高等数学上册练习题

合集下载

大学高等数学上习题(附答案)

大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。

高等数学上数学试题及答案

高等数学上数学试题及答案

高等数学上数学试题及答案一、选择题(每题5分,共20分)1. 极限的定义中,若函数f(x)在点x=a处的极限存在,则对于任意的正数ε,都存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。

则以下哪个选项是正确的?A. ε和δ可以互换B. δ依赖于ε和函数f(x)C. δ依赖于ε和aD. ε依赖于δ和函数f(x)答案:B2. 函数f(x)=x^2在区间[0,1]上的定积分表示的是?A. 曲线y=x^2与x轴围成的面积B. 曲线y=x^2与y轴围成的面积C. 曲线y=x^2与x轴围成的体积D. 曲线y=x^2与y轴围成的体积答案:A3. 以下哪个函数是偶函数?A. f(x)=x^3B. f(x)=x^2C. f(x)=x^2+1D. f(x)=x^3-1答案:B4. 函数f(x)=sin(x)的导数是?A. cos(x)B. -sin(x)C. tan(x)D. -cos(x)答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-3x+2的导数是_________。

答案:3x^2-32. 函数f(x)=e^x的不定积分是_________。

答案:e^x+C3. 函数f(x)=ln(x)的导数是_________。

答案:1/x4. 函数f(x)=x^2+2x+1的极值点是_________。

答案:x=-1三、解答题(每题15分,共30分)1. 计算定积分∫[0,1] (2x+1)dx,并说明其几何意义。

解:∫[0,1] (2x+1)dx = [x^2+x] | [0,1] = (1^2+1) - (0^2+0) = 2几何意义:表示曲线y=2x+1与x轴在区间[0,1]上的面积。

2. 求函数f(x)=x^3-6x^2+9x+1在区间[0,3]上的单调区间。

解:首先求导数f'(x)=3x^2-12x+9,令f'(x)=0,解得x=1或x=3。

在区间[0,1)上,f'(x)>0,函数单调递增;在区间(1,3]上,f'(x)<0,函数单调递减。

大学高等数学上考试题库(附答案)

大学高等数学上考试题库(附答案)

.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题 3分,共 30分).1.下列各组函数中,是相同的函数的是( ) .(A ) f xln x 2 和 g x2ln x( B ) f x| x | 和 g xx 2(C ) f xx2( D ) f x| x | 和 g x和 g xx1xsin x 4 2x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A ) 0(B )1( C )1(D )243.曲线 y xln x 的平行于直线 xy 1 0 的切线方程为() .(A ) y x 1 ( B ) y(x 1)( C ) yln x 1 x 1(D ) y x4.设函数f x| x |,则函数在点 x 0 处() .(A )连续且可导( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 yx 4 的() .(A )驻点但非极值点 ( B )拐点(C )驻点且是拐点( D )驻点且是极值点6.曲线 y1 的渐近线情况是( ) .| x |(A )只有水平渐近线 ( B )只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f1 1dx 的结果是().x x 2(A ) f1 C( B )1 C ( C ) f1 C1 Cxfx( D ) fxx8.dx 的结果是() .xe xe(A ) arctan e x C( B ) arctan e xC( C ) e xe x C( D ) ln( e x e x ) C9.下列定积分为零的是() ..(A )4arctanxdx ( B ) 4x arcsin x dx ( C ) 1 e xe x 1 21x 2 12dx ( D )x x sin x dx44 110.设 f x12x dx 等于() .为连续函数,则 f(A ) f 2f 0(B )1f 11f 0(C )1f 2f 0 ( D ) f 1 f 022二.填空题(每题4 分,共 20 分)1.设函数 fxe 2x 1 x在 x 0 处连续,则 a.xa x2.已知曲线 yf x 在 x2 处的切线的倾斜角为5 ,则f 2.6x3. y的垂直渐近线有条 .2x 14. dx.ln 2 xx 15. 2 x 4 sin xcosx dx.2三.计算(每小题 5 分,共 30 分)1.求极限1 x2 xxsin x①limx②limx 21xx 0x e2.求曲线 y ln x y 所确定的隐函数的导数y x .3.求不定积分①dx ②dx a③xe x dxx 1 x 3x 2 a 2四.应用题(每题 10 分,共 20 分)1. 作出函数 yx 3 3x 2 的图像 .y 22x y x 4.《高数》试卷 1 参考答案一.选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C 二.填空题1. 22.3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16x y 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内,每题 3分,共 30分)1. 下列各组函数中, 是相同函数的是 ().(A)f x x 和 g x x2(B)f x x21和 y x1x1(C)f x x 和 g x x(sin 2 x cos2 x)(D)f x ln x2和 g x2ln xsin 2x 1x1x12. 设函数f x2x1,则 lim f x() .x2x 1 1x1(A)0(B) 1(C)2(D)不存在3. 设函数y f x在点 x0处可导,且f x>0,曲线则 y f x在点x0 , f x0处的切线的倾斜角为 {}.(A)0(B)2(C)锐角(D)钝角4. 曲线y ln x 上某点的切线平行于直线y2x3,则该点坐标是().(A)2,ln 1(B)2,1(C)1(D)1ln 2 2ln,ln 2,2225. 函数y x2e x及图象在1,2内是 ().(A) 单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D) 单调增加且是凹的6. 以下结论正确的是 ().(A)若 x0为函数y f x的驻点 , 则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 , 一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 , 则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .17. 设函数y f x的一个原函数为x2e x,则f x =().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8. 若f x dx F x c ,则sin xf cosx dx().(A) F sin x c(B) F sin x c (C)F cosx c(D)F cos x c9.设 F x为连续函数 , 则1x dx =(). f02(A) f1f0(B) 2 f1f0(C)2f2f0(D)1f0 2 f2ba b 在几何上的表示(10. 定积分dx).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b 1 (D)矩形面积 b a1二. 填空题 (每题 4 分,共 20分)ln1x2x0 ,1.设 f x1cos x在 x0 连续,则a=________.a x02.设 y sin2x ,则 dy _________________d sin x.3.函数 yx1 的水平和垂直渐近线共有_______条 . x2 14.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三. 计算题 ( 每小题5分,共 30分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2. 求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分 :①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10分, 共 20 分)1. 作出函数y 1 x3x 的图象.(要求列出表格)3.2. 计算由两条抛物线:y2x, y x2所围成的图形的面积.《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. - 2 2.2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.① e2② 1 2.y x e y2y3.① sec3 x c② ln x2a2x c③x22x 2 e x c3四. 应用题: 1.略 2.S13《高数》试卷3(上)一、填空题(每小题 3分, 共24分)1. 函数y1的定义域为 ________________________.9x2.设函数sin 4x0 则当 a 时 在处连续2. fxx , x,, f x x 0.=_________a,x3. 函数 f ( x)x 2 1的无穷型间断点为 ________________.x 23x24. 设 f ( x) 可导 , yf (e x ) , 则 y ____________.5.limx 2 1_________________.2x 2x 5x6. 1 x 3 sin 2 xdx =______________.1x 4x 2 17. d x 2e tdt _______________________.dx 08. yyy 30 是_______阶微分方程 .二、 求下列极限 ( 每小题 5 分,共 15分)x1x 31 x1.lim e ;2.lim ; 3.lim 1.sin xx 2 9 2xx 0x 3x三、求下列导数或微分 ( 每小题 5 分 , 共 15分) 1. yx x , 求 y (0) .2.ye cos x , 求 dy .2 求 dy.3. 设 xy e x y ,dx四、求下列积分 ( 每小题 5 分, 共 15 分)1. 1 2sin x dx .2.x ln(1x)dx .x3. 1e 2 xdx五、 (8 分) 求曲线xtcost 在 t 2处的切线与法线方程 .y1六、 (8 分) 求由曲线 yx 2 1, 直线 y0, x 0 和 x1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分) 求微分方程 y6 y 13 y 0的通解 ..八、 (7 分) 求微分方程 yye x 满足初始条件 y 10 的特解 .x《高数》试卷 3 参考答案一. 1. x 3 2. a 43. x 24.e xf '(e x )5.16.07.2 xe x28. 二阶2二 .1. 原式 =limx 1x 0x2. lim11 x 3 x3 63. 原式 =lim[(11 1)2 x] 2 ex2x三.1.y ' 2 2 , y'(0)1( x 22)122.dysin xe cos x dx3. 两边对 x 求写: yxy ' e x y (1 y ')y 'e x yy xy yxe x yxxy四.1. 原式 =lim x2cos x C2. 原式 ===2x 2lim(1x)d ( x)lim(1 x) 1 x 2d [lim(1 x)] 22 x 21 x x2 11xx) dx x) 1 lim(12lim(1 ( x )dx 21 x2 2 1 x x 2x)1 x2 x lim(1 x)] Clim(1[ 2223.原式 =1 e 2x d (2 x)e2x 0 1 ( e 1)1112222五.dy sin tdy t 1 且 t, y 1dxdx 22 切线: y1 x2 ,即 y x 12法线: y1 ( x),即 y x 122六.12 1)dx (1x2x)13 S(x22V1 1)2dx1 2x21)dx(x2( x 4x 522128(xx) 0155 3七. 特征方程 :r 2 6r 13 0 r3 2iy e 3x (C 1 cos2x C 2 sin 2x)八. y e1dx1dxx( e x e xdx C )1 [( x 1)e x C] x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是() .A2,1 B2,1C 2,1 D2,12、极限 lim e x 的值是().xA 、B、C 、 D、 不存在3、 limsin(x1) () .x 11 x 211A 、 1B 、 0C、2D 、24、曲线 yx 3x 2 在点 (1,0) 处的切线方程是()A 、 y2(x 1)B、 y 4( x 1)C 、 y 4x 1D、 y 3( x 1)5、下列各微分式正确的是() .A 、 xdx d ( x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d(5x)D、 d ( x 2 ) (dx )26、设f (x)dx 2 cosxC ,则 f ( x)() .2xB、sin xC、xC D、xA、sin2sin 2 sin222 7、2ln x dx() .xA、212x CB、1x2Cln(2x22ln )21ln xC、ln 2ln x CD、Cx 28、曲线y x2, x1, y0所围成的图形绕y 轴旋转所得旋转体体积V () .A、1B1 x4 dx、ydy 0011C、(1 y)dyD、(1 x 4 )dx009、1 e xx dx() .0 1e1eB、ln2eC1eD12eA、ln2、ln3、ln2210、微分方程y y y2e2 x的一个特解为() .A、y 3 e2 x B 、y 3 e x C 、y 2 xe2 x D 、y 2 e2 x7777二、填空题(每小题 4 分)1、设函数y xe x,则y;2、如果lim 3sin mx2,则 m.x 02x313、x3cos xdx;14、微分方程y 4 y 4 y0 的通解是.5 、函数f ( x)x 2x在区间 0,4上的最大值是,最小值是;三、计算题(每小题 5 分)、求极限lim 1 x1 x ;2、求 y 1cot2 x ln sin x的导数;1x2 x 03、求函数x 3 1 4、求不定积分dx ;y3的微分;1x 1x15、求定积分e ln x dx ;6dyx1、解方程 ;edxy 1 x 2四、应用题(每小题 10 分)1、 求抛物线 yx 2 与 y 2 x 2 所围成的平面图形的面积 .2、 利用导数作出函数 y 3x 2 x 3 的图象 .参考答案一、1、C ; 2 、D ; 3 、C ; 4 、B ; 5 、C ; 6 、B ; 7 、B ; 8 、A ; 9 、A ; 10、D ;二、 1、 ( x 2)e x; 2、4;3、0; 4、 y(C 1 C 2 x)e 2 x ; 5 、 8,09三、1、 1 ; 2、 cot 3 x ; 3 、6x 2 dx ; 4 、2 x 1 2 ln(1 x 1) C ;(x 3 1) 25、 2(21) ;6 、 y 22 1 x 2C;e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1、函数 y1的定义域是().2 x1)lg( xA 、 2,10,B 、1,0 (0, )C、(1,0)(0,)D、 (1, )2、下列各式中,极限存在的是() .A、lim cosxB、 lim arctan xC、 lim sin xD、lim 2xx 0x x x 3、lim (x) x() .x 1 xA 、e B、e2C、 1D、1 e4、曲线y xln x 的平行于直线x y 1 0的切线方程是() .A、y xB、 y(ln x1)( x1)C、y x1D、 y(x1)5、已知y x sin 3x,则 dy() .A、( cos3x3sin 3x)dxB、 (sin 3x3x cos3x)dxC、(cos3x sin 3x)dxD、 (sin 3x x cos3x) dx6、下列等式成立的是() .A、C、x dx1x 1CB、a x dx a x ln x C11 cosxdx sin x C D、 tan xdx Cx217、计算e sin x sin xcos xdx的结果中正确的是() .A、e sin x CB、e sin x cosx CC、e sin x sin x CD、 e sin x (sin x 1) C8、曲线y x2, x1, y 0 所围成的图形绕x 轴旋转所得旋转体体积V().1x4 dx1ydyA、B、001(1 y)dy D1C、、(1 x 4 )dx00aa2x2 dx (9、设a﹥0,则) .A、a2B、 a2 C 、1a20 D 、1a2244 10、方程()是一阶线性微分方程 ..A、x2y ln y0B、 y e x y 0 xC、(1x2 ) y ysin y 0D、 xy dx ( y 26x) dy 0二、填空题(每小题 4 分)1、设f (x)e x1, x0,则有 lim f (x),lim f ( x);ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1 x 2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x5、求定积分eln x dx ;1e6x2 y xy y满足初始条件y(1) 4的特解 .、求方程2.四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、1、B; 2 、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10、B.二、 1、 2 , b ;2、( x2)e x;3、ln 5 , 0 ;4、 0 ;5、C1e x C 2e2x.三、1、1; 2 、x arccos x 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x24、2 2ln x C ;5、 2(21) ; 6 、y 2 e e x四、 1、9 ; 2 、图略21x;2单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

高数上学期题库及答案

高数上学期题库及答案

高数上学期题库及答案一、选择题1. 函数f(x)=x^2+3x+2在区间[-2, 1]上的最大值是:A. 1B. 3C. 5D. 7答案:C2. 极限lim(x→∞) (1-1/x)^x的值是:A. 0B. 1C. e^-1D. e答案:D3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0C. 1D. 2答案:C二、填空题4. 函数f(x)=sin(x)+cos(x)的周期是______。

答案:2π5. 若f(x)=x^3-6x^2+11x-6,则f'(x)=______。

答案:3x^2-12x+11三、解答题6. 求函数y=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

解:首先求导数y'=3x^2-12x+11,令y'=0,解得x=1和x=3(重根)。

由于是重根,需要计算二阶导数y''=6x-12,代入x=1和x=3,得到y''(1)=-6,y''(3)=6。

因此,x=1处为极大值点,x=3处为极小值点。

计算端点和极值点的函数值,得到y(1)=0,y(3)=-2,所以最大值为0,最小值为-2。

7. 求曲线y=x^2与直线y=4x在第一象限的交点坐标。

解:联立方程组:\[\begin{cases}y = x^2 \\y = 4x\end{cases}\]解得x=0(舍去,因为不在第一象限)和x=4,代入任一方程得y=16,所以交点坐标为(4,16)。

四、证明题8. 证明:若f(x)在[a,b]上连续,则f(x)在[a,b]上可积。

证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上有界且只有有限个间断点。

根据达布定理,对于任意的ε>0,存在一个分割P:a=x_0<x_1<...<x_n=b,使得U(P,f)-L(P,f)<ε。

完整)高等数学练习题附答案

完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。

+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。

2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。

参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。

由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。

高等数学同步训练习题上

高等数学同步训练习题上

高等数学同步训练习题上一、极限1. 计算下列极限:- \( \lim_{x \to 0} \frac{\sin x}{x} \)- \( \lim_{x \to \infty} \frac{1}{x^2} \)- \( \lim_{x \to 2} (x^2 - 4) \)2. 判断下列函数在 \( x \to 0 \) 时是否存在极限,并求出极限值(如果存在):- \( f(x) = x^2 \sin \frac{1}{x} \)- \( g(x) = \frac{\sin x}{x} \)二、导数与微分1. 求下列函数的导数:- \( f(x) = x^3 - 2x^2 + 5x + 7 \)- \( g(x) = \sin x + \cos x \)2. 利用导数判断下列函数在 \( x = 1 \) 处的单调性:- \( h(x) = x^2 - 2x + 1 \)- \( k(x) = e^x - x \)三、积分1. 计算下列不定积分:- \( \int x^2 dx \)- \( \int \frac{1}{x} dx \)2. 解下列定积分:- \( \int_{0}^{1} x^3 dx \)- \( \int_{1}^{e} \frac{1}{x} dx \)四、级数1. 判断下列级数的收敛性:- \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)- \( \sum_{n=1}^{\infty} \frac{1}{n} \)2. 求下列级数的和(如果收敛):- \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \)- \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)五、多元函数微分1. 求下列多元函数的偏导数:- \( f(x, y) = x^2 y + y^3 \)- \( g(x, y) = \ln(x^2 + y^2) \)2. 求下列多元函数在给定点处的方向导数:- \( h(x, y) = xy + x^2 + y^2 \) 在点 \( (1, 1) \) 处沿向量 \( \vec{v} = (1, -1) \) 的方向导数六、常微分方程1. 解下列一阶微分方程:- \( \frac{dy}{dx} = x - y \)- \( \frac{dy}{dx} = \frac{1}{x} \)2. 解下列二阶常系数线性微分方程:- \( y'' - 2y' + y = 0 \)- \( y'' + 4y' + 4y = 0 \)结束语通过完成上述习题,同学们可以加深对高等数学基本概念的理解,并提高解决实际问题的能力。

高数各章练习题上册

高数各章练习题上册
n →∞


(B) f ( x) − g ( x) 在 x0 点处间断 (D) f ( x) + g ( x) 在 x0 点处可能连续。 )
(2)设数列 xn 与 yn 满足 lim xn yn = 0 ,则下列断言正确的是( (A)若 xn 发散,则 yn 必发散。 (C)若 xn 有界,则 yn 必为无穷小。 (3)已知 lim
三、 完成下列各题: 1、设 f ( x) 在 [0,1] 上连续。且 0 < f ( x) < 1 ,则必存在 ξ ∈ (0,1) 使 f (ξ ) = ξ 。
(ln x) x / ,求 y x ln x ⎧ ax + b, x > 1 3、确定 a, b 使 f ( x ) = ⎨ ⎩ 0 , x ≤1
2 3
7.若 f ( x ) 在[a,b]上连续、在(a,b)内可导,则 f ( x ) 在[a,b]上单调减小的充分(非必要) 条件是__________________________________. 8. 若 f ( x ) 在[a,b]上连续、 在(a,b)内二阶可导且_______________________________, 则
五、若 lim
x→2
x 2 + ax + b = 2, x2 − x − 2
求 a , b 的值
六、设 x1 = 1 , xn = 1 + 七、设 f ( x) = lim
xn −1 ,证明 lim xn 存在,并求 lim xn n →∞ n →∞ 1 + xn −1
n →∞
1− x ,讨论 f ( x) 在其定义域内的连续性,若有间断点,指出其类型。 1 + x2n

高等数学第一学期试题(附参考答案)

高等数学第一学期试题(附参考答案)

《高 等 数 学》课程试题一、填空题 .(每小题3分,共24分) 1. 设=+=)]([,1)(2x f f xx x f 则2. =→xx x 5sin 3sin lim 03. 设⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在0=x 连续,则常数=a4. 曲线x y ln 2=上点(1, 0)处的切线方程为5.设参数方程⎩⎨⎧==ty t x sin 2,则=dxdy 6. 函数x x f 2arctan )(=,则=dy7. ⎰=)(cos x xd 8. ⎰-201dx x =二、选择题 .(每小题3分,共24分)1.设函数⎩⎨⎧<<-≥-+=10,11,42)(22x x x x x x f ,则)(lim 1x f x →等于( )A .-3B .-1C . 0D .不存在 2. 当)1ln(0x ,,x +→两个无穷小比较时是比x ( )A. 高阶的无穷小量B. 等价的无穷小量C. 非等价的同阶无穷小量D. 低阶的无穷小量3.设)(x f 的一个原函数为)1ln(+x x ,则下列等式成立的是( ) A .C x x dx x f ++=⎰)1ln()( B.C x x dx x f +'+=⎰]1ln([)(班级:姓名:学号:试题共页加白纸张密封线C.⎰+=+C x f dxx x )()1ln( D.C x f dx x x +='+⎰)(])1ln([ 4. 设函数)(x f y =在0x x =处可导,则必有( )A .0=∆y B. 0lim=∆→y xx C. dy y =∆ D. 0=dy 5.设)12)(1()(+-='x x x f ,则在)1,21(内,曲线)(x f 是( )A .单调增加且是凹的B .单调增加且是凸的C .单调减少且是凹的D .单调减少且是凸的 6.设)0(),1ln(≠+=a ax y ,则二阶导数y ''=( ) A .22)1(ax a+ B.2)1(ax a + C. 22)1(ax a+-D. 2)1(ax a+-7.积分=⎰-dx x1121( )A .是发散的 B. 2 C. -2 D . 0 8.设函数⎰-=Φ2)(xtdttex ,则其导数=Φ')(x ( )A .x xe - B. xxe--;C.232xex -D.232xex --三、求极限.(每小题5分,共10分) (1)3)21(lim +∞→+x x x(2)xx x x sin cos 1lim+-→四、求下列导数或微分. (每小题6分,共12分) (1)求由方程1ln =+y ye x确定的隐函数)(x f y =的导数dxdy ;(2)求函数xe y sin =在01.0,0=∆=x x 处的微分dy五、求下列积分.(每小题6分,共18分) (1) ⎰+dxeexx 21(2)⎰212ln exdx x(3)⎰20sin πdx x六、设x:,0求证(5分)>1>ex x+七、欲做一个长方体的带盖箱子,其体积为723m,而底面的长与宽成2:1的关系。

高等数学练习册上_电子版发给学生用_

高等数学练习册上_电子版发给学生用_
x x0 x x0
( x 1) 2 x 1 ,则 3、若 f ( x) 2 , g ( x) x 1 x 1
(A) f ( x) g ( x) (C) lim f ( x) lim g ( x)
x 1 x1

使得在该邻域内 g ( x) f ( x).
(B) lim f ( x) g ( x)
x
四、求 lim
x 0
x x
二.单项选择题 1、从 lim f ( x ) 1 不能推出
x x0

(A) lim f ( x) 1 (B) f ( x0 0) 1 (C) f ( x0 ) 1 (D) lim [ f ( x ) 1] 0
x x0 0 x x0
之值.
lim g( x) 都不存在,则 lim[ f ( x) g( x)] 必不存在; 命题甲:若 lim f ( x)、
7、 下列叙述不正确的是 。
1 是无穷小。 x
3、两个无穷小之和仍是无穷小。 4、两个无穷小之积仍是无穷小。 5、两个无穷大之和仍是无穷大。 6、无界变量必是无穷大量。 7、无穷大量必是无界变量。 8、 , 是x x0 时的无穷小,则对任意常数 A、B、C、D、E,
A.无穷小量与无穷大量的商为无穷小量; B.无穷小量与有界量的积是无穷小量; C.无穷大量与有界量的积是无穷大量; D.无穷大量与无穷大量的积是无穷大量。
1 ,当n为奇数 2、 xn n 则 10 7 ,当n为偶数
(A) lim xn 0;
n
lim u n a , 证明 lim |u n || a | . 并举例说明: 如果数列{|xn|}有极限, 但数列{xn}未必 五、

高数(一)第一章练习题

高数(一)第一章练习题

高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x211- B.x 12- C.x 2)1x (2- D.x )1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x ++是( C ) A.奇函数 B.偶函数 C.有界函数 D.周期函数20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。

高等数学上册试题及答案

高等数学上册试题及答案

高等数学上册试题及答案一、选择题(每题4分,共40分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为()。

A. -3B. 0C. 3D. 42. 函数y=x^3-3x+1的导数为()。

A. 3x^2-3B. x^2-3C. 3x^2-3xD. x^3-33. 极限lim(x→0) (sinx/x)的值为()。

A. 0B. 1C. -1D. 24. 函数y=e^x的不定积分为()。

A. e^x + CB. e^x - CC. x*e^x + CD. x*e^x - C5. 以下哪个选项是微分方程y''-y=0的通解()。

A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*x^2+C2*x6. 曲线y=x^2在点(1,1)处的切线斜率为()。

A. 0B. 1C. 2D. 47. 已知函数f(x)=x^3-6x^2+11x-6,求f'(x)=()。

A. 3x^2-12x+11B. 3x^2-12x+6C. 3x^2-6x+11D. 3x^2-6x+68. 函数y=ln(x)的导数为()。

A. 1/xB. xC. ln(x)D. 19. 已知函数f(x)=x^2-2x+1,求f(2)=()。

A. 1B. 3C. 5D. 710. 极限lim(x→∞) (1/x)的值为()。

A. 0B. 1C. ∞D. -∞二、填空题(每题4分,共20分)1. 若函数f(x)=x^3+2x^2-5x+1,则f'(x)=______。

2. 求定积分∫(0 to 1) (2x+3)dx的值,结果为______。

3. 函数y=x^2-4x+c在x=2处的极值点,当c=______时,该点为极大值点。

4. 函数y=e^(-x^2)的二阶导数为______。

5. 曲线y=x^3-3x^2+2在点(1,0)处的切线方程为y=______。

高等数学练习册及答案

高等数学练习册及答案

第一章第一章 函数与极限§1 函数一、单项选择题1、下面四个函数中,与y=|x |不同的是( A ) (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =)上是(,在其定义域、B x x f )()3(cos )(22∞+−∞=非周期函数。

的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 最小正周期为)(32)(3)(3)(D C B A πππ )函数的是( 、下列函数中为非偶数B 3)1lg(1)(4343)(arccos )(1212sin )(2222x x x x y D x x x x y C x y B x y A x x +++=++++−==+−⋅=;;4、是 函数)0(ln)(>+−=a xa xa x f (A ) 的值奇偶性决定于非奇非偶函数;偶函数; 奇函数; a D C B A )()()()(二、填空题1、=则时且当设 z x z y y x f y x z , , 0 , )(2==−++= . 解:2 , 0 x z y ==时因 2)(x x f x =+∴ 故有 x x x f −=2)( )()()(2y x y x y x f −−−=−)()(2y x y x y x z −−−++=∴2)(2y x y −+=2、的定义域为,则设 )()65lg(56)(22x f x x x x x f +−+−+=解:由 解得 ,650162+−≥−≤≤x x x由 解得 或x x x x 256023−+><>[)(]故函数的定义域是 ,,−1236Υ.3、[]=则., ;,设)(0202)(x f f x x x x f≥<+=解:[]f f x x x x ()=+<−≥−4222,;, 4、=的反函数则.,;,;,设)()(42411)(2x x f x x x x x x f xφ+∞<<≤≤<<∞−=解:当时,,即−∞<<==x y x x y 1 −∞<<y 1 当时,, .141162≤≤=∴=≤≤x y x x yy当时,, .42162<<+∞=∴=>x y x y x y log>≤≤<<∞−=φ.,;,;,的反函数故16log 1611)()(2x x x x x x x x f 5,,且成立,对一切实数设0)0()()()()(212121≠=+f x f x f x x f x x x f ,a f =)1(=则)0(f ,=)(n f )(为正整数.n解)0()0()0()00(021≠⋅=+==f f f f x x ,代入已知式取∴=f ()01又 f af f f f a ()()()()()1211112==+==设则f k a f k f k f a a akkk ()()()()=+=⋅=⋅=+111nan f n =)(有故对一切§2 数列的极限一.单项选择题1、{}无界是数列发散的数列n a ( B )件..既非充分又非必要条 .充分必要条件.充分条件 .必要条件D C B A ;;;2、=−为偶数当为奇数当n n n x n ,10,17则 D 。

高等数学上册练习题

高等数学上册练习题

高等数学上册练习题集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]高数练习题一、选择题。

4、11lim1--→x x x ( )。

a 、1-=b 、1=c 、=0d 、不存在5、当0→x 时,下列变量中是无穷小量的有( )。

a 、x 1sinb 、x xsin c 、12--x d 、x ln7、()=--→11sin lim 21x x x ( )。

a 、1 b 、2 c 、0 d 、219、下列等式中成立的是( )。

a 、e n n n =⎪⎭⎫⎝⎛+∞→21lim b 、e n n n =⎪⎭⎫ ⎝⎛++∞→211limc 、e n n n =⎪⎭⎫ ⎝⎛+∞→211limd 、e n nn =⎪⎭⎫⎝⎛+∞→211lim10、当0→x 时,x cos 1-与x x sin 相比较( )。

a 、是低阶无穷小量b 、是同阶无穷小量c 、是等阶无穷小量d 、是高阶无穷小量11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。

a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 12、 数列{y n }有界是数列收敛的 ( ) .(A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x(B) x(C)1ln(12)2x + (D) x (x +2)14、若函数()f x 在某点0x 极限存在,则( ).(A )()f x 在0x 的函数值必存在且等于极限值(B )()f x 在0x 的函数值必存在,但不一定等于极限值(C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0lim ()x x f x →+与0lim ()x x f x →-存在,则( ).(A )0lim ()x xf x →存在且00lim ()()x xf x f x →=(B )0lim ()x xf x →存在但不一定有00lim ()()x xf x f x →=(C )0lim ()x xf x →不一定存在(D )0lim ()x xf x →一定不存在16、下列变量中( )是无穷小量。

高数练习题 第一章 函数与极限

高数练习题 第一章 函数与极限

‰高等数学(Ⅰ)练习 第一章 函数、极限与连续________系_______专业 班级 姓名______ ____学号_______习题一 函数一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ](A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y =二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 22. 已知,1)1(2++=+x x x f 则=)(x f3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f4. 求函数)2lg(1-+=x y 的反函数5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=:(2) 32arcsin lg x y =:__________ _____________________三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域21x x -+1102()x y x R -=+∈11x -2,tan ,ln ,y u u v v w w ====23,lg ,arcsin ,y v v w w t t x =====2()[11](sin )[2,2]()f x f x k k k Z πππ-+∈的定义域为,的定义域为2.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.4.已知水渠的横断面为等腰梯形,斜角40=ϕ(图1-22)。

(完整版)《高等数学》同步练习册(上)新答案

(完整版)《高等数学》同步练习册(上)新答案

第1章 极限与连续1.1 函数1、(1) x -- (2) ]3,0()0,(Y -∞ (3) 时,210≤<a a x a -≤≤1,φ时,21>a(4) 奇函数 (5))(101log 2<<-x x x(6) )1(-≠x x (7) 22+x (8))(x g π2 (9) 1525++⋅x x(10) xe1sin 2-2、⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-==<<=e x e x e x e x e x e x g f 或或1011011)]([ 3、⎪⎩⎪⎨⎧>+-≤<--≤+=262616152)(2x x x xx x x f 4)(max =x f 1.2 数列的极限1、(1) D (2) C (3) D1.3 函数的极限1、(1) 充分 (2) 充要 3、 11.4 无穷小与无穷大1、(1) D (2) D (3) C (4) C1.5 极限运算法则1、 (1) 21-(2) 21(3) ∞ (4) 1- (5) 02、(1)B (2)D3、(1) 0 (2)23x (3)1-(4) 62(5) 1 (6) 4 4、a = 1 b = -11.6 极限存在准则 两个重要极限1、(1) 充分 (2) ω,3 (3) 2 ,23(4) 0,22t (5) 3e ,2e2、(1) x (2)32(3) 2 (4) 1 (5) 3-e (6) 1-e 1.7 无穷小的比较1、(1) D (2) A (3) B (4) C2、(1) 1 (2) 2 (3) 23- (4) 21- (5) 23 (6) 32-3、e1.8 函数的连续性与间断点1、(1) 充要 (2) 2 (3) 0,32 (4) 跳跃 ,无穷 ,可去2、(1) B (2) B (3) B (4) D3、(1) 1-e (2)21-e4、a =1 , b = 25、 (1))(2,0Z k k x x ∈+==ππ是可去间断点,)0(≠=k k x π是无穷间断;(2) 0=x 是跳跃间断点,1=x 是无穷间断点 6、e b a ==,01.10 总习题1、(1) 2 (2) },,,max{d c b a (3)21(4) 2 (5) 2 8- (6) 2 (7) 23 (8) 0 1- (9) 跳跃 可去 (10) 2 2、(1) D (2) D (3) D (4) C (5) D (6) B (7) D (8) D (9) B (10) B (11) B 3、(1)⎪⎩⎪⎨⎧≥<<-≤≤=11575115100190100090)(x x x x x p(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=11515115100130100030)60(2x x x x x x xx p P(3)15000=P (元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数练习题一、选择题。

4、11lim1--→x x x ( )。

a 、1-=b 、1=c 、=0d 、不存在5、当0→x 时,下列变量中是无穷小量的有( )。

a 、x 1sinb 、x xsin c 、12--x d 、x ln7、()=--→11sin lim 21x x x ( )。

a 、1 b 、2 c 、0 d 、219、下列等式中成立的是( )。

a 、e n nn =⎪⎭⎫ ⎝⎛+∞→21lim b 、e n n n =⎪⎭⎫⎝⎛++∞→211limc 、e n n n =⎪⎭⎫ ⎝⎛+∞→211limd 、e n nn =⎪⎭⎫⎝⎛+∞→211lim10、当0→x 时,x cos 1-与x x sin 相比较( )。

a 、是低阶无穷小量 b 、是同阶无穷小量 c 、是等阶无穷小量 d 、是高阶无穷小量11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。

a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件12、 数列{y n }有界是数列收敛的 ( ) . (A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x (B) x(C)1ln(12)2x + (D) x(x +2)14、若函数()f x 在某点0x 极限存在,则( ).(A )()f x 在0x 的函数值必存在且等于极限值(B )()f x 在0x 的函数值必存在,但不一定等于极限值(C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0lim ()x xf x →+与0lim ()x xf x →-存在,则( ).(A )0lim ()x xf x →存在且00lim ()()x xf x f x →=(B )0lim ()x xf x →存在但不一定有00lim ()()x xf x f x →=(C )0lim ()x xf x →不一定存在(D )0lim ()x xf x →一定不存在16、下列变量中( )是无穷小量。

17、=∞→xxx 2sin lim( )218、下列极限计算正确的是( ) 19、下列极限计算正确的是( )A. f(x)在x=0处连续B. f(x)在x=0处不连续,但有极限C. f(x)在x=0处无极限D. f(x)在x=0处连续,但无极限 23、1lim sin x x x→∞=( ).(A )∞ (B )不存在 (C )1 (D )024、221sin (1)lim (1)(2)x x x x →-=++( ).(A )13 (B )13- (C )0 (D )2325、设1sin 0()30x x f x x ax ⎧≠⎪=⎨⎪=⎩,要使()f x 在(,)-∞+∞处连续,则a =( ). (A )0 (B )1 (C )1/3 (D )3)( , 0x 1 x 2 0x 1 x ) x ( f . 20、 2 则下列结论正确的是 设26、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的( ).(A )连续点 (B )第一类非可去间断点 (C )可去间断点 (D )第二类间断点28、0()0x f x xk x ≠⎪=⎨⎪=⎩,如果()f x 在0x =处连续,那么k =( ). (A )0 (B )2 (C )1/2 (D )130、设函数()⎩⎨⎧=x xe x f x00≥〈x x 在点x=0处( )不成立。

a 、可导b 、连续c 、可、连续,不可异31、函数()x f 在点0x 处连续是在该点处可导的( )。

a 、必要但不充分条件 b 、充分但不必要条件 c 、充要条件 d 、无关条件32、下列函数中( )的导数不等于x 2sin 21。

a 、x 2sin 21b 、x 2cos 41 c 、x 2cos 21- d 、x 2cos 411-33、设)1ln(2++=x x y ,则y ′= ( ).①112++x x ②112+x③122++x x x④12+x x34、已知441x y =,则y ''=( ). A. 3x B. 23x C. x 6 D. 636、下列等式中,( )是正确的。

37、d(sin2x)=( )A. cos2xdxB. –cos2xdxC. 2cos2xdxD. –2cos2xdx 39、曲线y=e 2x 在x=2处切线的斜率是( ) A. e 4 B. e 2 C. 2e 240、曲线11=+=x x y 在处的切线方程是( )41、曲线22y x x =-上切线平行于x 轴的点是 ( ). A 、 (0, 0) B 、(1, -1) C 、 (–1, -1) D 、 (1,1)42、下列函数在给定区间上不满足拉格朗日定理的有( )。

a 、x y = []2,1- b 、15423-+-=x x x y []1,0 c 、()21ln x y += []3,0 d 、212xxy +=[]1,1- 43、函数23++=x x y 在其定义域内( )。

a 、单调减少b 、单调增加c 、图形下凹d 、图形上凹 44、下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .sin x B .e x C .x 2 D .3 - x45、下列结论中正确的有( )。

a 、如果点0x 是函数()x f 的极值点,则有()0x f '=0 ;b 、如果()0x f '=0,则点0x 必是函数()x f 的极值点;c 、如果点0x 是函数()x f 的极值点,且()0x f '存在, 则必有()0x f '=0 ;d 、函数()x f 在区间()b a ,内的极大值一定大于极小值。

46、函数()x f 在点0x 处连续但不可导,则该点一定( )。

a 、是极值点 b 、不是极值点 c 、不是拐点 d 、不是驻点52、函数f(x)=x 3+x 在( )53、函数f(x)=x 2+1在[0,2]上( )A.单调增加B. 单调减少C.不增不减D.有增有减 54、若函数f(x)在点x 0处取得极值,则( ) 55、函数f(x)=e x -x-1的驻点为( )。

A. x=0 =2 C. x=0,y=0 =1,e-2 56、若(),0='x f 则0x 是()x f 的( )A.极大值点B.最大值点C.极小值点D.驻点 57、若函数f (x )在点x 0处可导,则 58、若,)1(x xf =则()='x f ( )59、函数x x y -=33单调增加区间是( )A.(-∞,-1)B.( -1,1)C.(1,+∞)D.(-∞,-1)和(1,+∞) 60、=-⎰)d(e x x ( ).A .c x x +-eB .c x x x ++--e eC .c x x +--eD .c x x x +---e e 61、下列等式成立的是( ) . A .xx x 1d d ln = B .21dd 1xx x-= C .x x x sin d d cos = D .x x x 1d d 12= 62、若)(x f 是)(x g 的原函数,则( ).(A )⎰+=C x g dx x f )()( (B )⎰+=C x f dx x g )()( (C )⎰+='C x g dx x g )()( (D )⎰+='C x g dx x f )()( 64、若⎰+=c e x dx x f x 22)(,则=)(x f ( ).(A )x xe 22 (B )x e x 222 (C )x xe 2 (D ))1(22x xe x + 65、设x e -是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x +--)1( (B )c x e x ++-)1( (C )c x e x +--)1( (D )c x e x ++--)1( 66、若⎰+=c x dx x f 2)(,则⎰=-dx x xf )1(2( ).(A ) c x +-22)1(2 (B ) c x +--22)1(2 (C ) c x +-22)1(21 (D ) c x +--22)1(21 67、⎰=xdx 2sin ( ).(A )c x +2cos 21 (B )c x +2sin (C )c x +-2cos (D )c x +-2cos 21 68、下列积分值为零的是( )71、若=+=⎰)(,2sin )(x f c x dx x f 则B. 2sin2xC. -2cos2xD. -2sin2x 73、若()⎰=+102dx k x ,则k=( )a 、0b 、1c 、1-d 、23 75、⎰+-=+ππdx x x e x )sin (2cos ( ) 76、⎰=-201dx x77、无穷积分⎰+∞=121dx x ( ) A.∞ 31.C78、=⎰-])(arctan [02xdt t dx d ( )。

(A )2arctant 211t+ (B )2)(arctan x - (C ) 2)(arctan x (D )2)(arctan t - 二、填空题2、函数xx x f --+=21)5ln()(的定义域是 .3、若2211()3f x x x x+=++,则()f x =________. 4、=+∞→xxx x sin lim.5、如果0x →时,要无穷小量(1cos )x -与2sin 2xa 等价,a 应等于________. 6、设20()()0ax bx f x a b x x x +≥⎧=⎨++<⎩,0a b +≠,则处处连续的充分必要条件是b =________.7、、函数)(x f =11-x 的间断点是_____________ 8、113--=x x y 的间断点是_______________.9、曲线x y =在点(4, 2)处的切线方程是 .10、设)(x f 是可导函数且0)0(=f ,则xx f x )(lim→=________________; 11、曲线x x y arctan +=在0=x 处的切线方程是______________; 12、设由方程0y x e e xy -+=可确定y 是x 的隐函数,则x dy dx==13、函数x y tan =在0=x 处的导数为 ;14、设x e y 2=, 求 0=''x y =__________________. 15、若函数x y ln =,则y ''=.16、函数y x =-312()的驻点是 . 18.指出曲线25x xy -=的渐近线 .17、已知)(x f 的一个原函数为x -e ,则)(x f = . 20、⎰=-dx xx 2)1( .23、设)(x f 连续,且⎰=30)(x x dt t f ,则=)8(f .24、203sin limxx t dt x→=⎰25、15xdx -=⎰26、若函数3ln =y ,则y '=.27、若y = x (x – 1)(x – 2)(x – 3),则y '(0) =.28、函数y x =-312()的单调增加区间是 .29、过点)3,1(且切线斜率为x 2的曲线方程是y = . 30、函数x xe y -= 的驻点是 ,拐点是 ,凸区间为 ,凹区间为 。

相关文档
最新文档