支持向量机入门

合集下载

68_支持向量机课件

68_支持向量机课件
■ 先求 ai (i=1, …, 5) :
2021/3/13
29
The optimizationtoolboxofmatlab contains a quadratic programmingsolver
■ 利用 QP 求解 , 得到
■ a1=0, a2=2.5, a3=0, a4=7.333, a5=4.833 ■ 注意到确实满足约束条件
2021/3/13
39
几点说明
■ SVM 基本上是一个两分类器,修改 QP 公式, 以允许多类别分类。 ■ 常用的方法: 以不同的方式智能地将数据集分为两部分, 对每一种
分割方式用 SVM训练,多类别分类的结果, 由所有的SVM分类器的 输出经组合后得到 (多数规则) 。
■ “一对一”策略 这种方法对N 类训练数据两两组合,构建C2N = N (N - 1) /2个支持向量机。最后分类的时候采取“投票”的方式 决定分类结果。
■ 支持向量为 {x2=2, x4=5, x5=6}
■ 描述函数为
■ 确定b
当 x2, x4, x5 位于
上时, f(2)=
1 , f(5)=-1 , f(6)=1, 由此解得 b=9
2021/3/13
30Biblioteka 描述函数的值第1类
第2类
第1类
12
45 6
2021/3/13
31
§5 支持向量回归
一.最小二乘法
■ “ 一 对 其 余 ” 策 略 这种方法对N分类问题构建N个支持向量机, 每个支持向量机负责区分本类数据和非本类数据。最后结果由输 出离分界面距离w·x + b最大的那个支持向量机决定。
2021/3/13
40
软件

支持向量机介绍课件

支持向量机介绍课件
04 多分类支持向量机:适用于多分类问题,将多个 二分类支持向量机组合成一个多分类支持向量机
支持向量机的应用场景
01
分类问题:支持向量机可以用于 解决二分类或多分类问题,如文 本分类、图像分类等。
03
异常检测:支持向量机可以用于 异常检测,如信用卡欺诈检测、 网络入侵检测等。
02
回归问题:支持向量机可以用于 解决回归问题,如房价预测、股 票价格预测等。
4 支持向量机的优缺点
优点
01
高度泛化:支持向量机具有 很强的泛化能力,能够有效 地处理非线性问题。
02
鲁棒性:支持向量机对异常 值和噪声具有较强的鲁棒性, 能够有效地避免过拟合。
03
计算效率:支持向量机的训 练和预测过程相对较快,能 够有效地处理大规模数据。
04
易于解释:支持向量机的决 策边界直观易懂,便于理解 和解释。
缺点
01
计算复杂度高: 支持向量机的训 练和预测都需要 较高的计算复杂 度
02
容易过拟合:支 持向量机在处理 高维数据时容易 发生过拟合现象
03
模型选择困难:支 持向量机的参数选 择和模型选择较为 困难,需要一定的 经验和技巧
04
不适用于线性不可 分问题:支持向量 机只适用于线性可 分问题,对于非线 性问题需要进行复 杂的特征转换或采 用其他算法
它通过引入松弛变量,允许某些
02
数据点在分类超平面的两侧。 软间隔分类器的目标是最大化间 03 隔,同时最小化松弛变量的数量。 软间隔分类器可以通过求解二次
04
规划问题得到。
3 支持向量机的应用
线性分类
01
支持向量机 可以用于线 性分类问题
02
线性分类器可 以找到最优的

支持向量机课件

支持向量机课件
Transform x (x)
例子
a x12+b x22=1 [w]1 z1+ [w]2z2 + [w]3 z3+ b =0
非线性分类
设训练集 T {(xi , yi ), i 1, l},其中 xi ([xi ]1,[xi ]2 )T , yi {1, 1} 假定可以用 ([x]1,[x]2 ) 平面上的二次曲线来划分:
i 0, i 1,, n
w
n
y这iix是i 一个凸二
i1 次规划问题
有唯一的最优
解Leabharlann (5)求解问题(5),得。则参数对(w,b)可由下式计算:
n
w* *i yi xi i 1
b* w* n *i xi
i 1
n 2 *i yi 1
线性可分的支持向量(分类)机
于是,得到如下的决策函数:
12
45 6
求解 i (i=1, …, 5)
例子
通过二次规划求解,得到
1 0,2 2.5,3 0,4 7.333,5 4.833
– 支持向量为 {x2=2, x4=5, x5=6} 判别函数为
b 满足 f (2)=1, f (5) = -1, f (6)=1, 得到 b=9
在规范化下,超平面的几何间隔为
1 w
于是,找最大几何间隔的超平面
表述成如下的最优化问题:
min 1 w 2 w,b 2
(1)
s.t. yi ((w xi ) b) 1,i 1,, n
线性可分的支持向量(分类)机
为求解问题(1),使用Lagrange乘子法将其转化为对偶 问题。于是引入Lagrange函数:
如果想用其它的非线性分划办法,则可以考虑选择其它形式

支持向量机操作方法有哪些

支持向量机操作方法有哪些

支持向量机操作方法有哪些
支持向量机(Support Vector Machine,SVM)是一种分类和回归分析的机器学习模型,常用于处理二分类问题。

以下是支持向量机的一些操作方法:
1. 数据预处理:首先,需要对数据进行预处理,包括数据清洗、特征选择、特征缩放等。

2. 选择核函数:SVM可以使用不同的核函数,如线性核函数、多项式核函数、径向基函数等。

选择适合问题的核函数可以提高SVM的性能。

3. 训练模型:使用训练数据集对SVM模型进行训练,通过找到最优的决策边界(超平面)来最大程度地分割不同类别的样本。

4. 参数调整:SVM有一些重要的参数需要设置,如正则化参数C、核函数参数等。

可以使用交叉验证等技术来选择最优的参数组合。

5. 样本分类:在训练模型之后,可以使用训练好的模型对新的样本进行分类预测。

6. 模型评估:对SVM模型进行评估,包括计算准确率、精确度、召回率、F1值等指标,以及生成混淆矩阵来分析模型的性能。

7. 超参数调优:对SVM模型的超参数进行调优,可以使用网格搜索、随机搜索等方法,以获得更好的模型性能。

8. 支持向量分析:分析支持向量的分布和权重,可以帮助了解模型的决策边界和影响预测结果的重要特征。

以上是一些常见的支持向量机操作方法,具体的应用还需要根据实际问题进行调整和优化。

支持向量机原理SVMPPT课件

支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。

支持向量机PPT课件

支持向量机PPT课件
2023
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。

支持向量机(SVM)

支持向量机(SVM)

其中,������������ ≥ 0, ������ = 1,2, ⋯ , ������。
������ ������
������ ������
0 < ������������ ≤ 1 分类正确
������������ > 1 分类错误
对于给定的训练样本: ������1 , ������1 , ������ 2 , ������ 2 , ⋯ , (������ ������ , ������������ ) 找到权值向量W 和偏置b,使其在满足 ������������ (������ T ������ ������ + ������) ≥ 1 − ������������ , ������ = 1,2, ⋯ , ������ ������������ ≥ 0, ������ = 1,2, ⋯ , ������
������
������0������
������=1
1 T = min ������ ������ + ������ ������,������,������ ∈������ 2
������
������������
������=1
= max min ������ ������, ������, ������, ������, ������ = ������(������0 , ������0 , ������0 , ������0 , ������0 )
T ������ ������ ������ ������
=: ������ ������
������
对偶问题:在满足约束条件
的情况下最大化函数
������ ������=1 ������ ������

《支持向量机》课件

《支持向量机》课件

非线性支持向量机(SVM)
1
核函数与核技巧
深入研究核函数和核技巧,将SVM应用于非线性问题。
2
多类别分类
探索如何使用SVM解决多类别分类问题。
3
多分类问题
了解如何将SVM应用于多分类问题以及解决方法。
SVM的应用
图像识别
探索SVM在图像识别领域 的广泛应用。
金融信用评估
了解SVM在金融领域中用 于信用评估的重要作用。
其他领域
探索SVM在其他领域中的 潜在应用,如生物医学和 自然语言处理。
《支持向量机》PPT课件
探索令人兴奋的机器学习算法 - 支持向量机。了解它的定义、历史、优点和 局限性,以及基本思想、几何解释和优化问题。
支持向量机简介
定义与背景
学习支持向量机的基本概念和背景知识。
优缺点
掌握支持向量机的优点和局限性,和核心思想。
几何解释和优化问题
几何解释
优化问题
通过直观的几何解释理解支持向量机的工作原理。 研究支持向量机的优化问题和求解方法。
线性支持向量机(SVM)
1 学习算法
探索线性支持向量机的 学习算法并了解如何应 用。
2 常见核函数
介绍常用的核函数类型 和选择方法,以及它们 在SVM中的作用。
3 软间隔最大化
研究软间隔最大化方法, 提高SVM在非线性问题 上的准确性。

支持向量机简介PPT课件

支持向量机简介PPT课件

经验风险最小化思想图示
举例:神经网络的构造过程
先确定网络结构 :网络层数,每层节点数 相当于VC维确定, (n / h) 确定。
通过训练确定最优权值,相当于最小化 R emp ( w ) 。 目前存在的问题是神经网络结构的确定大多是凭经验
选取,有一定的盲目性,无法确定泛化的置信界限, 所以无法保证网络的泛化能力。 即使经验误差很小,但可能推广或泛化能力很差。这 就是神经网络中的过学习难题。
研究小样本下机器学习规律的理论。 基本思想:折衷考虑经验风险和推广的置信界
限,取得实际期望风险的最小化。 两大核心: VC维和结构风险最小化。
VC维的概念
描述函数复杂性的指标 假如存在一个由h个样本的样本集能够被一个
函数集中的函数按照所有可能的2h 种形式分 为两类,则函数集能够把样本数为h的样本集 打散(shattering)。函数集的vc维就是用这个函 数集中的函数所能够打散的最大样本集数的样 本数目。
X表示成
x
xp
r
||
w w
||
xp :x在H上的投影向量 r:是x到H的垂直距离
g (x ) w T (x p r||w w ||) b w T x p b r|w |w T w || r||w g ||(x)w wT /(|x |wp ||:r||是w w w||)方b 向 上w T 的xp单b 位 向r|w |量w Tw ||r||w ||
Support Vector Machine支持向量机简介
报告概览
系统辨识和模式识别问题一般描述及存在问题 统计学习理论基本思想 支持向量机算法
➢ 线性可分 ➢ 近似线性可分 ➢ 非线性可分
SVM软件包 故障诊断中的应用

支持向量机基本原理

支持向量机基本原理

支持向量机基本原理支持向量机基本原理支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的分类器,广泛应用于模式识别、图像处理、生物信息学等领域。

SVM在处理高维数据和小样本问题时表现出色,具有较强的泛化能力和鲁棒性。

一、线性可分支持向量机1.1 概念定义给定一个训练数据集$D=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}$,其中$x_i\in R^n$为输入样本,$y_i\in\{-1,1\}$为输出标记。

线性可分支持向量机的目标是找到一个超平面将不同类别的样本分开,并使得该超平面到最近的样本点距离最大。

设超平面为$x^Tw+b=0$,其中$w\in R^n$为法向量,$b\in R$为截距,则样本点$x_i$到超平面的距离为:$$r_i=\frac{|x_i^Tw+b|}{||w||}$$对于任意一个超平面,其分类效果可以用间隔来度量。

间隔指的是两个异类样本点到超平面之间的距离。

因此,最大化间隔可以转化为以下优化问题:$$\max_{w,b}\quad \frac{2}{||w||}\\s.t.\quad y_i(x_i^Tw+b)\geq1,\quad i=1,2,...,N$$其中,$y_i(x_i^Tw+b)-1$为样本点$x_i$到超平面的函数间隔。

因为函数间隔不唯一,因此我们需要将其转化为几何间隔。

1.2 函数间隔与几何间隔对于一个给定的超平面,其函数间隔定义为:$$\hat{\gamma}_i=y_i(x_i^Tw+b)$$而几何间隔定义为:$$\gamma_i=\frac{\hat{\gamma}_i}{||w||}$$可以证明,对于任意一个样本点$x_i$,其几何间隔$\gamma_i$都是该点到超平面的最短距离。

因此,我们可以将最大化几何间隔转化为以下优化问题:$$\max_{w,b}\quad \frac{2}{||w||}\\s.t.\quad y_i(x_i^Tw+b)\geq\gamma,\quad i=1,2,...,N$$其中$\gamma$是任意正数。

支持向量机课件

支持向量机课件

支持向量机(SVM )最优分类面SVM 是从线性可分情况下的最优分类面发展而来的, 基本思想可用图中的 两维情况说明.所谓最优分类线就是要求分类线不但能将两类正确分开(训练错误率为0),而且使分类间隔最大,推广到高维空间,最优分类线就变为最优分类面。

设线性可分的样本集(),,1,,,i i x y i n ={},1,1d x R y ∈∈+-,d 维空间中的线性判别函数:()g x wx b =+,分类面方程为0wx b +=我们可以对它进行归一化,使得所有样本都满足()1g x ≥,即使离分类面最近的样本满足()1g x =,这样分类间隔就等于2w 。

因此要求分类间隔最大,就是要求w (或2w )最小。

要求分类线对所有样本正确分类时,对于任意学习样本()n n y X ,其分布必然在直线1H 之上或直线2H 之下。

即有()()121;1, 1;1, n n n n n n n n g b y C g b y C ⎧=⋅+≥=∈⎨=⋅+≤-=-∈⎩X W X X X W X X 将以上两式合并,有1n n y b ⋅⎡⋅+⎤≥⎣⎦W X就是要求满足[]10n n y wx b +-≥,1,,,i n =图中, 方形点和圆形点代表两类样本, H 为分类线,H1, H2分别为过各类中离分类线最近的样本且平行于分类线的直线, 它们之间的距离叫做分类间隔(margin)。

所谓最优分类线就是要求分类线不但因此,满足上述公式且使2w 最小的分类面就是最优分类面。

过两类样本中离分类面最近的点且平行于最优分类面的超平面1H ,2H 上的训练样本,就是使上式等号成立的那些样本,它们叫做支持向量。

因为它们支撑了最优分类面。

下面看如何求解最优分类面,由上面的讨论,最优分类面问题可以表示成如下的约束问题,即在条件(1)的约束下,求函数:21()2w w φ= (2) 的最小值,这里目标函数中的21没有其他意义,只是为了下一步导出求解方法时方便。

【超详细】支持向量机入门

【超详细】支持向量机入门

SVM入门SVM入门(一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。

支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。

以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。

Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。

在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。

与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。

所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。

正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。

结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。

《支持向量机》课件

《支持向量机》课件
对于非线性数据集,训练算法 通过核函数将数据映射到更高 维的特征空间,然后在特征空 间中寻找最优超平面进行分类 。常见的核函数有线性核、多 项式核、径向基函数核等。
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SVM入门SVM入门(一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。

支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。

以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。

Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。

在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。

与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。

所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC 维越高,一个问题就越复杂。

正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。

结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。

比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。

这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。

我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。

最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。

这个差值叫做经验风险Remp(w)。

以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。

此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。

回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛一毛,经验风险最小化原则只在这占很小比例的样本上做到没有误差,当然不能保证在更大比例的真实文本上也没有误差。

统计学习因此而引入了泛化误差界的概念,就是指真实风险应该由两部分容刻画,一是经验风险,代表了分类器在给定样本上的误差;二是置信风险,代表了我们在多大程度上可以信任分类器在未知文本上分类的结果。

很显然,第二部分是没有办法精确计算的,因此只能给出一个估计的区间,也使得整个误差只能计算上界,而无法计算准确的值(所以叫做泛化误差界,而不叫泛化误差)。

置信风险与两个量有关,一是样本数量,显然给定的样本数量越大,我们的学习结果越有可能正确,此时置信风险越小;二是分类函数的VC维,显然VC维越大,推广能力越差,置信风险会变大。

泛化误差界的公式为:R(w)≤Remp(w)+Ф(n/h)公式中R(w)就是真实风险,Remp(w)就是经验风险,Ф(n/h)就是置信风险。

统计学习的目标从经验风险最小化变为了寻求经验风险与置信风险的和最小,即结构风险最小。

SVM正是这样一种努力最小化结构风险的算法。

SVM其他的特点就比较容易理解了。

小样本,并不是说样本的绝对数量少(实际上,对任何算法来说,更多的样本几乎总是能带来更好的效果),而是说与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。

非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量(也有人叫惩罚变量)和核函数技术来实现,这一部分是SVM的精髓,以后会详细讨论。

多说一句,关于文本分类这个问题究竟是不是线性可分的,尚没有定论,因此不能简单的认为它是线性可分的而作简化处理,在水落石出之前,只好先当它是线性不可分的(反正线性可分也不过是线性不可分的一种特例而已,我们向来不怕方法过于通用)。

高维模式识别是指样本维数很高,例如文本的向量表示,如果没有经过另一系列文章(《文本分类入门》)中提到过的降维处理,出现几万维的情况很正常,其他算法基本就没有能力应付了,SVM却可以,主要是因为SVM 产生的分类器很简洁,用到的样本信息很少(仅仅用到那些称之为“支持向量”的样本,此为后话),使得即使样本维数很高,也不会给存储和计算带来大麻烦(相对照而言,kNN算法在分类时就要用到所有样本,样本数巨大,每个样本维数再一高,这日子就没法过了……)。

下一节开始正式讨论SVM。

别嫌我说得太详细哦。

SVM入门(二)线性分类器Part 1线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子。

如图所示C1和C2是要区分的两个类别,在二维平面中它们的样本如上图所示。

中间的直线就是一个分类函数,它可以将两类样本完全分开。

一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的。

什么叫线性函数呢?在一维空间里就是一个点,在二维空间里就是一条直线,三维空间里就是一个平面,可以如此想象下去,如果不关注空间的维数,这种线性函数还有一个统一的名称——超平面(Hyper Plane)!实际上,一个线性函数是一个实值函数(即函数的值是连续的实数),而我们的分类问题(例如这里的二元分类问题——回答一个样本属于还是不属于一个类别的问题)需要离散的输出值,例如用1表示某个样本属于类别C1,而用0表示不属于(不属于C1也就意味着属于C2),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别归属。

例如我们有一个线性函数g(x)=wx+b我们可以取阈值为0,这样当有一个样本xi需要判别的时候,我们就看g(xi)的值。

若g(xi)>0,就判别为类别C1,若g(xi)<0,则判别为类别C2(等于的时候我们就拒绝判断,呵呵)。

此时也等价于给函数g(x)附加一个符号函数sgn(),即f(x)=sgn [g(x)]是我们真正的判别函数。

关于g(x)=wx+b这个表达式要注意三点:一,式中的x不是二维坐标系中的横轴,而是样本的向量表示,例如一个样本点的坐标是(3,8),则x T=(3,8) ,而不是x=3(一般说向量都是说列向量,因此以行向量形式来表示时,就加上转置)。

二,这个形式并不局限于二维的情况,在n维空间中仍然可以使用这个表达式,只是式中的w成为了n维向量(在二维的这个例子中,w是二维向量,注意这里的w严格的说也应该是转置的形式,为了表示起来方便简洁,以下均不区别列向量和它的转置,聪明的读者一看便知);三,g(x)不是中间那条直线的表达式,中间那条直线的表达式是g(x)=0,即wx+b=0,我们也把这个函数叫做分类面。

实际上很容易看出来,中间那条分界线并不是唯一的,我们把它稍微旋转一下,只要不把两类数据分错,仍然可以达到上面说的效果,稍微平移一下,也可以。

此时就牵涉到一个问题,对同一个问题存在多个分类函数的时候,哪一个函数更好呢?显然必须要先找一个指标来量化“好”的程度,通常使用的都是叫做“分类间隔”的指标。

下一节我们就仔细说说分类间隔,也补一补相关的数学知识。

SVM入门(三)线性分类器Part 2上回说到对于文本分类这样的不适定问题(有一个以上解的问题称为不适定问题),需要有一个指标来衡量解决方案(即我们通过训练建立的分类模型)的好坏,而分类间隔是一个比较好的指标。

在进行文本分类的时候,我们可以让计算机这样来看待我们提供给它的训练样本,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成。

如下:D i =(xi,yi)x i 就是文本向量(维数很高),yi就是分类标记。

在二元的线性分类中,这个表示分类的标记只有两个值,1和-1(用来表示属于还是不属于这个类)。

有了这种表示法,我们就可以定义一个样本点到某个超平面的间隔:δi =yi(wxi+b)这个公式乍一看没什么神秘的,也说不出什么道理,只是个定义而已,但我们做做变换,就能看出一些有意思的东西。

首先注意到如果某个样本属于该类别的话,那么wxi+b>0(记得么?这是因为我们所选的g(x)=wx+b就通过大于0还是小于0来判断分类),而yi也大于0;若不属于该类别的话,那么wxi +b<0,而yi也小于0,这意味着yi(wxi+b)总是大于0的,而且它的值就等于|wxi +b|!(也就是|g(xi)|)现在把w和b进行一下归一化,即用w/||w||和b/||w||分别代替原来的w 和b,那么间隔就可以写成这个公式是不是看上去有点眼熟?没错,这不就是解析几何中点xi到直线g(x)=0的距离公式嘛!(推广一下,是到超平面g(x)=0的距离, g(x)=0就是上节中提到的分类超平面)小Tips:||w||是什么符号?||w||叫做向量w的数,数是对向量长度的一种度量。

我们常说的向量长度其实指的是它的2-数,数最一般的表示形式为p-数,可以写成如下表达式向量w=(w1, w2, w3,…… wn)它的p-数为看看把p换成2的时候,不就是传统的向量长度么?当我们不指明p的时候,就像||w||这样使用时,就意味着我们不关心p的值,用几数都可以;或者上文已经提到了p的值,为了叙述方便不再重复指明。

相关文档
最新文档