深基坑监测技术方案

合集下载

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑工程是现代城市建设中不可或缺的一部分,它能够为高层建筑、地下通道等大型工程提供稳定的基础支撑。

然而,由于施工过程中的地下水变化、土体变形等因素的存在,深基坑工程在施工过程中存在一定的风险。

因此,对深基坑施工进行监测是至关重要的,可以及时发现和解决施工过程中的问题,确保工程的安全和顺利进行。

一、地质勘察和监测点布置在深基坑工程施工前,必须进行全面详细的地质勘察,有针对性地了解施工区域的地质情况,包括地下水位、土层厚度、土质性质等。

基于地质勘察结果,对监测点的布置进行合理规划。

监测点的数量和位置应能够全面反映施工过程中的变化情况,常见的监测点有地表沉降监测点、竖向位移监测点、孔隙水压力监测点等。

二、地表沉降监测地表沉降是深基坑施工过程中最常见的变形现象之一。

通过地表沉降监测,可以及时发现并纠正可能导致基坑失稳的情况。

地表沉降监测一般采用沉降观测点布设的方法,将观测点设置在基坑周围,通过测量点的位移可以得到地表沉降的情况。

监测结果应及时分析和评估,根据情况进行调整和处理。

三、竖向位移监测深基坑施工过程中地下土体的位移情况是需要密切关注的。

通过竖向位移监测,可以了解土体变形的程度,判断土体的稳定性,并及时采取相应的措施。

竖向位移监测通常采用沉降观测仪器进行,将测点设置在基坑边缘、支护结构等位置。

监测结果可为工程设计和施工提供重要参考。

四、孔隙水压力监测地下水是深基坑施工中最主要的控制因素之一,对其变化进行监测是判断工程稳定性的重要手段。

孔隙水压力监测可以反映地下水的变化情况,及时发现地下水位的上升或下降情况,并采取相应的排水措施。

监测孔隙水压力通常采用水压计进行,将测点设置在基坑周围和下部地层中。

五、应力监测深基坑施工过程中,土体的应力状态是影响工程稳定性的重要因素之一。

通过应力监测,可以了解土体的变形和破坏情况,为工程设计和施工提供依据。

应力监测通常采用应变计进行,将测点设置在基坑边缘、支护结构等位置,监测不同方向上的应力变化。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

深基坑监测技术方案

深基坑监测技术方案

深基坑监测技术方案深基坑监测技术方案一、前言深基坑工程是城市地下建筑工程中常见、大型的工程之一,其施工对周边环境和地下构造有一定的影响,并且其施工难度大、风险性高。

因此,在深基坑工程的施工过程中,对基坑周围的地下环境和施工现场进行实时监测,是保障周边环境安全和工程顺利进行的必要手段。

本文将介绍深基坑监测技术方案,以期为深基坑施工提供技术保障。

二、监测内容深基坑的监测内容主要包括以下方面:1、基坑土体和周围构造物的变形和沉降情况2、基坑周围地下水位的变化3、基坑周围地面的变形和沉降情况4、基坑周围噪音、振动等环境因素的监测5、基坑周围温度、湿度等气象因素的监测6、基坑周围交通等外部因素对施工现场的影响三、监测技术深基坑的监测技术主要包括以下方面:1、测量监测技术通过在深基坑施工现场进行土体的变形测量、沉降监测、地面变形测量等,以及在基坑周围进行地下水位监测等,实时获取基坑周围土体和水位等因素的变化情况,以便对施工进行调整。

2、遥测监测技术通过在基坑、周边地下水位点、周边气象站等设备上安装遥测设备,将监测数据传输到指挥中心,实时进行监测和分析,及时发现和解决问题。

3、影像监测技术通过安装摄像头等设备在基坑周围进行监测,以实时获取现场的施工情况和周边环境的变化情况,并可在指挥中心进行实时监控,及时得知施工现场情况,做好施工管理和环境保护。

四、数据处理和分析深基坑的监测数据经过采集,需要进行科学的数据处理和分析,以取得有效的结果。

数据处理和分析主要包括以下环节:1、数据预处理对采集的监测数据进行预处理、滤波处理等操作,以提高监测精度。

2、数据分析对采集的监测数据进行分析,通过分析结果找出数据中存在的问题,并结合实际情况进行分析,以便制定针对性施工措施。

3、数据传输将监测数据传输至指挥中心或工程方相关人员,以便实时监测和及时处理问题。

五、施工管理为了保证深基坑的施工安全和质量,需要进行施工管理,包括:1、施工技术管理在深基坑的设计和施工中,需要严格按照相关标准和规范进行管理,尽可能降低施工风险,并在施工过程中采取有效措施保证施工质量。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、工程概述本次深基坑工程位于_____,周边环境较为复杂,临近既有建筑物、道路及地下管线等。

基坑开挖深度为_____米,面积约为_____平方米。

为确保施工过程中的安全及周边环境的稳定,需对深基坑进行全面、系统的监测。

二、监测目的1、及时掌握基坑围护结构及周边土体的变形情况,为施工提供可靠的数据支持。

2、预警施工过程中可能出现的异常情况,以便采取相应的措施,保障施工安全。

3、为优化设计和施工方案提供依据,降低工程风险。

三、监测依据1、(GB 50497-2019)2、本工程的相关设计文件及施工方案3、其他相关的规范、标准和技术要求四、监测内容1、围护结构水平位移监测在围护结构的关键部位设置监测点,采用全站仪或测斜仪进行监测,监测频率为每天_____次。

2、围护结构竖向位移监测利用水准仪对围护结构顶部的监测点进行测量,监测频率同水平位移监测。

3、支撑轴力监测在支撑结构上安装轴力计,实时监测支撑轴力的变化,监测频率为每_____小时一次。

4、地下水位监测通过在基坑周边设置水位观测井,使用水位计测量地下水位的变化,每天监测_____次。

5、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,使用水准仪和全站仪进行监测,监测频率为每周_____次。

6、周边道路及地下管线沉降监测沿周边道路及地下管线布置监测点,采用水准仪进行监测,监测频率为每三天_____次。

五、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,在阳角、阴角等关键部位适当加密。

2、支撑轴力监测点选择具有代表性的支撑构件,每个构件上布置_____个轴力计。

3、地下水位监测点在基坑周边每隔_____米布置一个水位观测井。

4、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每隔_____米布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

5、周边道路及地下管线沉降监测点沿道路及地下管线每隔_____米布置一个监测点。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

深基坑监测方案

深基坑监测方案

深基坑监测方案引言概述:深基坑工程是指在城市建设过程中,由于地下空间有限,需要深挖地基以满足建设需求的工程。

由于深基坑在施工过程中会产生土体变形、地下水位变化等风险,因此需要开展深基坑监测工作,以保证施工过程的安全性和工程质量。

本文将详细介绍深基坑监测方案的内容,以供工程监理人员和设计师参考。

正文内容:1.前期准备工作:1.1确定监测目标:在深基坑监测方案中,首先需要明确监测目标,如土体变形、地下水位变化等。

根据工程特点和施工要求,确定具体的监测目标,并量化地确定监测指标。

1.2选择监测方法:根据监测目标的不同,可以选择不同的监测方法,如测量法、传感器监测法等。

根据工程具体情况,选择合适的监测方法,并配置相应的监测设备和仪器。

1.3制定监测计划:在确定监测目标和方法后,需要制定监测计划,明确监测的时间、频率和范围。

监测计划要合理安排监测任务,并确保监测结果能够及时反馈工程施工进展。

2.地下水位监测:2.1安装水位监测井:在深基坑施工前,需要在周边地区选择合适的位置,安装水位监测井。

水位监测井应布置在影响深基坑的主要地下水源附近,以获取准确的地下水位信息。

2.2确定监测参数:在安装水位监测井后,需要确定监测参数,如地下水位的测量范围、监测频率等。

监测参数的选择应根据地下水位的变化特点以及工程施工要求等因素确定。

2.3进行定期监测:在施工过程中,应定期对水位监测井进行监测,记录地下水位的变化情况。

监测数据应及时整理、分析和报告,以便及时采取相应的措施控制地下水位的变化。

3.土体变形监测:3.1安装监测点:在深基坑施工前,需要根据设计要求和工程特点,在基坑周边和内部设置适当的监测点。

监测点的布设应覆盖全域,并应根据工程的复杂性合理布设,以确保监测结果的准确性。

3.2选择监测仪器:根据监测点的位置和监测需求,选择合适的监测仪器,如测量讯号仪、倾斜计等。

监测仪器应具有高精度、高灵敏度和耐用性,以确保监测结果的准确性。

深基坑监测施工方案

深基坑监测施工方案

深基坑监测施工方案一、项目背景和目的深基坑施工是工程建设中常见的一项工作,其目的是为了解决工程中的土壤支护问题。

随着城市建设的不断发展,深基坑工程日益增多,为此,需要建立一套科学有效的监测施工方案,以确保施工过程的安全性和顺利性。

二、施工前的准备工作在深基坑监测施工方案中,施工前的准备工作至关重要。

首先,需要对基坑的边界和土质进行详细的调查和评估,以确定土层的强度和稳定性情况。

其次,需要制定具体的监测方案和安全措施,以确保施工过程中的监测工作能够有效进行。

三、设计监测方案1.监测点的确定:根据基坑的大小和形状,需要设计合理的监测点布置方案。

监测点应覆盖基坑的各个关键部位,如坑底、坑壁和坑口等。

同时,根据基坑所在地的土质特点,可以选择不同的监测方法,如测斜、测水位和测应力等。

2.监测仪器的选择和安装:根据监测点的位置和监测参数的要求,需要选择合适的监测仪器,并进行正确的安装和校准。

监测仪器的选择应该考虑到其测量范围、测量精度和使用方便程度等因素。

3.数据采集和处理:监测过程中得到的数据需要进行实时采集和处理。

可以通过传感器和数据采集系统实现数据的实时采集,并利用专业的监测软件对数据进行分析和处理。

同时,需要建立完善的数据备份和存档制度,以保证数据的完整性和可靠性。

四、施工中的监测措施1.现场巡检:深基坑施工过程中,需要安排专人进行现场巡检,以及时发现和处理施工过程中的问题。

巡检的内容包括坑底土层的沉降情况、坑壁的裂缝和滑动情况等。

2.监测数据的实时传输和分析:监测数据应该实时传输到监测中心,并由专业的工程师对数据进行分析和评估。

如果发现数据异常,需要及时采取相应的措施进行处理,以防止事故的发生。

3.应急预案的制定:在施工过程中,可能会遇到突发事件,如降雨、地震等。

为此,需要制定相应的应急预案,以便在紧急情况下能够及时采取措施进行处理,保障工程的安全。

五、监测报告的编制和总结深基坑监测施工结束后,需要编制监测报告,对监测数据进行总结和分析。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。

本文将介绍深基坑施工监测方案。

二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。

三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。

监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。

2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。

水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。

3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。

常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。

这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。

四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。

监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。

五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。

应急措施可能包括停工、加固支护结构、调整施工方案等。

六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。

通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。

在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。

以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。

通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一项关键而复杂的工程活动,为了确保工程质量和安全,监测方案是必不可少的工具。

本方案旨在提供一套可行的深基坑施工监测方案,并详细介绍其实施步骤、监测指标和方法。

一、方案概述深基坑施工监测方案是为了对施工期间的变形和沉降等关键参数进行实时监测,以确保施工的稳定性和安全性。

本方案包括以下几个方面的内容:监测设备的选择与布置、监测指标的确定、监测数据的处理与分析以及预警机制的建立。

二、监测设备的选择与布置1. 监测设备的选择根据基坑的尺寸、地质情况和工程要求,选择适合的监测设备。

通常包括测斜仪、水位计、应变仪、位移传感器等。

这些设备应具备高精度、稳定性强和能够实现远程监测等特点。

2. 监测设备的布置根据基坑的具体情况,合理布置监测设备。

监测点的设置应兼顾效果和经济性,避免出现监测死角。

监测设备的安装应符合相关标准和规范,以确保监测数据的准确性。

三、监测指标的确定1. 变形监测指标根据基坑施工的特点,确定合适的变形监测指标。

通常包括边坡变形、地表沉降、地下水位等参数。

这些指标可以根据不同工程阶段的要求进行细分,以便更加准确地评估基坑的稳定性。

2. 安全监测指标在深基坑施工过程中,安全是至关重要的。

确定合适的安全监测指标,如地表位移、沉降速率、围护结构变形等。

这些指标的监测可以提前发现潜在的安全隐患,及时采取措施避免事故的发生。

四、监测数据的处理与分析1. 数据采集与传输监测设备应具备数据采集、传输和存储的功能。

监测数据应定期采集并传输到数据中心或监测人员处。

数据的传输方式可以采用有线或无线传输,以确保数据的及时性和准确性。

2. 数据处理与分析监测数据应经过专业的数据处理和分析。

数据处理包括数据质量的评估、异常值的排除和数据的校准等。

数据分析则主要通过对监测数据的时序分析、趋势分析和空间分布分析来评估基坑的稳定性。

五、预警机制的建立根据监测指标的设定范围和变化趋势,建立合理的预警机制。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑工程是由于场地有限、建筑要求或地下空间的需要等条件引起的工程形式。

深基坑施工属于地下施工,在施工期间,受力环境、土体变形、地下水位的变化等因素均会对施工造成影响。

因此,在深基坑施工中,需要进行一定的监测和管控措施,以降低施工风险。

本文将就深基坑施工监测方案进行探讨。

一、监测对象深基坑施工中,需要进行多项监测。

其中,监测对象主要包括:周边建筑物、挡土墙、支撑结构、地下水位、土体变形等。

周边建筑物:深基坑施工过程中,支护结构的载荷可能会对周边建筑物的承载力产生影响,因此需要采用不同的监测方法进行测量,以保证周边建筑物的安全性。

例如采用水平变形测量技术,追踪建筑物的水平变形情况;采用应力应变测量技术,监测建筑物的应变情况等。

挡土墙:挡土墙是深基坑施工的关键部分,其破坏会对施工造成影响。

因此,需对挡土墙进行一定的监测措施,例如采用水平变形测量、挡土墙内部应力应变测量等技术,确保挡土墙的安全性。

支撑结构:深基坑施工中,支撑结构起着桥梁的作用,因此其安全性至关重要。

支撑结构的监测需要兼顾不同监测技术,例如采用应力应变测量、变形测量等技术综合考虑,以确保支撑结构的安全性。

地下水位:地下水位是深基坑施工中需要重点关注的监测对象,它的变化可能会对施工造成直接影响。

因此,需要对地下水位进行实时监测,并及时调整支撑结构的支撑力度,以保障施工安全。

地下水位的监测通常采用液位计、电测和潜孔测压等技术。

土体变形:土体变形是深基坑施工过程中无法避免的问题。

其合理监测和处理,能够及时报警,有效避免施工风险的发生。

土体变形的监测通常采用变形监测技术,如支撑结构内测点、土壤应变测点等。

二、监测方法深基坑施工监测方法主要分为静态监测和动态监测两类。

静态监测:静态监测是指在施工期间或施工前后采用有限数目的测量点,通过周期性监测来评估基坑工程在整个施工周期内的受力环境和形变情况。

静态监测主要包括水平变形监测、变形监测和应力应变监测等。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是指在建筑工地中挖掘较深的坑道,以便进行地下工程的施工。

由于深基坑施工涉及到地质条件、土壤力学和安全等多个方面的问题,因此需要制定一套完善的施工监测方案来确保施工的安全和顺利进行。

一、施工前准备在进行深基坑施工前,应先进行详细的工程勘察和地质勘探,以了解地下情况、土层状况和地下水位等信息。

同时,还需要制定相应的施工方案,明确施工过程和所需的监测参数。

二、监测设备和方法1. 地下水位监测为了及时了解地下水位的变化情况,需要在基坑周边设置水位监测点,使用水位计等设备定期进行监测,并记录监测数据。

在施工过程中,需要根据监测结果采取相应的排水措施,以保证基坑内部的稳定。

2. 基坑变形监测为了监测深基坑周边土体的变形情况,可以采用测量仪器和遥感技术。

常用的监测方法包括全站仪测量、激光扫描仪和遥感监测等。

这些监测设备可以实时记录基坑周边土体的位移和形态变化,并生成监测报告。

根据监测结果,可以及时调整施工方案,以减少变形对深基坑安全的影响。

3. 基坑周边建筑物的监测在深基坑施工过程中,需要密切关注周边建筑物的安全情况。

可以采用测量仪器和振动监测系统来监测周边建筑物的振动情况。

通过实时监测周边建筑物的振动变化,可以及时采取相应的措施来防止建筑物的受损。

三、监测结果处理和应对措施1. 数据分析和报告监测期间所采集到的数据需要进行统计和分析,以得出相应的结论。

监测报告应当清晰明了地陈述监测数据、变化趋势及其对施工安全的影响,并提出相应的建议和措施。

2. 应对措施根据监测结果和报告的分析,需要及时采取相应的措施来应对可能出现的问题。

比如,在地下水位上升时,可以增加排水量来维持基坑的稳定;在土体变形较大时,可以增加加固措施或调整施工工艺。

四、监测方案的调整和完善在施工过程中,如果监测结果发现有异常情况或超出了设计预期的范围,应及时调整监测方案,并完善施工措施。

监测方案的调整需要经过工程负责人和专业技术人员的评估,并及时通知相关人员进行相应的操作。

深基坑开挖监测方案

深基坑开挖监测方案

深基坑开挖监测方案深基坑的开挖是一个复杂而风险较高的施工过程,需要进行严格的监测,以确保开挖过程的安全和稳定。

下面是一个针对深基坑开挖的监测方案,旨在为开挖施工提供有力的支持和控制:一、监测参数和目标:1.地表沉降监测地表沉降是深基坑开挖的一种常见影响,因此需要进行实时监测,以掌握沉降速度和变化趋势。

监测目标是确保地表沉降量控制在可接受的范围内,避免对周边建筑和基础设施造成损害。

2.周边建筑物倾斜监测3.地下水位监测4.地面周边土体应力监测二、监测方法和技术:1.地表沉降监测可以采用全站仪、GNSS定位仪等设备对基坑周边地表进行定位测量,通过测量点与基准点的位置变化,计算出地表沉降量。

监测频率可根据施工进展和工况的变化进行调整,以保证监测的及时性和准确性。

2.周边建筑物倾斜监测可以采用倾斜仪、自动水平仪等设备对周边建筑物进行倾斜监测,通过监测倾斜角度和倾斜方向的变化,判断建筑物是否发生倾斜。

监测频率也可根据施工进展和工况的变化进行调整。

3.地下水位监测可以采用水位计、压力传感器等设备对基坑周边的井点和监测孔进行水位监测,及时获取地下水位的变化情况。

监测频率可根据施工进展和工况的变化进行调整。

4.地面周边土体应力监测可以采用应变计、标准屈光仪等设备对周边土体进行应力监测,通过监测应变值和变形分布,判断土体的力学性质和稳定状态。

监测频率可根据施工进展和工况的变化进行调整。

三、监测数据处理与分析:1.监测数据的实时处理和分析监测系统应能够实时采集、处理和分析监测数据,并及时生成监测报告和预警信息。

监测数据的处理和分析应该由专业的技术人员进行,以确保数据的准确性和可靠性。

2.监测数据的比对分析监测数据应与设计值、历史数据进行比对分析,判断开挖过程中是否存在异常情况,并及时采取相应措施进行调整。

比对分析结果可用于优化施工方案和风险预警。

3.监测数据的可视化展示监测数据应以图形、表格等形式进行可视化展示,使监测人员和管理人员能够直观地了解监测结果,并及时做出决策。

深基坑监测工程施工方案

深基坑监测工程施工方案

深基坑监测工程施工方案一、引言深基坑工程是指在建设中需要挖掘深度超过一定限度的地下工程。

由于深基坑施工对周围环境和土地稳定性造成较大影响,因此在施工过程中需要进行全面的监测和控制,以确保工程安全顺利进行。

本文将针对深基坑监测工程的施工方案进行详细介绍。

二、监测方案2.1 监测内容•地表位移监测•地下水位监测•周边建筑物变化监测•地基变位监测2.2 监测设备•测斜仪•水准仪•沉降仪•压力计2.3 监测频率•地表位移:每日监测•地下水位:每周监测•建筑物变化:每月监测•地基变位:每季度监测三、监测方案实施3.1 规划布点根据深基坑的具体位置和周边环境,确定监测设备的布点位置,并进行标记。

3.2 安装监测设备由专业技术人员安装监测设备,确保设备连接正确、稳定。

3.3 数据采集与传输监测设备将采集到的数据传输至监测中心,实现实时监测和数据记录。

3.4 数据分析与报告监测数据进行专业分析,生成监测报告,并根据监测结果调整施工方案。

四、应急预案4.1 突发情况处理一旦发现异常情况,立即启动应急预案,停止施工并通知相关部门。

4.2 紧急措施根据具体情况采取必要的紧急措施,保障工程安全和周边环境稳定。

五、施工总结深基坑监测工程在施工过程中必须严格按照监测方案执行,确保监测数据准确可靠。

只有做好监测工作,才能及时发现问题并采取相应措施,保障深基坑工程的安全顺利进行。

以上是深基坑监测工程施工方案的基本内容,希望对相关工程的实施提供一定的参考和指导。

深基坑监测方案范文

深基坑监测方案范文

深基坑监测方案范文深基坑是指在建设高层建筑或地下结构时,需要进行深度挖掘并进行边坡支护的工程。

由于挖掘深度大、周围环境复杂,深基坑监测方案的制定及实施对确保施工安全和环境保护至关重要。

以下是一个深基坑监测方案的范文,供参考:一、项目背景和目标深基坑位于xx市中心,总建筑面积为xxx平方米,深度约为xx米。

在施工过程中,需要进行边坡支护、地下水位控制等工作,以确保施工安全和地下水环境不受影响。

本监测方案的目标是全面监测施工期间的基坑变形、地下水位变化等数据,并及时发现和解决潜在问题,确保工程安全顺利进行。

二、监测内容及方法1.基坑变形监测:使用自动全站仪对基坑周边进行定期监测,记录基坑变形情况,包括水平位移、垂直位移、沉降等数据。

2.边坡支护监测:对边坡支护结构进行监测,包括支撑桩、预应力锚杆等的应力和变形情况。

使用应力应变计、变形计等设备进行监测。

3.地下水位监测:在基坑周边埋设多个地下水位监测井,监测地下水位的变化情况。

使用水位计等设备进行监测。

4.地下水质监测:在基坑周边及附近居民区域设置多个地下水质监测点,监测地下水的化学成分和污染物含量。

使用水样采集仪器进行采样分析。

5.周边建筑物振动监测:对周边建筑物进行振动监测,以确保施工过程中对周边环境的影响。

三、监测频率及数据处理1.基坑变形监测:每周进行一次监测,连续监测至基坑施工完成。

数据通过软件处理,生成变形曲线和变形速率等分析结果,并根据阈值设定预警机制。

2.边坡支护监测:每天进行一次监测,连续监测至支撑结构拆除。

数据通过软件处理,生成应力变化曲线和变形曲线,分析结构的安全性。

3.地下水位监测:每天记录一次地下水位数据,连续监测至基坑回填完成。

数据通过软件处理,生成地下水位变化曲线和水位变化趋势分析。

4.地下水质监测:每月进行一次采样分析,连续监测至基坑回填完成。

数据通过实验室分析,生成地下水质的变化情况和趋势分析。

5.周边建筑物振动监测:施工期间持续进行监测,每次施工前后对周边建筑物进行振动监测,记录振动速度、振动加速度等数据。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目背景在城市建设中,为了满足城市发展需要,经常需要进行深基坑的施工。

深基坑施工是指在建筑物基础施工过程中,为了适应场地限制或其他考虑因素,需要在较深的地下进行开挖施工。

由于深基坑施工涉及土壤、地下水等复杂的地质环境因素,施工过程中可能会带来一定的风险和影响。

为了保证施工的安全性、减轻环境影响,提前制定合理的施工监测方案是十分必要的。

二、监测目的深基坑施工监测方案的主要目的是监测深基坑施工过程中的安全性和环境影响,包括以下几个方面的目标:1. 监测基坑施工过程中的变形情况,包括基坑周边土体的变形、沉降情况等,确保施工过程中的稳定性;2. 监测基坑开挖对周围建筑物的影响,防止因挖坑而导致的结构损坏;3. 监测基坑排水系统的运行情况,确保施工期间地下水位的有效控制;4. 监测基坑施工过程中产生的噪声、震动、粉尘等环境影响,控制对周围环境的污染。

三、监测内容与方法1. 土体变形监测土体变形是深基坑施工过程中最关键的监测内容之一。

常用的土体变形监测方法包括:(1)GPS(全球定位系统)监测:通过在基坑周边设置GPS监测点,实时记录土体的位移变化,并通过数据分析判断土体的稳定性。

(2)测量仪器监测:使用倾斜仪、水准仪等工具对基坑周边的监测点进行定期测量,获得土体变形数据。

2. 建筑物影响监测深基坑施工可能对周围的建筑物造成影响,因此需要监测建筑物的变形情况。

常用的监测方法包括:(1)测量仪器监测:对建筑物的表面进行定期测量,分析变形情况,判断对建筑物的影响。

(2)振动监测:通过设置振动传感器,监测深基坑施工过程中产生的振动情况,确保振动不超过建筑物的承受范围。

3. 地下水位监测深基坑施工过程中需要进行有效的地下水位控制,避免出现地下水涌入或渗漏等问题。

常用的地下水位监测方法包括:(1)水位计监测:在基坑周围设置水位计,实时监测地下水位的变化情况。

(2)水泵监测:监测基坑排水系统的运行情况,确保水位保持在设计范围内。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案1. 引言深基坑施工是在城市建设过程中常见的一项工程,其施工期间可能会对周围土层、建筑物以及地下管线等造成一定的影响。

为了确保施工安全和保护周围环境,施工监测变得尤为重要。

本文将介绍深基坑施工监测的方案,包括监测目标、监测内容、监测方法以及监测频率等方面的内容。

2. 监测目标深基坑施工监测的主要目标是在施工期间及时掌握施工工程所产生的变形、沉降、位移等情况,以及对周围环境的影响,从而保证工程的施工安全和周围环境的保护。

3. 监测内容深基坑施工监测的内容包括但不限于以下几个方面:3.1 地表沉降地表沉降是深基坑施工中常见的问题,通常通过在施工周围设置水平测网进行监测。

监测点应均匀分布在周围区域,并根据施工进度及时调整监测点的位置。

3.2 结构变形深基坑施工对周围建筑物的结构产生一定的影响,因此需要对建筑物的变形情况进行监测。

监测点通常设置在建筑物的重要结构部位,如墙体、柱子等。

结构变形监测可以通过安装应变计、测斜仪、位移传感器等设备进行。

3.3 周围地下管线监测深基坑施工需要对周围的地下管线进行监测,特别是对于各种管线的位移情况需要及时掌握。

监测方法可以使用测斜仪、位移传感器等设备进行。

4. 监测方法深基坑施工监测可以结合传统的现场监测方法和现代的无线监测技术进行。

具体的监测方法包括但不限于以下几种:4.1 传统监测方法传统的监测方法通常包括现场测量和监测设备的安装。

现场测量通常使用水平仪、经纬仪、测距仪等设备进行,可以得到地表沉降、建筑物变形等数据。

监测设备的安装包括应变计、测斜仪、位移传感器等,需要专业的技术人员进行。

4.2 无线监测技术现代的无线监测技术可以大大提高监测的效率和准确性。

通过使用无线传感器网络,可以实现远程监测和数据传输,减少了人力和物力的投入。

无线监测技术可以实时监测变形情况,并通过数据分析提供预警和决策支持。

5. 监测频率深基坑施工监测的频率应根据工程的特点和监测目标来确定。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案
为了确保深基坑施工的安全和质量,必须采用可行的监测方案。


基坑施工监测方案是一种科学、有效的施工管理方法,包括监测目标、监测位置、监测范围、监测方法等方面的具体安排。

本文将介绍深基
坑施工监测方案的具体内容。

1. 监测目标
深基坑施工监测目标是对基坑周围的地下环境进行监测,旨在确保
施工期间和施工完成后相关建筑物和地下管线的稳定性。

具体监测目
标包括地下水位、基坑变形、建筑物沉降、周围结构的损伤等。

2. 监测位置
监测位置应该在基坑的四周及周边建筑物和地下管线,以监测监测
目标涉及的范围为主。

监测位置的选取应该具有代表性,并且应该能
够反映出所监测对象的变化趋势和变化量,比如监测孔的安装位置等。

3. 监测范围
监测范围应该包括设计基坑周围的地下环境,具体包括基坑内外的
地下水位、地表沉降和周边建筑物的变形。

监测范围可以通过现场勘
察和文献资料分析等方式来确定。

4. 监测方法
监测方法应该根据实际情况来确定,包括实测法、观测法、统计法、数学模型法等等。

其中最常用的是实测法和观测法。

实测法是在监测
点上安装相应的仪器,测量实际的物理量。

观测法是将监测目标的变化通过观测取得,比如地面沉降的观测通过地面标志物和水准仪器等来进行。

综上所述,深基坑施工监测方案需要根据实际情况来制定,并且需进行全面的监测范围的规划和精细化的监测点选定。

同时,监测方案的实施应该符合施工进度和经济效益的要求,以保证施工的顺利进行和项目的成功交付。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案1. 简介深基坑施工是指在建筑工程中,为了满足特定的建设需求而挖掘较深的土方体,常常用于地下停车场、地铁站等工程。

由于深基坑的施工过程中存在一定的风险和安全隐患,因此需要制定相应的监测方案,以确保施工的安全和稳定。

2. 监测目标深基坑施工监测的主要目标是对基坑边界土层的变形和支护结构的变化进行实时监测,以及对施工过程中可能出现的地下水位变化进行监测。

通过监测数据的分析和处理,可以及时掌握施工过程中的变形和变化情况,提前采取相应的措施,确保施工的安全性和稳定性。

3. 监测方法3.1 地表测量法地表测量法是最常用的监测方法之一,该方法通过使用全站仪或者自动水准仪进行测量,对基坑周边地表的沉降和变形情况进行监测。

通过定期测量并比对测量结果,可以及时发现地表下陷和倾斜等问题,从而采取相应的补救措施。

3.2 支护结构监测法深基坑的施工中常常采用支护结构,如钢支撑、混凝土墙等,用于稳定挖掘的土方体。

支护结构监测法主要通过在支护结构上安装压力应力计、位移传感器等监测设备,实时监测支护结构的受力变化和变形情况。

通过对监测数据的分析,可以确定支护结构的稳定性,并及时采取措施加固或修复。

3.3 地下水位监测法地下水位的变化对于深基坑施工来说具有重要意义,因为地下水的变化可能导致土层的液化和基坑的失稳。

地下水位监测一般使用浮标式或压力式水位计进行监测,通过实时监测地下水位的变化,可以及时采取抽水或加固等措施,以确保施工过程中的安全。

4. 数据处理与分析深基坑施工监测数据量大、频率高,需要进行有效的数据处理和分析,以获取有价值的信息。

数据处理和分析的方法包括数据计算、数据插值、数据挖掘等,通过这些方法可以得出土层变形的趋势和规律,提前预测可能发生的问题,并及时采取相应的措施。

5. 安全措施与应急预案深基坑施工监测方案中还应包含相关的安全措施和应急预案,以应对可能发生的意外情况。

如在施工过程中,如果发现土层变形超出安全值,或者支护结构出现破损等情况,应立即采取紧急措施,确保施工现场的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、综合说明根据已收到的《华润置地华润中心万象城项目基坑第三监测工程》招标文件的要求,我公司经考察现场和研究招标文件后,针对本工程现场情况制定了详细的监测案,监测费按《工程勘察设计收费标准(2002年修订本)》价格收取,并按照招标文件的技术要求在施工过程中提供优质服务,打造精品工程。

1.1工程概况工程场区紧邻市政府及五四广场,位于市繁华地段。

基坑开挖深度13.5〜30.6米, 基坑支护边坡长度约1520米,其中包括二期商业基坑边1210米,临建板房及材料堆载场区西侧边坡310米。

基坑支护体系:基坑边坡整体采用灌注桩、钢管桩的组合桩锚支护体系,其中1单元采用多级钢管桩+锚杆支护体系,2单元上部采用土钉墙体系,下部采用多级钢管桩+锚杆支护体系,3、4、5、7-a单元上部采用双排灌注桩+锚杆支护体系,下部采用钢管桩+锚杆支护体系,6、8单元上部采用土钉墙体系,下部采用钢管桩+锚杆支护体系,7-b、9、10单元上部采用单排灌注桩+锚杆支护体系,下部采用钢管桩 +锚杆支护体系,11、12、13、14单兀米用岩锚喷支护体系。

基坑止水、排水体系:边坡坡顶进行地面硬化并设置挡水台阶防止地表水排入基坑,基坑底部沿边设置排水沟与集水井进行集水明排。

本基坑工程安全等级为一级。

自基坑开挖起至回填结束,基坑正常使用期限2年。

1.2场地岩土工程条件及边环境1.地形地貌2.工程地质条件按地质年代由新到老、标准地层层序自上而下分述如下:略3.水文地质条件略4.环境条件基坑西侧,用地红线外侧为海门路,海门路车行道边线距离地下车库轮廓最近距离约20.4m。

该侧临近基坑的建(构)筑物主要包括宾馆、1栋1层砖房及其地下200T 水箱和海边人小区。

其中宾馆16层,1层地下室,墙下条形基础,距离地下车库轮廓线最近距离约38m,海边人小区1、3#楼层高18层,2层地下车库,筏板基础,距离地下车库轮廓线最近距离约39.5m,1层砖房其地下有200T水箱,距离地下车库轮廓线最近距离约12.3m o基坑南侧,用地红线外侧为香格里拉院的一条车行道,该侧临近基坑的建(构)筑物主要包括香格里拉二期、一处储存香格里拉烧锅炉用油的钢筋混凝土地下油库和香格里拉一期。

其中,香格里拉二期主楼29层,裙房2层,3层地下室,筏板基础,地下室外墙距离华润二期用地红线约5m,距离华润二期商业地下车库轮廓线最近距离约15m ;地下油库,约50立米,距离华润二期地下车库轮廓线最近距离约13.3m ;香格里拉一期,主楼19层,裙房3层,1层地下室,独立基础筏板基础,距离华润二期商业地下车库外墙轮廓线最近距离约19.5m。

基坑东侧,用地红线外侧为路,路车行道边线距离华润二期地下车库轮廓最近距离约20m o该侧临近基坑的建筑物为香榭丽舍商务酒店,13层,1层地下室,独立基础,主楼外墙距离华润二期商业地下车库外墙轮廓线最近距离约7.7m。

基坑北部,规划闽江路下的地下室部分暂不开挖,现阶段开挖围坡顶外侧为出入华润万象城项目场区的主要施工道路,路宽约15m,距离二期地下车库轮廓线最近距离约7.9m。

一期基坑边坡位于该侧中部外侧,一期基坑坡顶距离开挖围线最近距离约23.4m。

根据建设单位提供的华润二期项目施工总平面布置图以及施工道路布置情况说明,基坑四均有施工道路,临建和材料加工场地主要位于华润二期商业基坑西北部地块即二期住宅区(待建)。

根据建设单位提供的管线资料结合现场踏勘,已查明路上埋设有电力管沟、电力电缆、通信管线、热力管线、给水管线、雨水管线、雨水暗渠、污水管线、中压燃气管线、有线管线等若干管线,海门路上埋设有给水、雨水、污水等管线,临近香格里拉一侧有雨水、污水、燃气、热力等管线。

二、项目管理机构表基坑监测项目组织机构图二、监测仪器设备表监测仪器设备一览表四、监测案4.1监测设计依据1.《建筑基坑工程监测技术规》(GB50497-2009)2.《建筑基坑支护技术规程》(JGJ120-99)3.《工程测量规》(GB50026-2007)4.《一、二等水准测量规》(GB12897-2006)5•《建筑变形测量规》(JGJ8-2007)6•《建筑边坡工程技术规》(GB50330-2002)7 •《城市测量规》(CJJ8-99)8.《全球定位系统城市测量技术规程》(CJJ73-97)9.《建筑地基基础工程施工质量验收规》(GB50202-2002)10.双合作协议4.2监测项目监测容设置取决于工程本身的规模、施工法、地质条件、环境条件等,本着经济、合理、有效的原则,根据设计要求并结合本工程特点,确定本工程的监测对象为:基坑支护结构。

依据本工程基坑支护设计案,本工程基坑类别为一级。

依据《建筑基坑工程监测技术规》(GB50497-2009 )、设计要求及本地区工程经验确定本基坑工程的监测容和项目如下:1)坡顶水平位移2)坡顶地表沉降3)边建筑物沉降观测4)深层水平位移监测5)桩体力监测6)锚杆预应力监测7)裂缝监测4.3基准点的布设为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个基坑工程施工,本次监测工作采用由整体到布局的原则。

即首先布设统一的监测控制网,再在此基础上布设监测点。

1.现场基坑的控制网平面控制采用两层次布设,共布设4个基准点。

第一层由2个基准点构成,编号为K1、K2,采用城市坐标系;第二层由2个工作基点组成,编号为K3、K4,监测期间基准点与工作基点联测应每个月复测一次。

2.高程控制:依据规要求,根据该工程具体情况,本着经济适用的原则,高程控制点设置在基坑开挖深度3倍围以外稳固的建(构)筑物或借用平面点,采用1985高程基准,组成闭合网。

3.基准点联测:测量基准点稳定后,利用场外控制点进行工作基点的初始值测量,监测期间控制网应每个月进行一次基点联测,检验其稳定性,当对监测成果发生怀疑时,应随时检核,不稳定时应另行布设。

4.4坡顶水平位移监测基坑开挖过程中,由于基坑边坡受外部压力的影响,基坑边壁会产生水平位移,因此在基坑边壁的坡顶和灌注桩冠梁上设置水平位移观测点。

测点布置:沿坡顶或支护桩顶均匀布设位移监测点,基坑边中部、阳角处应布设监测点,监测点间距约20米,每边监测点数目不应少于3个。

将监测点埋设于桩顶冠梁上,用冲击钻钻,将钢筋浇筑埋于冠梁中,并在钢筋上刻十字丝。

在本次基坑监测工程中,在冠梁上共布设水平位移监测点65个,编号为WY1〜WY65。

监测仪器:使用拓普康高精度0.5 〃自动跟踪全站仪MS05A ;测站上一测回角度中误差0.5 〃,测距精度为±(0.5+1ppm x D, D为距离观测值)mm ;观测法:利用全站仪采用小角度法,沿着基坑的每一边建立一条轴线(即一个固定的向),通过测量固定向与测站至位移点向的小角度变化,并测得测站至位移点的距离,从而计算出观测点的位移量。

坡顶水平位移监测点布置图见附图。

4.5坡顶垂直位移监测基坑坡顶沉降是基坑基本监测项目,它最直接地反映维护结构外围的土体变形情况。

测点布置:点位借用坡顶水平位移监测点,在每次观测时将监测点顶端部作为高程测点。

在坡顶上共布设水平位移监测点65个,编号为WY1〜WY65。

监测仪器:使用Trimble的DINI03水准仪1台,其精度为每公里中误差为土0.3mm,最小显示0.01mm,观测点精度不低于1mm ;监测法:沉降观测采用二级水准测量等级观测,待点位稳固后,根据边坡开始施工后进行第一次观测,首次观测联测全部的工作点,采用往返观测,形成水准闭合环线;整条线路闭合差不得大于土n mm.6n为测站数)。

经平差计算求得的高程作为各点高程的最或是值。

沉降观测基点与工作点联测期拟按每进行3〜5次沉降观测联测一次,如发现异常时,将及时联测检查。

首期观测之后的各期观测采取四同作业(相同观测者,相同仪器,相同路线,相同观测法)。

沉降观测按《工程测量规》中二等精度要求进行,须往返观测。

坡顶水平(垂直)位移监测点布置图见附图。

4.6边建筑物及道路沉降观测边建筑物及道路沉降观测是基坑监测的最基本的项目,以防止基坑开挖过程中基坑外围土体的变化导致边建筑物及道路的突然变形测点布置:建筑物沉降点布设在基坑边建筑物的四拐角处及各重要部位,道路沉降点布设在路的西侧,在基坑开挖前,在便于观测的位置利用冲击钻打,设置沉降观测点,埋件坚固,埋件高度大约在自然地面以上0.2m〜0.5m,正上2.2米围不应有突出物,以利于放标尺;埋设沉降观测专用标志,并用混凝土将沉降标志加固。

标志由测量单位提供,采用隐蔽螺旋式结构,它由螺母、保护栓和测杆组成。

安装时,将螺母与建筑物基础紧固在一起,测量时旋上测杆,测量完毕旋下测杆,旋上保护栓。

在建筑物上共布设沉降观测点60个,编号为CJ1〜CJ6O ;在路上布设沉降观测点16个,编号为DL1〜DL16 ;监测仪器:使用Trimble的DINI03水准仪1台,其精度为每公里中误差为土0.3mm,最小显示0.01mm,观测点精度不低于1mm ;监测法:沉降观测采用二级水准测量等级观测,待点位稳固后,根据边坡开始施工后进行第一次观测,首次观测联测全部的工作点,采用往返观测,形成水准闭合环线;4.7深层水平位移监测随着基坑开挖深度的不断加深,需要测定基坑边的土体中不同深度的水平位移变化情况,因此需对基坑开挖阶段边土体的纵深向的水平位移进行监控。

首先应预先在基坑边及支护桩后的土体中埋置用于测斜的特别套管,通过测量这些预先埋置的特别套管的变形,从而获得基坑边的土体在不同深度的各点水平位移发展变化情况,从而得出围护结构的安全性。

测点布置:在基坑开挖前,将测斜管植入到基坑边及支护桩后的土体及岩中,采用80mmPVC测斜管,接头用自攻螺丝拧紧,上、下端用盖子封好,接头部位用胶带密封。

并根据工程场区地层情况以及基坑开挖深度来确定测斜管安装深度,本基坑围堰上测斜管安装深度为20〜30米,安装时管注入清水,防止泥浆浸入。

管壁有二组互为90度的导向槽,使其中一组导向槽与基坑开挖面基本垂直,测斜管埋入到钻后,需要用到少量沙、子等材料将测斜管围填实,需施工单位配合,我将派技术人员到现场,以确保测斜管位置和向满足测试的相关技术要求。

在本次基坑监测工程中,在基坑外围共布设深层水平位移监测点12个,编号为CX1〜CX12。

监测仪器:使用CX-3C系列测斜仪。

CX—3C系列测斜仪主要用于测量深基坑、边坡、地基、水平位移。

CX-3C系列测斜仪的主要技术指标:(1)探头尺寸:CX-3C :长780mm、直径© 28mm,导轮间距:500mm ;(2)测量精度:土0.01mm/500mm,分辨率土2秒;系统精度:土2mm/30m ;数字量显示:4.5位;记录式:自动采集;(3)角度测量围:0°〜± 15 ° ;⑷测试深度最大300m ;水压3Mp ;(5)工作电压:置可充锂电池组+7.2V ;(6)工作温度:-10 C〜+60 C;(7)抗震性50000g (国最高200g,进口2000g )(彻底解决由于碰撞而损坏仪器的可能性)。

相关文档
最新文档