2015年四川省成都市中考数学试卷及答案

合集下载

【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

一、解答题1.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?2.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 3.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来4.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.5.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?6.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?7.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.9.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B10.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?11.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++12.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x. 13.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.14.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?15.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 16.计算:103212sin45(2π)-+--+-.17.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 18.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.19.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?20.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)25.如图,AD 是ABC 的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.26.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.27.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.28.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)29.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 30.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题 1. 2. 3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题1.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.2.(1)223a 5ab 3b -+-;(2)m m 2-.【分析】()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a2b(2a b)-+--=2222a2ab ab2b4a4ab b+---+-223a5ab3b=-+-;(2)221m4m 4 1m1m m-+⎛⎫-÷⎪--⎝⎭=()2m m1 m2m1(m2)--⋅--mm2=-.【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.3.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键. 4.(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.5.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.6.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人), 答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图7.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.9.(1)12(2)16【解析】解:所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1610.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧. 11.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.12.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.13.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 14.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y 1=kx+b ,将(1,41),(50,90)代入,得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x+40,当50≤x<90时,y 1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.15.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.16.13【解析】 【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答. 【详解】 原式12212132=+-⨯+ =12121313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.17.甲公司有600人,乙公司有500人. 【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人, 根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x=500是该方程的实数根.18.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.19.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论. 试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙;(2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4; 令y 甲=y 乙,即15x+7=16x+3,解得:x=4; 令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型.20.44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-.考点:整式的混合运算—化简求值.21.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】解:(1)56÷20%=280(名), 答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名), 补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°, 答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D E A(A ,B )(A ,C ) (A ,D ) (A ,E ) B (B ,A )(B ,C )(B ,D ) (B ,E ) C (C ,A ) (C ,B )(C ,D )(C ,E ) D (D ,A ) (D ,B ) (D ,C )(D ,E )E(E ,A )(E ,B )(E ,C )(E ,D )用树状图为:共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是0.1.22.(1)DE=3;(2)ADB S 15∆=. 【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可; (2)利用勾股定理求出AB 的长,然后计算△ADB 的面积. 【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°, ∴CD=DE , ∵CD=3, ∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】。

四川省成都市锦江区中考数学一诊试卷及答案.doc

四川省成都市锦江区中考数学一诊试卷及答案.doc

2015年四川省成都市锦江区中考数学一诊试卷一、选择题(每小题3分,共30分)1.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体 B.长方体C.圆锥体D.圆柱体2.已知,则的值为()A.B.C.D.3.如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>14.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.5.如图,点D、E分别在线段AB、AC上且∠ABC=∠AED,若DE=4,AE=5,BC=8,则AB的长为()A.B.10 C.D.6.已知反比例函数图象经过点(1,﹣1),(m,1),则m等于()A.2 B.﹣2 C.1 D.﹣17.如图,圆O是△ACD的外接圆,AB是圆O的直径,∠BAD=60°,则∠C的度数是()A.30°B.40°C.50°D.60°8.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是()A.B.C.D.9.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=910.小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?()A.L1为x轴,L3为y轴B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴D.L2为x轴,L4为y轴二、填空题(每小题4分,共16分)11.已知y=(a﹣1)是反比例函数,则a=.12.已知α是锐角,且tan(90°﹣α)=,则α=.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P 到CD的距离是3m,则P到AB的距离是m.14.把二次函数y=x2向左平移1个单位,再向下平移2个单位,则平移后二次函数的解析式为.三、计算题(15小题每小题12分,16小题6分,共18分)15.(12分)(1)计算:(﹣)﹣1﹣3tan30°(1﹣)0+﹣|1﹣|(2)解方程:x(x+6)=16.16.(6分)如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.四、解答题(每小题8分,共32分)17.(8分)小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同:(1)用树状图或列表法求出小凡获胜的概率;(2)你认为这个游戏对三人公平吗?为什么?18.(8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).19.(8分)如图,经过点A(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0).(1)求反比例函数和一次函数的解析式;(2)连接BQ,求△PBQ的面积.20.(8分)如图,已知在△ABC中,AB=AC=10,BC=16,点D是边BC的中点,E是线段BA上一动点(与点B、A不重合),直线DE交CA的延长线于F点.(1)当DF=DC时,求AF的值;(2)设BE=x,AF=y.①求y关于x的函数解析式,并写出x的取值范围;②当△AEF为以FA为腰的等腰三角形时,求x的值.B卷一、填空题(每小题4分,共20分)21.已知x2﹣2x﹣=0,则x3﹣2x2+(1﹣x)的值是.22.若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为cm.23.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.24.如图,M为双曲线y=(x>0)上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点.若直线y=﹣x+m与y轴交于点A,与x轴交于点B,则AD•BC的值为.25.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO•DF;④AE•CH=S△ABC ,其中正确结论的序号为.二、解答题(8分)26.(8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?27.(10分)如图,以BC为直径,以O为圆心的半圆交△CFB的边CF于点A,BM平分∠ABC交AC 于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,BC2=CF•AC,cos∠ABD=,AD=12.(1)求证:FB是圆O的切线;(2)求证:=;(3)连接AE,求AE•MN的值.28.(12分)己知二次函数(t>1)的图象为抛物线C1.(1)求证:无论t取何值,抛物线C1与x轴总有两个交点;(2)已知抛物线C1与x轴交于A、B两点(A在B的左侧),将抛物线C1作适当的平移,得抛物线C2:,平移后A、B的对应点分别为D(m,n),E(m+2,n),求n的值.(3)在(2)的条件下,将抛物线C2位于直线DE下方的部分沿直线DE向上翻折后,连同C2在DE上方的部分组成一个新图形,记为图形G,若直线(b<3)与图形G有且只有两个公共点,请结合图象求b的取值范围.1.D.2.C.3.C.4.D.5.B.6.D.7.A.8.C.9.B.10.D.11.﹣1.12.30°.13.1.14.y=(x+1)2﹣2.15.(1)计算:(﹣)﹣1﹣3tan30°(1﹣)0+﹣|1﹣|(2)解方程:x(x+6)=16.解:(1)原式=﹣3××1+2﹣(﹣1)=﹣2﹣++1=﹣1;(2)方程可化为x2+6x=16,移项得,x2+6x﹣16=0,(x﹣2)(x+8)=0,解得x1=2,x2=﹣8.16.如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.(1)证明:如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD.(2)解:∵CE⊥BE,∴CE2=CB2﹣BE2,而CB=3,BE=2,∴CE=;而AB⊥CD,∴DE=CE,CD=2CE=2.17.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同:(1)用树状图或列表法求出小凡获胜的概率;(2)你认为这个游戏对三人公平吗?为什么?则P(小凡获胜)==;∴P(小明获胜)=P(小颖获胜)==,则这个游戏对三人公平.18.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D 的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9(米).答:树高为9米.19.如图,经过点A(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0).(1)求反比例函数和一次函数的解析式;解:(1)∵BO=4,AO=2,∴AB=6,∵tan∠PAB==,∴PB=9,∴P点坐标为:(4,9),把P(4,9),代入反比例函数解析式y=,得k=36,∴反比例函数解析式为y=;把点A(﹣2,0),P(4,9),代入y=ax+b得:,解得:,故一次函数解析式为y=x+3.(2)过点Q作QM⊥y轴于点M,由,解得:或,∴Q点坐标为:(﹣6,﹣6),∴S△PQB=•PB•QM=×9×(6+4)=45.20.如图,已知在△ABC中,AB=AC=10,BC=16,点D是边BC的中点,E是线段BA上一动点(与点B、A不重合),直线DE交CA的延长线于F点.(1)当DF=DC时,求AF的值;(2)设BE=x,AF=y.①求y关于x的函数解析式,并写出x的取值范围;②当△AEF为以FA为腰的等腰三角形时,求x的值.解:(1)∵AB=AC,∴∠B=∠C,∵DF=DC,∴∠B=∠C,∴∠B=∠F,∴△ABC∽△DFC,∴=,∴=,∴CF=12.8,∴AF=CF﹣AC=12.8﹣10=2.8;(2)①取AB的中点M,连接DM,如图所示,∵D是边BC的中点,∴DM∥AC,DM=AC=5,∴△AFE∽△MDE,∴=,∴=,∴y=,函数定义域为5<x<10;②当点E位于线段AB上时,如图所示:若AF=AE,即=10﹣x,解得:x=10(舍去),若AF=EF,cos∠FAE=,则有5×=•(x﹣5),解得:x=,综上所述,当△AEF为以FA腰的等腰三角形时,x=.一、填空题(每小题4分,共20分)21..22.2(﹣1)或6﹣2.23.3或﹣3.24..25.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO•DF;④AE•CH=S△ABC ,其中正确结论的序号为①③④.解:①连接OE,OH,OF,则OE⊥AB,OH⊥BC,得出∠FOH=180°﹣∠C,根据圆周角定理得∠FEH=∠FOH=90∠C;故①正确;②由①得四边形OEBH是正方形,则圆的半径=BE,∴OF=BE,又∵∠DBE=∠AFO,∠BED=∠AEF=∠AFE,在△BDE与△FAO中,,∴△BDE≌△FAO(SAS),∴BD=AF,∵BD<DE,∴DE≠AF,故②错误;③∵Rt△ABC外切于⊙O,切点分别为E、F、H,∴BE=BH,AF=AE,根据②得BD=AF,∴BD=AE(等量代换),∴AB=DH;连接OB、FH.∵∠D=∠BAO,∠EFH=∠OBA=45°,∴△DFH∽△ABO,则DH•AB=AO•DF,又AB=DH,所以AB2=AO•DF,故③正确;④设△ABC的三边分别为a,b,c,则AE=,CH=,AE•CH===S.△ABC故S△ABC=AB•BC=AE•CH;故④正确;故答案为:①③④.二、解答题(8分)26.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设平均增长率为a,根据题意得:64(1+a)2=100解得:a=0.25=25%或a=﹣2.25四月份的销量为:100•(1+25%)=125(辆).答:四月份的销量为125辆.(2)设购进A型车x辆,则购进B型车辆,根据题意得:2×≤x≤2.8×解得:30≤x≤35利润W=(700﹣500)x+(1300﹣1000)=9000+50x.∵50>0,∴W随着x的增大而增大.当x=35时,不是整数,故不符合题意,∴x=34,此时=13(辆).答:为使利润最大,该商城应购进34辆A型车和13辆B型车.三、解答题(10分)27.如图,以BC为直径,以O为圆心的半圆交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,BC2=CF•AC,cos∠ABD=,AD=12.(1)求证:FB是圆O的切线;(2)求证:=;(3)连接AE,求AE•MN的值.解:(1)如图,∵BC2=CF•AC,∴,而∠C=∠C,∴△BCF∽△ACB,∴∠FBC=∠BAC;而BC为半⊙O的直径,∴∠BAC=90°,∠FBC=90°,∴FB是圆O的切线.(2)由射影定理得:BF2=AF•CF,BC2=AC•CF,∴①;∵AD⊥BC,ME⊥BC,∴AD∥ME,∴②;由①②知:=.(3)如图,连接AE;∵BM平分∠ABE,且MA⊥AB,ME⊥BE,∴MA=ME,AN∥ME;设∠ABM=∠DBN=α,则∠AMN=90°﹣α,∠ANM=∠BND=90°﹣α,∴∠AMN=∠ANM,AM=AN,∴AN=ME;而AN∥ME,∴四边形AMEN为平行四边形;而AM=AN,∴四边形AMEN为菱形,AE⊥MN;∵cos∠ABD=,AD=12.∴;设BD=3λ,则AB=5λ;由勾股定理得:(5λ)2=(3λ)2+122,解得:λ=3,BD=9,AB=15;由勾股定理可证:BE=BA=15,∴DE=15﹣9=6;而BN平分∠ABD,∴,而BD=9,AB=15,AD=12,解得:AN=;由面积公式得:∴AE•MN=2××6=90.四、解答题(12分)28.己知二次函数(t>1)的图象为抛物线C1.(1)求证:无论t取何值,抛物线C1与x轴总有两个交点;(2)已知抛物线C1与x轴交于A、B两点(A在B的左侧),将抛物线C1作适当的平移,得抛物线C2:,平移后A、B的对应点分别为D(m,n),E(m+2,n),求n的值.(3)在(2)的条件下,将抛物线C2位于直线DE下方的部分沿直线DE向上翻折后,连同C2在DE上方的部分组成一个新图形,记为图形G,若直线(b<3)与图形G有且只有两个公共点,请结合图象求b的取值范围.解:(1)令y1=0,得△=(﹣2t)2﹣4(2t﹣1)=4t2﹣8t+4=4(t﹣1)2,∵t>1,∴△=4(t﹣1)2>0,∴无论t取何值,方程x2﹣2tx+(2t﹣1)=0总有两个不相等的实数根,∴无论t取何值,抛物线C1与x轴总有两个交点.(2)解方程x2﹣2tx+(2t﹣1)=0得,x1=1,x2=2t﹣1,∵t>1,∴2t﹣1>1.得A(1,0),B(2t﹣1,0),∵D(m,n),E(m+2,n),∴DE=AB=2,即2t﹣1﹣1=2,解得t=2.∴二次函数为,显然将抛物线C1向上平移1个单位可得抛物线C2:,故n=1.(3)由(2)得抛物线C2:,D(1,1),E(3,1),翻折后,顶点F(2,0)的对应点为F'(2,2),如图,当直线经过点D(1,1)时,记为l3,此时,图形G与l3只有一个公共点;当直线经过点E(3,1)时,记为l2,此时,图形G与l2有三个公共点;当b<3时,由图象可知,只有当直线l:位于l2与l3之间时,图形G与直线l有且只有两个公共点,∴符合题意的b的取值范围是.参与本试卷答题和审题的老师有:lanchong;137-hui;mmll852;MMCH;Liuzhx;郝老师;HJJ;知足长乐;守拙;zcl5287;lbz;sks;HLing;caicl;zhjh;zcx;dbz1018;CJX;sjw666;73zzx;心若在;sd2011;王学峰;sjzx(排名不分先后)菁优网2016年12月9日。

2023年四川省成都市数学中考真题(解析版)

2023年四川省成都市数学中考真题(解析版)
故选:B.
【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
6. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某
班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供 6 张背面完全相同的卡片,其中蔬菜
类有 4 张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有 2 张,正面分别印有草莓、西瓜图案,
【详解】解:由平移性质得: EF BC 8 , ∴ CF EF CE 8 5 3 ,
故答案为:3. 【点睛】本题考查平移性质,熟练掌握平移性质是解答的关键.
12. 在平面直角坐标系 xOy 中,点 P 5, 1 关于 y 轴对称的点的坐标是___________. 【答案】 5, 1
6 1
6

∵ 2 6 ,
∴ y1 y2 , 故答案为: .
【点睛】本题考查了比较反比例函数值,熟练掌握反比例函数的性质是解题的关键.
11. 如图,已知△ABC ≌△DEF ,点 B,E,C,F 依次在同一条直线上.若 BC 8,CE 5 ,则 CF 的
长为___________.
【答案】3 【解析】 【分析】利用平移性质求解即可.
2023 年四川省成都市数学中考真题
A 卷(共 100 分) 第 I 卷(选择题,共 32 分) 一、选择题(本大题共 8 个小题,每小题 4 分,共 32 分,每小题均有四个选项,其中只有一 项符合题目要求)
1 1. 在 3 , 7 , 0 , 9 四个数中,最大的数是( )
A. 3
B. 7
C. 0
每个图案对应该种植项目.把这 6 张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概

2015年成都中考数学(word版_含答案)

2015年成都中考数学(word版_含答案)

成都市2015年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:全卷分A 卷和B 卷。

A 卷满分100分,B 卷满分50分;考试时间120分钟。

作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

选择题部分必须使用2B 铅笔填涂,非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本答题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求。

答案涂在答题卡上)一、选择题(本大题共10个小题,每小题 3分,共30分) 1、3-的倒数是( ) (A)31-(B)31(C)3- (D)3 疯狂解析:此题考查倒数的概念,基础题;答案:A2、如图所示的三棱柱的主视图是( )A B C D疯狂解析:此题考查三视图,基础题;答案:B3、今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市。

按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示126万为( )(A)410126⨯ (B)41026.1⨯ (C)51026.1⨯ (D)61026.1⨯ 疯狂解析:此题考查科学计数法,基础题;答案:D 4、下列计算正确的是( )(A)4222a a a =+ (B)632a a a =⋅ (C)()422a a =- (D)()1122+=+a a疯狂解析:此题考查整式综合运算,基础题;答案:C5、如图,在△ABC 中,DE//BC ,AD=6,DB=3,AE=4,则EC 的长为( ) (A)1 (B)2 (C)3 (D)4疯狂解析:此题考查相似三角形中的“A ”型相似,基础题;答案:B6、一次函数12+=x y 的图像不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 疯狂解析:此题考查一次函数的图像和性质,基础题;答案:D7、实数a 、b 在数轴上对应的点的位置如图所示,计算b a -的结果为( )(A)b a + (B)b a - (C)a b - (D)b a -- 疯狂解析:此题考查绝对值,基础题;答案:C8、关于x 的一元二次方程0122=-+x kx 有两个不相等的实数根,则k 的取值范围是( ) (A)k >1- (B)k ≥1- (C)k ≠0 (D)k >1-且k ≠0 疯狂解析:此题考查一元二次方程根与系数的关系,基础题;答案:D9、将抛物线2x y =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式是( ) (A)()322-+=x y (B)()322++=x y (C)()322+-=x y (D)()322--=x y疯狂解析:此题考查函数图像的平移,基础题;答案:A 10、如图,正六边形ABCDEF 内接于☉o ,半径为4,则这个六边形的边心距OM 和弧BC 的长分别为( ) (A)3,2∏ (B)∏,32 (C)32,3∏ (D)34,32∏疯狂解析:此题考查内接多边形,基础题;答案:D 二:填空题(每小题4分,共16分) 11.因式分解: 29______x -=疯狂解析:此题考查平方差公式:()()22a b a b a b -=-+ ,基础题;答案:()()33x x -+12.如图,直线m//n,△ABC 为等腰直角三角形,∠BAC=90°,则∠1=_______度.疯狂解析:此题考查平行线之间的性质及等腰直角三角形的性质,基础题;答案:45o13.为响应”书香成都”建设的号召,在全校形成良好的人文阅读风气,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图,则在本次统计中,阅读时间的中位数是_____小时.疯狂解析:此题考查中位数,基础题;答案:114.如图,在□ABCD 中,AB=13,4AD =,将□ABCD 沿AE 对折,点B 恰好与点C 重合,则折痕AE 的长为_________.疯狂解析:此题考查平行四边形的性质,“三线合一”,勾股定理,简单题;答案:3 解题过程: 将□ABCD 沿AE 对折后,点B 恰好与点C 重合 1113,222AC AB CE BE BC AD ∴====== ∴190,2O AEB AEC BEC ABE ∠=== 是Rt ABE , 由勾股定理知: 222AB AE BE =+()222222132134993AE AB BE AE AE ∴=-=-=-=∴===三.解答题15.(1)计算()()2820154cos 453ooπ---+-疯狂解析:此题考查实数的综合运算:幂的运算,根式运算,基本三角函数,基础题;答案:8 (2)解方程组:25321x y x y +=⎧⎨-=-⎩疯狂解析:此题考查解二元一次方程组的解法,基础题;答案:12x y =⎧⎨=⎩16.化简:211242aa a a a -⎛⎫+÷⎪+-+⎝⎭ 疯狂解析:此题考查分式的化简求值,基础题;答案:(1)(2)a a --17.如图,登山缆车从点A 出发,途径点B 后到达终点C,其中AB 段与BC 段路程均为200m ,且AB 段的运行路线与水平面的夹角为30o,BC 段的运行路线与水平面的夹角为42o,求缆车从点A 到点C 的垂直上升距离.(_参考数据:sin 420.67,cos420.74,tan 420.90ooo≈≈≈)疯狂解析:此题考查直角三角形的边角关系,三角函数,基础题;答案:234m 解题过程:由题易知:,90,90sin ,sin 1sin 2001002sin 2000.67134O OBD AD BE CEADB BEC BD CEBAD CBE AB BEBD AB BAD mCE BE CBE m⊥⊥∴∠=∠=∴∠=∠=∴=∙∠=⨯==∙∠=⨯=所以点A 到点C 的垂直上升距离为:234BD CE m += 。

四川省成都市状元廊学校2015届中考数学思维方法讲义 第10讲 二次函数的综合运用

四川省成都市状元廊学校2015届中考数学思维方法讲义 第10讲 二次函数的综合运用

第10讲 二次函数的综合运用【知识概述】二次函数的综合运用是为考察学生综合运用知识的能力而设计的题目,常以中考压轴题出现,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此成为拉开分值而具有选拔功能。

有的学生对二次函数的综合题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高函数的综合题(压轴题)的得分率,解好函数的综合题(压轴题),本讲将以具体实例介绍几种常用的解题策略,从心理上打消望而生畏的忧虑,获得数学高分的制胜法宝。

【解题策略】1、以坐标系为桥梁,运用数形结合思想;2、以直线或抛物线知识为载体,运用函数与方程思想;3、利用条件或结论的多变性,运用分类讨论的思想;4、综合多个知识点,运用等价转换思想;5、分题分段得分:对题要理解多少做多少,最大限度地发挥自己的水平,做到得一分算一分。

【典例精析】专题一 知识回顾【例1】1、已知二次函数c bx ax y ++=2的图象的对称轴是直线 2=x ,且有最大值2,其图象在x 轴上截得的线段长为2,求这个二次函数的解析式。

2、已知二次函数y=ax 2+bx +c 满足a -b +c =0,其图像过点A(2, -3),并且以x =1为对称轴,求此二次函数的解析式。

3、已知二次函数24y ax x c =-+的图象与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C ,tan ∠ACO =15,CO =BO , △ABC 的面积为15。

求该二次函数的解析式。

专题二 能力提升题型1:利用一元二次方程根与系数的关系求二次函数的解析式【例2】已知二次函数b ax x y ++-=2与x 轴从左到右交于A 、B 两点,与y 轴正半轴交于C 点,∠ACB =90°,且tan ∠BAC -tan ∠ABC =2,求此二次函数的解析式。

-变式:在直角坐标平面内,点O 为坐标原点,二次函数)4()5(2+--+=k x k x y 的图象交x 轴于点 A )0,(1x 、B )0,(2x ,且8)1)(1(21-=++x x 。

2023年四川省成都市中考数学试卷(解析版)

2023年四川省成都市中考数学试卷(解析版)

2023年四川省成都市中考数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)在3,﹣7,0,四个数中,最大的数是()A.3B.﹣7C.0D.【分析】运用有理数大小比较的知识进行求解.【解答】解:∵﹣7<0<<3,∴最大的数是3,故选:A.【点评】此题考查了有理数大小比较的能力,关键是能准确理解并运用以上知识.2.(4分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×1011【分析】运用科学记数法进行变形、求解.【解答】解:3000亿=3000×108=3×1011,故选:D.【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.3.(4分)下列计算正确的是()A.(﹣3x)2=﹣9x2B.7x+5x=12x2C.(x﹣3)2=x2﹣6x+9D.(x﹣2y)(x+2y)=x2+4y2【分析】利用幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式对每个选项进行逐一判断即可得出结论.【解答】解:∵(﹣3x)2=9x2,∴A选项的运算不正确,不符合题意;∵7x+5x=12x,∴B选项的运算不正确,不符合题意;∵(x﹣3)2=x2﹣6x+9,∴C选项的运算正确,符合题意;∵(x﹣2y)(x+2y)=x2﹣4y2,∴D选项的运算不正确,不符合题意.故选:C.【点评】本题主要考查了整式的混合运算,幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式,熟练掌握上述性质与公式是解题的关键.4.(4分)近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26B.27C.33D.34【分析】根据中位数的定义即可得出答案.【解答】解:把这些数从小到大排列为:26,27,33,34,40,则这组数据的中位数是33.故选:C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD 【分析】利用平行四边形的性质一一判断即可解决问题.【解答】解:A、错误.平行四边形的对角线互相平分,但不一定相等,不合题意;B、正确.因为平行四边形的对角线互相平分,符合题意;C、错误.平行四边形的对角线不一定垂直,不合题意;D、错误.平行四边形的对角相等,但邻角不一定相等,不合题意;故选:B.【点评】本题考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6.(4分)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.B.C.D.【分析】根据概率公式直接计算即可.【解答】解:∵卡片共6张,其中水果类卡片有2张,∴恰好抽中水果类卡片的概率是.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为()A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x+1)=x﹣4.5D.(x﹣1)=x+4.5【分析】设木长x尺,根据题意列出方程解答即可.【解答】解:设木长x尺,根据题意可得:,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题的关键.8.(4分)如图,二次函数y=ax2+x﹣6的图象与x轴交于A(﹣3,0),B两点,下列说法正确的是()A.抛物线的对称轴为直线x=1B.抛物线的顶点坐标为(﹣,﹣6)C.A,B两点之间的距离为5D.当x<﹣1时,y的值随x值的增大而增大【分析】A将点A的坐标代入即可解答即可判定A;B先运用二次函数图象的性质确定B;C利用两点间的距离公式解答即可;D根据函数图象即可解答.【解答】解:A、把A(﹣3,0)代入y=ax2+x﹣6得,0=9a﹣3﹣6,解得a=1,∴y=x2+x﹣6,对称轴直线为:x=﹣,故A错误;令y=0,0=x2+x﹣6,解得x1=﹣3,x2=2,∴AB=2﹣(﹣3)=5,∴A,B两点之间的距离为5,故C正确;当x=﹣时,y=,故B错误;故选:C.【点评】本题主要考查二次函数图象的性质,掌握二次函数图象的性质,对称轴的计算方法,函数最值的计算方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)因式分解:m2﹣3m=m(m﹣3).【分析】直接找出公因式m,进而分解因式得出答案.【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(4分)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1>y2(填“>”或“<”).【分析】根据反比例函数的性质得出答案即可.【解答】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,能熟记反比例函数的性质是解此题的关键,反比例函数y=,①当k>0时,y随x的增大而减小,②当k<0时,y随x的增大而增大.11.(4分)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为3.【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12.(4分)在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变即可得出答案.【解答】解:∵关于y轴对称,∴横坐标互为相反数,纵坐标不变,∴点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).【点评】本题考查了关于x轴,y轴对称的点的坐标,掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变是解题的关键.13.(4分)如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.【分析】由作图知∠A=∠BDE,由平行线的性质得到DE∥AC,证得△BDE∽△BAC,根据相似三角形的性质即可求出答案.【解答】解:由作图知,∠A=∠BDE,∴DE∥AC,∴△BDE∽△BAC,△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,∴△BDC的面积:△BAC的面积=()2=,∴=,∴=.故答案为:.【点评】本题考查作图﹣复杂作图,相似三角形的性质和判定,平行线的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式组:.【分析】(1)分别根据算术平方根的定义,特殊角的三角函数值,零指数幂的定义以及绝对值的性质计算即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:(1)原式=2+2×﹣1+2﹣=2+﹣1+2﹣=3;(2),解不等式①,得x≤1,解不等式②,得x>﹣4,所以原不等式组的解集为﹣4<x≤1.【点评】本题考查了实数的运算以及解一元一次不等式组,掌握相关定义与运算法则是解答本题的关键.15.(8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【分析】(1)根据“清洁卫生”的人数和所占的百分比求出样本容量,再用样本容量减去其他三个项目的人数,可得“文明宣传”的人数,进而补全条形统计图;(2)用360°乘“敬老服务”所占的百分比即可得出“敬老服务”对应的圆心角度数;(3)用参加志愿者服务的人数乘样本中参加“文明宣传”的人数所占的百分比即可.【解答】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:(2)在扇形统计图中,求“敬老服务”对应的圆心角度数为:360°×=144°;答:估计参加“文明宣传”项目的师生人数大约为360名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)【分析】过A作AT⊥BC于T,AK⊥CE于K,在Rt△ABT中,BT=AB•sin∠BAT=1.4(米),AT=AB•cos∠BAT≈4.8(米),可得CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),而∠ADK=45°,知DK=AK=2.6米,故CD=CK﹣DK=4.8﹣2.6=2.2米.【解答】解:过A作AT⊥BC于T,AK⊥CE于K,如图:在Rt△ABT中,BT=AB•sin∠BAT=5×sin16°≈1.4(米),AT=AB•cos∠BAT=5×cos16°≈4.8(米),∵∠ATC=∠C=∠CKA=90°,∴四边形ATCK是矩形,∴CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),在Rt△AKD中,∵∠ADK=45°,∴DK=AK=2.6米,∴CD=CK﹣DK=4.8﹣2.6=2.2(米),∴阴影CD的长约为2.2米.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义,求出相关线段的长度.17.(10分)如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB 交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【分析】(1)结合已知条件,根据同弧所对的圆周角相等易证得∠ADE=∠ACE=∠BAC =∠B,再由等边对等角即可证得结论;(2)连接AE,易证得△ABC∽△ADE,根据已知条件,利用直径所对的圆周角为直角可得∠ADB=∠ADC=90°,根据三角函数值可得AD=2BD,再结合,CD=3,AC=3+BD,利用勾股定理列得方程,求得CD的长度,从而得出AD,BC,AB的长度,再利用相似三角形的对应边成比例即可求得答案.【解答】(1)证明:∵∠ADE=∠ACE,∠ADE=∠B,∴∠B=∠ACE,∵CE∥AB,∴∠BAC=∠ACE,∴∠B=∠BAC,∴AC=BC;(2)解:如图,连接AE,∵∠ADE=∠B,∠AED=∠ACB,∴△ADE∽△ABC,∴=,∵AC为⊙O的直径,∴∠ADB=∠ADC=90°,∴tan B==2,∴AD=2BD,∵CD=3,∴AC=BC=BD+CD=BD+3,∵AD2+CD2=AC2,∴(2BD)2+32=(BD+3)2,解得:BD=2或BD=0(舍去),∴AD=2BD=4,AB===2,BC=2+3=5,∵=,∴=,∴DE=2.【点评】本题主要考查圆与相似三角形的综合应用,(2)中利用三角函数值可得AD=2BD,再根据勾股定理列得方程是解题的关键.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.【分析】(1)解方程得到点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,求得B(1,4),将B(1,4)代入y=得,求得反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,解方程得到N(S,0),求得OA=ON=5,根据两点间的距离的结论公式得到=,求得M(0,3),待定系数法求得直线l的解析式为y=4x+3,设点C的坐标为(t,t+3),根据三角形的面积公式列方程得到t=﹣4或t=6,求得点C的坐标为(6,9)或(﹣4,﹣1);(3)解方程组求得E(﹣4,﹣1),根据相似三角形的性质得到∠PAB=∠PDE,根据平行线的判定定理得到AB∥DE,求得直线DE的解析式为y=﹣x﹣5,解方程组得到D(﹣1,﹣4),则直线AD的解析式为y=9x+5,于是得到P(﹣,),根据两点间的距离距离公式即可得到结论.【解答】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=x+3,设点C的坐标为(t,t+3),∵•|x B﹣x C|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△PAB∽△PDE,∴∠PAB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.【点评】本题考查了反比例函数的综合题,待定系数法求函数的解析式,反比例函数的性质,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,当ab﹣b2=时,原式=.故答案为:.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行计算是解此题的关键.20.(4分)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有6个.【分析】根据正面看与上面看的图形,得到搭成这个几何体底层4个,上面1层最多2个小正方体.【解答】解:根据俯视图发现最底层有4个小立方块,从主视图发现第二层最多有2个小立方块,故最多有4+2=6(个)小立方块.故答案为:6.【点评】本题考查的是三视图知识,以及由三视图判断几何体,利用三视图判断得出几何体形状是解题关键.21.(4分)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳183名观众同时观看演出.(π取3.14,取1.73)【分析】过O 作OD ⊥AB ,D 为垂足,可得到∠AOD =60°,所以∠AOB =120°,再求出S 阴影部分=S 扇形OAB ﹣S △OAB =﹣×10×5=π﹣25≈61(m 2),然后乘以3即可得到观看马戏的观众人数约为183人.【解答】解:过O 作OD ⊥AB ,D 为垂足,∴AD =BD ,OD =5m ,∵cos ∠AOD ===,∴∠AOD =60°,AD =OD =5m ,∴∠AOB =120°,AB =10m ,∴S 阴影部分=S 扇形OAB ﹣S △OAB =﹣×10×5=π﹣25≈61(m 2),∴61×3=183(人).∴观看马戏的观众人数约为183人.故答案为:183人.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键,也考查了三角函数的概念和特殊角的三角函数值.22.(4分)如图,在Rt △ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,过D 作DE ∥BC 交AC 于点E ,将△DEC 沿DE 折叠得到△DEF ,DF 交AC 于点G .若,则tan A =.【分析】过点G作GM⊥DE于M,证明△DGE∽△CGD,得出DG2=GE×GC,根据AD∥GM,得==,设GE=3k,AG=7k,EM=3n,DM=7n,则EC=DE=10n,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中GM2=GE2﹣EM2,则DG2﹣DM2=GE2﹣EM2,解方程求得k,则k,GE=3k,用勾股定理求得GM,根据正切的定义,即可求解.【解答】解:过点G作GM⊥DE于M,如图,∵CD平分∠ACB交AB于点D,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴ED=EC,∵将△DEC沿DE折叠得到△DEF,∴∠3=∠4,∴∠1=∠4,又∵∠DGE=∠CGD,∴△DGE∽△CGD,∴,∴DG2=GE×GC,∵∠ABC=90°,DE∥BC,∴AD⊥DE,∴AD∥GM,∴=,∠MGE=∠A,∵,∴,设GE=3k,EM=3n,则AG=7k,DM=7n,∴EC=DE=10n,∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中,GM2=GE2﹣EM2,∴DG2﹣DM2=GE2﹣EM2,即9k2+30kn﹣(7n)2=(3k)2﹣(3n)2,解得:k,∴EM=k,∵GE=3k,∴GM===k,∴tan A=tan∠EGM===.故答案为:.【点评】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23.(4分)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是15;第23个智慧优数是57.【分析】根据新定义m2﹣n2,可以分别列出m2和n2的值,进而即可求解.【解答】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,1+2+3+4+5+6=21,又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,第23个智慧优数,当m=11时,n=8,第23个智慧优数为:112﹣82=121﹣64=57,故答案为:15,57.【点评】本题考查新定义下智慧优数的计算和分类,根据规律计算求解,解题的关键是能有分类进行求解.二、解答题(本大题共3个小题,共30分)24.(8分)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【分析】(1)根据题意可以列出相应的二元一次方程;(2)设A种食材的单价为m元/千克,B种食材的单价为(36﹣m)元/千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,根据题意可以列出相应的不等式,求出m的取值范围,从而可以解答本题.【解答】(1)设A种食材的单价为x元/千克,B种食材的单价为y元/千克,由题意得:,解得:,∴A种食材单价是每千克38元,B种食材单价是每千克30元;(2)设A种食材的单价为m元/千克,B种食材的单价为(36﹣m)元/千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,∵m≥2(36﹣m),∴24≤m≤36,∵k=8>0,∴w随m的增大而增大,∴当m=24时,w有最小值为:8×24+1080=1272(元),∴A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.【点评】本题主要考查二元一次方程组、一次函数的性质、不等式在实际生活当中的运用,考查学生的理解能力与列式能力.25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.【分析】(1)用待定系数法求函数的解析式即可;(2)设B(x,y),则AB=,AP=4,BP=,分两种情况讨论:当AB=AP时,B(﹣4,﹣3);当AB=BP时,B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);(3)设B(t,kt),C(s,ks),联立方程整理得x2+4kx﹣4=0,根据根与系数的关系可知t+s=﹣4k,ts=﹣4,直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,求出D(,m),E(,m),过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,则△DOG∽△OEK,再由=,结合根与系数的关系整理得方程m2=4(m﹣1)2,解得m=2或m=.【解答】解:(1)将P(4,﹣3)、A(0,1)代入y=ax2+c,∴16a+1=﹣3,解得a=﹣,∴y=﹣x2+1;(2)设B(x,y),∵P(4,﹣3),A(0,1),∴AB=,AP=4,BP=,当AB=AP时,4=,∵y=﹣x2+1,∴x=4或x=﹣4,∴B(﹣4,﹣3);当AB=BP时,=,解得x=﹣2+2或x=﹣2﹣2,∴B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);综上所述:B点坐标为(﹣4,﹣3)或(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);(3)存在常数m,使得OD⊥OE始终成立,理由如下:设B(t,kt),C(s,ks),联立方程,整理得x2+4kx﹣4=0,∴t+s=﹣4k,ts=﹣4,直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,∴D(,m),E(,m),过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,∵∠DOE=90°,∴∠DOG+∠EOK=90°,∵∠DOG+∠ODG=90°,∴∠EOK=∠ODG,∴△DOG∽△OEK,∴=,∴m2=﹣,∴m2=4(m﹣1)2,解得m=2或m=.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,等腰三角形的性质是解题的关键.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).【分析】(1)由“ASA”可证△CDE≌△BDF,可得CE=BF,即可求解;(2)①先证△ADN和△BDH是等腰直角三角形,可得AN=DN,DH=BH,AD=AN,BD=BH,可求AD=x,BD=2x,通过证明△EDN∽△FDH,可求FH=2NE,即可求解;②分两种情况讨论,由相似三角形的性质可求解;(3)由题意可得点M在线段CD的垂直平分线上运动,由相似三角形的性质可求M'R =1,由勾股定理和相似三角形的性质可求RM″=n,由勾股定理可求解.【解答】(1)证明:连接CD,∵∠C=90°,AC=BC,AD=DB,∴AB=AC,∠A=∠B=∠ACD=45°,AD=CD=BD,CD⊥AB,∵ED⊥FD,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△CDE≌△BDF(ASA),∴CE=BF,∴AE+BF=AE+CE=AC=AB;(2)①AE+BF=AB,理由如下:过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=2x,∴AD=x,BD=2x,∴AB=3x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=2NE,∴AE+BF=x+NE+(2x﹣FH)=2x=AB;②如图4,当点F在射线BC上时,过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE+BF=x+NE+(nx﹣FH)=2x=AB;当点F在CB的延长线上时,如图5,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE﹣BF=x+NE﹣(FH﹣nx)=2x=AB;综上所述:当点F在射线BC上时,,当点F在CB延长线上时,;(3)如图,连接CD,CM,DM,∵EF的中点为M,∠ACB=∠EDF=90°,∴CM=DM=EF,∴点M在线段CD的垂直平分线上运动,如图,当点E'与点A重合时,点F'在BC的延长线上,当点E'与点C重合时,点F″在CB的延长线上,过点M'作M'H⊥F'C于R,∴M'R∥AC,∴=,∴M'R=1,F'R=CR,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x=2,∴x=,∵F'D=BD=nx,∴F'B=2nx,∴CF'=2nx﹣2,∴CR=nx﹣1=﹣1=,由(2)可得:CD==x•,DF″=nDE″=nx•,∴CF″=(1+n2)x,∴CM″===,∴RM″=n,∴M″M'=,∴点M运动的路径长为.【点评】本题是三角形综合题,考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质等知识,利用分类讨论思想解决问题是解题的关键.。

2024年四川成都中考数学卷试题真题及答案详解

2024年四川成都中考数学卷试题真题及答案详解

2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.-5的绝对值是()A.5B.-5C.—D.—552.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()3.下列计算正确的是()A.(3x)2=3/B.3x+3y=6xyC.(x+y)2=x2+y2D.(x+2)(x—2)=x2—44.在平面直角坐标系xQy中,点尸(1,T)关于原点对称的点的坐标是()A.(-1,T)B.(-1,4)C.(1,4)D.(11)5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村&T、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.646.如图,在矩形ABCD中,对角线AC与时相交于点。

,则下列结论一定正确的是()A.AB^ADB.AC1BDC.AC=BDD.ZACB=ZACD7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买避,人出半,盈四;人出少半,不足三.问人数,琏价各几何?其大意是:今有人合伙买琏石,每人出!钱,会多出4钱;每人出!钱,又差了 3钱.问人数,琏价各是多少?设人数为x,琏价为 >,则可列方程组为(i+4I i y = —% + 3〔3y = -x-42y=—x+33y = -x-421 c y = -x-33y = —x + 421 c y = —x-338.如图,在YABCD 中,按以下步骤作图:①以点3为圆心,以适当长为半径作弧,分别交B4, 于点M, N ;②分别以M, N 为圆心,以大于!枷的长为半径作弧,两弧在ZABC 内交于点。

;③作射线B0,交AD 于点E,交CQ 延长线于点若CD = 3, DE = 2,下列结论错误的是()C. DE = DF B. BC=5八 BE 5D.----=—EF 3第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若秫,〃为实数,且(m+4)2+V^-5 =0,贝0(m + n )2的值为.1 310. 分式方程一=一的解是—.x-2 x11. 如图,在扇形A08中,OA = 6, ZAOB = 120°,则AB 的长为12. 盒中有尤枚黑棋和》枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,QX 如果它是黑棋的概率是则一的值为_____.8 y13. 如图,在平面直角坐标系xQy 中,已知A (3,0), 8(0,2),过点3作》轴的垂线/, P 为直线/上一动点,连接FO,PA,则PO+PA的最小值为A x三、解答题(本大题共5个小题,共48分)14.(1)计算:而+2sin60。

2016年四川省成都市中考数学试卷(含详细答案)

2016年四川省成都市中考数学试卷(含详细答案)

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前四川省成都市2016年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在3-,1-,1,3四个数中,比2-小的数是( ) A .3-B .1-C .1D .32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )ABCD3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.2016年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是2016年以来第四次客流记录的刷新.用科学记数法表示181万为( ) A .518.110⨯B .61.8110⨯C .71.8110⨯ D .418110⨯ 4.计算32()x y -的结果是( ) A .5x y -B .6x yC .32x y -D .62x y5.如图,12l l ∥,156∠=,则2∠的度数为( )A .34B .56C .124D .1466.平面直角坐标系中,点3()2,P -关于x 轴对称的点的坐标为( ) A .(2,3)--B .(2,)3-C .()3,2-D .(3,)2- 7.分式方程213xx =-的解为( ) A .2x =-B .3x =-C .2x =D .3x =8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛.x 2如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁9.二次函数223y x =-的图象是一条抛物线.下列关于该抛物线的说法,正确的是( ) A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点10.如图,AB 为O 的直径,点C 在O上,若OCA ∠=50,=4AB ,则BC 的长为( )A .10π3B .10π9C .5π9D .5π18第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4个小题,每小题4分,共16分,请把答案填在题中的横线上)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共24页) 数学试卷 第4页(共24页)11.已知|2|0a +=,则a = .12.如图,ABC A B C '''≅△△,其中36=A ∠,=24C '∠,则=B ∠.13.已知111(,)P x y ,222(,)P x y 两点都在反比例函数2y x=的图象上,且120x x <<,则1y 2y (填“>”或“<”).14.如图,在矩形ABCD 中,3AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:30(2)2sin30(2016π)-+-.(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:2212+1()x x x x x x --÷-.17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动.如图,在测点A 处安置测倾器,量出高度=1.5m AB ,测得旗杆顶端D 的仰角32DBE ∠=,量出测点A 到旗杆底部C 的水平距离=20cm AC .根据测量数据,求旗杆CD 的高度.(参考数据:sin 320.53≈,cos320.85≈,tan320.62≈)18.(本小题满分8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示)(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 称为勾股数.求抽到的两张卡片上的数都是勾股数的概率.19.(本小题满分10分)如图,在平面直角坐标系xOy 中,正比例函数y kx =的图象与反比例函数my x=的图象都经过点(2,2)A -.(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴相交于点B ,与反比例函数的图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及ABC △的面积.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满10分)如图,在Rt ABC △中,90ABC ∠=,以CB 为半径作C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE . (1)求证:ABD AEB △∽△; (2)当43AB BC =时,求tan E ; (3)在(2)的条件下,作BAC ∠的平分线,与BE 交于点F .若2AF =,求C 的半径.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分.请把答案填在题中的横线上) 21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于2016年9月1日正式实施.为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形统计图.若该辖区约有居民9 000人,则可以估计其中对慈善法“非常清楚”的居民约有 人.22.已知3,2x y =⎧⎨=-⎩是方程组3,7ax by bx ay +=⎧⎨+=-⎩的解,则代数式()()a b a b +-的值为 .23.如图,ABC △内接于O ,AH BC ⊥于点H .若24AC =,18AH =,O 的半径13OC =,则AB = .24.实数a ,n ,m ,b 满足a n m b <<<,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM BM AB =,2BN AN AB =则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”.当2b a -=时,a ,b 的大黄金数与小黄金数之差m n -= .25.如图,面积为6的平行四边形纸片ABCD 中,3AB =,45BAD ∠=,按下列步骤进行裁剪和拼图.第一步:如图1,将平行四边形纸片沿对角线BD 剪开,得到ABD △和BCD △纸片,再将ABD △纸片沿AE 剪开(E 为BD 上任意一点),得到ABE △和ADE △纸片; 第二步:如图2,将ABE △纸片平移至DCF △处,将ADE △纸片平移至BCG △处; 第三步:如图3,将DCF △纸片翻转过来使其背面朝上置于PQM △处(边PQ 与DC 重合,PQM △与DCF △在CD 同侧),将BCG △纸片翻转过来使其背面朝上置于PRN △处(边PR 与BC 重合,PRN △与BCG △在BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 .二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园多种x棵橙子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)树.(1)直接写出平均每棵树结的橙子数y (个)与x 之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?27.(本小题满分10分)如图1,ABC △中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,连接BD .(1)求证:BD AC =;(2)将BHD △绕点H 旋转,得到EHF △(点B ,D 分别与点E ,F 对应),连接AE . ⅰ)如图2,当点F 落在AC 上时(F 不与C 重合),若4BC =,tan 3C =,求AE 的长; ⅱ)如图3,当EHF △是由BHD △绕点H 逆时针旋转30得到时,设射线CF 与AE 相交于点G ,连接GH .试探究线段GH 与EF 之间满足的等量关系,并说明理由.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点8(0,)3C -,顶点为D ,对称轴与x 轴交于点H .过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN能否数学试卷 第9页(共24页) 数学试卷 第10页(共24页)四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较 2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10na ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数 4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案. 【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 【考点】关于x 轴、y 轴对称的点的坐标 7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】分式方程的解 8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C . 【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛. 【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D . 【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质 10.【答案】B 【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题 11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.数学试卷 第11页(共24页)数学试卷 第12页(共24页)【考点】绝对值 12.【答案】120 【解析】A B C A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可. 【考点】全等三角形的性质 13.【答案】>【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴;故答案为: 【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质 三、解答题 15.【答案】(1)4- (2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解, 24443()4120b ac m m ∴=-⨯⨯-=+-<,解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案; (2)直接利用根的判别式进而求出m 的取值范围. 【考点】实数的运算,根的判别式,特殊角的三角函数值 16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【考点】分式的混合运算 17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题 18.【答案】(1)图形见解析 (2)12(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C , 61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数; (2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.数学试卷 第13页(共24页) 数学试卷 第14页(共24页)【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-,∴正比例函数的解析式为:y x =-,将点()2,2A -代入my x=,得:22m -=,解得:4m =-;∴反比例函数的解析式为:4y x=-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3),联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△.【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可;(2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠, BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)1(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠,BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB=,3BC =,5AC ∴,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BDAE AB BE∴==, 2•AB AD AE ∴=, 242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=,AF 平分BAC ∠,BF ABEF AE ∴=, 4182BF x EF x ∴==, 1tan2E =,cos E ∴sin E ,BE DE ∴=BE ∴=,数学试卷 第15页(共24页)数学试卷 第16页(共24页)23EF BE ∴=,sin MF E EF ∴==85MF x ∴=,1tan 2E =,1625ME MF x ∴==, 245AM AE ME x ∴=-=,222AF AM MF =+,222484()()5x x ∴=+,x ∴=, C ∴的半径为:3x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可. (2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD ABE BE AE==. (3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题 四、填空题 21.【答案】2700【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700.【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体 22.【答案】8- 【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②,32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果. 【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒, AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△, AB AHAE AC∴=, AH AEAB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径. 【考点】三角形的外接圆与外心 24.【答案】4 【解析】2AM BM AB =,又BM AB AM =-,2()AM AB AM AB∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN ,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m nx -=整体代入,即可求出. 【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE D F PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠, PM PN ∴=,四边形ABCD 是平行四边形,数学试卷 第17页(共24页) 数学试卷 第18页(共24页)45DAB DCB ∴∠=∠=︒, 90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF D F ∴==, 1BF ∴=,BD ∴DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2A F D F ==,由勾股定理得到BD =,根据三角形的面积得到DF AB AE BD ==【考点】平移的性质 五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<;(2)设果园多种x 棵橙子树时,可使橙子的总产量为w , 则225100600005(10)60500w x x x =-++=--+, 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【考点】二次函数的应用 27.【答案】(1)见解析 (2)①AE =②12GH EF =【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩, BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AHCH∴=, 设CH x =,3BH AH x ∴==, 4BC =,34x x ∴+=, 1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==, EHA FHC ∴∠=∠,1EH FHAH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),数学试卷 第19页(共24页)数学试卷 第20页(共24页)AP ∴=AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ ∴=, AQ CQGQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△, 12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴=【提示】(1)先判断出A H B H =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQCQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B (2)直线l 的函数表达式为22y x =+或4433y x =-- (3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -.833a ∴-=-,解得:13a =,21(1)33y x ∴=+-当0y =时,有21(1)303x +-=,12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --,1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形.从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△,113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+.②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--.综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,0k b ∴+=﹣, b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩,2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -.假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--,四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =,0k <,k ∴=,(1,6)P ∴-,(1,2)M,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,数学试卷 第21页(共24页)数学试卷 第22页(共24页)DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N的坐标为(1,1)-.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标.(2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题.②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,得到b k =,利用方程组求出点M坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题成为菱形?若能,求出点N的坐标;若不能,请说明理由.数学试卷第23页(共24页)数学试卷第24页(共24页)。

2015年四川省成都市中考数学试卷及解析

2015年四川省成都市中考数学试卷及解析

2015年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)2.(3分)(2015•成都)如图所示的三视图是主视图是()3.(3分)(2015•成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场5.(3分)(2015•成都)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()7.(3分)(2015•成都)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()8.(3分)(2015•成都)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()9.(3分)(2015•成都)将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物10.(3分)(2015•成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()2,2二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•岳阳)分解因式:x2﹣9= .12.(4分)(2015•成都)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1= 度.13.(4分)(2015•成都)为响应“书香成都”建设号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是小时.14.(4分)(2015•成都)如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为.三、解答题(本大题共6小题,共54分)15.(12分)(2015•成都)(1)计算:﹣(2015﹣π)0﹣4cos45°+(﹣3)2.(2)解方程组:.16.(6分)(2015•成都)化简:(+)÷.17.(8分)(2015•成都)如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)18.(8分)(2015•成都)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.19.(10分)(2015•成都)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.20.(10分)(2015•成都)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2015•成都)比较大小:.(填“>”,“<”或“=”)22.(4分)(2015•成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.23.(4分)(2015•成都)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为.24.(4分)(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.25.(4分)(2015•成都)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.五、解答题(本大题共3小题,共30分)26.(8分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?27.(10分)(2015•成都)已知AC,EC分别是四边形ABCD和EFDG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)28.(12分)(2015•成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2015年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)(﹣的倒数是﹣2.(3分)(2015•成都)如图所示的三视图是主视图是()3.(3分)(2015•成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场5.(3分)(2015•成都)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()根据平行线分线段成比例可得6.(3分)(2015•成都)一次函数y=2x+1的图象不经过()7.(3分)(2015•成都)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()8.(3分)(2015•成都)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是9.(3分)(2015•成都)将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物10.(3分)(2015•成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为()2,2OM=2==二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•岳阳)分解因式:x2﹣9= (x+3)(x﹣3).12.(4分)(2015•成都)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1= 45 度.13.(4分)(2015•成都)为响应“书香成都”建设号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是1 小时.14.(4分)(2015•成都)如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为 3 .=三、解答题(本大题共6小题,共54分)15.(12分)(2015•成都)(1)计算:﹣(2015﹣π)0﹣4cos45°+(﹣3)2.(2)解方程组:.=2×则方程组的解为16.(6分)(2015•成都)化简:(+)÷.•==.17.(8分)(2015•成都)如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)BD=弦函数的定义可得CE=BC•sin42°.∴BD=AB=100m,18.(8分)(2015•成都)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.考点:列表法与树状图法;扇形统计图.分析:(1)根据三等奖所在扇形的圆心角的度数求得总人数,然后乘以一等奖所占的百分比即可求得一等奖的学生数;(2)列表将所有等可能的结果列举出来,利用概率公式求解即可.解答:解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:A B C DA ABACADB BABCBDC CACBCDD DADBDC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.点评:本题考查了列表与树状图的知识,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解,难度不大.19.(10分)(2015•成都)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.,即可得出PA+PB的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.,y=,,令y=0,得x=,,×﹣×=1.520.(10分)(2015•成都)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.BFAF=CF=AB+BF=1+BF=BF==EF=通过△BHF∽△FHG,列比例式即可得到结论.在△ABC与△EBF中,,BFBF,=EF=四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2015•成都)比较大小:<.(填“>”,“<”或“=”)首先求出两个数的差是多少;然后根据求出的差的正、负,判断出、﹣,﹣<的差的正、负.22.(4分)(2015•成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.即可求得答案.,由②得:x<,∴>3,有解的概率为:故答案为:.23.(4分)(2015•成都)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为(3n﹣1,0).×=1×==24.(4分)(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.题:易得△PFB∽△CGB,利用相似三角形的性质,设BG=t,则CG=2t,利用相似AB=4∴,,,即PB=∴CP=,=,∴,解得t=,t=,,.25.(4分)(2015•成都)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是②③(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.﹣,得到=﹣4,∴m+n=于是得到4m2+5mn+n2=(4m+1)(m+n)=0,故②正确;③由点(p,的图象上,得到,,故==,于是求出=,=,或的图象上,﹣﹣==,故五、解答题(本大题共3小题,共30分)26.(8分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?+10=,27.(10分)(2015•成都)已知AC,EC分别是四边形ABCD和EFDG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)可得;然后根据相似三角形判定的方法,判断出,,.==k,,,∴,∠CAE=∠CBF,,,∴=,CE=3,,±==k.,∴,∴(2)m2+n2=p2,即m,n,p三者之间满足的等量关系是:(2)m2+n2=p2.点评:(1)此题主要考查了四边形综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.(4)此题还考查了余弦定理的应用,要熟练掌握.28.(12分)(2015•成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D的坐标,然后利用待定系数法法即可求得直线l的函数表达式.(2)设点E(m,a(m+1)(m﹣3)),y AE=k1x+b1,利用待定系数法确定y AE=a(m﹣3)x+a(m﹣3),从而确定S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,根据最值确定a的值即可;(3)分以AD为对角线、以AC为边,AP为对角线、以AC为边,AQ为对角线三种情况利用矩形的性质确定点P的坐标即可.解答:解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,=,∴==4,得,则,解得:∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,a=,﹣﹣,或﹣a2=﹣(舍),。

2016年四川省成都市中考数学试卷(解析版)

2016年四川省成都市中考数学试卷(解析版)

2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩22A.甲B.乙C.丙D.丁9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(1)计算:(﹣2)3+﹣2sin30°+0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.化简:(x﹣)÷.17.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE 剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF 在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.3【考点】有理数大小比较.【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:181万=181 0000=1.81×106,故选:B.4.计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y2【考点】幂的乘方与积的乘方.【分析】首先利用积的乘方运算法则化简求出答案.【解答】解:(﹣x3y)2=x6y2.故选:D.5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°【考点】平行线的性质.【分析】根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩2A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C.9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2﹣3=0解的情况对D进行判断.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=﹣2.【考点】绝对值.【分析】根据绝对值的意义得出a+2=0,即可得出结果.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°,故答案为:120°.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1>y2(填“>”或“<”).【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据一次函数的系数k的值可知,该函数在x<0内单调递减,再结合x1<x2<0,即可得出结论.【解答】解:在反比例函数y=中k=2>0,∴该函数在x<0内单调递减.∵x1<x2<0,∴y1>y2.故答案为:>.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD 即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.三、解答题:本大共6小题,共54分15.(1)计算:(﹣2)3+﹣2sin30°+0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.【考点】实数的运算;根的判别式;特殊角的三角函数值.【分析】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案;(2)直接利用根的判别式进而求出m的取值范围.【解答】解:(1)(﹣2)3+﹣2sin30°+0=﹣8+4﹣1+1=﹣4;(2)∵3x2+2x﹣m=0没有实数解,∴b2﹣4ac=4﹣4×3(﹣m)<0,解得:m<,故实数m的取值范围是:m<.16.化简:(x﹣)÷.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x+1.17.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得AC=20米,AB=1.5米,过点B做BE⊥CD,交CD于点E,利用∠DBE=32°,得到DE=BEtan32°后再加上CE即可求得CD的高度.【解答】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【考点】列表法与树状图法;勾股数.【分析】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A坐标(2,﹣2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,割补法求解可得三角形的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.【考点】圆的综合题.【分析】(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于AB:BC=4:3,可设AB=4,BC=3,求出AC的值,再利用(1)中结论可得AB2=AD•AE,进而求出AE的值,所以tanE==.(3)设设AB=4x,BC=3x,由于已知AF的值,构造直角三角形后利用勾股定理列方程求出x的值,即可知道半径3x的值.【解答】解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题:每小题4分,共20分21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有2700人.【考点】扇形统计图;用样本估计总体.【分析】先求出非常清楚所占的百分百,再乘以该辖区的总居民,即可得出答案.【解答】解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【考点】二元一次方程组的解.【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣823.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【考点】三角形的外接圆与外心.【分析】首先作直径AE,连接CE,易证得△ABH∽△AEC,然后由相似三角形的对应边成比例,即可求得⊙O半径.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠ADB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=﹣4.【考点】实数与数轴.【分析】先把各线段长表示出来,分别代入到AM2=BM•AB,BN2=AN•AB中,列方程组;两式相减后再将b ﹣a=2和m﹣n=x整体代入,即可求出.【解答】解:由题意得:AM=m﹣a,BM=b﹣m,AB=b﹣a,BN=b﹣n,AN=n﹣a,代入AM2=BM•AB,BN2=AN•AB得:,②﹣①得:(b﹣n)2﹣(m﹣a)2=(b﹣a)(n﹣a﹣b+m),设m﹣n=x,则(b﹣n+m﹣a)(b﹣n﹣m+a)=2(n﹣a﹣b+m),2+x=﹣2,x=﹣4,则m﹣n=﹣4.故答案为:﹣4.25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE 剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF 在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【考点】平移的性质.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.五、解答题:共3个小题,共30分26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【考点】二次函数的应用.【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w==﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【考点】几何变换综合题.【分析】(1)先判断出AH=BH,再判断出△BHD≌△AHC即可;(2)①先根据tanC=3,求出AH=3,CH=1,然后根据△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;②先判断出△AGQ∽△CHQ,得到,然后判断出△AQC∽△GQH,用相似比即可.【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标.(2)先求出四边形ABCD面积,分两种情形:①当直线l边AD相交与点M1时,根据S=×10=3,求出点M1坐标即可解决问题.②当直线l边BC相交与点M2时,同理可得点M2坐标.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0, ∴x 1=2,x 2=﹣4, ∴A (﹣4,0),B (2,0).(2)∵A (﹣4,0),B (2,0),C (0,﹣),D (﹣1,﹣3)∴S 四边形ABCD =S △ADH +S 梯形OCDH +S △BOC =×3×3+(+3)×1+×2×=10. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 边AD 相交与点M 1时,则S =×10=3,∴×3×(﹣y )=3∴y=﹣2,点M 1(﹣2,﹣2),过点H (﹣1,0)和M 1(﹣2,﹣2)的直线l 的解析式为y=2x+2.②当直线l 边BC 相交与点M 2时,同理可得点M 2(,﹣2),过点H (﹣1,0)和M2(,﹣2)的直线l 的解析式为y=﹣x ﹣.综上所述:直线l 的函数表达式为y=2x+2或y=﹣x ﹣.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y=kx+b , ∴﹣k+b=0, ∴b=k , ∴y=kx+k .由,∴+(﹣k )x ﹣﹣k=0,∴x 1+x 2=﹣2+3k ,y 1+y 2=kx 1+k+kx 2+k=3k 2,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (k ﹣1, k 2). 假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y=kx+k ﹣3由,解得:x 1=﹣1,x 2=3k ﹣1,∴N (3k ﹣1,3k 2﹣3)∵四边形DMPN 是菱形, ∴DN=DM ,∴(3k )2+(3k 2)2=()2+()2,整理得:3k 4﹣k 2﹣4=0, ∵k 2+1>0, ∴3k 2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).2016年6月21日。

2015年四川省成都市中考数学试题及解析(word版)

2015年四川省成都市中考数学试题及解析(word版)

2015年四川省成都市中考数学试卷及解析试卷解析:陈法旺A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.3-的倒数是 (A )31-(B )31(C )3- (D )3【答案】:A【解析】:根据倒数的定义,很容易得到3-的倒数是13-,选A 。

2.如图所示的三棱柱的主视图是(A ) (B ) (C ) (D ) 【答案】:B【解析】:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。

从正面看易得三棱柱的一条棱位于三棱柱的主视图内,选B 。

3.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。

新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为(A )410126⨯ (B )51026.1⨯ (C )61026.1⨯ (D )71026.1⨯ 【答案】:C【解析】: 科学记数法的表示形式为10na ⨯的形式,其中110a ≤<,n 为整数。

确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。

当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。

将126万用科学记数法表示1.26×106元,选B 。

4.下列计算正确的是(A )4222a a a =+ (B )632a a a =⋅ (C )422)(a a =- (D )1)1(22+=+a a【答案】:C【解析】: A 、2a 与 2a 是同类项,能合并,2222a a a +=。

故本选项错误。

B 、2a 与 3a 是同底数幂,根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加。

(历年中考)四川省成都市中考数学试题 含答案

(历年中考)四川省成都市中考数学试题 含答案
28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣ ),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
【解答】解:∵∠OCA=50°,OA=OC,
∴∠A=50°,
∴∠BOC=100°,
∵AB=4,
∴BO=2,
∴ 的长为: = π.
故选:B.
二、填空题:本大题共4个小题,每小题4分,共16分
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【解答】解:从上面看易得横着的“ ”字,
故选C.
3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( )
【解答】解:181万=181 0000=1.81×106,
故选:B.
4.计算(﹣x3y)2的结果是( )
A.﹣x5yB.x6yC.﹣x3y2D.x6y2
【考点】幂的乘方与积的乘方.
【分析】首先利用积的乘方运算法则化简求出答案.
【解答】解:(﹣x3y)2=x6y2.
故选:D.
5.如图,l1∥l2,∠1=56°,则∠2的度数为( )
A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)
【考点】关于x轴、y轴对称的点的坐标.
【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.

2015成都中考数学真题及答案(word版)

2015成都中考数学真题及答案(word版)

成都市二◦一五年高中阶段教育学校统一招生考试数学A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求, 答案涂在答题卡上)1. -3的倒数是(A)」(B) - (C) - 3 (D) 33 32. 如图所示的三棱柱的主视图是3•今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。

新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4.下列计算正确的是8. 关于x的一元二次方程kx2• 2x -1 = 0有两个不相等实数根,则k的取值范围是(A) k -1 (B) k_-1 (C) k=0 (D) k -1 且k = 09. 将抛物线y = x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为A、y=(x 2)2-3 B 、y=(x 2)2 3 C 、y=(x-2)2 3 D 、y=(x-2)2-3(C) (D)126万平方米,用科学计数法表示126万为(A) 126 104(B) 1.26 105(C) 1.26 106(D) 1.26 1074个航站楼的总面积约为(A) a2 a2二2a4(B) a2 a3 =a6(Q (』)2二a4(D) (a T)2=a2 15.如图,在ABC 中,DE//BC ,(A) 1 (B) 2 (C) (D) 46. 一次函数y =2x - 1的图像不经过(A)第一象限(B) 第二象限(C) 第三象限(D) 第四象限7.实数a、b在数轴上对应的点的位置如图所示,计算a-b的结果为(A) a b (B) a - b (C) b - a (D) - a - b则EC的长为10. 如图,正六边形ABCDEF内接于圆0,半径为4 ,则这个正六边形的边心距0M和弧BC的长分别为(A)2、二(B)2.3、二3(C)、.3、兰(D 2 . 3、兰3 3第H卷(非选择题,共70 分)4个小题,每小题4分,共16分,答案写在答题卡上)11. 因式分解:二、填空题(本大题共12.如图,直线m//n , .)ABC为等腰直角二角形,13. 为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中阅读时间的中位数是. _______ 小时.14. 如图,在平行四边形ABCD中,AB-.13 , AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为___________ .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (本小题满分12分,每小题6分)(1)计算:、8-(2015 -n)0 -4cos45 (-3)2(2)16. (本小题满分6分)化简:(丄•亠)’口a+2 a2-4 a+217. (本小题满分8分)解方程组:x 2y = 53x —2y = -1如图,登山缆车从点A出发,途经点B后到达终点C.其中AB段与BC段的运行路程均为200m且AB段的运行路线与水平面的夹角为30°, BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42 °〜0.67 , cos42°〜0.74 , tan42 °〜0.90 )E_______ 度.18. (本小题满分8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)求获得一等奖的学生人数;(2)在本次知识竞赛活动中,A, B, C, D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请使用画树状图或列表的方法求恰好选到A, B两所学校的概率.19. (本小题满分10分)如图,一次函数y=-x・4的图象与反比例y二色(k为常数,且k=0)的图象交于A 1,a,B两点.x(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA PB的值最小,求满足条件的点P的坐标及PAB的面积.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21. 比较大小:亙5.(填”>","c ",或"=")2 822. 有9张卡片,分别写有1~ 9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则23. 已知菱形A1B1C1D 的边长为2,Z A1B1C 牡60°,对角线A1C1 B1D1相交于点O .以点O 为坐标原点,分别以OA1 OB1所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A 0 菱形A1B1C1D,1再以A2C2为对角线作菱形 A2B2C2D ^菱形B1C2D1A2再以B2B2为对角线作菱形B2C3D2A 3 菱形A2B2C2D2…,按此规律继续作下去,在 x 轴的正半轴上得到点 A1, A2, A3,…,An,则点An 的坐 标为 . 24. 如图,在半径为5的L O 中,弦AB=8 , P 是弦AB 所对的优弧上的动点,连接AP ,过点A 作AP 的垂线交射 线PB 于点C ,当PAB 是等腰三角形时,线段BC 的长为20.(本小题满分10分)女口图,在 Rt ABC 中,.ABC =90 , AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,BF =BC . |_0是:BEF 的外接圆,.EBF的平分线交EF 于点G ,交L O 于点H ,连接BD , FH .(1) 求证: ABC 三.EBF ;试判断BD 与L O 的位置关系, 并说明理由; 若AB =1,求HG HB 的值.关于x 的不等式组2xx-1 2::a有解的概率为F25.如果关于x 的一元二次方程ax 2 bx c=0有两个实数根,且其中一个根为另一个根的 2倍,则称这样的方程① 方程X 2 —x —2 =0是倍根方程;② 若(x _2)(mx n ) =0是倍根方程,则4m 2 5mn n 2 = 0 ;③ 若点(p , q )在反比例函数y=2的图像上,则关于x 的方程px 2 3x0是倍根方程;x④ 若方程ax 2 bx • c = 0是倍根方程,且相异两点M (1 • t , s ), N (4 -t , s )都在抛物线y 二ax 2 • bx • c 上,则方程ax 2 bx c = 0的一个根为-.4二、解答题(本大题共3个小题,共30分,解答过程写在大题卡上) 26、(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用 13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了 10元。

四川省成都市中考数学试题及答案

四川省成都市中考数学试题及答案

精品基础教育教学资料,仅供参考,需要可下载使用!成都市高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( ) (A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×104 4. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( ) (A) 34° (B) 56°(C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2)7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下 (B) 抛物线经过点(2,3) (C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 <0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分)(1)计算:()()302162sin302016π-+-+-(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、解答题(本大 题共 6 个小题,共 54 分,解答过程写在答题卡上) 15.(本小题满分 12 分,每小题 6 分)
(1)计算: 8 (2015 π)0 4 cos 45 (3)2
x2y 5 (2)解方程组: 3x 2 y 1
16. (本小题满分 6 分)
化简:
(
a
a
2
1 a2
) 4
.
4
二、解答题(本大题共 3 个小题,共 30 分,解答过程写在大题卡上)
26、(本小题满分 8 分)
某商家预测一种应季衬衫能畅销市场,就用13200 元购进了一批这种衬衫,面市后果然供不应求,商家又用 28800 元够进了第二批这种衬衫, 所购数量是第一批购进量的 2 倍,但单价贵了10 元。
(1)该商家购进的第一批衬衫是多少件?
成都市二〇一五年高中阶段教育学校统一招生考试
数学
A 卷(共 100 分)
第Ⅰ卷(选择题,共 30 分)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
1. 3 的倒数是
(A) 1 3
1
(B)
3
(C) 3
(D) 3
C
200m
B 42° E
200m
A 30° D
18. (本小题满分 8 分) 国务院办公厅在 2015 年 3 月 16 日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球
文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共 50 名,请结合 图中信息,解答下列问题:
①方程 x2 x 2 0 是倍根方程;
②若 (x 2)(mx n) 0 是倍根方程,则 4m2 5mn n2 0 ; ③若点 ( p,q) 在反比例函数 y 2 的图像上,则关于 x 的方程 px2 3x q 0 是倍根方程;
x ④若方程 ax2 bx c 0 是倍根方程,且相异两点 M (1 t,s) , N(4 t,s) 都在抛物线 y ax2 bx c 上,则方程 ax2 bx c 0 的一个根为 5
(C) 3
(D) 4
6.一次函数 y 2x 1的图像不经过
则 EC 的长为
(D) (a 1)2 a2 1
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
7.实数 a 、 b 在数轴上对应的点的位置如图所示,计算 a b 的结果为
(A) a b
(B) a b
(C) b a
n
B
C
13.为响应 “书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示, 则在本次调查中阅读时间的中位 数是_______小时.
14.如图,在平行四边形 ABCD 中, AB 13 , AD 4 ,将平行四边形 ABCD 沿 AE 翻折后,点 B 恰好与点 C 重合,则折痕 AE 的长为__________.
(1)如图①,当四边形 ABCD 和 EFCG 均为正方形时,连接 BF 。 1)求证: CAE ∽ CBF ;2)若 BE 1, AE 2 ,求 CE 的长。
(2)如图②,当四边形 ABCD 和 EFCG 均为矩形,且 AB EF k 时,若 BE 1, AE 2,CE 3 ,求 k 的值; BC FC
x (1)求反比例函数的表达式及点 B 的坐标; (2)在 x 轴上找一点 P ,使 PA PB 的值最小,求满足条件的点 P 的坐标及 PAB 的面积.
一一一 20%
一一一
一一一
一一一 40%
y
A
B x
O
20.(本小题满分 10 分)
如图,在 RtABC 中, ABC 90 , AC 的垂直平分线分别与 AC , BC 及 AB 的延长线相交于点 D , E , F ,且 BF BC . : O 是 BEF 的外接圆, EBF 的平分线交 EF 于点 G ,交 : O 于点 H ,连接 BD , FH .
综上,选 C。
5、【答案】:B
【解析】: 根据平行线段的比例关系, AD AE ,即 6 4 , EC 2 ,选 B。 DB EC 3 EC
6、【答案】:D
【解析】: ∵ k 2 0, b 1 0 ,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,选 D。
7、【答案】:C
3、【答案】:C
【解析】: 科学记数法的表示形式为 a 10n 的形式,其中1 a <10 ,n 为整数。确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n
的绝对值与小数点移动的位数相同。当原数绝对值>1 时,n 是正数; 当原数的绝对值<1 时,n 是负数。 将 126 万用科学记数法表示 1.26×106 元,选 B。
4、【答案】:C
【解析】: A、 a2 与 a2 是同类项,能合并, a2 a2 2a2 。故本选项错误。 B、 a2 与 a3 是同底数幂,根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加。 a2 :a3 a5 。故本选项错误。 C、根据幂的乘方法则。 (a2 )2 a4 。故本选 项正确。 D、根据完全平方公式 (a b)2 a2 2ab b2 。 (a 1)2 a2 1 2a 。故本选项错误。
E
A
O
D
M
B
C
第Ⅱ卷(非选择题,共 70 分)
二、填空题(本大题共 4 个小题,每小题 4 分,共 16 分,答案写在答题卡上)
11.因式分解: x2 9 __________. 12.如图,直线 m // n , ABC 为等腰直角三角形, BAC 90 ,则 1 ________度.
A1 m
(2)若两批衬衫按相同的标价销售,最后剩下 50 件按八折优惠卖出,如果两批衬衫全部售完利润率不低于 25% (不考虑其它因素),那么每
件衬衫的标价至少是多少元?
27、(本小题满分 10 分)
已知 AC, EC 分别为四边形 ABCD 和 EFCG 的对角线,点 E 在 ABC 内, CAE CBE 90 。
(D) a b
8.关于 x 的一元二次方程 kx2 2x 1 0 有两个不相等实数根,则 k 的取值范围是
(A) k 1
(B) k 1
(C) k 0
(D) k 1且 k 0
9.将抛物线 y x2 向左平移 2 个单位长度,再向下平移 3 个单位长度,得到的抛物线的函数表达式为
A、 y (x 2)2 3
5 (2)点 E 是直线 l 上方的抛物线上的动点,若△ACE 的面积的最大值为 ,求 a 的值;
4
(3)设 P 是抛物线的对称轴上的一点,点 Q 在抛物线上,以点 A、D、P、Q 为顶点的四边形能否成为矩形?若能,求出点 P 的坐标;若不能,请 说明理由.
y
y
E
O AC
B
x
D l
O AC
B
x
D l
(1)求获得一等奖的学生人数; (2)在本次知识竞赛活动中,A,B,C,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请使用画树状 图或列表的方法求恰好选到 A,B 两所学校的概率.
19. (本小题满分 10 分)
如图,一次函数 y x 4 的图象与反比例 y k ( k 为常数,且 k 0 )的图象交于 A1, a , B 两点.
(A)126 104
(B)1.26 105
(C)1.26 106
(D)1.26 107
4.下列计算正确的是
(A) a2 a2 2a4
(B) a2 a3 a6
(C) (a2 )2 a4
5.如图,在 ABC 中, DE // BC , AD 6 , DB 3 , AE 4 ,
(A) 1
(B) 2
B、 y (x 2)2 3
10.如图,正六边形 ABCDEF 内接于圆 O ,半径为 4 ,
则这个正六边形的边心距 OM 和弧 BC 的长分别为
(A) 2 、
3
(B) 2 3 、
(C) 3 、 2 3
(D) 2 3 、 4 3
C、 y (x 2)2 3
D、 y (x 2)2 3
F
备用图
2015 成都中考参考答案及详细解析
一、选择题 1、【答案】:A
【解析】:根据倒数的定义,很容易得到 3 的倒数是 1 ,选 A。 3
2、【答案】:B 【解析】:本题考查了三视图的知识,主视图是从物体的正 面看得到的视图,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主 视图中。从正面看易得三棱柱的一条棱位于三棱柱的主视图内,选 B。
腰三角形时,线段 BC 的长为
.
C C
C
A
H
B
A
K

A B
B
O G
O
O
P
P
P
图(1)
图(2)
图(3)
25.如果关于 x 的一元二次方程 ax2 bx c 0 有两个实数根,且其中一个根为另一个根的 2 倍,则称这样的方程为“倍根方程”,以下关于倍根方
程的说法,正确的是
.(写出所有正确说法的序号)
(3)如图③,当四边形 ABCD 和 EFCG 均为菱形,且 DAB GEF 45 时,设 BE m, AE n, CE p ,试探究 m, n, p 三者之间满
足的等量关系。(直接写出结果,不必写出解答过程)
D
C
D
C
G
G
F
F
E
A
B
一①
A
E
相关文档
最新文档