离散数学知识汇总
离散知识点公式总结
离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学重要公式定理汇总分解
离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。
离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。
下面是对离散数学中一些重要的公式和定理的汇总。
1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。
一个集合有n个元素,那么它的幂集有2^n个元素。
-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。
2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。
-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。
3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。
-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。
4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。
- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。
5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。
02324离散数学知识点
02324离散数学知识点
离散数学是研究离散对象和离散结构的数学分支,其知识点包括但不限于集合论、图论、逻辑学、组合数学等。
以下是其中一些重要的知识点:
1. 集合论:集合论是离散数学的基石,它研究集合、集合之间的关系和集合的性质。
2. 图论:图论是离散数学的重要组成部分,它研究图(由节点和边构成的结构)的性质和分类。
3. 逻辑学:逻辑学是离散数学的另一个重要组成部分,它研究推理的规则和形式。
在离散数学中,逻辑通常用于描述和证明一些结构或系统的性质。
4. 组合数学:组合数学是离散数学的一个分支,它研究计数、排列和组合问题。
5. 离散概率论:离散概率论是离散数学的另一个分支,它研究离散随机事件的数学模型。
6. 离散概率分布:离散概率分布是描述离散随机事件发生概率的数学模型。
7. 离散随机变量:离散随机变量是能够取到可数无穷多个值的随机变量。
8. 离散概率空间:离散概率空间是一个集合,它包含一个可数无穷多的元素,每个元素都有一个与之相关的概率值。
9. 离散随机过程:离散随机过程是离散随机事件在时间或空间上的序列。
这些知识点都是离散数学的重要组成部分,它们在计算机科学、数学、物理学等领域都有广泛的应用。
离散数学知识点总结
离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。
[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。
2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。
[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。
解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。
解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
(完整word版)离散数学知识点
说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(,,,,),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则,CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,-规则(US),+规则(UG),-规则(ES),+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, , , , 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包r(R),对称闭包s(R), 传递闭包t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
3.群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理4.阿贝尔群和循环群:阿贝尔群(交换群),循环群,生成元5.环与域:环,交换环,含幺环,整环,域6.格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代数的表示定理图论:1.图的基本概念:无向图、有向图、关联与相邻、简单图、完全图、正则图、子图、补图,握手定理,图的同构2.图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈),点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图,单向连通图,强连通图,二部图(二分图)3.图的矩阵表示:关联矩阵,邻接矩阵,可达矩阵4.欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图5.无向树与根树:无向树,生成树,最小生成树,Kruskal,根树,m叉树,最优二叉树,Huffman算法6.平面图:平面图,面,欧拉公式,Kuratoski定理数理逻辑:命题:具有确定真值的陈述句。
离散数学知识点总结及应用
离散数学知识点总结及应用
知识点1: 集合论
- 集合的定义和表示方法
- 集合的运算:并、交、差、补
- 集合的基本性质和定律
知识点2: 逻辑与命题
- 命题的定义和特性
- 命题的联结词:与、或、非
- 命题的真值表和逻辑运算
- 命题的充分条件和必要条件
知识点3: 关系与函数
- 关系的定义和性质
- 关系的类型:自反、对称、传递、等价
- 函数的定义和基本概念
- 函数的特性和图像
知识点4: 图论
- 图的基本概念和术语
- 图的存储结构:邻接矩阵、邻接表
- 图的遍历算法:深度优先搜索、广度优先搜索
- 最短路径算法:Dijkstra算法、Floyd-Warshall算法
知识点5: 组合数学
- 排列和组合的基本概念
- 排列和组合的计算方法
- 随机变量和概率分布
- 组合数学在密码学等领域的应用
知识点6: 布尔代数
- 布尔代数的基本运算:与、或、非
- 布尔函数的最小化方法
- 布尔代数的应用:逻辑电路设计、编码器等
知识点7: 计算理论
- 自动机的基本概念和分类
- 正则语言和正则表达式
- 文法的定义和性质
- 上下文无关文法和巴科斯范式
知识点8: 数论
- 整数的性质和基本运算
- 质数和分解定理
- 同余关系和同余方程
- 数论在加密算法中的应用
以上是离散数学中的一些主要知识点和应用场景的简要总结,希望对你的研究有所帮助。
(完整word版)离散数学知识汇总
离散数学笔记第一章命题逻辑合取析取定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句定义 1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原子公式。
(2)若某个字符串A 是合式公式,则⌝A、(A)也是合式公式。
(3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A↔B 是合式公式。
(4)有限次使用(2)~(3)形成的字符串均为合式公式。
1.3等值式1.4析取范式与合取范式将一个普通公式转换为范式的基本步骤1.6推理定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。
(用等值演算或真值表)第二章 谓词逻辑2.1、基本概念∀:全称量词 ∃:存在量词一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"∀x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如∃x(H(x)∨WL(x)),即量词的后面为合取式 例题R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ∀x ∀y(R(x)∧T(y)→H(x,y))有的兔子比所有的乌龟跑得快表示为:∃x ∀y(R(x)∧T(y)→H(x,y))2.2、谓词公式及其解释定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示22y x 的 f(x,y))、 谓词常元(如表示人类的 H(x))。
定义 2.2.2、逻辑符号:个体变元、量词(∀∃)、联结词(﹁∨∧→↔)、逗号、括号。
离散数学基础概念汇总
离散数学基础概念汇总离散数学是数学的一个分支领域,它研究离散化的数学对象和离散化的数学结构。
它与连续数学形成鲜明对比,涉及的内容包括集合论、图论、逻辑、数字逻辑、关系代数等。
在计算机科学、信息技术和其他领域中有广泛的应用。
一、集合论集合论是离散数学的基石之一,它研究集合及其元素之间的关系和操作。
以下是集合论中常见的基本概念:1. 集合:集合是一组具有共同特征的对象的总体。
例如,{1, 2, 3}就是一个集合,其中包含了元素1、2和3。
2. 元素:集合中的个体被称为元素。
在上述例子中,1、2和3是集合的元素。
3. 包含关系:如果一个集合的所有元素都同时也是另一个集合的元素,则称前者包含于后者。
用符号表示为A ⊆ B,读作“A包含于B”。
4. 并集:给定两个集合A和B,它们的并集是包含了A和B中所有元素的集合。
用符号表示为A ∪ B。
5. 交集:给定两个集合A和B,它们的交集是同时属于A和B的所有元素构成的集合。
用符号表示为A ∩ B。
6. 补集:给定一个集合A和它所在的全集U,除去A中所有元素后剩下的元素构成的集合称为A的补集。
用符号表示为A'。
二、图论图论是离散数学中的又一个重要分支,它研究图及其性质和应用。
以下是图论中常见的概念:1. 图:图由节点(顶点)和边组成。
节点表示对象,边表示对象之间的关系。
图可以分为有向图和无向图两种类型。
2. 顶点度:有向图中,顶点的度是指与该顶点相关联的边的数量。
无向图中,顶点的度是指与该顶点相连的边的数量。
3. 路径:路径是指图中一系列顶点和边的序列。
路径的长度是指路径中边的数量。
4. 连通图:在无向图中,若从任意一个顶点出发,都能到达图中的其他任意顶点,则称该图为连通图。
5. 强连通图:在有向图中,若从任意一个顶点出发,都能到达图中的其他任意顶点,并且逆向也成立,则称该图为强连通图。
三、逻辑逻辑是离散数学中研究命题、推理和证明的科学。
以下是逻辑中常见的概念:1. 命题:命题是陈述某个事实的句子,每个命题要么是真的,要么是假的。
离散数学必备知识点总结汇总
离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。
2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。
3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。
4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。
5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。
6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。
7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。
8.代数结构:半群、群、环、域的定义和性质、同态和同构。
9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。
10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。
11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。
12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。
离散数学知识点归纳
离散数学知识点归纳
本文档旨在归纳和总结离散数学中的主要知识点。
离散数学是
一门关于离散结构和离散对象的数学学科,主要用于计算机科学、
信息技术和其他相关领域。
以下是一些常见的离散数学知识点:
1. 集合论:集合的定义、运算、子集、并集、交集和差集等。
2. 命题逻辑:命题、命题的合取、析取和否定、简介真值表和
命题等价性。
3. 谓词逻辑:量词、谓词、论域、量化和解释等。
4. 图论:图的定义、图的表示方法、连通性、树、图的着色问
题等。
5. 计数和组合:排列、组合、二项式系数、鸽笼原理等。
6. 关系论:关系的定义、关系的性质、等价关系和偏序关系等。
7. 有限自动机:状态、转移函数、状态转移图和正则表达式等。
8. 布尔代数:布尔运算、逻辑电路的设计和卡诺图等。
以上只是离散数学中的一部分知识点,这些知识点在计算机科学、信息技术和其他领域中有着广泛的应用。
深入理解和掌握离散数学的知识对于解决实际问题和进行科学研究具有重要意义。
希望本文档能够帮助您系统地了解离散数学的主要知识点,为您的研究和研究提供参考和指导。
离散数学知识点总结
离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
离散数学知识点总结
离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。
它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。
离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。
下面将对离散数学的主要知识点进行总结。
1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。
其中命题是一个陈述性的语句,可以是真或假。
命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。
2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。
它的研究对象是命题函数,可以表示个体之间的关系。
谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。
3.集合论:集合论是研究集合及其操作的数学分支。
集合是一种由确定的对象组成的整体。
集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。
5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。
它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。
6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。
它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。
图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。
7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。
常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。
8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。
它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。
布尔代数在计算机硬件设计和逻辑推理中广泛应用。
9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。
图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。
图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。
离散数学知识点全归纳
离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。
在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。
以下是离散数学的一些重要知识点的全面总结。
1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。
- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。
- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。
2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。
- 对证法:从假设的反面出发,利用矛盾推理得出结论。
- 数学归纳法:证明基础情况成立,再证明递推步骤成立。
3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。
- 图的表示:邻接矩阵、邻接表等。
- 最短路径:Dijkstra算法、Floyd-Warshall算法等。
- 最小生成树:Prim算法、Kruskal算法等。
4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。
- 函数及其性质:定义域、值域、单射、满射、双射等。
- 逆函数和复合函数:求逆函数、复合函数的定义和性质。
5. 组合数学- 排列和组合:排列、组合的计算公式和性质。
- 递归关系:递推公式、递归算法等。
- 图的着色:色数、四色定理等。
6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。
- 同态:同态映射、同构等。
- 应用:编码理论、密码学等。
以上是离散数学的一些重要知识点的概括。
深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。
在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。
离散数学基本知识
离散数学基本知识第一部分:离散结构的研究中所需的基本数学知识第二部分:研究计算机离散结构本身的数学模型及数学方法第三部分:计算机应用对象的离散结构的数学模型和建模方法第1章集合代数1.1集合的概念与表示1.2集合运算1.3集合的归纳定义第2章两个常用数学基本原理2.1 归纳原理2.2 鸽笼原理第3章逻辑代数——命题演算3.1 命题与逻辑连接词3.2 逻辑等价和逻辑蕴含式3.3 范式3.3.1 析取范式和合取范式3.3.2 主析取范式和主合取范式3.3.3 连接词的扩充与规约第4章逻辑代数——谓词演算4.1 谓词演算基本概念4.2 谓词演算的永真式4.3 谓词公式的前束范式第5章形式系统与推理技术5.1 谓词演算形式系统5.2 自然推理形式系统第6章计数6.1 计数基本原理6.2 排列与组合第7章递归关系7.1 一个重要的递归关系7.2 递归关系的求解第8章图8.1 图的基础知识8.1.1图的基本概念8.1.2节点的度8.1.3子图、补图及图同构8.2 路径、回路及连通性8.3 欧拉图与哈密顿图8.4 图的矩阵表示第9章二分图、平面图、树9.1 二分图9.2 平面图9.2.1平面图的基本概念9.2.2 欧拉公式和库拉斯托夫斯基定理9.2.3 着色问题9.3 树9.3.1树的基本概念9.3.2 生成树9.3.3 根树第10章关系10.1 二元关系10.2 等价关系10.3 序关系第11章函数11.1 函数及函数的合成11.2 特殊函数类11.3 函数的逆11.4 有限集合无限集第12章递归函数集与可计算性12.1 初等函数集12.2 原始递归函数集12.3 递归函数集12.4 图灵机的可计算函数集第13章代数结构概论13.1 代数结构13.2 同态、同构及同余13.3 商代数第14章群、环、域14.1 半群14.2 群14.3 循环群和置换群14.4 环14.5 域和有限域第15章格与布尔代数15.1 格15.2 布尔代数离散数学、线性代数、概率论和数理统计是很重要且有用的数理逻辑课,能将以上三门课学好并应用到实践之中光是想想就觉得很棒!加把劲,努力成为能用数学理论武装代码的强力工程师!。
离散数学知识点总结
离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。
- 集合的运算:德摩根定律、分配律、结合律、交换律。
- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。
2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。
- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。
- 证明方法:直接证明、间接证明、反证法、数学归纳法。
3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。
- 递归函数的例子:阶乘、斐波那契数列。
- 函数的性质:单射、满射、双射、复合函数。
4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。
- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。
- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。
5. 组合数学- 排列与组合:排列数、组合数、二项式定理。
- 组合恒等式:Pascal三角形、组合恒等式。
- 组合问题:计数原理、Inclusion-Exclusion原理。
6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。
- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。
- 布尔函数的表示:真值表、卡诺图、逻辑表达式。
7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。
- 关系的类型:等价关系、偏序关系、全序关系。
- 关系的闭包:自反闭包、对称闭包、传递闭包。
8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。
- 特殊类型的树:二叉树、平衡树、B树、B+树。
- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。
9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。
- 空间复杂度:算法空间需求的分析。
- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。
离散数学知识点
离散数学知识点
离散数学是数学中的一个分支,它主要涉及离散对象和离散结构的研究。
下面将介绍离散数学的一些主要知识点。
1. 集合论:集合是离散数学中的基础概念,集合论研究集合的性质与运算。
它包括集合的定义、运算、关系、等价关系、函数和逆映射等概念。
2. 图论:图论是研究图及其性质的数学分支。
图是由节点(或称为顶点)和边组成的数学模型。
它的重点包括图的分类、图的遍历、最短路径、生成树、染色问题等。
3. 逻辑学:逻辑学是研究推理和论证的学科,在离散数学中应用广泛。
逻辑学包括命题逻辑、谓词逻辑、组合逻辑、模态逻辑等多个分支。
4. 组合数学:组合数学是研究离散结构中离散对象的组合方式的数学分支。
它包括组合计数、排列组合、生成函数、递归等概念。
5. 离散数学在计算机科学中的应用:离散数学在计算机科学中应用广泛,例如计算机算法、图像处理、密码学、编译器等领域都有着重要的应用。
以上是离散数学的主要知识点,它们都有着广泛的应用和研究领域,对于理解和
应用离散数学具有重要作用。
离散数学知识点整理
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息技术、数理逻辑等领域都有着广泛的应用。
下面为大家整理了一些离散数学的重要知识点。
一、集合论集合是离散数学的基础概念之一。
集合是由一些确定的、互不相同的对象组成的整体。
集合的表示方法包括列举法,如{1, 2, 3};描述法,如{x | x 是大于 0 的整数}。
集合的运算有并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起;交集是两个集合中共同的元素;差集是从一个集合中去掉另一个集合中的元素;补集是在全集中去掉给定集合的元素。
集合之间的关系包括子集、真子集和相等。
如果集合 A 的所有元素都属于集合 B,则 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,则 A 是 B 的真子集;如果两个集合的元素完全相同,则它们相等。
二、关系关系是集合中元素之间的某种联系。
关系可以用矩阵和关系图来表示。
矩阵表示直观清晰,关系图则更形象。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;反自反性则是没有元素与自身有关系。
对称性是若 a 与 b 有关系,则 b 与 a 也有关系;反对称性是若 a 与b 有关系且 b 与 a 有关系,则 a = b。
传递性是若 a 与 b 有关系,b 与 c 有关系,则 a 与 c 有关系。
特殊的关系有等价关系和偏序关系。
等价关系满足自反性、对称性和传递性,它将集合划分为等价类。
偏序关系满足自反性、反对称性和传递性,常用于描述元素之间的排序。
三、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数有单射、满射和双射之分。
单射是不同的定义域元素对应不同的值域元素;满射是值域中的每个元素都有定义域元素与之对应;双射则既是单射又是满射。
复合函数是将一个函数的输出作为另一个函数的输入。
四、图论图由顶点和边组成。
图的分类有有向图和无向图。
离散数学知识点整理
离散数学一、逻辑和证明命题逻辑命题:是一个可以判断真假的陈述句。
联接词:∧、∨、→、↔、¬。
记住“p仅当q”意思是“如果p,则q”,即p→。
记住“q除非p”意思是“¬p→q”。
会考察条件语句翻译成汉语。
构造真值表语句翻译系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。
命题等价式逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。
证逻辑等价是通过p推导出q,证永真式是通过p推导出T。
量词谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如∀x>0P(x)。
当论域中的元素可以一一列举,那么∀xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。
同理,∃xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。
两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如∀x(P(x)∧Q(x))和(∀xP(x))∧(∀xQ(x))。
量词表达式的否定:¬∀xP(x) ⇔∃x¬P(x),¬∃xP(x) ⇔∀x¬P(x)。
量词嵌套我们采用循环的思考方法。
量词顺序的不同会影响结果。
语句到嵌套量词语句的翻译,注意论域。
嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。
推理规则一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。
但有效论证不代表结论正确,因为也许有的前提是假的。
命题和量化命题的组合使用。
二、集合、函数、序列、与矩阵集合∈说的是元素与集合的关系,⊆说的是集合与集合的关系。
常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。
A和B相等当仅当∀x(x∈A↔x∈B);A是B的子集当仅当∀x(x∈A→x∈B);A是B的真子集当仅当∀x(x∈A→x∈B)∧∃x(x∉A∧x∈B)。
离散数学知识点归纳
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学笔记第一章命题逻辑合取析取定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句定义 1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原子公式。
(2)若某个字符串A 是合式公式,则⌝A、(A)也是合式公式。
(3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A↔B 是合式公式。
(4)有限次使用(2)~(3)形成的字符串均为合式公式。
1.3等值式1.4析取范式与合取范式将一个普通公式转换为范式的基本步骤1.6推理定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。
(用等值演算或真值表)第二章 谓词逻辑2.1、基本概念∀:全称量词 ∃:存在量词一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"∀x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如∃x(H(x)∨WL(x)),即量词的后面为合取式 例题R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ∀x ∀y(R(x)∧T(y)→H(x,y))有的兔子比所有的乌龟跑得快表示为:∃x ∀y(R(x)∧T(y)→H(x,y))2.2、谓词公式及其解释定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示22y x 的 f(x,y))、 谓词常元(如表示人类的 H(x))。
定义 2.2.2、逻辑符号:个体变元、量词(∀∃)、联结词(﹁∨∧→↔)、逗号、括号。
定义 2.2.3、项的定义:个体常元、变元及其函数式的表达式称为项(item)。
定义 2.2.4、原子公式:设 R(n x x ...1)是 n 元谓词,n t t ...1是项,则 R(t)是原子公式。
原子公式中的个体变元,可以换成个体变元的表达式(项),但不能出现任何联结词与量词,只能为单个的谓词公式。
定义 2.2.5 合式公式:(1)原子公式是合式公式;(2)若 A 是合式公式,则(﹁A)也是合式公式;(3)若 A,B 合式,则 A ∨B, A ∧B, A →B , A ↔B 合式(4)若 A 合式,则∀xA 、∃xA 合式(5)有限次使用(2)~(4)得到的式子是合式。
定义 2.2.6 量词辖域:∀xA 和∃xA 中的量词∀x/∃x 的作用范围,A 就是作用范围。
定义 2.2.7 约束变元:在∀x 和∃x 的辖域 A 中出现的个体变元 x ,称为约束变元,这是与量词相关的变元,约束变元的所有出现都称为约束出现。
定义 2.2.8 自由变元:谓词公式中与任何量词都无关的量词,称为自由变元,它的每次出现称为自由出现。
一个公式的个体变元不是约束变元,就是自由变元。
注意:为了避免约束变元和自由变元同名出现,一般要对“约束变元”改名,而不对自由变元改名。
定义 2.2.9 闭公式是指不含自由变元的谓词公式从本例(已省)可知, 不同的公式在同一个解释下, 其真值可能存在, 也可能不存在, 但是对于没有自由变元的公式(闭公式),不论做何种解释,其真值肯定存在谓词公式的类型:重言式(永真式)、矛盾式(永假式)、可满足公式三种类型定义 2.2.10 在任何解释下,公式的真值总存在并为真,则为重言式或永真式。
定义 2.2.11 在任何解释下,公式的真值总存在并为假,则为矛盾式或永假式。
定义 2.2.12 存在个体域并存在一个解释使得公式的真值存在并为真,则为可满足式。
定义 2.2.13 代换实例 设 n p p p ,...,,21是命题公式 0A 中的命题变元, n A A A ,...,,10是 n 个谓 词公式,用i A 代替公式 0A 中的i p 后得到公式 A ,则称 A 为 0A 的代换实例。
如 A(x)∨﹁A(x),∀xA(x) ∨﹁∀ xA(x)可看成 p ∨﹁ p 的代换实例,A(x) ∧﹁A(x),∀xA(x) ∧﹁ ∀x A(x)可看成 p ∧﹁ p 的代换实例。
定理 2.2.1 命题逻辑的永真公式之代换实例是谓词逻辑的永真公式, 命题逻辑的永假公式之代换实例是谓词逻辑的永假式。
(代换前后是同类型的公式)2.3、谓词公式的等值演算定义 2.3.1 设 A 、B 是两个合法的谓词公式,如果在任何解释下,这两个公式的真值都相等,则称 A 与 B 等值,记为 A ⇔ B 。
当 A ⇔B 时,根据定义可知,在任何解释下,公式 A 与公式 B 的真值都相同,故 A ↔B 为永真式,故得到如下的定义。
定义 2.3.2 设 A 、B 是两个合法谓词公式,如果在任何解释下, A ↔ B 为永真式, 则 A 与 B 等值,记为 A ⇔ B 。
一、利用代换实例可证明的等值式(p ↔﹁﹁p 永真,代换实例∀ xF(x) ↔﹁﹁∀ xF(x)永真) 二、个体域有限时,带全称量词、存在量词公式的等值式如:若D={n a a a ,...,,21 },则∀ xA(x) ⇔ A(1a )∧A(2a )∧…∧A(n a ) 三、量词的德摩律1、﹁∀xA(x) ⇔ ∃x ﹁A(x)2、﹁∃xA(x) ⇔ ∀x ﹁A(x) 四、量词分配律1、∀x(A(x)∧B(x)) ⇔ ∀xA(x)∧∀xB(x)2、∃x(A(x)∨B(x)) ⇔ ∃xA(x)∨∃xB(x)记忆方法:∀与∧,一个尖角朝下、一个尖角朝上,相反可才分配。
2 式可看成 1 式的对偶式 五、量词作用域的收缩与扩张律A(x)含自由出现的个体变元 x ,B 不含有自由出现的 x ,则有:1、∀/∃(A(x)∨B) ⇔ ∀/∃A(x)∨B2、∀/∃(A(x)∧B) ⇔ ∀/∃A(x)∧B对于条件式 A(x) ↔B , 利用 “基本等值一” 将其转换为析取式, 再使用德摩律进行演算六、置换规则若 B 是公式 A 的子公式,且B ⇔ C ,将 B 在 A 中的每次出现,都换成 C 得到的公式记为 D ,则 A ⇔D 七、约束变元改名规则将公式 A 中某量词的指导变元及辖域中约束变元每次约束出现,全部换成公式中未出现的字母,所得到的公式记为 B ,则 A B例证明步骤:2.4、谓词公式的范式从定理证明过程,可得到获取前束范式的步骤: (1)剔除不起作用的量词;(2)如果约束变元与自由变元同名,则约束变元改名;(3)如果后面的约束变元与前面的约束变元同名,则后的约束变元改名; (4)利用代换实例,将→、↔转换﹁∨∧表示;(5)利用德摩律,将否定﹁深入到原子公式或命题的前面;(6)利用量词辖域的扩张与收缩规律或利用量词的分配律,将量词移到最左边2.5、谓词推理定义 2.5.1 若在各种解释下 B A A A n →∧∧...21只能为真即为永真,则称为前提n A A A ...21∧∧可推出结论 B 。
定义 2.5.2 在所有使 n A A A ...21∧∧ 为真的解释下,B 为真,则称为前提 n A A A ...21∧∧可推出结论 B 。
谓词逻辑的推理方法分为以下几类:一、谓词逻辑的等值演算原则、规律:代换实例、量词的德摩律、量词的分配律、量词辖域的扩张与收缩、约束变元改名。
二、命题逻辑的推理规则的代换实例,如假言推理规则、传递律、合取与析取的性质律、CP 规则、反证法等。
三、谓词逻辑的推理公理第三章集合与关系3.1、基本概念在离散数学称“不产生歧义的对象的汇集一块”便构成集合。
常用大写字母表示集合,如R 表示实数,N 表示自然数,Z 表示整数,Q 表示有理数,C 表示复数。
描述一个集合一般有“枚举法”与“描述法”,“枚举法”。
元素与集合之间有“属于∈”或“不属于∉”二种关系。
定义 3.1.1设A,B 是两个集合,如果A 中的任何元素都是B 中的元素,则称A 是B的子集,也称B 包含于A,记为B⊆A,也称A 包含B,记为A⊇B。
3.2集合运算性质定义 3.2.1 设 A 、B 为集合,A 与 B 的并集 A ⋃B 、A 与 B 的的交集 A ⋂B 、A-B 的定 义:A ⋃B={x|x ∈A ∨x ∈B},A ⋂B={x|x ∈A ∧x ∈B},A-B={x|x ∈A ∧x ∉B}定 义 3.2.2 设 A 、 B 为 集 合 , A 与 B 的 对 称 差 , 记 为 A ⊗B={x|(x ∈A ∧x ∉B)∨( x ∉A ∧x ∈B)}= A ⋃B - A ⋂B 。
定义 3.2.3 设 A 、B 是两个集合,若 A ⊆B 、B ⊆A 则 A=B ,即两个集合相等。
幂等律 A ⋃A=A 、A ⋂A=A结合律 A ⋃B ⋃C= A ⋃(B ⋃C)= (A ⋃B)⋃C A ⋂B ⋂C= A ⋂(B ⋂C)= (A ⋂B)⋂C 交换律 A ⋃B=B ⋃A 、A ⋂B=B ⋂A 分配律A ⋃(B ⋂C)=(A ⋃B)⋂(A ⋃C) A ⋂(B ⋃C)=(A ⋂B)⋃(A ⋂C) 同一/零律 A ⋃Ø = A 、A ⋂Ø= Ø 排中/矛盾律 A ⋃⌝A=E 、A ⋂⌝A= Ø吸收律(大吃小) A ⋂(B ⋃A)=A 、 A ⋃(B ⋂A)=A德摩律 ⌝ (A ⋂B)= ⌝A ⋃⌝B 、⌝ (A ⋃B)= ⌝A ⋃⌝B 双重否定⌝⌝A=A3.3、有穷集的计数定理 3.3.1 二个集合的包含排斥原理 |21A A ⋃ | = |1A | + |2A | - |21A A ⋂|3.4、序偶定义 3.4.2 令<x,y>与<u,v>是二个序偶,如果 x=u 、y=v ,那么<x,y>=<u,v>即二个序偶相等。
定义 3.4.3 如果<x,y>是序偶,且<<x,y>,z>也是一个序偶,则称<x,y,z>为三元组。
3.5、直积或笛卡尔积定义 3.5.1 令 A 、B 是两个集合, 称序偶的集合{<x,y>|x ∈A, y ∈B}为A 与B 的直积或笛卡尔积,记为 A ⨯B 。
如:A={1,2,3},B={a,b,c}则A ⨯B={1,2,3}⨯{a,b,c}={<1,a>,<1,b>,<1,c>,<2,a>,<2,b>,<2,c>,<3,a>,<3,b>,<3,c>} 直积的性质1、A ⨯(B ⋃C)= A ⨯ B ⋃ A ⨯ C2、A ⨯ (B ⋂C)= A ⨯ B ⋂ A ⨯ C3、(B ⋃ C) ⨯ A = B ⨯ A ⋃ C ⨯ A4、(B ⋂ C) ⨯ A = B ⨯ A ⋂ C ⨯ A5、A ⊆B ⇔A ⨯C ⊆ B ⨯ C ⇔ C ⨯ A ⊆ C ⨯ B6、A ⊆B,C ⊆D ⇔A ⨯ C ⊆ B ⨯ D定义 3.5.2 令 n A A A ,...,21是 n 个集合,称n 元组的集合{<n x x x ,...,,21>| n n A x A x A x ∈∈∈,...,,2211},为n A A A ,...,21的直积或笛卡尔积,记为n A A A ⨯⨯⨯...21。