高中抽象函数解法
高考数学中抽象函数的解法
函数 y f ( x) 的图象关于点 (a b ,0) 成中心对称图形。 2
( 3)设 a, b 均为常数,函数 y f (x) 对一切实数 x 都满足 f (a x) f (b x) 函
数y
f (x) 的图象关于轴 x
ab 对称。
2
4
例 14:如果 f ( x) = ax 2 bx c 对任意的 t 有 f (2 t ) f 2 t ) , 比较
所以 f ( x2 ) f ( x1 (x2 x1)] f (x1) f (x2 x1) f ( x1 )
所以 y f ( x) 在 R 上为增函数。
评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋 值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相 关联。
七、解抽象不等式(确定参数的取值范围)
九、周期问题
命题 1:若 a 是非零常数,对于函数 y=f(x) 定义域的一切 x,满足下列条件之一,则函 数 y=f(x) 是周期函数 .
函数 y=f(x) 满足 f(x+a)= - f(x) ,则 f(x) 是周期函数,且 2a 是它的一个周期 .
1 函数 y=f(x) 满足 f(x+a)= f ( x ) ,则 f(x) 是周期函数,且 2a 是它的一个周期 .
下面来证明,对任意 x R, f ( x) 0 设存在 x0 R ,使得 f ( x0 ) 0 ,则 f (0) f (x0 x0 ) f ( x0 ) f ( x0 ) 0 这与上面已证的 f (0) 0矛盾,因此,对任意 x R, f ( x) 0 所以 f ( x) 0 评析:在处理抽象函数的问题时, 往往需要对某些变量进行适当的赋值, 般向特殊转化的必要手段。
高考抽象函数技巧全总结[1]
高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x .解:设1x u x =+,则1u x u=-∴2()2111u u f u uu-=+=--∴2()1x f x x-=-2.凑合法:在已知(())()f g x h x =即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x解:∵22111()()(1)(f x x x x xxx+=+-+=11|||1||x xx =+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数问题及解法
抽象函数问题及解法原创/O客本文谈及的抽象函数问题是高考的必考内容,是高中函数与大学函数的衔接内容。
打开窗子说亮话,是高中教材没有,高考要考,大学不教但要经常用的内容。
如果一个关于函数f(x)的题目,已知f(x)的性质及f(x)满足的关系式,求证f(x)的其他性质,题目做完了,我们还不知道f(x)的具体的解析式,这就是抽象函数问题.一般地,抽象函数是指没有(直接或间接)给出具体的解析式,只给出一些函数符号及其满足某些条件的函数.解决抽象函数问题,我们可以用函数性质、特殊化、模型函数、联想类比转化、数形结合等多种方法.(1)函数性质法.函数的特征是通过其性质(如单调性、奇偶性、周期性、特殊点等)反映出来的,抽象函数也如此. 我们可以综合利用上述性质,包括借助特殊点布列方程等来解决抽象函数问题.(2)特殊化法.特殊化法又叫特取法. 为达到我们预期的目的,将已知条件进行适当的变换,包括式子的整体变换与具体数字的代换. 如在研究函数性质时,一般将x换成-x或其他代数式;在求值时,用赋值法,常用特殊值0,1,-1代入.(3)模型函数法.模型函数在解决抽象函数问题中的作用非同小可. 一方面,可以用借助具体的模型函数解答选择题、填空题等客观题. 另一方面,可以用“特例探路”,联想具体的模型函数进行类比、猜想,为解答题等主观题的解决提供思路和方法. 一般地,抽象函数类型有以下几种:①满足关系式f(x+y)=f(x)+f(y) (ⅰ)的函数f(x)是线性型抽象函数. 其模型函数为正比例函数f(x)=kx (k≠0).事实上,f(x+y)=k(x+y)=kx+ky=f(x)+f(y).令x=y=0,得f(0)=0,故f(x)的图象必过原点.令y=-x,得0=f(0)=f(x)+f(-x),即f(-x)=-f(x),所以f(x)为奇函数.命题(ⅰ)可以推广为f(x+y)=f(x)+f(y)+b(b是常数),其模型函数为一次函数f(x)=kx-b(k ≠0).②满足关系式f(x+y)=f(x) f(y) (ⅱ)的函数f(x)是指数型抽象函数. 其模型函数为指数函数f(x)=a x(a>0,a≠1).事实上,f(x+y)=a x+y=a x·a y=f(x) f(y).令x=y=0,得f(0)=1,故曲线f(x)必过点(0,1).命题(ⅱ)等价于f(x-y)=f(x) f(y).③满足关系式f(xy)=f(x)+f(y) (x,y∈R+) (ⅲ)的函数f(x)是对数型抽象函数. 其模型函数为对数函数f(x)=log a x(a>0,a≠1).令x=y=1,得f(1)=0,故曲线f(x)必过点(1,0).命题(ⅲ)等价于f( xy)=f(x)-f(y) (x,y∈R+) .④满足关系式f(xy)=f(x) f(y)的函数f(x)是幂型抽象函数. 其模型函数为幂函数f(x)=x n.⑤满足关系式f(x+y)=f(x)+f(y) 1- f (x) f(y)的函数f(x)是正切型抽象函数. 其模型函数为正切函数f(x)=tan x.需要指出的是,不是每种抽象函数都可以找到在中学阶段所熟知的函数作模型函数. 抽象函数的种类还有很多,这里罗列的仅是常见的,尤其是类型①、②、③最常见.我们就上述方法的应用,先进行例说,再分类例说.例如(2008·重庆),若定义域在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C. f(x)+1为奇函数D. f(x)+1为偶函数这是线性型抽象函数问题. 联想模型函数f(x)=kx-1(k≠0),易知选C.如果此题改为解答题,题设条件不变,“判断并证明函数g(x)=f(x)+1的奇偶性”.那么我们首先联想模型函数,窥测解题方向,构建解题思路. 猜测g(x)是奇函数. 于是心中有“底”. 目标就是需要证明g(-x)+g(x)=0,即f(-x)+f(x)+2=0. 又抽象函数奇偶性问题,一般要先用赋值法确定f(0)的值,再用x,-x进行代换,进而得到g(-x)与g(x)的关系式.于是解答如下.g(x)是奇函数. 证明如下:令x1=x2=0,有f(0)=f(0)+f(0)+1,得f(0)=-1.再令x1=x,x2=-x,有f(0)=f(x)+f(-x)+1,即f(-x)+f(x)+2=0,从而g(-x)+g(x)= f(-x)+f(x)+2=0,所以函数g(x)是奇函数.1. 与单调性相关的问题例1已知函数f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2. 求f(x)在区间[-3,3]上的最大值和最小值.解析联想模型函数f(x)=kx(k≠0),猜想“f(x)是奇函数,且为减函数”.设m<n,则f(n)-f(m)=f((n-m)+m)-f(m)=f(n-m)+f(m)-f(m)=f(n-m).因为当x>0时,f(x)<0,而n-m>0,所以f(n-m)<0,即f(n)<f(m),所以f(x)是减函数.根据最值定理,f(x)在[-3,3]上的最大值为f(-3),最小值为f(3).因为f(1)=-2,所以f(2)=f(1+1)=2f(1)=-4,f(3)=f(2)+f(1)=-6.又令x=y=0,得f(0)=f(0+0)=f(0)+f(0),故f(0)=0,再令x=1,y=-1,得0=f(0)=f(1)+f(-1),故f(-1)=2,f(-3)=f(-2)+f(-1)=3f(-1)=6.所以f(x)在[-3,3]上的最大值为6,最小值为-6.点评我们可以举出具有这种性质的一个函数y=-2x(x∈[-3,3]).此外,我们还可以用奇偶性来证明单调性和求f(-3)的值. 由0=f(0)=f(x-x)=f(x)+f(-x),得f(-x)=-f(x),故f(x)是奇函数.因此f(n)-f(m)=f(n)+f(-m)=f(n-m)<0,f(-3)=-f(3)=6.注意这两种证明抽象函数单调性的技巧,为创造条件利用关系式,前者是作自变量变换n=n-m +m ;后者是用奇偶性巧妙地实现了“-”向“+”的转化.例2 已知函数f (x )的定义域为R ,对任意m ,n ,均有f (m +n )=f (m )+f (n )-1,且f (-12)=0,当x >-12时,f (x )>0. 求证f (x )是单调递增函数,并举出具有这种性质的一个函数. 解 设m >n ,则m -n >0,m -n -12>-12, 所以f (m )-f (n )=f (n +m -n )-f (n )=[f (n )+f (m -n )-1]-f (n )=f (m -n )+f (-12)-1=f (m -n -12)>0,即f (m )>f (n ). 从而f (x )为单调递增函数. 具有这种性质的一个函数是y =2x +1.例3 已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )>0.(1)求f (1),并证明f (x )在定义域上是增函数;(2)如果f (13)=-1,求满足f (x )-f (1x -2)≥2的x 的取值范围. 解 (1)令x =y =1,则f (1)=f (1)+f (1),得f (1)=0.设0<m <n ,则f (n ) - f (m )= f (n m ·m ) - f (m )= [f (n m )+f (m )] - f (m )= f (n m )>0 (因为n m>1). 即f (m )<f (n). 所以f (x )在(0,+∞)上是增函数.(2)由f (1)=0, f (1)=f (1x ·x )=f (1x )+f (x ),得f (1x)=-f (x ). 有f (13)=-f (3)=-1,得f (3)=1,故2=f (3)+f (3)=f (9), 有f (x )-f (1x -2)=f (x )+f (x -2)=f (x (x -2)), 所以原不等式可化为f (x (x -2))≥f (9),于是从而所求x 的取值范围是[1+10,+∞).点评 题(2)实质上是解抽象函数不等式. 一般地,先把不等式中的常数项化成某个函数值(如这里的2=f (9)),以便利用单调性“脱去”函数符号,转化成一般不等式. 特别注意抽象函数定义域. 不等式组的前两个不等式是定义域要求(这里也是单调区间的要求,因为只有同一个单调区间,才能“脱去”函数符号),第三个是单调性的逆用.此外,我们可以写出满足题设条件的一个函数y =log 3x .2. 与奇偶性相关的问题例4(2002·北京)已知f (x )是定义域在R 上不恒为0的函数,且对任意a ,b ∈R 都满足f (a ·b )=af (b )+bf (a ). 求f (0)和f (1),判断并证明f (x )的奇偶性.解 令a =b =0,则f (0·0)=0,即f (0)=0.令a =b =1,则f (1)=2 f (1),即f (1)=0.x >0,x -2>0, 解得x ≥1+10.x (x -2)≥9.f (x )为奇函数,证明如下.令a =-1,b =x ,则f (-x )=-f (x )+xf (-1),又f (1)=f ((-1)·(-1))=-f (-1)-f (-1),即f (-1)=0,从而f (-x )=-f (x ).所以f (x )为奇函数.点评 当然,也可以只令a =-1,推得f (-b )=-f (b )而得结论.例5(2009·全国)函数f (x )的定义域为R . 若f (x +1)与f (x -1)都是奇函数,则( )A. f (x )是偶函数B. f (x )是奇函数C. f (x )=f (x +2)D. f (x +3)是奇函数解析 由f (x +1)是奇函数,知f (-x +1)=-f (x +1), ①由f (x -1)是奇函数,知f (-x -1)=-f (x -1), ②在①中,用x -1代换x ,得f (2-x )= -f (x ),在②中,用x +1代换x ,得f (-2-x )=-f (x ),所以f (2-x )= f (-2-x ),再用-2-x 代换x ,得f (4+x )=f (x ),知4为f (x )的周期.于是由②,f (-x -1+4)=-f (x -1+4),即f (-x +3)=-f (x +3),所以f (x +3)是奇函数,可知选D.点评 我们还可以构造模型函数f (x )=cosπx 2来解此选择题,可知选 D. 事实上f (x +3)=sin πx 2. 还有,由f (x +1)是奇函数,可令h (x )=f (x +1),则h (-x )=-h (x ),即f (-x +1)=-f (x +1).此外,对上述变量代换法可以用换元法帮助理解. 例如,令t =x +1,则x =t -1,代入①式得f (2-t )=-f (t ),即f (2-x )=-f (x ). 注意这里的代换和换元的前提是,不能改变函数f (x )的定义域.例6(2014•全国)已知偶函数f (x )在[0,+∞)上单调递减,且f (2)=0,若f (x -1)>0,则x 的取值范围是 .解析 实际上是解抽象不等式f (|x -1|)>f (2).因为f (x )是偶函数,所以f (x -1)= f (|x -1|),因为f (2)=0,f (x -1)>0,所以f (|x -1|)>f (2).又f (x )在[0,+∞)上单调递减, |x -1|,2∈[0,+∞),所以|x -1|<2,解得-2<x -1<2,即-1<x <3综上可知,x 的取值范围是(-1,3).例7(2015•全国)设函数f ´(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ´(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A. (-∞,-1)∪(0,1)B. (-1,0)∪(1,+∞)C. (-∞,-1)∪(-1,0)D. (0,1)∪(1,+∞)解析 因为f (x )是R 上的奇函数,所以f (-x )=-f (x ) ①,对等式两边求导,注意左边用复合函数求导法则,得[f (-x )]´=[ -f (x )]´ ,f ´(-x )•(-x )´=-f ´(x ),即f ´(-x ) =f ´(x ) ②.因为当x >0时,xf ´(x )< f (x ),故当x <0时,则-x >0,-xf ´(-x )< f (-x ),将①,②代入得-xf ´(x )<- f (x ),即xf ´(x )> f (x ) (x <0).由f (x )>0,知xf ´(x )>0,得f ´(x )<0 (x <0),因此,f (x )在(-∞,0)上是减函数,又f (-1)=0,所以x <0时,由不等式f (x )>0,即f (x )> f (-1),解得x <-1.由奇偶性与单调性的关系知,f (x )在(0,+∞)上也是减函数,又f (1)=-f (-1)=0,所以x >0时,由不等式f (x )>0,即f (x )> f (1),解得0<x <1.综上可知,选A.评注(1)这里,我们由f (-x )=-f (x ),推得f ´(-x ) =f ´(x ). 这表明奇函数的导函数是偶函数. 同理可得,偶函数的导函数是奇函数.(2)另法. 我们可以构造辅助函数来解此题. 令g (x )=f (x )x ,得g ´(x )=xf ´(x )-f (x )x 2.当x >0时,g ´(x )<0,知g (x )单调递减. 由f (-1)=-f (1)及f (-1)=0,知g (1)=0,所以由不等式f (x )>0,即g (x )>g (1),解得0<x <1. 可证g (-x )=g (x ),g (x )是偶函数,知g (x )在(-∞,0)上是单调递增. 当x <0时,同理,由g (x )<g (-1)解得x <-1. 一般地,题目条件出现“xf ´(x )-f (x )<0( >0)”时,可以考虑构造辅助函数g (x )=f(x )x;出现“xf ´(x )+f (x )<0( >0)”时,可以考虑构造辅助函数 h (x )=xf (x ).(3)为加深对此题的理解,我们可以举出这类函数的一个特例:它的图象如图1.3. 与周期性相关的问题例8(2001·全国)设f (x )是定义域在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈[0,12 ],都有f (x 1+x 2)=f (x 1)f (x 2),且f (1)=a >0. 求f (12),f (14),并证明f (x )是周期函数.解 由题设得a =f (1)=f (12+12)=f (12)f (12),即f (12)=21a . 21a = f (12)=f (14+14)=f (14)f (14),即f (14)=41a . 因为f (x )是偶函数,所以f (-x )= f (x ),又f (x )图象关于直线x =1对称,得f (1+x )=f (1-x ),用x +1代换x ,得f (2+x )=f (-x ),于是f (2+x )=f (x ),所以f (x )是周期函数.例9 设函数f (x )定义在R 上,且对任意的x 有f (x )=f (x +1)-f (x +2),求证f (x )是周期函数,并找出它的一个周期.解 因为f (x )=f (x +1)-f (x +2),所以f (x +1)= f (x +2)-f (x +3),两式相加,得f (x )= -f (x +3),即f (x +3)= - f (x ).因此,f (x +6)=f ((x +3)+3)=-f (x +3)=-(-f (x ))=f (x ).所以,f (x )是周期函数,它的一个周期是6.点评 对于由关系式f (x +3)= - f (x ),推得f (x +6)=f (x ). 这个我们可以这样理解,“自变量每增加3,函数值反号一次”. 我们增加6,反号两次,不就“负负得正”了吗. 类似的还有f (x +2)=-x +1,x >0, 0, x =0, -x -1, x <0. f (x )= 图1±1f(x ),可得f (x +4)=f (x )等. 例10(2011·上海)设g (x )是定义在R 上的以1为周期的函数,若函数f (x )=x +g (x )在区间[3,4]上的值域为[-2,5],求f (x )在区间[-10,10]上的值域.解 由g (x +1)=g (x ),知g (x +n )=g (x ),n ∈Z .所以f (x +n )=x +n + g (x +n )=x +g (x )+n =f (x )+n ,n ∈Z .因为x ∈[3,4]时,f (x )∈[-2,5],故当x ∈[-10,-9]时,x +13∈[3,4],有f (x +13)∈[-2,5],即f (x )+13∈[-2,5],所以f (x )∈[-15,-8].当x ∈[-9,-8]时,x +12∈[3,4],同理,f (x )∈[-14,-7].……当x ∈[9,10]时,x -6∈[3,4],从而f (x -6)∈[-2,5],即f (x )-6∈[-2,5],所以f (x )∈[4,11].综上,当x ∈[-10,10]时,有f (x )∈[-15,-8]∪[-14,-7]∪…∪[4,11]=[-15,11].所以f (x )值域为[-15,11].4. f (x )=af (x +b )的问题关于已知f (x )所满足的方程求f (x )的解析式问题,我们在7.3节讲述过. 我们现在来研究函数f (x )满足关系式f (x )=af (x +b ),求解与f (x )相关的问题.例11(2010·广东)已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2).(1)求f (-1),f (2. 5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论f (x )在[-3,3]上的单调性.解析 (1)因为当0≤x ≤2时,f (x )=x (x -2),故f (1)=-1,f (12)=-34. 又x ∈R 时,f (x )=kf (x +2)(k <0), 所以f (-1)=kf (-1+2)=kf (1)=-k ; f (2. 5)=f (2+12)=1k f (12)=-34k. (2)因为当0≤x ≤2时,f (x )=x (x -2),设-2≤x <0,则0≤x +2<2,有f (x +2)=(x +2)(x +2-2)=x (x +2),所以f (x )=kf (x +2)=k x (x +2).设-3≤x <-2,则-1≤x +2<0,有f (x +2) =k (x +2)(x +4),所以f (x )=kf (x +2)=k 2(x +2)(x +4). 设2<x ≤3, 则0<x -2≤1,又f (x -2)=kf (x ),所以f (x )=1k f (x -2)=1k(x -2)(x -4).因为k <0,由二次函数性质知,f (x )在[-3,-1],[1,3]上为增函数;在[-1,1]上为减函k 2(x +2)(x +4),-3≤x <-2, k x (x +2), -2≤x <0, x (x -2), 0≤x ≤2, 1k (x -2)(x -4), 2<x ≤3. 综上所述,f (x )=数. (图2)例12(2003·上海)已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立.(1)函数f (x )=x 是否属于集合M ,说明理由;(2)设函数f (x )=a x (a >0且a ≠1)的图象与y =x 的图象有公共点,证明:f (x )=a x ∈M . 解 (1)对于非零常数T ,f (x +T )=Tf (x )=Tx ,因为对任意x ∈R ,x +T = Tx 不能恒成立,所以f (x )=x M .(2)因为函数f (x )=a x (a >0且a ≠1)的图象与y =x 的图象有公共点,显然x =0不是方程a x =x 的解,所以存在非零常数T ,使a T =T .于是对于f (x )=a x 有f (x +T )=a x +T = a T ·a x = T ·a x = Tf (x ),所以f (x )=a x ∈M .所以方程组 有解,消去y 得a x =x , y =a x , y =x。
抽 象 函 数 的 解 题 方 法
解 抽 象 函 数 的 常 用 方 法抽象函数是指没有给出具体解析式的函数。
此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。
然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。
我在多年的教学中,积累了一些解题方法,供大家参考.一、 利用线性函数模型在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。
常见的抽象函数模型有:例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2,f (x )在区间[-4,2]上的值域为 。
0a a ≠且解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得k=2,∴ f (x )的值域为[-8,4]。
例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时,f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。
分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。
解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则, 即,∴f (x )为单调增函数。
∵,又∵f (3)=5,∴f (1)=3。
∴2(22)(1)f a a f --,∴2221a a --,解得不等式的解为-1 < a < 3。
抽象函数问题求解的常用方法
抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。
2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。
在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。
3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。
4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。
需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。
因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。
高一抽象函数解法技巧
几类抽象函数实例定义:把一类没有给出具体解析式的函数称之为抽象函数。
1、已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。
2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。
3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。
求:(1)f(0);(2)对任意值x,判断f(x)值的正负。
4、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围。
5、设函数y=f(x)的反函数是y=g(x)。
如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。
6、己知函数f(x)的定义域关于原点对称,且满足以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0。
试问:(1)f(x)的奇偶性如何?说明理由。
(2)在(0,4a)上,f(x)的单调性如何?说明理由。
7、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1, f(27)=9,当时,。
(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞)上的单调性,并给出证明;(3)若,求a的取值范围。
解析分析例1:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。
解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。
在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2]。
关于抽象函数问题的解法
抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数问题求解的常用方法
例析抽象函数问题的求解策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。
抽象函数问题是高中数学函数部分的难点,也是高中与大学函数部分的衔接点。
由于这类试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识,因而备受高考命题者的青睐。
然而由于这类问题本身的抽象性及其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。
为使抽象函数问题解决有章可循,有法可依,本文主要介绍抽象函数问题的常见方法。
【方法荟萃】一、“赋值” 策略对于抽象函数,根据函数的概念和性质,通过观察与分析,将变量赋予特殊值,以简化函数,从而达到转化为要解决的问题的目的。
【例1】若奇函数()()f x x R ∈,满足(2)1,(2)()(2)f f x f x f =+=+,则(1)f 等于( )A .0B .1C .12-D .12解:对于)2()()2(f x f x f +=+,令1-=x ,得)2()1()1(f f f +-=即1)1()1(+-=f f , 从而1)1(2=f ,所以21)1(=f ,选D 。
【例2】设对任意实数1x 、2x ,函数)(x f y =)0,(≠∈x R x 满足)()()(211x x f x f x f ⋅=+。
(1)求证:0)1()1(=-=f f ;(2)求证:)(x f y =为偶函数。
解:(1)令121==x x ,得)1()11()1()1(f f f f =⨯=+,所以0)1(=f 。
令121-==x x ,得0)1()1()1(==-+-f f f ,所以0)1(=-f 。
(2)令x x x ==21,得)()(22x f x f =,令x x x -==21,得)()(22x f x f =-,从而我们有:)()(x f x f =-, 所以,)(x f y =为偶函数。
高考数学抽象函数6种快速解题方法与技巧(....
高考数学抽象函数的6大快速解题技巧1.换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2)故f(x)=-x 2+3x+1 (0≤u ≤2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。
例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x1)x (f 2)x1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥⨯-≥∆得由例3.f(x).1),x 0(x ,x 1)x1x (f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x1x (f )x (f ≠≠+=-+且 ,x1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x-11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x1x 2)x (f )x -11f( ,x 111)x111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
浅议高中数学中抽象函数问题的解法
浅议高中数学中抽象函数问题的解法本文从多个方面介绍了数学抽象函数的应用,特别是从平移的角度说明了抽象函数的对称问题,并就典型例题加以分析解答,对学生的常见错误进行了剖析。
抽象函数的有关内容一直是学生学习的一个难点,关于抽象函数题目类型较多,形式灵活多变,考查内容无论从深度和广度,给人耳目一新的感受,现就其中几个主要问题加以分类解析。
一、求抽象函数的定义域1. 若已知函数f [g(x)]的定义域为x∈(a,b),求函数f(x)。
解决这类问题的方法是:利用a例1. 已知函数f(x+1)的定义域是[-2,3],求y=f(x)的定义域。
解:因为函数f(x+1)的定义域是[-2,3],所以-2≤x≤3所以-1≤x+1≤4,因此y=f(x)的定义域是[-1,4]2. 若已知函数f(x)的定义域为x∈(a,b),求f [g(x)]函数的定义域。
解决这类问题的方法是:a例2. 已知函数f(x)的定义域为(0,1],求函数g(x)=f(x+a)+f(x-a)(-解:因为函数f(x)的定义域为(0,1]所以0由于-所以不等式组(∈)的解为-a即g(x)=f(x+a)+f(x-a)(-二、抽象函数的周期性和奇偶性1. 抽象函数的周期性例3. 定义在R上的函数f(x)满足f(x)=-f(x+2),且当x∈(-1,1]时,f(x)=x2+2x,求当x∈(3,5]时,f(x)的解析式。
解:∈f(x+4)=f(x+2+2)=-f(x+2)=f(x)∈f(x)是以4为周期的周期函数设x∈(3,5]时,则-1∈f(x)=f(x-4)=(x+4)2+2(x-4)=x2-6x+8(3评注:若对函数f(x)定义域内的任意,恒有下列条件之一成立(以下式子分母不为零,a≠0)①f(x+a)=-f(x) ②f(x+a)= ③f(x+a)=-④f(x+a)=- ⑤f(x+a)=- ⑥f(x+a)=f(x-a)则函数f(x)是以2a为周期的周期函数①2. 抽象函数的奇偶性奇、偶函数的定义是判断函数奇偶性的主要依据,有时为了便于判断函数的奇偶性,也往往需要先将函数进行化简,或运用定义的等价形式,但对于抽象函数的奇偶性的判断主要是用赋值法,构造出定义的形式。
高中数学 抽象函数解法
抽象函数问题一般是由所给的性质,讨论函数的其它性质,如单调性、奇偶性、周期性及函数变换与图象的对称性之间的关系,或是求函数值、解析式等.抽象函数问题的解法,主要是“赋值法”、“变换法”和“特例法”。
一、“赋值法”。
把已知函数所满足的性质,即一般性的条件,赋予特殊的值,推出函数所必须满足的其它性质。
例1.已知函数y=f(x)是定义在R上的奇函数,且f(3)=0,对任意x∈R,都有f(x+6)=f(x)+f(6) 成立,则f(2007) = ( 0 )f(-3)=0,取x=-3代入f(x+6)=f(x)+f(6)得f(6) =0,f(x+6)=f(x),周期为6…,选D。
例2.(2006重庆高考)已知定义域为R的函数f(x)满足f(x)满足f(f(x)- x2+x)=f(x)- x2+x.(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)= x0,求函数f(x)的解析表达式。
解:(I)取x=2,又f(2)=3得f(f(2)- 22+2)=f(2)- 22+2,即f(1)=1。
又f(0)=a,故f(f(0)-02+0)= a-02+0,即f(a)=a。
(Ⅱ)又满足f(x0)= x0的实数x0唯一,由f(f(x)- x2+x)=f(x)- x2+x可知任意x∈R有f(x)- x2+x=x0。
在上式中令x=x0有f(x0)- x02+x0=x0。
再代f(x0)= x0得x0- x02=0,故x0=0或x0=1。
若x0=0,方程f(x)= x有两个根,故x0≠0。
若x0=1,则有f(x)= x2–x+1,二、“变换法”。
利用已知函数所满足的一般性的关系式,通过变量代换,推出所要求的关系式。
例3.下列命题正确的序号是__________①若f(x)满足f(a+x)=f(b-x)则y=f(x)的图象关于直线对称;②若f(a+x)+f(a-x)=2c则y=f(x)的图象关于点(a,c)中心对称.③函数y=f(a+x)与y=f(b-x)的图象关于直线对称.④函数y=f(a+x)与y=-f(b-x)的图象关于点中心对称.解析:①②③④都正确。
抽象函数的常见解法
抽象函数的常见解法抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。
因此,这类问题在高中数学的各类考试中经常出现。
下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。
这类问题经常出现,要认真理解其解题的要领和方法。
例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。
分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。
解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +n各式相加得:f(n) = 1+2+3+…+n =∴ f(x) =例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R,y∈R,且f(0)≠0,求证:f(x)是偶函数。
分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。
证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)求证:当x > 0时, f( ) = -f(x)分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·)可求得。
高一必修1抽象函数题型分析
抽象函数题型、技巧总结一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高中数学中抽象函数的解法及练习
抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高中数学中抽象函数地解法及练习
抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高+解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数问题求解的几种常用求法
抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。
如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。
它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。
一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。
2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。
解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。
解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。
抽象函数解题方法
抽象函数解题方法函数是高中数学的核心内容,它对于学生掌握双基和发展能力具有十分重要的意义。
通常所说的函数,一般都具有解析式、图表等某种具体的表现形式,但是有一类函数只给出了函数所满足的一部分性质或运算法则,而没有明确的表现形式,这类函数我们通常称之为抽象函数。
抽象函数作为初等数学和近代数学的衔接点,既能体现数学的本质特征、近现代数学发展的威力,又能体现新课标对知识和技能考核的要求和高考的能力命意,必将受到人们的重视。
以下介绍几种解决抽象函数问题的方法,力求使抽象函数问题的解法有“章”可循。
一、赋值法赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。
例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有f(xy)=f(x)+f(y)恒成立。
若已知f(2)=1,试求:(1)f(1/2)的值;(2)f(2 - n)的值,其中n为正整数。
思路:合理赋值,化抽象为具体,发现递推规律。
解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,依此类推就有f(2 - n)= -n,其中n为正整数。
二、利用函数单调性解抽象函数不等式,要设法将它转化成显性的不等式求解.这需要具备两个条件:一是要把不等式化为f(□)>f(△)的形式,二是要判断函数的单调性。
再根据函数的单调性,将抽象函数不等式的符号"f"去掉,得到具体的不等式求解.例2 若f(x)是定义在(0,+∞)上的减函数,且对一切a,b∈(0,+∞),都有f(a/b)=f(a)-f(b),且f(4)=1,试解不等式f(x+6)-f(1/x)>2.思路:逆用函数单调性,将不等式中的函数关系转化为自变量之间的关系.解:因为f(a/b)=f(a)-f(b),且f(4)=1,所以f(x+6)-f(1/x)>2,则f(x+6)-f(1/x)>2f(4),则有f(x 2+6x)-f(4)>f(4),故f[(x 2+6x)/4]>f(4).由于f(x)是(0,+∞)上的减函数,因此由1/x>0,x+6>0,(x 2+6x)/4<4同时成立解得0<x<2,故原不等式的解集是(0,2).三、利用函数的对称性例3 设函数y=f(x)对一切实数x都满足f(x+3)=f(3-x)且方程f(x)=0恰好有6个不同的实根,这6个根的和为()A.18B.12C.9D.0解:由命题1知,y=f(x)的图象关于x=3对称,故6个根的和为18,故选A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数(函数方程)抽象函数是指没有明确表达式但有运算规律及函数性质的函数。
解决抽象函数问题,主要采取“赋值法”(取点或字母)整体迭代法,但核心是方法的发现,要掌握好抽象函数就必须有强烈目标意识、清晰的解题思路。
<一>、选择题 1、 已知)(x f 满足0)0(≠f ,对任意R x x ∈21,都有:)2()2(2)()(212121x x f x x f x f x f -⋅+⋅=+则)(x f 为( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、奇偶性不确定解:令)(01)0(),0(2)0(2:,0221舍去或得=∴===f f f x x 令)(2)()0(2)()(:,,21x f x f f x f x f x x x x =⋅=-+-==得)(),()(x f x f x f ∴=-∴是偶函数(或取x x f cos )(=符合条件) 选B2、已知)(x f 对任意y x ,有=≠+=+)2008(,0)1(),(2)()(22f f y f x f y x f 则且( )A 、2008B 、2006C 、1004D 、1003解:令:,1,0,0)0(:,0得再令得=====y x f y x )1(2)1(2f f =,)(021)1(舍去或=∴f又令1=y 得:21)()1(+=+x f x f 10041004)0()2008(=+=∴f f 选C3、函数)(x f 是定义在R 上的奇函数,且0)2(=f 对任意x 都有)4()()4(f x f x f +=+,那么)2008(f 等于( )A 、3996B 、1998C 、2000D 、0解::,2,0)2()2(,)(得令为奇函数-===-∴x f f x f )4()2()2(f f f +-= 0)4(=∴f)()4(x f x f =+∴ 0)0()2008(==∴f f (奇函数)(x f 有0)0(=f )选D4、已知定义在R 上的函数)(x f 满足条件)()()()(212133x f x f x x x f x f ≠≠=时有且当则=-++)1()1()0(f f f ( )A 、0B 、1C 、1-D 、2解:令{}{})1(),1(),0(,0,1,1)(:1,1,0:1,1,0f f f x f x x --∈-∈-=又时有可得两两不等, 00)1(1)1()1()0(=+-+=-++∴f f f选A5、已知函数)(x f 与)(x g 都要存在反函数,且)1(+x f 与)2(1--x g 的图象关于直线x y =对称,若:==)6(,2004)5(f g 则( )A 、2004B 、2005C 、2006D 、2007解法一:x y x g y =-=-关于)2(1得:)1(2)(++=x f x g y 与重合 2)()1(+=+∴x g x f20062)5()6(=+=∴g f解法二:2004)5(=g )2004,5(点∴在)(x g 图象上,从而有点)5,2004(在)(x g 图象上)2004,5(∴在)1(+x f 图象上 )2006,6(∴在)(x f 图象上,即有2006)6(=f 选C6、函数)(x f 是在),0(+∞上有定义的增函数,满足==+⋅)1(,1]1)([)(f xx f f x f 则( )A 、1B 、0C 、251+D 、251-解:tt f t f t x t f 1)1(,1)1(:,1,)1(=+=+⋅==即得令设 再令)1()111(,1)111(1:,1f t t t f t t f t t x ==++∴=++⋅+=得251,1111)(±==++∴t t t x f 得为单调增函数若tt f f t t 1)1()1(251=+<=+=与矛盾,251-=∴t选D<二>、填空题7、已知)(x f 满足)12()()(,1)0(+--=-=b a b a f b a f f ,则)(x f 的解析式为___________解:令1)(:,,02++=-==x x x f x b a 得8、已知)(x f 是定义在非负整数集上的函数,且对任意正整数x 都有:)1()1()(++-=x f x f x f若==)2004(,2004)0(f f 则____________解:已知得⎩⎨⎧++=+++-=)2()()1()1()1()(x f x f x f x f x f x f 相加得:)2()1(+-=-x f x f)3()(+-=∴t f t f )6()(+=∴t f t f )(x f ∴周期为6 2004)0()2004(==∴f f(另解:看作数列...,,,,,,,:,)2(,)1(),(b a a b b a a b b a b f a f n f +----==则此数列为设周期为6)9、若)(x f 满足)2001(,1997)1(),(1)](1[)2(f f x f x f x f 则且有=+=-⋅+=_____=)2003(f _____解:)(1)(1)2(x f x f x f -+=+)(1)(1)(11)(1)(11)4(x f x f x f x f x f x f -=-+--++=+∴)()8(x f x f =+∴ 1997)1()2001(==∴f f 99899919961998)2001(1)2001(1)2003(-=-=-+=∴f f f 10、已知)(x f 和)(x g 在R 上有定义,对任意R y x ∈,都有:)()()()()(y f x g y g x f y x f ⋅-⋅=-成立,若=-+≠=)1()1(,0)2()1(g g f f 则_________解:是奇函数对调得与)()(...)(x f y x f x y f y x ∴--==-,令1,1-==y x 得:)1()1()1()1()2(-⋅--⋅=f g g f f 即:)]1()1()[1()2(g g f f +-= 0)2()1(≠=f f1)1()1(=+-∴g g (取x x g x x f 3cos)(,3sin)(ππ==符合题意)<三>、解答题11、定义在R 上的函数)(x f 满足)()(2)()(y f x f y x f y x f ⋅=-++,且0)0(≠f①求证:1)0(=f②求证:)(x f 是偶函数证明:①令1)0(0)0()0(2)0(2:02=∴≠===f f f f y x 得②令)(2)()0(2)()(:0y f y f f y f y f x =⋅=-+=得 即)()(y f y f =-)(x f ∴是偶函数12、已知)(x f 是定义在R 上的函数,当)()()(:,,1)(,0b f a f b a f b a x f x ⋅=+>>都有对任意实数时① 证明:对0)(,>∈x f R x 恒有② 证明:)(x f 是R 上的增函数证明:① 令1)0(1)1()0()1()1(:0,1=∴>⋅===f f f f f b a 得────(1)设1)()()()0(1)(,00=-⋅=-=∴>->-<x f x f x x f f x f x x 则 )(1)(x f x f -=∴)1,0()(1)(∈∴>-x f x f ────(2)结合已知与(1)、(2)知对R x ∈都有0)(>x f(另证:设无解只须证则0)(:,0)2()22()(,2=≥=+=∈x f x f x x f x f R x 。
反证:设存在t x =使0)(=t f ,则有:0)()1()1()1(=⋅-=+-=t f t f t t f f 与1)1(>f 矛盾。
)②设1)(0,212121>-∴>->x x f x x x x 则,且由①知)(2x f 为正数,)()()()()(22212211x f x f x x f x x x f x f >⋅-=+-=∴ 上的增函数是R x f )(∴13、设)(x f 是定义在),0(+∞上的函数,对任意正数y x ,都有:)()()(y f x f y x f +=⋅①、求证:0)1(=f ②、若1>x 时,有)(x f >0,求证)(x f 在+R 上是增函数证明:① 令0)1(,1===f y x 得②设0)(1,0212121>∴>>>x xf x x x x 则)()()()()(22212211x f x f x xf x x x f x f >+=⋅=∴ ∴)(x f 在+R 上是增函数 14、函数)(x f 满足对任意y x ,有)()()(y f x f y x f +=+,且)()()(y f x f y x f ⋅=⋅当y x ≠时)()(y f x f ≠①、求证:若0)(,0>>x f x 则②、求证:)(x f 是增函数证明:①令0)()()(0,0)()0()(,00)0(02>=⋅=>≠∴≠≠===x f x x f x f x x f f x f x f y x 则若时当得②设0)(,0212121>-∴>->x x f x x x x 则 )()()()()(22212211x f x f x x f x x x f x f >+-=+-=∴)(x f ∴是R 上的增函数以上例题常见于各种考试中,它是①幂函数、②指数函数、③对数函数、④三角函数等等最常见的模型。
请同学们熟记!15、设正函数)(x f 满足下列四条件:①1)21(=f ②值域为]1,1[- ③单调递减函数 ④对定义域内任意y x ,有)()()(y f x f y x f +=⋅(1)、求证:41不在)(x f 的定义域内 (2)、求不等式21)11()(11≤-⋅--x f x f 的解集 证明:(1)反证法:设41在)(x f 的定义域内,则)41(f 有意义且]1,1[)41(-∈f另一方面由条件①与④得:2)21()21()2121()41(=+=⋅=f f f f]1,1[2-∉ ,这与已知矛盾,假设不成立,即41不在)(x f 的定义域内。
解:(2)由条件②、③知)(x f 存在反函数)(1x fy -=且递减,定义域为]1,1[-)()()(:2112111x x f x f x f +=⋅---先证明 设⎪⎩⎪⎨⎧==--)()(212111x f y x f y 则⎩⎨⎧==)()(2211y f x y f x)()()(212121y y f y f y f x x ⋅=+=+∴ )(21121x x f y y +=⋅∴-)()()(2112111x x f x f x f +=⋅∴--- )1()11(:11--≤-+∴f xx f 原不等式可化为,可得: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥-+≤-+≤-≤-≤-≤≤-1111111111111x x x x x x 解得0=x }0|{=∴x x 不等式的解集为16、已知定义在R 上的函数)(x f ,对任意y x ,均有:1)()()(-+=+y f x f y x f ,且0)21(=-f当0)(,21>->x f x 时(1)求证:)(x f 是R 上的增函数 (2)解不等式:)()1()1(12ax f f x f +≤++,)0(>a 证明:(1)1)(,0:>>x f x 时当先证 若0)21(2121,0>-∴->->x f x x 则01)21()(>--+∴f x f1)(0)21(>∴=-x f f 设1)(0,212121>-∴>->x x f x x x x 则)(1)()()()(22212211x f x f x x f x x x f x f >-+-=+-=∴ )(x f ∴是R 上的增函数。