模拟输入输出技术
《模拟量的输入输出》课件
电压输出型设备可以将电 信号转换为电压模拟信号 ,常用于电压源的输出。
电流输出型设备可以将电 信号转换为电流模拟信号 ,常用于需要恒流源的场 合。
电阻输出型设备可以将电 信号转换为电阻模拟信号 ,常用于需要调节阻值的 场合。
模拟量输出的电路设计
放大电路可以将微弱的电信 号放大到足够的幅度,以满
足输出要求。
模拟量输出的电路设计需要 考虑信号的放大、滤波、隔
离和保护等方面。
01
02
03
滤波电路可以去除信号中的 噪声和干扰,提高信号的纯
净度。
隔离电路可以避免不同电路 之间的相互干扰,保护电路
的安全运行。
04
05
保护电路可以防止电路过载 、过流和过压等异常情况对
电路的损害。
04
模拟量输入输出转换
模拟量输入输出转换的原理
将物理量转换为模拟量信号的装置。
模拟量与数字量的区别
01 数字量
离散的量,如开关状态、二进制数等。
02 转换方式
模拟量通过连续变化表示物理量,数字量通过离 散状态表示信息。
03 传输方式
模拟量信号通过电缆传输,易受干扰;数字量信 号通过数字通信传输,抗干扰能力强。
模拟量的应用领域
工业控制
如温度、压力、流量等参 数的监测和控制。
模拟量输入的电路设计
模拟量输入的电路设计需要考虑信号 源、信号调理电路和测量设备的特性 。
信号调理电路的设计需要考虑噪声抑 制、抗干扰能力和线性范围等因素, 以确保测量结果的准确性和可靠性。
电路设计需要确保信号源与测量设备 之间的阻抗匹配,以减小信号损失和 失真。
03
模拟量输出
模拟量输出的原理
模拟量输入与输出
被测 控的 对象
传感器
采样保持
开关控制部件
A/D
单片 微机 应用 系统
模拟执行部件
D/A
图8-1 单片机应用系统
一 、A/D转换原理与接口
1 A/D转换器常用芯片简介 A/D转换器就是将模拟信号转换为数字信号得器件,种类繁
多,性能各异。与单片机得接口形式也不尽相同,但大致分为并 行接口和串行接口两种。
时钟频率高,A/D转换速度快。允许范围为10~1280KHz 。 通常由80C51 ALE端直接或分频后与0809 CLK端相连接。 ⑷ D0~D7:数字量输出端。 ⑸ OE:A/D转换结果输出允许控制端。 OE=1,允许将A/D转换结果从D0~D7端输出。通常由80C51得端与0809片选端(例如P2、0) 通过或非门与0809 OE端相连接。 ⑹ ALE:地址锁存允许信号输入端。
0809 ALE信号有效时将当前转换得通道地址锁存。 ⑺ START:启动A/D转换信号输入端。
当START端输入一个正脉冲时,立即启动0809进行A/D转换。START端与ALE端连在一 起,由80C51WR与0809片选端(例如P2、0)通过或非门相连。 ⑻ EOC:A/D转换结束信号输出端,高电平有效。 ⑼ UREF(+)、UREF(-):正负基准电压输入端。 ⑽ Vcc:正电源电压(+5V)。GND:接地端。
图8-6 ADC0832与单片机接口
[例2] 设图8-6接口电路用于一个模拟量输入得检测系统。Ui为待转换 得模拟输入电压,要求对Ui连续采样10次,每次采样值经串行A/D转换 电路(ADC0832)转换成数字量,并按顺序依次存于片内RAM得 30H~39H单元中。采样完10次后停止。
C语言数据采集串行A/D转换参考程序: #include<reg51、h> //包含单片机特殊功能寄存器得头文件 #define uchar unsigned char //定义uchar为无符号字符数据类型 static uchar data x[10]; //定义10个单元得数组,存放结果 sbit CS=P3^4; //将CS位定义为P3、4引脚 sbit CLK=P1^0; //将CLK位定义为P1、0引脚 sbit DIO=P1^1; //将DIO位定义为P1、1引脚 unsigned char A_D() //A_D转换函数。功能:将模拟信号转换成数字信 号
模拟量的输入输出原理
硬件设置
1).每个模拟量模块可以选着不同的测量类型和范围, 通过量程卡上的适配开关可以设定测量的类型和 范围。 2).没有量程卡的模块具有适应电压和电流测量的不 同接线端子,通过正确的连接可以设置测量的类 型。 3).设置类型:A(热电阻、热电偶) B(电压) C(四线制电流) D(二进制电流)
模拟量输入模块 SM331
1).用于将模拟量信号转换为CPU内部处理的 数字信号主要成分是A/D转换器。 2).输入的信号一般是模拟量变送器输出的标 准直流电压、电流信号。(0~5V,4~20mA) 3).可以直接与温度传感器相连,但这次试验 中为了显示当前温度采用了AI818变送及显 示功能。 4).外壳上有LED指示灯可以用于显示故障错 误且前面板有标签可以标注。
模拟量输出模块SM332
1).用于将CPU送给的数字信号转换为成比列 的电流信号或电压信号。 2).各通道均有模拟量输出都有故障指示灯, 可以读取诊断信息。 3).由负载和执行器提供器提供电流和电压。 4).额定负载电压均为DC24V,最大短路电流为 25mA,最大开路电压为18V。
模拟量输出模块接线图
模拟量的输入输出原理
制作人
PLC信号模块
模拟量: 在时间上或数值上都是连续的物理量称为, 模拟量 在时间上或数值上都是连续的物理量称为,一般模拟量
输入输出分别用AI/AO表示。 表示。 输入输出分别用 表示 通常用通道表示一路输入信号。 通常用通道表示一路输入信号。
模拟信号模块:输入模块 模拟信号模块:输入模块SM331 输出模块SM332 输出模块 输入输出SM334/SM335 输入输出 数字信号模块: 输入模块SM321 数字信号模块 输入模块 输出模块SM322 输出模块 输入输出SM323 输入输出
单片机的输入输出方式
单片机的输入输出方式单片机是一种集成电路,具有处理和控制任务的能力。
在实际应用中,单片机通常需要与外设进行数据的输入和输出。
因此,单片机的输入输出方式就成为了一个重要的研究领域。
本文将介绍几种常见的单片机输入输出方式,并分析它们的优缺点。
一、并口输入输出并口输入输出是最常见和简单的一种方式。
通过并行数据总线,单片机可以一次性传输多位二进制数据。
并口通常与外设芯片或者外围元件连接,例如LCD显示屏、键盘等。
并口输入输出的优点是速度快、数据传输稳定可靠,但同时也存在缺点,例如占用较多的引脚资源和布线不便等。
二、串口输入输出串口输入输出是一种使用串行通信协议进行数据传输的方式。
与并口输入输出相比,串口只能传输一位二进制数据。
但是,串口具有节省引脚资源、传输距离较长和可靠性高等优点。
串口输入输出通常与外设设备或者计算机进行数据通信。
串口通信有两种常见标准:RS232和RS485。
RS232主要用于与计算机通信,而RS485多用于远程数据采集和控制系统。
三、模拟输入输出模拟输入输出是一种以模拟电压或电流形式进行数据传输的方式。
单片机可以通过模拟输入输出来与模拟信号传感器进行数据采集和控制。
例如,通过模拟输入可以采集温度、湿度等模拟信号,通过模拟输出可以控制电机、电阻等模拟设备。
模拟输入输出的优点是能够处理连续变化的模拟信号,但在数据精度和稳定性上相对数字信号略有不足。
四、计时器/计数器输入输出计时器/计数器是单片机内部的一个模块,用于测量时间间隔或者对外部事件进行计数。
通过配置计时器/计数器的一些参数,可以实现输入输出功能。
例如,通过计时器/计数器输入输出可以实现PWM输出控制、捕获外部脉冲等功能。
计时器/计数器输入输出的优点是精度高、灵活性强,但需要掌握一些特定的配置知识。
五、中断输入输出中断输入输出是单片机在执行主程序的同时,能够监听外部事件的一种机制。
当外部事件满足特定条件时,单片机会自动跳转到相应的中断服务程序来处理。
模拟量输入、输出通道
医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度
单片机指令的模拟输入和输出控制
单片机指令的模拟输入和输出控制单片机作为一种常见的微型计算机芯片,广泛应用于各个领域,具有高性能、低功耗、易于编程等特点。
其中,模拟输入和输出控制是单片机系统中重要的功能之一。
本文将详细介绍单片机中模拟输入和输出控制的原理、应用以及相关技术。
一、模拟输入控制的原理与应用模拟输入指的是将外部模拟信号转换为数字信号,以便单片机进行数据处理。
常见的模拟输入控制方式有模数转换(ADC)和传感器信号采集。
1.1 模数转换模数转换是将连续的模拟信号转换为数字信号的过程,常用的模数转换方式有逐次逼近型(SAR)和积分型。
逐次逼近型是指单片机逐一比较模拟输入信号与参考电压之间的大小关系,并根据比较结果逼近模拟信号的大小,最终得到数字信号。
这种转换方式具有较高的精度和速度。
积分型模数转换是通过将模拟输入信号与一个可调节的参考电压进行积分运算,当积分结果等于零时停止积分,取积分时间作为数字信号的表示。
这种方式适用于采集低频信号或需要高分辨率的应用。
1.2 传感器信号采集传感器信号采集是指通过传感器将外部环境的物理量转换为模拟信号,然后通过单片机进行数字化处理。
常见的传感器有温度传感器、湿度传感器、压力传感器等。
例如,温度传感器通过测量热敏电阻的电阻值变化来获取温度信息,压力传感器通过测量应变电阻的电阻值变化来获取压力信息。
单片机可以通过模拟输入控制,将传感器采集到的模拟信号转换为数字信号进行处理和分析。
二、模拟输出控制的原理与应用模拟输出指的是将单片机处理后的数字信号转换为与之对应的模拟信号,以控制外部设备的运行。
常见的模拟输出控制方式有数字模拟转换(DAC)和脉宽调制(PWM)。
2.1 数字模拟转换数字模拟转换是将单片机处理后的数字信号转换为模拟信号的过程,常用的数字模拟转换方式有R-2R网络、串行型和并行型。
R-2R网络是一种常见的数字模拟转换电路,通过调节电阻网络的电阻值,来实现数字信号到模拟信号的转换。
串行型和并行型数字模拟转换器具有高速、高精度等特点,适用于需要高性能转换的应用场景。
7.4 模拟量的输入输出
模/数(A/D)转换器 (A/D)转换器
一、A/D转换器 一、A/D转换器
将连续变化的模拟信号转换为数字信号,以便于计算机进 行处理。
1、主要技术指标
1)精度:在A/D转换时,模拟量和数字量之间并不是一 一对应的,一般是某个范围的模拟量对应一个数字量,因 此,转换精度是指A/D转换器的实际输出数字量与理论输 出值接近程度。是由各种因素引起的误差共同决定,误差 包括:量化误差、非线性误差、其他误差。 2)转换时间:完成一次AD转换所需要的时间,即从发 出启动转换命令信号到转换结束信号有效时间的时间间隔。 3)输入的动态范围;即量程,是指能转换的模拟输入电 压的变化范围。分为单极性和双极性两种。
2、A/D转换器的工作原理
实现A/D转换的方法很多,基本转换原理可归纳为比较 比较和 比较 计算两个过程,根据转换方法,A/D转换器分为两大类: 计算 1)直接比较型:将被转换的模拟输入信号直接与一个特定 的基准源进行比较后得到数字量,如计数式和逐次逼近式。 2)间接比较型:输入的模拟信号不直接与基准源比较, 而是将其转换为中间物理量,如时间、频率等,再转换为数 字量,如双积分式A/D转换。
~
~
1) 首先CPU发出3位通道地址信号ADDC、ADDB、ADDA; 2) 在通道地址信号有效期间,使ALE引脚上产生一个由低到 高的电平变化,即脉冲上跳沿,它将输入的3位通道地址锁存到 内部地址锁存器; 3) 给START引脚加上一个由高到低变化的电平,启动A/D转 换; 4) 变换开始后,EOC引脚呈现低电平,一旦变换结束,EOC 又重新变为高电平; 5) CPU在检测到EOC变高后,输出一个正脉冲到OE端,将转 换结果取走。
2)单缓冲方式:就是使DAC0832内部的两个寄存器中, 一个处于直通方式,另一个处于锁存方式,输入数据只经过 一级缓冲器就送入D/A转换器,被转换为模拟量。 一般情况下是将 WR2 和 XFER 接地,使得DAC寄存器处于 直通方式,只需执行一次写操作,就可完成D/A转换。 3)双缓冲方式:是使输入寄存器和DAC寄存器均处于锁 存状态,数据要经过两级锁存后再送入D/A转换器,即要经 过两次写操作才能完成一次D/A转换。 将数据写入输入寄存器; 将输入寄存器的内容写入DAC寄存器。
第二章模拟量输入输出通道的接口技术
tk r tk 是周期性的重复,即tk r tk 常量,r 1
随机采样:
根据需要选择采样时刻
采样前后波形的变化图
通常,连续函数的频带宽度是有限的,为一孤立的连
续频谱,设其包括的最高频率为fmax ,采样频率为fs。
香农定理:若fs≥2fmax,则可以由采样信号完全恢复出原始 信号。 在实际应用中, fs至少取4fmax 。
IN:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15) OUT:(1、17) 反多路转换开关(一到多的转换): IN: (1、17) OUT:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15)
VREF I out1 I 3 I 2 I1 I 0 2 2 2 2 4 2R
3 2
1
0
由于S3~S0的状态是受b3~b0控制的,并不一定 全是“1”。若它们中有些位为“0”,S3~S0中相应 开关会因和“0”端相连而无电流流过,所以Iout1还 与b3~b0的状态有关。 则 I out1 b3 I3 b2 I 2 b1 I1 b0 I 0
返回
2.1.2 多路转换开关
多 路 转 换 开 关 反 多 路 转 换 开 关
A/D
微机
D/A
完成多到一的转换
完成一到多的转换
2.1.2 多路转换开关
多路开关的分类:
从用途上分 双向:既能实现多到一的转换,也能实现一到多的 转换 单向:只能实现多到一的转换 从输入信号的连接方式上分 单端输入 双端输入(或差动输入)
单片机中的模拟输入输出接口设计与应用
单片机中的模拟输入输出接口设计与应用概述单片机是一种集成了处理器、存储器和各种外设功能的集成电路,广泛应用于嵌入式系统中。
在实际应用中,模拟输入输出(Analog Input/Output,简称为AI/AO)是单片机常用的功能之一。
模拟输入输出接口用于将模拟信号转换为数字信号或将数字信号转换为模拟信号,从而实现单片机与外部模拟设备的互联。
本文将介绍单片机中的模拟输入输出接口的设计与应用。
一、模拟输入输出的作用与特点1. 作用:模拟输入输出接口可将模拟量与单片机进行连接,实现模拟量信号的输入和输出,为系统提供更精确的数据。
2. 特点:- 模拟输入输出接口可以实现模拟信号与数字信号之间的转换。
- 模拟输入输出接口通常采用模数转换器(ADC)和数模转换器(DAC)实现模拟信号的采样和重构。
- 模拟输入输出接口的精度和分辨率直接影响系统的测量和控制精度。
二、模拟输入与数字输出接口的设计与应用1. 模拟输入接口设计与应用模拟输入接口常使用模数转换器(ADC)实现。
ADC将外部模拟信号转换为相应的数字信号,单片机可以通过读取数字信号来获取模拟输入量的值。
以下是模拟输入接口的设计与应用步骤:(1)选择合适的ADC型号:根据系统需求,选择合适的ADC型号。
选型时要考虑采样率、分辨率、电平范围和功耗等因素。
(2)接线:将模拟信号与ADC输入引脚相连。
通常,需要使用模拟信号调理电路(如信号调理电路和滤波器)来满足输入要求。
(3)配置寄存器:根据单片机的技术手册,配置ADC寄存器,设置采样频率、参考电压、输入通道等参数。
(4)采样和转换:通过编程,触发ADC进行采样和转换。
读取ADC结果寄存器,获取模拟输入量的数值。
(5)数据处理与应用:根据需要,对获取的模拟输入量进行进一步处理,如信号滤波、数据补偿等。
可以将模拟输入量用于系统的测量、控制、报警等功能。
2. 数字输入与模拟输出接口的设计与应用数字输入与模拟输出接口通常使用数模转换器(DAC)来实现。
模拟量输入输出接口技术
模拟量输出接口的电路设计
电压跟随器
设计电压跟随器来提高输出阻抗, 减小信号损失。
差分放大器
使用差分放大器来减小共模干扰, 提高信号的抗干扰能力。
保护电路
设计保护电路以防止过流、过压 等异常情况对接口电路的损坏。
CHAPTER 03
模拟量输入输出接口的应用
在工业控制中的应用
实时监测与控制
模拟量输入输出接口技术能够实时采集工业设备的运行状态,并 将控制信号输出到执行机构,实现精确控制。
模拟量输入输出接口技 术
CONTENTS 目录
• 模拟量输入接口技术 • 模拟量输出接口技术 • 模拟量输入输出接口的应用 • 模拟量输入输出接口的发展趋势 • 模拟量输入输出接口的挑战与解决方
案
CHAPTER 01
模拟量输入接口技术
模拟量输入接口的种类
电压型模拟量输入接口
通过电阻将信号源的模拟电压信号转 换为适合后续电路处理的电压信号。
诊断分析与辅助治疗
通过模拟量输入输出接口技术,医疗设备能够提 供诊断依据和辅助治疗手段,提高医疗效果。
3
设备控制与调节
模拟量输出接口在医疗设备中用于控制和调节设 备的运行状态,如呼吸机、输液泵等。
CHAPTER 04
模拟量输入输出接口的发展趋势
高精度化
总结词
随着工业自动化和测量技术的发展,对模拟量输入输出接口的精度要求越来越 高。
远程控制与调节
通过模拟量输出接口,智能仪表能够将控制信号 传输到执行机构,实现远程控制和调节。
故障诊断与预警
智能仪表中的模拟量输入接口能够实时监测设备 的运行状态,及时发现故障并进行预警。
在医疗设备中的应用
1 2
单片机的模拟量输入输出
温度控制
根据设定的温度值和当前温度值, 单片机通过模拟量输出调节加热 元件的功率,实现温度的控制。
温度报警
当温度超过设定的安全范围时, 单片机通过模拟量输出驱动报警 器,发出报警信号。
案例三:智能家居系统
01
灯光亮度调节
通过模拟量输入,单片机可以接收来自用户控制面板的亮度设定值,通
过模拟量输出调节灯光驱动器的输入电压或电流,实现灯光亮度的调节。
流量控制
通过模拟量输入输出,单片机可以检测流量传感器的流量信号,并根据设定的流量值调节泵或阀门的开度,实现流量 的控制。
液位控制
通过模拟量输入输出,单片机可以检测液位传感器的液位信号,并根据设定的液位值调节进出水阀门的 开度,实现液位的控制。
THANKS FOR WATCHING
感谢您的观看
掌握模拟量输入输出原理 了解模拟量输入输出的基本原理, 包括AD转换、DA转换等,是实 现模拟量输入输出编程的基础。
合理使用中断 单片机的中断功能可以实现实时 处理和多任务并发执行,合理使 用中断可以提高程序的效率和响 应速度。
编程实例解析
模拟量输入实例
以ADC(模数转换器)为例,可以通过编写程序将模拟信号转换为数字信号,实现模拟量的输入。具体实现方法 包括选择合适的ADC通道、配置相关寄存器、编写AD转换函数等。
模拟量输入输出在单片机中的应用
传感器数据采集
单片机通过模拟量输入接口采集各种传感器的输出信号,如温度 传感器、压力传感器等。
控制系统
单片机通过模拟量输出接口控制外部设备的运行,如电机、灯光等。
信号调理
单片机在模拟量输入输出过程中,可能需要进行信号的放大、滤波、 线性化等调理操作,以确保信号的准确性和稳定性。
模拟量输入输出通道dq
DQ通道与AO通道的比较
信号类型
AO通道通常用于输出模拟信号,如控制阀门、电机等,而 DQ通道则主要用于数字信号的输入输出。
数据处理
AO通道输出的模拟信号需要经过数模转换器(DAC)从数字信 号转换为模拟信号后输出,而DQ通道则直接处理数字信号。
应用场景
AO通道广泛应用于过程控制、执行器驱动等领域,而DQ 通道则多用于数据通讯、逻辑控制等领域。
表示输出模拟信号的精度,通常以位数(bit) 表示。
表示输出模拟信号与输入数字信号之间的 线性关系,越接近1表示线性度越高。
输出范围
输出阻抗
表示输出模拟信号的最大值和最小值,根 据不同设备需求而定。
表示输出模拟信号的电阻值,影响驱动能 力和负载匹配。
05
DQ通道与其他通道的比 较
DQ通道与AI通道的比较
高精度化趋势
随着工业自动化水平的提高,对模拟量输入输出 通道的精度要求也越来越高。高精度通道能够提 供更准确的测量结果,更好地满足生产需求。
智能化趋势
随着物联网和人工智能技术的发展,模拟量输入 输出通道正逐渐向智能化方向发展。智能化的通 道能够自主完成数据采集、处理、分析和决策, 为工业自动化提供更强大的支持。
噪声抑制
通过滤波器或数字信号处理技 术减小噪声干扰。
模拟量输入通道的参数
分辨率
表示A/D转换器能够分辨的最小电压或电流 变化量。
采样速率
表示A/D转换器每秒能够完成的采样次数。
线性度
表示A/D转换器输出与输入之间的线性关系。
精度
表示A/D转换器的误差范围,通常以百分比 表示。
04
模拟量输出通道
模拟量输出通道的种类
模拟量输出通道的原理
单片机的输入/输出接口设计与实现方法
单片机的输入/输出接口设计与实现方法单片机的输入/输出接口设计与实现方法概述:单片机作为嵌入式系统的核心组件,用于控制和处理外部设备的输入和输出。
输入/输出接口的设计和实现是单片机应用中的重要环节。
本文将介绍单片机输入/输出接口的设计原理与实现方法,包括数字输入/输出接口和模拟输入/输出接口两个方面。
一、数字输入/输出接口设计与实现方法:1. 输入接口设计:数字输入接口主要包括开关输入和按键输入。
开关输入一般采用继电器或者开关电路进行连接,可以通过读取端口的电平状态来获取开关的状态信息。
按键输入通常采用矩阵按键的方式,通过扫描矩阵按键的行列,可以实现多个按键的输入。
2. 输出接口设计:数字输出接口可以用于控制各种外部设备,如LED灯、继电器等。
通过设置端口的电平状态,可以实现对外部设备的控制。
常用的数字输出方式包括推挽输出、开漏输出和PWM输出。
3. 实现方法:数字输入/输出接口的实现方法主要有两种:基于端口操作和基于中断。
基于端口操作一般通过读写特定的端口来实现输入和输出功能。
基于中断的实现方法可以通过设置中断触发条件来实现对输入信号的响应,提高系统的实时性和效率。
二、模拟输入/输出接口设计与实现方法:1. 模拟输入接口设计:模拟输入接口主要用于接收模拟量信号,如电压、电流等。
常用的模拟输入接口包括模数转换器(ADC)和电压比较器。
ADC将模拟信号转换为数字信号,可用于采集传感器信号等。
电压比较器常用于判断电压信号是否超过某一门限值。
2. 模拟输出接口设计:模拟输出接口主要用于输出模拟量信号,如驱动电机、显示器等。
常用的模拟输出接口包括数字模拟转换器(DAC)和电流输出接口。
DAC将数字信号转换为模拟信号,可用于驱动各种模拟设备。
电流输出接口可以通过改变电流值来实现对设备的控制。
3. 实现方法:模拟输入/输出接口的设计与实现通过模数转换器和数字模拟转换器来实现。
可以根据具体需求选择合适的模数转换器和数字模拟转换器,通过编程设置相关参数,实现对模拟信号的采集和输出。
单片机实训模拟量输入输出设计与实现
单片机可以通过编程实现各种数字和模拟信号 的处理和控制,具有灵活性和可编程性。
单片机的应用领域
智能仪表
01
单片机可以用于实现各种仪表的智能化,如温度计、压力计、
流量计等。
工业自动化
02
单片机可以用于控制各种工业设备的运行,如电机、阀门、灯
光等。
智能家居
03
单片机可以用于实现家居智能化,如智能照明、智能安防、智
能家电等。
单片机的发展历程
单片机的起源
单片机的发展可以追溯到20世纪70年代,当时出现了一 些简单的集成电路芯片,集成了少量的逻辑门电路,可以 用于简单的控制和计算。
8位单片机的普及
8位单片机是目前应用最广泛的单片机类型,它们具有丰 富的外设接口和强大的计算能力,可以满足各种应用需求 。
02 03
单片机
对数字信号进行处理和控制。
显示模块
将液位值实时显示出来,并设定液位 上下限,当液位超过或低于设定值时, 触发报警。
05
04
执行机构
根据单片机输出的控制信号,驱动电 动阀或水泵等执行机构,调节液位高 度。
06 总结与展望
单片机在模拟量输入输出方面的优势与局限性
低成本
单片机价格相对较低,适合于需要大量使用模拟量输入输出 功能的项目。
根据单片机型号和需求,设计合适的输出驱动电 路,包括功率放大、信号调制等部分。
数字模拟转换
利用DAC(数模转换器)将数字信号转换为模拟 信号,满足输出信号的精度和稳定性要求。
输出控制与调节
将转换后的模拟信号进行控制和调节,实现与外 部设备的通信和控制。
单片机模拟输入输出与电压转换方法分析
单片机模拟输入输出与电压转换方法分析单片机(Microcontroller Unit, MCU)是一种集成了处理器、存储器和外设功能的微型计算机系统。
它广泛应用于控制系统中,实现各种输入输出(I/O)功能。
在实际应用中,常常需要通过模拟输入输出(Analog Input/Output, AI/AO)实现与外界的交互。
本文将深入探讨单片机模拟输入输出和电压转换的方法。
一、单片机模拟输入输出简介1. 模拟输入(Analog Input, AI)模拟输入是指将连续的模拟量转换成数字信号输入到单片机中。
在很多实际控制系统中,我们经常需要采集或接收来自传感器或模拟信号源的模拟量,并将其通过适当的方法转换成单片机可以处理的数字信号。
常见的模拟输入信号包括温度、光强、电压等。
2. 模拟输出(Analog Output, AO)模拟输出是指通过单片机将数字信号转换成连续的模拟量输出到外部设备中。
在实际应用中,我们通常需要给驱动器、显示器、电机等外设提供合适且连续变化的电压或电流信号。
因此,将数字信号转换成模拟量输出具有重要意义。
二、单片机模拟输入方法1. 脉冲宽度调制(Pulse Width Modulation, PWM)脉冲宽度调制是一种常用的模拟输入技术。
在PWM技术中,单片机通过改变输出脉冲的占空比来控制输出电平。
通过控制脉冲的高电平时间和低电平时间比例,可以模拟出不同的电压或电流值。
PWM技术广泛应用于电机控制、音频处理等领域。
2. 模数转换器(Analog-to-Digital Converter, ADC)ADC是将模拟量信号转换为数字量信号的装置。
单片机通常内置了ADC模块,可以通过相应的程序配置和读取ADC的数值。
通过适当选择ADC的参考电压和转换分辨率,可以实现较高精度的模拟输入。
例如,应用于温度测量的NTC电阻可以通过ADC转换为相应的数字数值。
三、单片机模拟输出方法1. 数字模拟转换器(Digital-to-Analog Converter, DAC)DAC是将数字量信号转换为模拟量信号的装置。
模拟量输入输出模块的工作原理
模拟量输入输出模块的工作原理嘿,朋友们!今天咱来唠唠模拟量输入输出模块的工作原理。
你可以把这个模拟量输入输出模块想象成一个神奇的“翻译官”。
咱生活中的很多物理量,像温度啦、压力啦、流量啦等等,它们就像各种不同语言的信息。
而这个“翻译官”呢,就能把这些“外语”给翻译成计算机能懂的“数字语言”,这就是输入的过程。
比如说,温度传感器检测到了当前的温度,然后把这个温度信息传递给模拟量输入模块。
它就像一个超厉害的接收员,稳稳地接住这些信息,再经过一系列的处理和转换,把温度变成了计算机能识别和处理的数字信号。
这多牛啊!那输出呢,也很好理解呀。
计算机处理完数据后,要让一些设备按照它的指令来行动,这时候模拟量输出模块就登场啦!它就像是一个传达命令的使者,把计算机发出的数字信号又给转换成实际的物理量,比如控制电机的转速啦、调节阀门的开度啦等等。
你想想看,要是没有这个“翻译官”,计算机和那些物理设备怎么沟通呀?那不就乱套啦!就好比两个人,一个只会说中文,一个只会说英文,没有翻译的话,根本没法交流嘛!再打个比方,模拟量输入输出模块就像是一座桥梁,连接着数字世界和现实世界。
它让这两个世界能够相互理解、相互配合。
而且哦,这个模块工作起来可认真啦,一点都不马虎。
它得保证信息的准确传递,不能有一点差错,不然整个系统可能就会出问题哦。
就像我们说话一样,得把意思表达清楚,不能含含糊糊的。
在很多自动化控制系统中,模拟量输入输出模块可都是不可或缺的重要角色呢!它默默地工作着,为我们的生活带来了很多便利。
比如工厂里的自动化生产啦,智能家居里的各种智能控制啦,都有它的功劳呢!所以啊,可别小看了这个小小的模拟量输入输出模块,它虽然不显眼,但却发挥着大大的作用呢!它就像一个幕后英雄,一直在为我们的生活默默奉献着。
你说是不是很厉害呀?反正我觉得是超厉害的!原创不易,请尊重原创,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、DAC0832引脚功能
~
D0 7
6 5 4 15 16 14
D7 13
ILE 19
1
CS 2 WR1 WR2 18
17
XFER
8 位 输 入 锁 存 器
8
8
位
位
D/A
D/A
锁
转
存
换
器
器
LE1
LE2
&
&
&
图13.6 DAC0832引脚功能框图
8 VREF
12
I OUT1 11 IOUT2
9
RFB
DAC0832
PC D0 机 D7 扩 充
D0
RFB
D7
IOUT1
-
-5V
VREF
IOUT2
+
VO
槽 WR
WR1
A0 A7 M/IO
译 +5V 码 器
ILE CS AGND
பைடு நூலகம்
WR2 XFER DGND
图13.9 PC机与DAC0832连接示意图
[例13.1] 设DAC0832工作在单缓冲方式下,单极性输出, 端口地址为350H,VREF =-5V,现利用该转换器进行D/A 转换,产生一个如图13.10所示三角波。
TRIANG Z1:
PROC MOV MOV MOV OUT INC LOOP
FAR DX,350H CX,066H AL,33H DX,AL
3V
1V
图13.10 D/A产生三角波
(1)确定上、下限所对应的数字量。
上限:Dup=3/(5/28)=153.6=99H 下限:Ddowm=1/(5/28) =51.2=33H
(2)编写程序。
采用从下限值开始逐次加1,直到上限值,然后在将上限值 逐次减1,直到下限值,如此重复,D/A转换器输出的就是一个 三角波。程序如下:
VREF :参考电压
VO=K×D×VREF 其中,K为常数
n1
VA K VREF (Di 2i ) i 0
13.2.1 D/A转换的原理
D/A转换器的基本组成:
电阻(或电容)网络(核心) 模拟切换开关 基准电压 运算放大器
一、T型电阻网络DAC
RF
2R P3
P2
P1
P0
Vo
RRR
2R 2R 2R 2R 2R
2. 转换精度
DAC的转换误差是指实际模拟输出值与理想值之间的误差 程度。该指标是一项综合性的静态性能指标。
转换误差
绝对误差:用VLSB的倍数表示
相对误差:绝对误差与满量程输出的比值
3. 建立时间
DAC的建立时间是指从数字量输入到完成转换且输出达到 终值误差的±1/2LSB所需时间。该指标是一项动态性能指标。
输出模拟量
最终值
+-
1 2
LSB
0 t
建立时间
图13.5 DAC的建立时间
13.2.3 典型DAC芯片DAC0832
DAC0832是采用CMOS工艺制成的R-2R倒T型电 阻网络8位D/A转换器,20脚DIP封装,内部带有两级8 位锁存。该器件不仅可用于一般数字系统和模拟系统 之间的接口电路,而且可以直接与8位微型计算机接口, 是目前使用较为广泛的一种集成DAC器件。
RF
D3
D2
D1
D0
-
Vo
+
S3
S2
S1
S0
2R 2R 2R
R
R
R
-VREF P3
P2
P1
图13.4 倒T型电阻网络DAC
2R 2R
P0
通式:Ii
VREF R 24i
叠加原理: I D3I3 D2I2 D1I1 D0I0
VREF
R 24
3
Di 2i
i 0
假设RF=3R:Vo= -I∑RF
3
AGND
20 VCC 10 DGND
二、DAC0832工作方式
(1)直通方式 两个锁存器均处于直通状态,输入的数据
直接送至D/A转换器进行转换并输出。 (2)单缓冲方式
两个锁存器中一个处于直通状态,而只控制另 一个锁存器的锁存
(3)双缓冲方式
两级锁存器都受控。该缓冲方式常用于 要求多个模拟量同时输出的场合,以提高转 换的速度。
三、DAC0832的模拟输出方式
(1)单极性输出 DAC0832
D0 D7
RFB
VREF
IOUT1
-
IOUT2
+
VOUT1
AGND
图13.7 DAC0832 单极性电压输出示意图
VOUT1
D 2n
VREF
输出电压为0~-VREF
(2)双极性输出
DAC0832
VREF D0 D7
RFB
IOUT1 IOUT2
13.2.2 DAC的主要性能指标
一、 分辨率:最小输出电压VLSB和满量程输出电压 VFSR之比。
最小输出电压:VLSB --当输入数字量D=00…01时的输出
满量程输出电压:VFSR --当输入数字量D=11…11时的输出
分辨率:
分辨率 VLSB 1 VFSR 2n 1
说明:DAC位数越多,分辨率越高
13.1 模拟输入输出系统
传感器
A/D 转换器
微型计算机
D/A 转换器
被测控对象 图13.1 典型微型计算机测控系统
A: Analog(模拟量) D: Digital (数字量)
驱动器
13.2 数模(D/A)转换器
VREF
说明:
输入:D(n位数字量)
D
DAC
VO
输出:VO(模拟量)
图13.2 D/A转换器示意
i 0
推广到n位:
Vo
VREF 2n
n-1
Di 2i
i 0
T形电阻网络DAC的优缺点:
优点: 电阻的取值只有R和2R两种,易于集成, 转换精度高。
缺点: 当输入数字信号发生变化,使开关变换接 通方向时,流过开关的电流方向发生改 变,容易产生毛刺和影响工作速度。
改进:倒T形电阻网络DAC
二、倒T型电阻网络DAC
VREF 24
3
Di 2i
i 0
推广到n位:
Vo
VREF 2n
n-1
Di 2i
i0
倒T形电阻网络DAC的优缺点:
优点: 保证电流始终能以一个方向流过开关,提 高转换精度。
缺点: 由于模拟开关的导通电阻和各支路电阻串 联,电阻值将附加在各支路的电阻上,从 而降低转换精度。
改进:电流激励型DAC
S3
S2
S1
S0
D3
D2
(MSB)
D1
D0
(LSB)
输入数字量
图13.3 T型电阻网络DAC
VREF
通式:Ii
VREF 3R 24i
叠加原理: I D3I3 D2I2 D1I1 D0I0
VREF 3R 24
3
Di 2i
i 0
假设RF=3R:Vo= -I∑RF
VREF 24
3
Di 2i
AGND
R2
R3
-
R1
+ A1 VOUT1
+ A2
VOUT2
图13.8 DAC0832双极性电压输出示意图
VOUT2
D - 2n-1 2n-1
VREF
输出电压为-VREF ~+VREF
13.2.4 D/A转换接口技术
分类:
有输入锁存器D/A与PC机的连接 不带输入锁存器D/A与PC机的连接
一、有输入锁存器D/A与PC机的连接