静态工作点稳定电路.
静态工作点稳定的放大电路
1、声音洪亮 2、语言精简 3、点评步骤: 判断正误-规 范思路-征求 意见
基础知识探究
1、写出分压式偏置放大电路稳定工作点的过程?
探究案展示点评
展示内容 任务二 任务二 任务三 任务三 展示人员 展示要求 点评人员 点评要求
1、书面展示 2、动作迅速 3、书写规范 4、格式正确 5、声音洪亮 6、尽量脱稿
21b2ccbqbbrrrvv???cqbqii?eqbebqeqcqrvvii???vceqvccicqrcre分压式偏置放大电路的直流通路2交流参数估算电压放大倍数输入电阻rirb1rb2rbe输出电阻rorc分压式偏置放大电路的交流通路??要确保分压偏置电路的静态工作点稳定应满足两个条件
静态工作点稳定的放大电路
2.稳定静态工作点
3.电路参数估算 (1)静态工作点的估算 分压式偏置放大电路的直流通路 图所示,可推导出下列静态工作点的估算公式。
VBQ VCC
I BQ I CQ
Rb2 Rb1 Rb 2
I CQ I EQ
分压式偏置放大电路的直流通路
VBQ VBE Q Re
VCEQ≈VCC-ICQ(Rc+Re)
(三)集电极—基极偏置放大电路 1.电路组成 电路的组成特点:Rb跨接在放大管 的c极和b极之间。
2.稳定静态工作点的原理
集电极—基极偏置放大电路
探究案展示点评
展示内容 任务一 任务一 展示人员 展示要求 点评人员 点评要求
1、书面展示 2、动作迅速 3、书写规范 4、格式正确 5、声音洪亮 6、尽量脱稿
2、根据下图,试写出集电极-基极偏置放大电路稳定工作点 的过程?
3、某放大电路的上限截止频率为10KHz,下限截止频率为 500Hz,则其通频带为 。 4、已知两共射极放大电路空载时电压放大倍数绝对值分别 为A和A,若将它们接成两级放大电路,则其放大倍数绝 对值( )。 A.Au1Au2 B. Au1+Au2 C. 大于Au1Au2 D. 小于Au1Au2 5、某放大器输入电压为10mv时,输出电压为7V;输入电压 为15mv时, 输出电压为6.5V,则该放大器的电压放大倍数 为( ) 。 A. 100 B. 700 C. -100 D. 433
差动放大电路稳定静态工作点的原理和抑制共模信号的原理一样。
差动放大电路稳定静态工作点的原理和抑制共模信号的原理一样。
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!差动放大电路稳定静态工作点的原理与抑制共模信号的方法1. 简介在电子电路中,差动放大电路是一种常见的电路拓扑结构,用于放大差分信号并抑制共模信号。
静态工作点稳定偏置电路、共集基
设计原则与步骤
3. 设计偏置电路
根据设计原则,设计出能够稳定静态工作点的偏置电路。
4. 仿真验证
使用仿真软件对设计的偏置电路进行验证,检查其性能是否满足 要求。
5. 实际测试
搭建实际电路,进行测试以验证设计的有效性。
参数选择与优化
元件参数
电源电压和电流
根据电路性能需求,选择合适的电阻、电容、 电感等元件参数。
https://
静态工作点稳定偏置 电路与共集基
xx年xx月xx日
• 静态工作点稳定偏置电路概述 • 共集基的应用与特性 • 静态工作点稳定偏置电路与共集
基的关系 • 静态工作点稳定偏置电路的设计
与优化 • 共集基的未来发展与展望
目录
01
静态工作点稳定偏置电路 概述
共集基在新型电子设备中的应用前景
物联网设备
共集基在物联网设备中具有广泛的应用前景,如传感器、无线通信 模块等,能够提供高效、低功耗的信号处理解决方案。
人工智能硬件
共集基在人工智能硬件中可用于实现神经网络加速器、信号处理器 等,有助于提高人工智能系统的计算效率和能效比。
生物医疗电子设备
共集基在生物医疗电子设备中具有重要应用价值,如生理信号监测、 药物释放等,能够提供高精度、低噪声的信号处理解决方案。
电路
1. 搭建实际电路,确保元件安装正确、连线无误。
03
2. 对电路进行初步测试,检查是否存在明显的故障或问题。
电路调试与测试
3. 使用调试工具对电路进行细致的调 试,解决存在的问题。
4. 记录调试过程中的问题和解决方法, 为后续设计和优化提供参考。
电路调试与测试
01
https://
静态工作点稳定偏置电路对共集基的影响
10-2稳定静态工作点的典型电路及其原理
T
分压偏置共射放大电路
IC
VE VB 固定 UBE
IC
IB
稳定静态工作点的典型电路及其原理
(3)引入负反馈和温度补偿稳定Q点
+Vcc
Rb1
Rc
C2
C1
+
RT
ui Rb2 t
-
Rb3
+
RL
uo
Re Ce
-
T
UD
VB
IC
VE
UBE
IB
IC
IB Rb
IB
VT(℃)
IC
β
IB
IC
稳定静态工作点的典型电路及其原理
RB1
CV1+B
+
RS eS–+
ui RB2 –
I1
IC
+UCC
RC IB
+C2 引入直+流
I2 RE
VE +
R负L 反u馈o
CE
–
合理选择RB1和RB2,使得满足: I2 >>IB , VB >>UBE
稳定静态工作点的典型电路及其原理
稳定静态工作点的典型电路及其原理
(1)二极管温度补偿电路
I Rb
VCC UBEQ Rb
VCC Rb
IRb IR IB
I Rb
IB
IR
稳定静态工作点的典型电路及其原理
(2) 直流负反馈Q点稳定电路
Rb
直流电压负反馈
直流电流负反馈
稳定静态工作点的典型电路及其原理
放大电路静态工作点的稳定、放大电路的三种接法
的变化,保持Q点稳定。
常采用分压式偏置电路来稳定静态工作点
继续
2. 静态工作点稳定的放大器 (p105)
Rb1 Cb1
+VCC
Rc
I1
IC Cb2
IB
(1) 结构 及工作原理
+
T
+
+
u i
Rb2
I2 Re
IE RL
u o
-
-
+
选I2=(5~10)IB ∴I1 I2
β
R
L
rbe (1 β )Re
继续
输入电阻:
ii
+
+
ui
Rb1
-
+
Ri
ib b
c ic
+
rbe
e
Rb2
β ib
+
RC
RL
u o
R
-
+
Ri
Ro
Ri=
ui ib
rbe
(1 β )Re
Ri Ri // Rb1 // Rb2
输出电阻:
Ro Rc
[rbe (1 β )Re ]// Rb1 // Rb2
3. ICBO 改变。温度每升高 10C ,ICBQ 大致将增加一 倍,说明 ICBQ 将随温度按指数规律上升。
温度升高,最终将导致 IC 增大,Q 上移。波形容易失真。
iC
VCC RC
T = 20 C
T = 50 C
Q
iB
Q
O VCC uCE
温度对 Q 点和输出波形的影响
静态工作点稳定偏置电路共集基
4.6 组合放大电路
共射—共基放大电路 共集—共集放大电路
第31页/共39页
共射—共基放大电路
共射-共基放大电路
第32页/共39页
共射—共基放大电路
电压增益
Av
vo vi
vo1 vi
•
vo vo1
Av1 • Av2
其中
Av1
β1 RL rbe1
β1rbe2 rbe1(1 β2 )
Av
vo vi
β ib (Rc // RL ) ib[rbe (1 β)Re ]
β ( Rc // RL ) rbe (1 β)Re
(可作为公式用)
第6页/共39页
(2)放大电路指标分析
③输入电阻
vi ib[rbe (1 β)Re ]
ii ib iRb
vi
vi vi
rbe (1 )Re Rb1 Rb2
VCC
ICQ
IEQ
VBQ
VB EQ Re
VCEQ VCC ICQ Rc IEQ Re VCC ICQ ( Rc Re )
IBQ
ICQ β
不再先求IBQ
VBQ VEQ , I EQ , ICQ VCEQ , I BQ
第4页/共39页
(2)放大电路指标分析
②电压增益 <A>画小信号等效电路
第17页/共39页
直流通路
共集电极放大电路 2.动态分析
①小信号等效电路
第18页/共39页
共集电极放大电路
2.动态分析
②电压增益
输入回路:
vi ibrbe ib (1 β)RL
其中 RL Re // RL
输出回路: vo ib (1 β)RL
静态工作点的稳定及其偏置电路wzl
在模拟计算电路中,如模拟乘法器、 对数放大器等,静态工作点的设置和 偏置电路的设计对于提高计算精度和 稳定性具有重要作用。需要根据具体 电路的特点和要求,合理选择和调整 静态工作点及偏置电路参数。
THANKS
感谢您的观看
集电极-基极偏置电路
通过改变集电极电阻或电源电压来 调整晶体管的静态工作点,适用于 需要大范围调整工作点的场合。
Part
03
静态工作点稳定性分析
温度对静态工作点影响
温度升高会导致半导体器件的参数发生变化,如晶体管的 电流放大系数增大,基极-发射极间电压降减小等,从而使 得静态工作点发生偏移。
温度的变化还会影响电路中的其它元件,如电阻的阻值随 温度升高而增大,电容的容值随温度升高而减小等,这些 变化也会对静态工作点产生影响。
常见偏置电路类型
固定偏置电路
采用固定电阻为晶体管提供基极 偏置电流,适用于温度变化不大 且对稳定性要求不高的场合。
发射极偏置电路
在发射极回路中接入电阻或稳压管来稳 定发射极电流,从而提高晶体管的稳定 性,适用于对稳定性要求较高的场合。
分压式偏置电路
采用电阻分压器为晶体管提供基极 偏置电压,具有较好的稳定性,适 用于温度变化较大的场合。
重要性
静态工作点的设置直接影响到放大器的性能,如线性度、失真度、效率等。合理的静态 工作点设置是确保放大器正常工作的基础。
影响因素及稳定性要求
电源电压波动
电源电压的波动会导致静态工作 点的偏移,进而影响放大器的性 能。
温度变化
温度变化会影响半导体器件的参 数,如电阻、电容等,从而导致 静态工作点的漂移。
为了减小电源电压波动对静态工作点的影响,可以采用稳压电源或电源滤 波电路。
放大电路静态工作点的稳定措施
2.3.1 放大器的直流通路与交流通路 1.直流通路 . 放大电路未加输入信号时,在直流电源作用下直流电流流经的通路。 用于研究电路的静态工作点等问题。
共射放大电路的 直流通路 画直流通路的原则为:电容视为开路;电感线圈视为短路。
2.4.2 放大器静态工作点稳定的措施 1.分压式偏置电路
(a)电路原理图 )
(b)实物连接图
Rb1为上偏置电阻, Rb2为下偏置电阻, Re为射极电阻, 起到稳定三极管静态电流的作用。 Ce是旁流电容,使放大电路的放大作用不因Re而降低。
(2)静态工作点稳定的条件
I1 ≈ I
(3)静态工作点稳定的过程 (某原因) →
2.交流通路 . 在交流信号
vi 作用下,交流信号流经的通路。
用于研究放大电路的动态参数及性能指标等问题。
共射放大电路的 交流通路 画交流通路的原则为:电容视为短路;直流电源视为短路。
2.3.2 放大器的静态与动态分析 1.静态分析 . 静态分析主要是估算放大电路的静态工作点Q,即静态时电路中各处的直流电流和直 流电压: I
2ห้องสมุดไป่ตู้
>>
I
BQ
I CQ
↑ →
I EQ ↑
I BQ
↓
→
V EQ ↑ → V BEQ↓
I CQ ↓
←
可见分压式偏置电路具有自动稳定静态工作点的功能。
分压式偏置电路 的直流通路
(4)分压式偏置电路静态工作点的估算
I1 ≈ I2 =
VCC R b1 + R b 2
第2章 基本放大电路(5)2.4静态工作点稳定电路
Ri Rb1 // Rb2 //rbe (1 ) Re RO RC
2 - 4 - 27
电路的动态参数: (1 ) R r e be
RL ' RL ' ( R ' R // R ) L C L Au rbe (1 ) Re Re
2 - 4 - 36
解:空载时根据电路的输入回路得到:IBQ VBB UBE 20A Rb 确定ICQ=2mA A ICQ Q
●
IBQ B
UCEQ 根据电路的输出回路电压方程画出输出负载线A-B, 确定Q: IBQ=20μ A,ICQ=2mA, UCEQ=6V.
2 - 4 - 37
空载时最大不失真输出电压幅值约为 6-0.7=5.3V, A ICQ Q
按要求画图
注意
2 - 4 - 33
2.2 画出如图所示各电路的直流通路和交流通路。设所 有电容对交流信号均可视为短路。 解:将电 容开路 即为直 流通路。
2 - 4 - 34
各电路的交流通路如图所示;
2 - 4 - 35
2.4电路如图(a)所示,图(b)是晶体管的输出特 性,静态时UBEQ=0.7V。 利用图解法分别求出RL =∞和RL =3kΩ 时的静态工 作点和最大不失真输出电压Uom(有效值)。
iC iC 交流负载线
iB Q 0 t 0 0 u CE u CE
(a) t
2-4-9
Q点偏高产生的非线性失真-------饱和失真(对于uO 底部平顶失真)
iC iC Q iB
交流负载线 0 t 0 0 (b) u CE u CE
t
2 - 4 - 10
为了保证放大电路的正常工作,必须有 合适的、稳定的静态工作点。电源电压的 波动、元件的老化以及因温度变化所引起 晶体管参数的变化,都会造成静态工作点 的不稳定。其中温度对晶体管参数的影响 是最主要。 UBE
稳定静态工作点的偏置电路
UBEQ
(UBEQ=UB-UE)
6
b. 电路分析:
+UCC
Rb1 I Rc IB T Rb2 IR IE IC
静态分析(根据直流通路分析)
估算法:
UB
Rb 2 U CC Rb1 Rb 2
U E U B U BE
I EQ UE I CQ Re
I EQ 1
Re
直流通路
I BQ
5.2.4
稳定静态工作点的放大电路
1. 温度对于Q点的影响
UBE T
ICBO
ICEO
IC
Q点上移
固定偏置电路
1
iC
温度上升时,输出 特性曲线上移,造 成Q点上移。
Q´ Q uCE
2
2.稳定静态工作点的方法
使外界环境处于恒温状态
从放大电路自身考虑(改进电路)
思想
当T↑、IC ↑,能够自动减 少IB,从而抑制Q点的变化。 (分压式偏置电路)
3
3.分压式偏置电路
a. 电路结构:
+UCC Rb1 I C1 IB IR Re Ce
Rc C2
RL
ui
Rb2
uo
4
+UCC Rb1
I C1 Rc C2
偏置电阻Rb1、Rb2的作用
I=IR+IB 选择参数使IR>>IB, 则I≈IR ,故基极电位为:
IB
IR Re RL Ce
Rb 2 UB U CC Rb1 Rb 2
Rb2
ri Rb1 // Rb 2 // rbe
ro
rO RC
ri
微变等效电路
10
小结:
分压式静态工作点稳定电路实验报告
分压式静态工作点稳定电路实验报告1. 引言静态工作点是指电子元件或电路在无交流信号输入时的直流电流和电压值,是电路中的重要参数之一。
在理想情况下,我们希望静态工作点稳定,以保证电路正常工作。
本实验旨在通过分压式静态工作点稳定电路的搭建和实验验证,探究分压式电路对静态工作点的影响以及其稳定性。
2. 实验原理(1) 分压式静态工作点稳定电路:该电路由电压分压器和负载电阻组成。
其中,电压分压器由两个电阻串联而成,并与电源相连,负载电阻则与电压分压器并联连接。
(2) 分压式电路原理:将输入电源的电压通过电压分压器分配给负载电阻,调整分压器的比例可以改变电路的输出电压。
理想情况下,负载电阻的两端电压可通过分压器的输出电压和总电阻来计算。
(3) 静态工作点分析:静态工作点一般表示为电路中某一元件两端的电压或电流值。
在本实验中,将通过测量电路中负载电阻两端的电压来确定静态工作点的位置,通过调整电路参数来使得静态工作点稳定在期望值附近。
3. 实验设备(1) 直流电源,电压范围可调(2) 电阻,选择合适的电阻值以满足实验要求(3) 万用表,用于测量电路参数4. 实验步骤(1) 搭建分压式静态工作点稳定电路,如图所示。
(2) 将直流电源连接到电路中,设置合适的电压值。
(3) 用万用表测量负载电阻两端的电压,并记录下来。
(4) 在保持电源电压不变的情况下,调整电路参数(如电阻值)来改变电路的分压比例。
(5) 重复步骤(3)和(4),记录不同电路参数下的负载电阻两端电压值。
5. 实验结果与分析通过实验记录的数据,可以绘制出不同电压分压比例下负载电阻两端电压的变化曲线。
从曲线图中可以看出,当分压比例改变时,负载电阻两端电压也发生变化,说明分压式电路对静态工作点有一定的影响。
此外,我们可以观察到当分压比例较小时,负载电阻两端电压较为稳定,而当比例增大时,负载电阻两端电压变化幅度增大,说明分压式电路对静态工作点的稳定性呈现一定的影响。
第9讲_静态工作点稳定电路
'
Ii
Re1较小,直流通路中Re1 与Re2均起作用
交流通路中只有Re1起作用 这样既能保证静态工作点 稳定又能使电路有较高的 放大倍数
17
可以看出,当无Ce时,
电压放大倍数很低
+VCC
Rb1 C1
+ ui Rb2 -
5 Rb1 12 3V U BQ VCC 5 15 Rb1 Rb2
I CQ I EQ U BQ U BEQ 3 0.7 1mA 2.3 Re
U CEQ VCC I CQ ( Rc Re )
12 1 (5.1 2.3) 4.6V
' R' Uo Ic RL I b L
Ro Rc
若(1 ) Re rbe , 且 1, 则
' U R Au o L Ui Re
U RL o Au U rbe (1 ) Re i
'
Ri Rb1 // Rb2 // rbe (1 ) Re
T UBE
IC
温度T 输出特性曲线族间距增大
10
2.4.2. 典型的静态工作点稳定电路
一、电路组成和Q点稳定原理
直接耦合放大电路
阻容耦合放大电路
直流通路
Ce旁路电容
11
目标:温度变化时,使IC维持恒定。
如果温度变化时,基极电位能 基本不变,则可实现静态工作点的 稳定。 基极电位基本不变的条件: I1 >>IBQ
R
'
L
Rc // RL
典型的静态工作点稳定电路
1)静态工作点各值如下:
UBQ
≈
RB1 RB1 RB2
VCC
20 40 20
12V
4V
ICQ
≈ UBQ RE
4 2
mA 2mA
UCEQ ≈VCC (RC RE)ICQ 12V (2.5 2) 2V 3V
IBQ
ICQ
2 50
mA
0.04mA
计算机电路基础
对放大电路的基本要求之一,就是放大后的输入信号尽可能不失真。所谓 失真,就是指输出信号的波形不同于输入信号的波形。引起失真的原因有很多, 最基本和最常见的是由静态工作点的设置不合适所致。此外,静态工作点还影 响着电压放大倍数、输入电阻等动态参数。因此,如何使静态工作点保持稳定, 是一个十分重要的问题。
2)动态时, Au 、 Ri 、Ro 如下:
rbe
rbb
26(mV) IBQ (mA)
300
26 0.04
0.95k
Au
RL rbe
50 (2.5 2.5) ≈ 65.8 0.95
Ri ≈ rbe 0.95k
Ro RC 2.5k
计算机电路基础
实际中有许多因素,如环境温度的变化、电源电压的波动、元器件老化等, 都会导致静态工作点不稳定,在引起静态工作点不稳定的诸多因素中,温度对 三极管参数的影响是最为主要的。
要稳定放大器的静态工作点,必须在电路结构上采取一定的措施。最典型的 静态工作点稳定电路如左图所示,该电路的直流电V源CC 通过电阻RB1 和RB2分压后 接到三极管的基极,故也称为分压式工作点稳定电路。 管而静降在态低左电。图流右,的图R作为B2用静为,态上C工偏E作置为点电旁稳阻路定,电电容RB路1,为的是下直旁偏流路置通R电E路阻上。,的R交E 流为信射号极,电使阻放,大起作稳用定不三因极RE
静态工作点稳定地放大电路分析报告
静态⼯作点稳定地放⼤电路分析报告静态⼯作点稳定的放⼤电路分析⼀、课题名称静态⼯作点稳定的放⼤电路分析⼆、设计任务及要求分析静态⼯作点、失真分析、动态分析、参数扫描分析、频率响应等。
(包括原始数据、技术参数、条件、设计要求等)三、电路分析1.静态⼯作点Q的分析(1)什么是静态⼯作点Q静态⼯作点就是输⼊信号为零时,电路处于直流⼯作状态,这些直流电流、电压的数值在三极管特性曲线上表⽰为⼀个确定的点,设置静态⼯作点的⽬的就是要保证在被被放⼤的交流信号加⼊电路时,不论是正半周还是负半周都能满⾜发射结正向偏置,集电结反向偏置的三极管放⼤状态。
可以通过改变电路参数来改变静态⼯作点,这样就可以设置静态⼯作点。
若静态⼯作点设置的不合适,在对交流信号放⼤时就可能会出现饱和失真(静态⼯作点偏⾼)或截⽌失真(静态⼯作点偏低)。
如图1为阻容耦合电路图1晶体管型号BC107BP参数 .MODEL BC107BP NPN IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400 BR =35.5+IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6 RC =.25 VAF=80+VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9 VJC=.54 MJC=.33 在放⼤电路中,当有信号输⼊时,交流量与直流量共存。
将输⼊信号为零,即直流电流源单独作⽤时晶体管的基极电流I B,集电极电流I C,b-e之间电压U BE,管压降U CE称为放⼤电路的静态⼯作点Q,常将四个物理量记作I BQ,I CQ,U BEQ,U CEQ。
在近似估算中常认为U BEQ为已知量,对于硅管U BEQ=0.7V,锗管U BEQ=0.2V。
为了稳定Q点,通常使参数的选取满⾜I1>>I BQ因此B点电位U BQ=Rb1/(Rb1+Rb2)·Vcc静态⼯作点的估算U BQ= Rb1/(Rb1+Rb2)·VccI EQ=(U BQ-U BEQ)/ReU CEQ=V CC-I CQ(Rc+Re)(2)为什么要设置合适的静态⼯作点对于放⼤电路最基本的要求,⼀是不失真,⼆是能够放⼤。
静态工作点的稳定及其偏置电路
∴I1 I2
UB
R b2 R b1 R b2
VCC
此式说明UB与晶体 管无关, 不随温度
uo
变化而改变, 故UB 可认为恒定不变。
Re射极直流 负反馈电阻
Ce 交流旁路 电容
RB1—上偏流电阻 RB2—下偏流电阻 5
西安电子科技大学计算机学院吴自力2012--3
二.静态工作点稳定过程
+VCC
Rb1 C1
可以使其具有温度稳定
uo
性,又可以使其具有与 固定偏流电路相同的动
态指标。
CE的作用:交流通路中, CE将RE短路,RE 对交流不起作用,放大倍数不受影响。
14
西安电子科技大学计算机学院吴自力2012--3
去掉
CE
后的交流通路和微变等效电路:
Ii
Ib
Ic
RB1 ui
RB2 RE
RL uo
RC
rbe
Ri= Rb1// Rb2// rbe
26(mV )
rbe
300() (1 ) I E (mA )
Ro= RC
11
西安电子科技大学计算机学院吴自力2012--3
例 : 图 示 电 路 ( 接 CE ) , 已 知 UCC=12V , RB1=20kΩ , RB2=10kΩ,RC=3kΩ,RE=2kΩ,RL=3kΩ,β=50。试估 算静态工作点,并求电压放大倍数、输入电阻和输出电
微变等效电路:
rbe
Ui R'B
Ib RL Uo
RE1 RC
19
西安电子科技大学计算机学院吴自力2012--3
六. 固定偏流电路与射极偏置电路的比较
共射极放大电路
静态:
典型静态工作点稳定电路
典型静态工作点稳定电路
典型的静态工作点稳定电路是指在电子电路中用来确保输出稳定在特定电压或电流水平的一种电路。
这种电路通常是通过负反馈来实现的,负反馈是一种控制电路输出的技术,它可以使电路的输出稳定在一个预期的值附近。
在典型的静态工作点稳定电路中,常见的包括基准电压源、稳压器和放大器等组件。
基准电压源用于提供一个稳定的参考电压,稳压器则可以将输入电压调节为稳定的输出电压,放大器则可以用来放大信号并通过负反馈来调节输出。
在设计这种电路时,需要考虑到电路的稳定性、温度漂移、负载变化等因素。
此外,还需要考虑功耗、成本和可靠性等方面的问题。
选择合适的元件和设计合理的电路拓扑结构对于实现稳定的静态工作点至关重要。
另外,还有一些特定的稳压器电路,比如基准电压源、电流源和电压源等,它们都可以用来实现静态工作点的稳定。
这些电路在各种电子设备中都有广泛的应用,比如在电源供应器、放大器、传感器等电路中都可以看到它们的身影。
总的来说,典型的静态工作点稳定电路是电子电路中非常重要的一部分,它可以确保电路的输出稳定性,提高电路的可靠性和性能。
在实际应用中,设计工程师需要根据具体的需求和条件选择合适的稳定电路,并且进行合理的设计和优化。
晶体管静态工作点的稳定电路
课程论文题目:晶体管静态工作点的稳定电路作者:铁虎所在学院:信息科学与工程学院专业年级:通信08-2班指导教师:李新刚职称:讲师2010年 1 月 6 日晶体管的静态工作点稳定电路摘要: Multisim10.0是一种专门用于电子线路仿真与设计的EDA工具软件,本文给出了使用该软件对模拟电路中的单管共射放大电路进行仿真的设计方法,采用多种分析手段对电路性能进行动态测试,通过反馈数据改进电路以达到设计要求,最后总结了电子设计中使用EDA技术的优点。
使用Multisim10.0对电路进行分析,可以使复杂的计算变得非常简便、直观,便于学生在建模仿真过程中更加深刻的理解和掌握所学知识。
关键词:电路结构、静态、动态、分析、稳定放大电路1 前言电子线路是一门实践性很强的课程,实验在电子线路的教学中占有非常重要的地位。
传统的实验都是在真实的实验室中完成的,随着现代教育技术的发展和仿真软件的问世,使得实验可以在虚拟实验室中完成。
真实实验和仿真实验相结合,能使实验达到最佳的教学效果。
通过实验学生能更好地掌握理论知识,同时锻炼学生的动手能力。
放大电路的多项重要指标均与静态工作点的设置密切相关。
如果静态工作点不稳定,则放大电路的性能指标也将发生变动。
因此,如何使静态工作点保持稳定,是一个十分重要的问题。
Multisim10.0是National Instruments Electronics workbench Group 公司 2007年推出的以Windows 为系统平台的仿真工具,适用于板级的模拟数字电路的设计工作,是非常有用的 EDA设计套件,可以帮助用户完成电路设计主要工作。
Multisim10.0包含了电路原理的图形输入,模拟电路仿真,数字电路仿真,混合模式电路仿真,高频电路仿真,PCB布局等功能,并支持VHDL、Verilog 语言的电路仿真与设计,以及与其他软件间的接口。
另外 Multisim10.0MCU 模块增加了微控制器的协同仿真功能,用于完成整个系统的模拟验证。