根据炮台B在炮台A的正东方向,敌舰C在炮台B的正南方向,得出∠ABC=90°,再利用tan∠ACB=,求出BC的值即可.【解答】解:根据题意,得∠ACB=∠DAC=α,AB=am在Rt△ABC中,∵tan∠ACB=,∴tanα=,∴BC=,即敌舰C与炮台B之间的距离为m,故选:C.7.如图,在平面直角坐标系中,点A、B在函数y=(x>0)的图象上,分别过点A、B 作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,E是y轴上的点,连结AB、AD、AE、CE,若点A、B的横坐标分别为2、3,△ACE与△ABD的面积之和为2,则k 的值为()A.B.5C.6D.12【分析】根据题意由对应的反比例函数的解析式求出A、B、C、D点坐标,进而得AC、BD,再根据三角形的面积公式,由△ACE与△ABD的面积之和为2,列出k的方程,便可求得k的值.【解答】解:∵点A、B的横坐标分别为2、3,点A、B在函数y=(x>0)的图象上,∴A(2,),B(3,1),∵分别过点A、B作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,∴C(2,),D(3,),∴AC=,BD=,∵△ACE与△ABD的面积之和为2,∴,解得,k=6,故选:C.8.如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()A.B.C.D.【分析】依据基本作图,圆周角定理以及线段垂直平分线的判定方法,即可得出结论.【解答】解:A.由作图痕迹可得,属于过一点作已知直线的垂线,故CD⊥AB,作法正确;B.由作图痕迹可得,直径所对的圆周角等于90°,故CD⊥AB,作法正确;C.由作图痕迹可得,AB是线段的垂直平分线,故AB⊥CD,作法正确;D.由作图痕迹可得,CD与AB不一定垂直,故作法错误;故选:D.二.填空题(共6小题)9.计算:=3.【分析】直接化简二次根式进而利用二次根式的加减运算法则计算得出答案.【解答】解:+=+2=3.故答案为:3.10.原价为x元的衬衫,若打六折销售,则现在的售价为0.6x元(用含x的代数式表示)【分析】根据“原价×=现售价”列出代数式便可.【解答】解:由题意得,现在的售价为x•60%=0.6x元,故答案为0.6x.11.为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产﹣“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图1所示,若将图1抽象成图2的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是30度.【分析】直接利用平行线的性质得出∠EAB=∠EFC=80°,进而利用三角形的外角得出答案.【解答】解:如图所示:延长DC交AE于点F,∵AB∥CD,∠EAB=80°,∠ECD=110°,∴∠EAB=∠EFC=80°,∴∠E=110°﹣80°=30°.故答案为:30.12.如图,在平面直角坐标系中,直线y=﹣x+3分别交x轴、y轴于A、B两点,点P(m,1)在△AOB的内部(不包含边界),则m的值可能是1(答案不唯一)(写一个即可).【分析】直线y=﹣x+3,当y=1时,即1=﹣x+3,即x=4,故0<m<4,即可求解.【解答】解:直线y=﹣x+3,当y=1时,即1=﹣x+3,即x=4,故0<m<4,m可以在0到4任意取一个实数,故答案为:1(答案不唯一).13.把边长为2的正方形纸片ABCD分割成如图的三块,其中点O为正方形的中心,E为AD的中点,用这三块纸片拼成与该正方形不全等且面积相等的四边形MNPQ(要求这三块纸片不重叠无缝隙),若四边形MNPQ为矩形,则四边形MNPQ的周长是10.【分析】根据四边形MNPQ为矩形,点O为正方形的中心,E为AD的中点,可得OE =1,根据图形的剪拼即可求出矩形MNPQ的周长.【解答】解:如图所示:四边形MNPQ为矩形,∵点O为正方形的中心,E为AD的中点,∴OE=1,∴MB=OE=CN=1,且PN=AF=1,所以矩形MNPQ的周长是:2(MB+BC+CN+PN)=2(1+2+1+1)=10.故答案为:10.14.如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/h的速度匀速上涨,那么达到警戒水位后,再过5h水位达到桥拱最高点O.【分析】根据题目中所给的数据求出函数解析式,再求出时间t.【解答】解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,CD=10米,所以D点横坐标为5,设点B(10,n),点D(5,n+3),,解得:,∴抛物线解析式为y=﹣x2,当x=5时,y=﹣1,则t=1÷0.2=5,故答案为:5.三.解答题(共10小题)15.先化简,再求值:(2a﹣1)2+2a(3﹣2a),其中a=2020.【分析】直接利用完全平方公式以及单项式乘以多项式进而合并同类项,再把a的值代入求出答案.【解答】解:(2a﹣1)2+2a(3﹣2a)=4a2+1﹣4a+6a﹣4a2=2a+1,当a=2020时,原式=2×2020+1=4041.16.甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余均相同,甲袋中三个小球上分别标有数字1、2、7,乙袋中三个小球上分别标有数字4、5、6,小明分别从甲、乙口袋中通随机摸出一个小球,用画树状图(或列表)的方法,求小明摸出两个小球上的数字之和为4的倍数的概率.【分析】画树状图得出所有9种等可能的结果数,然后根据概率公式求解.【解答】解:如图所示:,P(小明摸出的两个小球上的数字之和为4的倍数)=.17.为迎接五•一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.【分析】直接根据题意表示出采购A、B种服装的件数,进而得出等式求出答案.【解答】解:设B种服装每件的进价为x元,由题意可得:=,解得:x=40,经检验得:x=40为原方程的解,且符合题意,答:B种服装每件的进价为40元.18.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.19.2020年2月21日,某市有600名教师参加了“网络”培训活动,会议就“网络授课”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析,下面给出了部分信息:a.关于“网络授课”问题发言次数的频数分布直方图如下:(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24)b.关于“网络授课”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“网络授课”和“家庭教育”这两问题发言次数的平均数、中位数、众数如下:问题平均数(单位:次)中位数(单位:次)众数(单位:次)网络授课12m10家庭教育11109根据以上信息,回答下列问题:(1)上表中m的值为11.(2)在这次培训会中,参会教师更感兴趣的问题是网络授课(填“网络授课”或“家庭教育”),并说明理由.(3)如果参加这次培训的600名教师都接受调查,估计在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.【分析】(1)根据直方图中的数据,可以得到m的值;(2)根据表格中的数据,可知教师更感兴趣的问题是网络授课,然后根据表格中的数据说明理由即可;(3)根据直方图中的数据,可以计算出在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.【解答】解:(1)由直方图可知,网络授课的中位数落在8≤x<12这一组,m=(11+11)÷2=11,故答案为:11;(2)在这次培训会中,参会教师更感兴趣的问题是网络授课,理由:网络授课问题的发言次数的平均数、中位数都大于家庭教育问题发言次数的平均数、中位数,说明参会教师网络授课的发言次数高于家庭教育的发言次数,故在这次培训会中,参会教师更感兴趣的问题是网络授课;故答案为:网络授课;(3)600×=420(人),答:发言次数不小于8次的参会教师有420人.20.图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在图①、图②、图③中,分别以AB 为边画一个面积为的三角形,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使∠BAC=45°.(2)在图②中画△ABD,使△ABD是轴对称图形.(3)在图③中画△ABE,使AB边上的高将△ABE分成面积比为1:2的两部分.【分析】(1)利用数形结合的思想画出三角形即可.(2)利用勾股定理结合数形结合的思想解决问题即可(答案不唯一).(3)取格点E,连接AE,BE即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABD即为所求(答案不唯一).(3)如图③中,△ABE即为所求(答案不唯一).21.如图①,一个底面是正方形的长方体铁块放置在高为50cm的圆柱形容器内,现以一定的速度往容器内注水,注满容器为止,容器顶部离水面的距离y(cm)与注水时间x(min)之间的函数图象如图②所示.(1)长方体的高度为20cm.(2)求该容器水面没过长方体后y与x之间的函数关系式,并写出自变量x的取值范围.(3)若该长方体的底面边长为15cm,直接写出该圆柱形容器的底面积.【分析】(1)直接利用一次函数图象结合水面高度的变化得出长方体的高;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;(3)利用一次函数图象结合水面高度的变化得出该圆柱形容器的底面积.【解答】解:(1)由题意可得:0至3min时,容器顶部离水面的距离变小得快,3分钟后容器顶部离水面的距离变小减慢,故长方体的高为50﹣30=20(cm);故答案为:20.(2)容器水面没过长方体后y与x之间的函数关系式为y=kx+b,由题意得,解得,∴该容器水面没过长方体后y与x之间的函数关系式为,当y=0时,,解答x=21,∴自变量x的取值范围为3≤x≤21.(3)设每分钟的注水量为mcm3.则下底面中未被长方体覆盖部分的面积是:m÷(cm2),圆柱体的底面积为:m÷(cm2),二者比为,∴长方体底面积:圆柱体底面积=3:4.∴该圆柱形容器的底面积为:(cm2),答:该圆柱形容器的底面积为300cm2.22.【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图②,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.【拓展】如图③,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=,BC=4,∠C=45°,则EF的长为.【分析】【教材呈现】由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;【应用】过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF的长,EF的长,【拓展】过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=2,由勾股定理可求AE=AF=,再利用勾股定理可求EF的长.【解答】解:【教材呈现】∵四边形ABCD是矩形,∴AE∥CF,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA)∴OE=OF,又∵AO=CO,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形;【应用】如图,过点F作FH⊥AD于H,∵将矩形ABCD沿EF翻折,使点C的对称点与点A重合,∴AF=CF,∠AFE=∠EFC,∵AF2=BF2+AB2,∴(4﹣BF)2=BF2+9,∴BF=,∴AF=CF=,∵AD∥BC,∴∠AEF=∠EFC=∠AFE,∴AE=AF=,∵∠B=∠BAD=∠AHF=90°,∴四边形ABFH是矩形,∴AB=FH=3,AH=BF=,∴EH=,∴EF===,∴四边形ABFE的周长=AB+BF+AE+EF=3+++=,故答案为:.【拓展】如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,∵四边形ABCD是平行四边形,∠C=45°,∴∠ABC=135°,∴∠ABN=45°,∵AN⊥BC,∴∠ABN=∠BAN=45°,∴AN=BN=AB=2,∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,∴AF=CF,∠AFE=∠EFC,∵AD∥BC,∴∠AEF=∠EFC=∠AFE,∴AE=AF,∵AF2=AN2+NF2,∴AF2=4+(6﹣AF)2,∴AF=,∴AE=AF=,∵AN∥MF,AD∥BC,∴四边形ANFM是平行四边形,∵AN⊥BC,∴四边形ANFM是矩形,∴AN=MF=2,∴AM===,∴ME=AE﹣AM=,∴EF===,故答案为:.23.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.【分析】(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,解直角三角形即可;(2)如图2,在Rt△BDP中,用含t的式子分别表示出BD、PD、DE、DG和CD,根据题意得关于t的方程,解得t即可;(3)分三种情况:①当0<t≤时,重叠部分为正方形DEFG,②当<t≤时,如图3,重叠部分为五边形DEFMN,③当<t≤3时,如图4,重叠部分为梯形DEMN,分别根据重叠部分的图形形状,计算出S与t之间的函数关系式即可;(4)分三种情况:①当DG的中点O在线段AC上时,如图5,此时DC=DO,②当EG的中点O在线段AC上时,如图6,此时NC=NO,③当DE的中点O在线段AC上时,如图7,此时NC=NO,分别列出关于t的方程得出t的值即可.【解答】解:(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,∠AHB=90°,AB=15,∴sin B==,∴AH=AB=×15=12.(2)如图2,在Rt△BDP中,∠BPD=90°,BP=3t,∴sin B==,∴cos B==,∴BD=5t,PD=4t,∴DE=DG=2t,CD=15﹣5t.∴15﹣5t=2t,∴t=.(3)①当0<t≤时,重叠部分为正方形DEFG,∴S=(2t)2=4t2;②当<t≤时,如图3,重叠部分为五边形DEFMN,∴S=S正方形DEFG﹣S△MGN=4t2﹣[2t﹣(15﹣5t)]2=﹣45t2+210t﹣225;③当<t≤3时,如图4,重叠部分为梯形DEMN,∴S=×2t(15﹣4t+15﹣5t)=﹣9t2+30t.(4)①当DG的中点O在线段AC上时,如图5,∵AB=BC,∴∠A=∠C,∵DG∥AB,∴∠COD=∠A∴∠C=∠COD,∴DC=DO,∴15﹣5t=t,解得t=;②当EG的中点O在线段AC上时,如图6,此时NC=NO,∴15﹣×5t=t+t,解得t=;③当DE的中点O在线段AC上时,如图7,此时NC=NO,∴15﹣×5t=t,解得t=.24.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m 为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k ﹣n,求s与m之间的函数关系式,并写出m的取值范围.【分析】(1)根据变换点的定义即可求解;(2)根据配方法和二次函数的增减性即可求解;(3)由﹣x2+x+1=﹣2求出x的值,再根据点P的变换点Q在函数的图象上求解即可;(4)分当m>1、m≤1两种情况求解即可.【解答】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).。
吉林省长春市2019-2020学年中考数学一模考试卷含解析
吉林省长春市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A .B .C .D .2.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3B .1,2C .1,3D .2,33.人的头发直径约为0.00007m ,这个数据用科学记数法表示( ) A .0.7×10﹣4 B .7×10﹣5 C .0.7×104 D .7×1054.在直角坐标系中,设一质点M 自P 0(1,0)处向上运动一个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处……,如此继续运动下去,设P n (x n ,y n ),n =1,2,3,……,则x 1+x 2+……+x 2018+x 2019的值为( )A .1B .3C .﹣1D .20195.下列各点中,在二次函数2y x =-的图象上的是( ) A .()1,1B .()2,2-C .()2,4D .()2,4--6.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .77.已知反比例函数y =﹣6x,当﹣3<x <﹣2时,y 的取值范围是( ) A .0<y <1B .1<y <2C .2<y <3D .﹣3<y <﹣28.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A.533B.536C.1 D.1729.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.807010.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=10011.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为()A.80°B.70°C.60°D.50°12.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.10 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:7+(-5)=______.14.因式分解:2312x-=____________.15.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.16.在实数范围内分解因式:x2y﹣2y=_____.17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD 相交于O,则tan∠BOD的值等于__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=kx(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=kx(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=92时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.20.(6分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.69.67.89.3 4 6.58.59.99.6乙 5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲 1 0 1 2 1 5乙____ ____ _____ ______ _____ _______(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.2 8.9 9.6乙8.2 8.4 9.7(1)估计乙业务员能获得奖金的月份有______个;(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)21.(6分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)22.(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.23.(8分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?24.(10分)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 25.(10分)如图,⊙O 的直径AD 长为6,AB 是弦,CD ∥AB ,∠A=30°,且CD=3. (1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.26.(12分)已知四边形ABCD 为正方形,E 是BC 的中点,连接AE ,过点A 作∠AFD ,使∠AFD=2∠EAB ,AF 交CD 于点F ,如图①,易证:AF=CD+CF .(1)如图②,当四边形ABCD 为矩形时,其他条件不变,线段AF ,CD ,CF 之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD 为平行四边形时,其他条件不变,线段AF ,CD ,CF 之间又有怎样的数量关系?请直接写出你的猜想.图① 图② 图③27.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件) 40 90售价(元/件) 60 120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.C【解析】试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.3.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.C 【解析】 【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5; ∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2; x 5+x 6+x 7+x 8=3﹣3﹣3+5=2; …x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1, 故选C . 【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律 5.D 【解析】 【分析】将各选项的点逐一代入即可判断. 【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 6.B 【解析】 【分析】先利用已知证明BAC BDA :△△,从而得出BA BCBD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可. 【详解】//AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠Q BAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BCBD BA ∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B . 【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键. 7.C 【解析】 分析:由题意易得当﹣3<x <﹣2时,函数6y x=-的图象位于第二象限,且y 随x 的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了. 详解: ∵在6y x=-中,﹣6<0, ∴当﹣3<x <﹣2时函数6y x=-的图象位于第二象限内,且y 随x 的增大而增大, ∵当x=﹣3时,y=2,当x=﹣2时,y=3,∴当﹣3<x <﹣2时,2<y <3, 故选C .点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键. 8.B 【解析】 【分析】由平行四边形性质得出AB=CD ,AB ∥CD ,证出四边形ABDE 是平行四边形,得出DE=DC=AB ,再由平行线得出∠ECF=∠ABC ,由三角函数求出CF 长,再用勾股定理CE ,即可得出AB 的长. 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=CD , ∵AE ∥BD ,∴四边形ABDE 是平行四边形, ∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点, ∵EF ⊥BC , ∴∠EFC=90°, ∵AB ∥CD , ∴∠ECF=∠ABC , ∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF =CF =34,∴CF=3,根据勾股定理得,3,∴AB=12CE=6, 故选B . 【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 9.A【解析】【分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.10.A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.11.B【解析】【分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.12.C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】根据有理数的加法法则计算即可.【详解】()752+-=.故答案为:2.【点睛】本题考查有理数的加法计算,熟练掌握加法法则是关键.14.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.16.y()(x)【解析】【分析】先提取公因式y后,再把剩下的式子写成x2)2,符合平方差公式的特点,可以继续分解.【详解】x2y-2y=y(x2-2)=y()().故答案为y((.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止. 17.2122+或1 【解析】 【分析】图1,∠B’MC=90°,B’与点A 重合,M 是BC 的中点,所以BM=121222BC =+, 图2,当∠MB’C=90°,∠A=90°,AB=AC, ∠C=45°,所以Rt 'CMB V 是等腰直角三角形,所以BM=2+1,所以CM+BM=2BM+BM=2+1, 所以BM=1.【详解】 请在此输入详解! 18.3 【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考点:解直角三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=9x(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t(t>3);当S=92时,对应的t值为32或6;(3)当t=32或322或3时,使△FBO为等腰三角形.【解析】【分析】(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.(2)由题意得P(t,9t),然后分别从当点P1在点B的左侧时,S=t•(9t-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•9t=9-27t去分析求解即可求得答案;(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【详解】解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B 在反比例函数y=kx(k >0,x >0)的图象上, ∴3=3k , 即k=9,∴该反比例函数的解析式为:y= y=9x(x >0); (2)根据题意得:P (t ,9t), 分两种情况:①当点P 1在点B 的左侧时,S=t•(9t﹣3)=﹣3t+9(0≤t≤3); 若S=92, 则﹣3t+9=92,解得:t=32;②当点P 2在点B 的右侧时,则S=(t ﹣3)•9t =9﹣27t; 若S=9t ,则9﹣27t =92, 解得:t=6;∴S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t(t >3); 当S=9t 时,对应的t 值为32或6; (3)存在.若CF=BC=3, ∴OF=6,∴6=9t, 解得:t=32;若,则9t,解得:t=2; 若BF=OF ,此时点F 与C 重合,t=3;∴当t=323时,使△FBO 为等腰三角形. 【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.20.填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【解析】【分析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键. 21.(1)i)证明见试题解析;ii;(2;(3)222(2p n m-=+.【解析】【分析】(1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于AC CEBC CF==故△CAE∽△CBF;ii)由AEBF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF==+=,解得CE=(2)连接BF,同理可得:∠EBF=1°,由AB EFkBC FC==,得到::1:BC AB AC k=::1:CF EF EC k=,故AC AEBC BF==BF=2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,故22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, 从而有222(22)p n m -=+. 【详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵2AC CEBC CF==,∴△CAE ∽△CBF ; ii )∵2AEBF=,∴BF=2,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得6CE =;(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21BF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得104k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 22.(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】【分析】(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据AD⋅BC=AP⋅BP,就可求出t的值.【详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴22,53∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【点睛】本题考查圆的综合题.23.(1)70,0.2;(2)补图见解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m 的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.详解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x <90, ∴这200名学生成绩的中位数会落在80≤x <90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.24.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.25.(1)60°;(2)见解析【解析】【分析】(1)连接BD ,由AD 为圆的直径,得到∠ABD 为直角,再利用30度角所对的直角边等于斜边的一半求出BD 的长,根据CD 与AB 平行,得到一对内错角相等,确定出∠CDB 为直角,在直角三角形BCD 中,利用锐角三角函数定义求出tanC 的值,即可确定出∠C 的度数;(2)连接OB ,由OA=OB ,利用等边对等角得到一对角相等,再由CD 与AB 平行,得到一对同旁内角互补,求出∠ABC 度数,由∠ABC ﹣∠ABO 度数确定出∠OBC 度数为90,即可得证;【详解】(1)如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD=90°,∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt △CDB 中,tanC=33BD CD == ∴∠C=60°;(2)连接OB ,∵∠A=30°,OA=OB ,∴∠OBA=∠A=30°,∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC ﹣∠ABO=120°﹣30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线.【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.26.(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF.【解析】试题分析:(1)作DC ,AE 的延长线交于点G .证三角形全等,进而通过全等三角形的对应边相等验证AF CF CD ,,之间的关系;(2)延长FE 交AB 的延长线于点,H 由全等三角形的对应边相等验证AF CF CD ,,关系.试题解析:(1)图②结论:.AF CD CF =+证明:作DC ,AE 的延长线交于点G .∵四边形ABCD 是矩形,.G EAB ∴∠=∠22AFD EAB G FAG G ∠=∠=∠=∠+∠Q ,.G FAG ∴∠=∠.AF FG CF CG ∴==+由E 是BC 中点,可证CGE V ≌BAE V ,.CG AB CD ∴==.AF CF CD ∴=+(2)图③结论:.AF CD CF =+延长FE 交AB 的延长线于点,H 如图所示因为四边形ABCD 是平行四边形所以AB //CD 且AB CD =,因为E 为BC 的中点,所以E 也是FH 的中点,所以FE HF BH CF ==,,又因为2,AFD EAB ∠=∠,BAF EAB FAE ∠=∠+∠所以,EAB EAF ∠=∠又因为,AE AE =所以EAH △≌,EAF V所以,AF AH =因为,AH AB BH CD CF =+=+.AF CF CD ∴=+27. (Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x =时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年吉林省长春市朝阳区中考数学一模试卷
一、选择题(每小题3分,共24分)
1.(3分)实数a、b、c、d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()
A.a B.b C.c D.d
2.(3分)12月24日,第八次中日韩领导人会议在四川成都举行,数据表明2018年三国间贸易总额超过7200亿美元,请将数据7200亿用科学记数法表示为()
A.7.2×1010B.72×108C.72×109D.7.2×1011
3.(3分)如图是由5个完全相同是正方体组成的立体图形,它的主视图是()
A.B.C.D.
4.(3分)下列计算正确的是()
A.a•a2=a2B.a3÷a=a3
C.(ab2)2=a2b4D.(a3)2=a5
5.(3分)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;
二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9
C.D.3(x﹣2)=2(x+9)
6.(3分)如图,在相距am的东西两座炮台A、B处同时发现入侵敌舰C,在炮台A处测得敌舰C在它的南偏东α度的方向,在炮台B测得敌舰在它的正南方,则敌舰C与炮台B之间的距离为()
A.B.a sinαm C.D.a tanαm
7.(3分)如图,在平面直角坐标系中,点A、B在函数y=(x>0)的图象上,分别过点
A、B作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,E是y轴上的点,连
结AB、AD、AE、CE,若点A、B的横坐标分别为2、3,△ACE与△ABD的面积之和为2,则k的值为()
A.B.5C.6D.12
8.(3分)如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()
A.B.
C.D.
二、填空题(每小题3分,共18分)
9.(3分)计算:=.
10.(3分)原价为x元的衬衫,若打六折销售,则现在的售价为元(用含x的代数
式表示)
11.(3分)为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产﹣“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图1所示,若将图1抽象成图2的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是度.
12.(3分)如图,在平面直角坐标系中,直线y=﹣x+3分别交x轴、y轴于A、B两点,点P(m,1)在△AOB的内部(不包含边界),则m的值可能是(写一个即可).
13.(3分)把边长为2的正方形纸片ABCD分割成如图的三块,其中点O为正方形的中心,E为AD的中点,用这三块纸片拼成与该正方形不全等且面积相等的四边形MNPQ(要求这三块纸片不重叠无缝隙),若四边形MNPQ为矩形,则四边形MNPQ的周长是.
14.(3分)如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/h的速度匀速上涨,那么达到警戒水位后,再过h水位达到桥拱最高点O.
三、解答题(本大题10小题,共78分)
15.(6分)先化简,再求值:(2a﹣1)2+2a(3﹣2a),其中a=2020.
16.(6分)甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余均相同,甲袋中三个小球上分别标有数字1、2、7,乙袋中三个小球上分别标有数字
4、5、6,小明分别从甲、乙口袋中通随机摸出一个小球,用画树状图(或列表)的方法,
求小明摸出两个小球上的数字之和为4的倍数的概率.
17.(6分)为迎接五•一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A 种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.
18.(7分)如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE
(1)求证:∠C=∠BED;
(2)若∠C=50°,AB=2,则的长为(结果保留π)
19.(7分)2020年2月21日,某市有600名教师参加了“网络”培训活动,会议就“网络授课”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析,下面给出了部分信息:
a.关于“网络授课”问题发言次数的频数分布直方图如下:
(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24)b.关于“网络授课”问题发言次数在8≤x<12这一组的是:
8 8 9 9 9 10 10 10 10 10 10 11 11 11 11
c.“网络授课”和“家庭教育”这两问题发言次数的平均数、中位数、众数如下:问题平均数(单位:次)中位数(单位:次)众数(单位:次)
网络授课12m10
家庭教育11109
根据以上信息,回答下列问题:
(1)上表中m的值为.
(2)在这次培训会中,参会教师更感兴趣的问题是(填“网络授课”或“家庭教育”),并说明理由.
(3)如果参加这次培训的600名教师都接受调查,估计在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.
20.(7分)图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在图①、图②、图③中,分别以AB为边画一个面积为的三角形,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.
(1)在图①中画△ABC,使∠BAC=45°.
(2)在图②中画△ABD,使△ABD是轴对称图形.
(3)在图③中画△ABE,使AB边上的高将△ABE分成面积比为1:2的两部分.
21.(8分)如图①,一个底面是正方形的长方体铁块放置在高为50cm的圆柱形容器内,现以一定的速度往容器内注水,注满容器为止,容器顶部离水面的距离y(cm)与注水时间x(min)之间的函数图象如图②所示.
(1)长方体的高度为cm.
(2)求该容器水面没过长方体后y与x之间的函数关系式,并写出自变量x的取值范围.(3)若该长方体的底面边长为15cm,直接写出该圆柱形容器的底面积.
22.(9分)【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.
【应用】如图②,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.
【拓展】如图③,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=,BC=4,∠C=
45°,则EF的长为.
23.(10分)如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD 中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).
(1)求点A到边BC的距离.
(2)当点G在边AC上时,求t的值.
(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.
(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.
24.(12分)定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设
点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.
(1)直接写出图象G对应的函数关系式.
(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.
(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.
(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k ﹣n,求s与m之间的函数关系式,并写出m的取值范围.。