UTC2030功放电路简介
TDA2030功放电路原理分析
TDA2030功放电路原理:TDA2030功放电路,其制作简单,价格低廉,输出功率大,保真性好,一、电路工作原理查看!图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。
其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。
TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。
RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。
R2、R3决定了该电路交流负反馈的强弱及闭环增益。
该电路闭环增益为(R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。
静态工作点稳定性好。
C4、C5为电源高频旁路电容,防止电路产生自激振荡。
R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。
VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。
二、元器件的选择集成功率放大器TDA2030。
RP为碳膜电位器。
C1、C2为电解电容器,耐压为16V,C3、C4、C5为瓷介电容。
R1、R2、R3为碳膜电阻,额定功率为1/8W。
R4为碳膜电阻,额定功率为1/4W。
VD1、VD2为IN4007小功率整流二极管。
B为4Ω或8Ω、15W全频扬声器。
三、电路制作在新窗口打开查看!图2是本电路印制电路板图及TDA2030管脚图。
由于TDA2030输出功率较大,因此需加散热器。
而TDA2030的负电源引脚(3脚)与散热器相连,所以在装散热器时,要注意散热器不能与其他元器件相接触。
1u耦合电容是耦合兼隔离。
因为是单电源,三个100k电阻是供正端提供电源电压的中点电压,两个分压,一个隔离。
150k电阻是反馈电阻。
反相端4.7k电阻及下面22u电容对信号有一个滤波作用。
22μ电容器不是耦合电容,是去耦电容器,使得电源经两个100K分压后,由22μ滤波后,再经100K 给IC的1脚提供工作点。
音频功放电路UTC2030 PDF资料下载
C2 22µF
R2 56kO
2
R8 1O RL=4O
R5 R4 3.3kO 30kO C4 10µF R7 1.5O
BD907
C7 0.22µF
Fig. 8 Single supply high power amplifier(UTC2030+BD908/BD907)
6
TEL:400-660-8382
UTC2030
LINEAR INTEGRATED CIRCUIT
Fig. 11 Total harmonic distortion vs. output power
d (%)
Fig. 10 Output power vs. supply voltage
Po (W) 25 0 10 20
The UTC2030 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a short circuit protection system comprising an arrangement for automatically limiting the dissipated power to as to keep the working point of the output transistors within their safe operating area. A
PARAMETER SYMBOL
Supply Voltage Quiescent drain current Input bias current Input offset voltage Input offset current Vs Id Ib Vos Ios
功放电路简介
IC1D是一个变换相位放大 器电路,使用线性电位器W3 与IC1D配合,实现对相位的 切换控制。
该电路的特点是:调节时,当电位器W3的触点置于近中心位置 时,放大倍数为0,IC1D无信号输出;触点从中间分别滑向 R28端或R29端的行程中,电路的增益分别呈反相状态和同相 状态逐渐提升。至两端时,增益达到最大并且相等,但相位正 好相反。推荐与低音处理电路相配套的BTL功放原理结构如图3 所示,两个OCL功放各自独立工作,避免了噪声(尤其在大动态 时)失真的传递和相位的延迟。它较小的输入阻抗,减小了外界 干扰信号的窜入。
图四是一款比LM1036N还佳的音调电路——LM4610N,该 集成芯片是美国国家半导体公司(即NS公司)新推出的一款包 含了LM1036N的全部功能外,还具有立体声3D环绕声音场效果 处理功能,当K2接通时3D环绕声处理功能开启,此时可根据自 己的爱好将立体声三维(3D)音场效果调至最佳即可! LM4610N的主要性能参数如下:工作电压为9-16V(典 型采用12V),音调调节范围±15dB,平衡调节范围1-20dB, 音量调节范围75dB,总谐波失真仅为0.03%,信噪比80dB,频 响宽达250KHz。LM4610N除具备了LM1036N极佳的音质外还具备 了3D环绕声音场效果处理功能(开关接通调节RP5可获喜欢的 效果),其三维空间感包围感极强(类似SRS的效果) 。
功放电路TDA2030详解
功放集成电路TDA2030详解音频功放电路TDA2030,采用5 脚单列直插式塑料封装结构,如图所示,按引脚的形状引可分为H型和V型。
该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、谐波失真和交越失真小等特点。
并设有短路和过热保护电路等,多用于高级收录机及高传真立体声扩音装置。
意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。
电路特点:[1].外接元件非常少。
[2].输出功率大,Po=18W(RL=4Ω)。
[3].采用超小型封装(TO-220),可提高组装密度。
[4].开机冲击极小。
[5].内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路、过热、地线偶然开路、电源极性反接(Vsmax=12V)、负载泄放电压反冲等。
极限参数:如表1所示。
表1 TDA2003极限参数(TA=25 ℃)参数名称符号参数值单位电源电压Vcc ±18V输入电压Vt ±18V差分输入电压Vi ±15V3.5 A输出峰值电流IO功耗PD 20 W结温Ti -40~+150 ℃工作环境温度Topt -30~+75 ℃贮存温度Tstg -40~+150 ℃封装形式:TDA2030为5脚单列直插式,如上图1所示电气参数:如表2所示表2:TDA2030电气参数(Vcc=±14V,TA=25℃)典型应用电路:各元器件的作用:元器件推荐值作用比推荐值大时对电路的影响比推荐值小时对电路的影响R1 150K 闭环增益设置增大增益减小增益R2 4.7K 闭环增益设减小增益增大增益R3 100K 同相输入偏置增大输入阻抗减小输入阻抗R4 1Ω移相,稳定频率感性负载有振荡危险R5、R6 均100K 同相输入端偏置电源消耗增大C1 1u 输入隔直提高低频截至频率C2 22u 反相隔直提高低频截至频率C5 100u 低频退耦有振荡的危险C3 100n 高频退耦有振荡的危险C6 2200u 输出隔直提高低频截至频率C7 220n 移相、稳定频率有振荡的危险D1、D2 输出电压正负限幅保护注意事项:TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。
2030功放电路
如图是由tda2030构成的单通道功放,由LIN输入,OUT1输出接喇叭。
单电源工作,12到20V即可。
两个4007防止输出过高或过低,用来保护2030的。
静态工作点由R8,R9分压提供,R1提高输入阻抗. 放大倍数由R5和R3决定。
放大倍数为(1+R5/R3).。
上图为双电源工作的单声道2030功放。
双电源失真比较小,但是变压器要有双电源,比较麻烦,没有的还要再买。
放大倍数为(1+R5/R4)。
做两声道时电路和上图一样。
要把RW1A和另一声道的RW用一个双联电位器替换,使得调声音大小时,两声道同步。
本人均试过,还有2.1低音炮功放的。
发现只要电源功率够,30W以上,所用的喇叭质量不要太差,2030的散热做好,完全比2.1声道的好。
因为2.1声道的电源功率要很大,不然容易不足,导致喇叭破音。
以上电路图都没有加音调电路。
现在电脑、mp3调音完全比普通的音调电路失真小得多。
而且音调电路会给初学者带来画图的困难,容
易把双联电位器弄反,调试也会麻烦很多。
至于散热。
本人经验,不需太大散热器,占位子又贵。
分别用普通散热片,1元左右的即可。
把所有的2030安置再附近,散热片不要与地相连,散热片靠一起也没事。
用一个2元的12V散热风扇对着散热片吹就够了,比用大散热片,没有风扇的温度低很多。
不信试试会有体会。
最后把变压器安置散热片附近,让变压器吹到一点风更好。
TDA2030功放电路制作说明(2014.11.21)
。
5、整机电路调试:将所有开关(SW1/SW2/SW3/SW4)接通、T4 和接地端 T7 接入扬 声器,然后连接直流电源 14V。从 PC 端或其他音频输出设备获取音频信号,送至功放电路 的输入端 T1 与接地端 T5 之间,听取播放效果。 六、实测数据 可依据以下表格中的参考值,测量电路板中各点的信号情况。 缓冲级电路 Vi 实测值 5mV VU1B-OUT
E
D
图 5 TDA2030 典型 OTL 电路 三、电路制作及装配 电路装配步骤及要求 为了达到训练效果,减小差错率,每个元器件的安装焊接均可按下面的步骤完成: 复测元器件 引线清洁、上锡、成形 插装 焊接 修剪引脚 整形 装配步骤 1 2 3 4 项目名称 核对元件数量 检测元件 元件的加工 元件器的插装 内容 结合原理图或元件清单,逐个核对,确保齐全。 检测元件性能好坏,辨别极性元件的引脚。 对被氧化元件的引脚表面进行刮、镀锡处理,并根据 电路板元件的插孔进行成型。 按照“先小后大,先低后高,先轻后重”的原则插装
四、 元器件及其位号对照表 名称 金属膜电阻 金属膜电阻 金属膜电阻 金属膜电阻 金属膜电阻 金属膜电阻 金属膜电阻 瓷片电容 独石电容 独石电容 电解电容 电解电容 电解电容 电解电容 模拟电位器 模拟电位器 单刀双掷开关 测试端、 接地端、 输入输出信号端 IC 插座 四运放 IC 集成音频功放芯片 散热片及螺丝 型号 RJ-1/4 W -5.1Ω RJ-1/4 W -1kΩ RJ-1/4 W -2.2KΩ RJ-1/4 W -10KΩ RJ-1/4 W -100KΩ RJ-1/4 W -150KΩ RJ-2W -8Ω CC-63V—2200pF CC-63V—33nF CC-63V—100nF CD-25V—10UF CD-25V—47UF CD-25V—220UF CD-25V—470UF 10 KΩ 10 0KΩ 银色-3 脚-拨动开关 自制双焊盘封装 DIP8 LM324 TDA2030 数量 1 1 2 5 6 1 1 1 4 1 3 5 1 1 1 2 4 9 1 1 1 1套 位号 R16 R14 R9/R10 R3/R4 /R6/R7/R8 R1/R2/R5 /R11/R12/R13 R15 R17 C7 C5/C6/C12/C15 C18 C1/C3/C9 C2/C8/C10/C11/C14 C4/C13 C16 RP3 RP1/RP2 SW1/SW2/SW3/SW4 T1~T9 U1 U1 U2
漫步者R系列2.1音箱工作原理与快速检修方法
漫步者R系列2.1音箱工作原理与快速检修方法(附图漫步者R系列大部分型号的2。
1音箱(R201T、R321T、R211T、R301T、R303T等)与此图的工作原理相似,可以作为维修的参考资料。
工作原理,如图纸所示:主要分为三部分。
分别为电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(U=1.414*12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的右声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
C1/R3组成高通滤波电路,截止频率大约为200HZ左右;尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
通用2.1多媒体音箱电路图
工作原理,如图纸所示:主要分为三部分。
分别为电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
2.1音箱工作原理与快速检修方法
前段时间我的漫步者R201 TII ,音箱突然右边的小喇叭不响了,晃几下线又好了。
但是发现杂音很重而且音乐的味道变了。
注意到杂音随着音量的大小而变化,而且台灯开更大,手触摸音箱散热背板也变大(电磁问题?)怀疑是音箱内部电路有元件被烧了?]请大家一起帮忙解决我这个问题!我也在网上搜索了些资料,在这里分享给大家多媒体音响"嗡嗡"噪音原因分析及解决办法多媒体音响在使用一段时间后,常会出现一些莫名其妙的问题,坛子里网友经常提问的“嗡嗡”声问题,就是其中之一。
此故障的“故障点”涉及面比较大,有必要编辑一篇文章来向网友释疑。
嗡嗡噪音的表现现象从下面几方面分析:一。
2。
0音箱在没接音源的时候出现嗡嗡声,见图一,1900TII电源图纸。
老版本的R1800TII(1900TII),惠威D1080,甚至于前一阵子网友反映的惠威高端T200 B,都出现过类似问题。
去掉输入信号连线,在开机状态下,靠近低音单元处可以听到明显的嗡声,在夜深人静的时候,这种嗡嗡声更加明显。
也可以说,这是音响的本底噪音,有些朋友会不以为然,感觉笔者小题大作。
事实上,此问题是可以改进的。
个人分析如下:有源音箱内部体积比较小,普通EI型变压器(自身的漏磁比较大),与功放板(或有些防磁性能略差的喇叭单元)之间很容易产生干扰,导致喇叭发出低沉的"嗡嗡"声,当调整EI变压器的安装位置或者方向时,嗡声可以减小,(采用优质环牛或EI变压器有较好的屏蔽措施,讨厌的"嗡"声可以大大减小)。
之前惠威D1080也有这种情况,(包括漫步者的R1800TII/1900TII.)在细节方面,厂家确实应该多下功夫了。
笔者曾经拆解过漫步者R1900TII/1800TII,采用的都是普通EI变压器,都存在这个问题,曾试着卸掉变压器的固定螺丝,将变压器远离功放板,干扰大大减小。
至于调整到那个位置,拆机以后根据具体情况来调整,可以将嗡声减到最小有些使用时间长的多媒体音响,变压器本身会发出低沉的嗡嗡声,令人生厌,原因是变压器的硅刚片松动或异常,引起变压器自身的噪音。
TDA2030功放电路图电压±6
TDA2030功放电路图电压±6时间:2015-4-15日 9:14TDA2030引脚图与应用电路参数TDA2030是最常用到的音频功率放大电路,模拟电路的课本的一般都有介绍,这里我给大家介绍一下各种TDA2030参数TDA2030管脚功能:1脚是正相输入端2脚是反向输入端3脚是负电源输入端4脚是功率输出端5脚是正电源输入端。
<TDA2030引脚图>TDA2030特点:1.开机冲击极小。
2.外接元件非常少。
3.TDA2030输出功率大,Po=18W(RL=4Ω)。
4.采用超小型封装(TO-220),可提高组装密度。
5.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。
6.内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。
功放中的前置放大器,一般都采用双电源供电,即对称的正负电源供电。
业余制作时,又会碰到手头无双电源,这就给制作带来困难。
本文介绍利用TDA2030将单电源转换双电源给前置放大器NE5532供电,电路如附图所示。
用TDA2030做双电源供电电路TDA2030 (IC1)是一种高效的运算放大器。
利用它的互补输出,就可将单极性电源转换成所需出的双极性电源。
在图中,阴值相等的Rl、 R2形成一个分压器,分压器的中点接到IC1运算放大器的同相输入端,且IC1接成电压跟随器,使O’端和0端电位相等。
O’端又是虚地点,它与输入电源的接地端完全隔离。
C2、C3分别为正、负电源的滤波电容。
正电源从C2的“+”端输出,加到IC2 NE5532的⑧脚,负电源从C3的“一”端输出,加到IC2 NE5532的④脚.O’端为IC2的接地端。
由于NE5532在以往的文章中介绍较多,这里不再赘述。
在电路图中均标明了元件数值,只要按图制作,一般无需调试均可正常工作。
音频功放2030在音箱里应用
YW-UTC2030在音箱里应用
早之前国内做音箱的企业,如果有要用2030的,几乎全部在用ST的TDA2030.
这是一款18V,14W的非常通用的音频功率放大器.但是它的性能还是毋庸置疑的. TDA2030出来也有30多年了.这么久的时间还能经久不衰,它肯定有它独特的地方. 音箱方面是用2030最普遍的.
从2.0音箱到5.1音箱用的数量不等.
2.0音箱
漫步者2.0音箱一般用2颗YW-UTC2030(可以完全替代TDA2030)
2.1音箱
漫步者2.1音响一般用到3颗YW-UTC2030
5.1音箱
5.1音箱用到的YW-UTC2030数量不等,多的达7颗
2030的价格进口原装的在1.0元以上.低于1.0元又打着ST的都是国产仿冒产品.
这样对企业的采购就造成了一个大麻烦. YW-UTC2030以它0.76元的价格.成功征服了漫步者,麦博,轻骑兵等一些大型音箱制造企业. 现在也有很多音箱厂选择使用LM1875和TDA7296,但是这些料的价格都是贵的吓人. TDA7296一般都是用在高档音箱上的,这种音箱动辄上千元!
摘自- 。
tda2030功放电路+原理
TDA2030原理图2011-05-04 18:39:28| 分类:默认分类| 标签:无|字号大中小订阅.一、电源电路:220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V 为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
多媒体音箱电路图
工作原理,如图纸所示:主要分为三部分。
分别为电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
2030集成功放说明书
目录1.前言 (1)2.系统设计技术参数要求 (1)3.系统设计 (1)3.1系统设计总体框图 (1)3.2各模块原理说明 (2)3.3系统总原理图说明 (3)3.4系统印刷电路板的制作图 (4)3.5系统的操作说明 (4)3.6系统操作注意事项 (4)4.系统设计参数文献 (5)5.致谢词 (5)6.附录 (6)1、前言这里介绍一个用2030集成做成的功放。
这个功放使用方便简单,接上音箱、CD、VCD、DVD、MP3、电脑和电源即可工作。
板上有自带整流器,可以直接输入交流电,也可以直接输入直流电,可用蓄电池供电。
功放设计有音量控制、高音控制、低音控制、左右声道均衡控制。
2.系统设计技术参数要求1、通过制作的安装、焊接、调试,更好的掌握Protel99画图的技巧,训练动手能力,掌握元器件的识别、简易测试以及整机调试工艺。
2、熟练使用电烙铁、剪钳、万用表等电子工具。
3、对照电路原理图,了解工作原理,图上符号,并于实物对照。
4、认真仔细的安装焊接,排除安装过程中出现故障。
3.系统设计3.1 系统设计总框图3.2 各模块原理说明常用的音调控制电路有三种形式,一是衰减式RC 音调控制电路,其调节范围宽,但容易产生失真;另一种是反馈型音调控制电路,其调节范围小一些,但失真小;第三种是混合式音调控制电路,其电路复杂,多用于高级收录机。
为使电路简单而失真又小,本音调集成功率电路中采用了由阻容网络组成的RC 型负反馈音调控制电路。
它是通过不同的负反馈网络和输入网络造成放大器闭环放大倍数随信号频率不同而改变,从而达到音调控制的目的。
下图是这种音调控制电路的方框图,它实际上是一种电压并联型负反馈电路,图中Z f 代表反馈回路总阻抗;Z i 代表输入回路的总阻抗。
电路的电压增益。
只要合适选择并调节输入回路和反馈回路的阻容网络,就能使放大器的闭环增益随信号频率改变,从而达到音调控制的目的。
组成Z i 和Z p 的RC 网络通常有下图所示四种形式。
UTC2030 PDF中文资料
MAX
±18 80 2 ±20 ±200
UNIT
V mA μA mV nA
Supply Voltage Quiescent drain current Input bias current Input offset voltage Input offset current
Vs=±16v d=0.5%, Gv=26dB f=40 to 15kHz RL=4Ω RL=8Ω Po=15W, RL=4Ω
5
UTC2030
LINEAR INTEGRATED CIRCUIT
+Vs
C3 0.22 F C5 220 F /40V
Vi
1
R3 56k
1N4001
C1 2.2 F
R1 56k
¡
R6 1.5
¡
5
BD908
C2 22 F
1N4001
R2 56k
¡
2
3
C6 0.22 F
¡
UTC2030
4
C8 2200 F
F
LINEAR INTEGRATED CIRCUIT
+Vs
220
Vi
22
100k 2.2
¡ F
100k
0.1
F
1N4001
1
F
100k
¡
2
5 UTC2030 3
100k
4
2200 R4 1 1N4001 C7 220nF
¡
2.2 F
Fig. 1 Single supply amplifier
YOUWANG ELECTRONICS CO.LTD
tda2030功放电路图
TDA2030功放电路图简介TDA2030是一种经典的单声道音频功放集成电路,适合用于音乐播放器、电视机、电脑等音频设备中的音频放大和音箱驱动。
它具有低失真、高输出功率和低功耗等特点,因此非常受欢迎。
本文将介绍如何使用TDA2030集成电路搭建一个简单的功放电路,并提供相应的电路图。
功放电路图以下是TDA2030功放电路的原理图:+----------------+| |IN---| TDA2030 || |GND--| || |OUT--| |+----------------+电路说明•IN为音频输入端,可以连接来自音源的音频信号。
•GND为接地端,需要连接到电路的地线上。
•OUT为音频输出端,可以连接到音箱或扬声器上。
部件说明1.TDA2030:这是一个5引脚单声道音频功放集成电路,它可以提供高达14W的输出功率。
2.电容:在电路中添加适当的电容可以实现低通滤波,提高音质。
3.电阻:通过选择适当的电阻值,可以调节电路的增益和输出功率等参数。
4.电源:为TDA2030提供适当的电源电压。
连接说明以下是TDA2030功放电路的具体连接方式:1.将音频信号的正极连接到IN引脚上。
2.将音频信号的负极连接到GND引脚上。
3.将扬声器的正极连接到OUT引脚上。
4.将扬声器的负极连接到GND引脚上。
5.将电源的正极连接到TDA2030的供电引脚上。
6.将电源的负极连接到GND引脚上。
注意事项1.在连接电路时,请确保电源的极性正确,以免损坏电路。
2.在使用过程中,注意避免过载和短路,否则可能会导致功放电路烧毁。
3.在调试和测试电路时,可以逐渐增加音量,以避免扬声器过载。
结论通过使用TDA2030集成电路搭建一个简单的功放电路,我们可以实现音频信号的放大和扬声器的驱动。
这个电路具有低失真、高输出功率和低功耗等特点,适合用于各种音频设备中。
希望通过本文的介绍,你对TDA2030功放电路有了更清楚的了解,并能够顺利搭建一个功能强大的音频功放电路。
TDA2030使用电路大全
1脚是正相输入端2脚是反向输入端3脚是负电源输入端4脚是功率输出端5脚是正电源输入端。
1.正相输入端的3个100K电阻作用是什么啊?——静态偏置,让IC输入输出都偏置到中点电位,以避开非线性区;1:这是一个单电源供电功放电路。
为了保持功放电路正常工作,1脚和2脚电压必须一样且都为电源电压的一半,即VCC/2。
2个100K电阻(最上面的和最下面的)实际上是电阻分压电路,正好分压VCC的一半,再经过中间一个100k电阻到1脚,使1脚电压在正常工作电压VCC/2。
2:那个左边的22uf电容是上面VCC/2电压的滤波电容,防止1脚电压大波动。
100K和最下面的100K组成VCC/2分压电路,不再解释。
3:功放的放大倍数计算公式是Au=1+(150K/4.7K),你可以自己改变电阻来改变放大倍数,即放大功率数。
4.7K电阻下面的22uf是改善功放性能的。
4:该电路又叫OTL功放,那个2200uf大电容是该电路的特点。
单电源功放必须要有该电容,作用是弥补出来一个VCC/2。
5:1欧电阻和他下面的电容式防止电路自激振荡的,也可以不要。
6:最大功率计算要参照该TDA2030的官方资料。
不同接法的电路功率是不一样的,不止跟喇叭电阻大小有关。
2.1N4001呢?——电感负载的续流管,避免输出关闭时电感负载(喇叭)的感生电流击穿IC内输出管3. 另外,单电源接法和双电源接法有什么区别呢?——单电源少组电源,对电源要求低了;但多了输入输出隔离电容。
只要参数合理这点对性能没多大影响。
VIN 是信号输入,经过电位器音量调节,上移声音增大,下移减小,经过C1耦合馈入同相输入端①脚,。
通用2.1多媒体音箱电路图附讲解
工作原理,如图纸所示,主要分为三部分。
电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路)因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
4558的1脚为前置输出,经R19后进入由IC4B、C9、C10、R20组成的低通滤波器。