高中物理基础知识点
高中基础物理知识点
高中基础物理知识点关键信息项1、力学牛顿运动定律功和能动量守恒定律2、热学热力学定律理想气体状态方程3、电磁学电场和电势电路电磁感应4、光学几何光学物理光学5、近代物理原子结构原子核11 力学111 牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
表达式为 F = ma。
牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
112 功和能功的计算:W =Fs cosθ,其中 F 是力的大小,s 是位移的大小,θ 是力和位移之间的夹角。
动能定理:合外力对物体所做的功等于物体动能的变化,即 W 合=ΔEk。
机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
113 动量守恒定律内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
表达式:m1v1 + m2v2 = m1v1' + m2v2'12 热学121 热力学定律热力学第一定律:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
表达式为ΔU = Q + W。
热力学第二定律:克劳修斯表述:热量不能自发地从低温物体传到高温物体。
开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
热力学第三定律:热力学零度不可达到。
122 理想气体状态方程表达式:pV = nRT,其中 p 是气体压强,V 是气体体积,n 是气体物质的量,R 是普适气体常量,T 是气体温度。
13 电磁学131 电场和电势电场强度的定义:E = F / q,方向为正电荷在该点所受电场力的方向。
电势的定义:φ = Ep / q,电场中某点的电势等于单位正电荷在该点所具有的电势能。
高中物理知识点总结及公式大全
高中物理知识点总结及公式大全物理作为一门自然科学学科,是研究物质、能量和它们之间相互作用的学科。
在高中阶段,物理作为一门重要的学科,涉及到许多基础而又重要的知识点和公式。
本文将对高中物理知识点进行总结,并提供一些常用的物理公式,希望能够帮助学生更好地理解和掌握物理知识。
一、运动学。
1. 位移、速度和加速度。
位移公式,$s=v_{0}t+\frac{1}{2}at^{2}$。
速度公式,$v=v_{0}+at$。
加速度公式,$a=\frac{v-v_{0}}{t}$。
2. 动能和动能定理。
动能公式,$E_{k}=\frac{1}{2}mv^{2}$。
动能定理,$W=\Delta E_{k}$。
3. 圆周运动。
圆周运动速度公式,$v=\omega r$。
圆周运动加速度公式,$a=\frac{v^{2}}{r}$。
二、力学。
1. 牛顿定律。
牛顿第一定律,物体静止或匀速直线运动,当且仅当合外力为零时,物体保持静止或匀速直线运动。
牛顿第二定律,物体的加速度与作用在其上的合外力成正比,与物体的质量成反比,方向与力的方向相同。
牛顿第三定律,两个物体之间的相互作用力大小相等,方向相反。
2. 弹簧振子。
弹簧振子的周期公式,$T=2\pi\sqrt{\frac{m}{k}}$。
弹簧振子的频率公式,$f=\frac{1}{T}$。
三、热学。
1. 热力学定律。
热力学第一定律,能量守恒定律。
热力学第二定律,热不会自发地从低温物体传递到高温物体。
2. 热力学公式。
热量传递公式,$Q=mc\Delta T$。
热力学效率公式,$\eta=\frac{W}{Q_{h}}$。
四、光学。
1. 光的折射。
折射定律,$n_{1}\sin\theta_{1}=n_{2}\sin\theta_{2}$。
2. 光的成像。
凸透镜成像公式,$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$。
五、电磁学。
1. 电场。
高中物理所有知识点(全)
一、力及物体的平衡1.力是物体间的相互作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因.力既有大小又有方向,是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力。
重力的施力物体是地球,受力物体是物体。
(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μFN 进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2.(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)★共点力作用下物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx =0,∑Fy=0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
物理高中知识点总结
物理高中知识点总结一、力学1. 运动基本概念:位移、速度、加速度、质点、物体、参照系、相对运动等。
2. 牛顿三定律:惯性定律、作用-反作用定律、质点运动方程。
3. 平抛运动:抛体运动、竖直方向的运动、斜向运动、水平方向的运动、最大射程等。
4. 圆周运动:圆周运动的基本概念、曲率半径、向心加速度、角速度、角加速度、圆周运动方程。
5. 万有引力定律:牛顿万有引力定律的表述和意义、万有引力常数、引力势能、离心力、万有引力势能定理。
6. 动能和势能:机械能、动能定理、保守力和非保守力、势能和势能函数、机械能守恒定律。
7. 物体的平衡和不平衡:牛顿定律的应用、物体的平衡和不平衡、受力分析、支持力和拉力。
8. 行波和驻波:波的传播、波的特点、波长和频率、相位差、波速、行波和驻波。
9. 光学:电磁波、光的角度量、光的直线传播、光的反射、光的折射、光的衍射和干涉。
10. 简单谐振动:谐振、简单谐振动的基本概念、谐振运动的相量表示、振幅、角速度、周期、频率等概念。
二、热学1. 温度和热量:热力学基本概念、热、温度、热量、热容、比热等。
2. 理想气体状态方程:理想气体的定义、状态方程、摩尔定律、气体温度等式、气体温标、实际气体。
3. 热力学第一定律:内能、第一定律的表述、等温过程、绝热过程等。
4. 热力学第二定律:可逆过程,热机效率,热泵效率,热力学温度,熵,储热罐等。
5. 热传递:导热、自然对流、强制对流、辐射传热、材料热传递方程等。
三、电磁学1. 静电:静电场、静电场力线,匀强电场、电势能、电场强度、电偶极子力等概念。
2. 电流:电荷守恒原理,电流的定义,电荷的流动,欧姆定律,电阻率和电导率等概念。
3. 磁场:电流产生的磁场,磁场中力的作用,磁力线,磁通量和磁通量密度,安培定律等基本概念。
4. 电磁感应:电磁感应现象和法拉第电磁感应定律,楼仑定律,自感现象和自感系数,变压器的原理等。
5. 电磁波:电磁波的基本性质,电磁波谱,电磁波的产生,电磁波的传播,光的波动性等。
高中物理知识点总结归纳
高中物理知识点总结归纳第一章:力学1. 直线运动- 平均速度与瞬时速度- 速度与位移的关系- 加速度与减速度- 动力学方程- 自由落体运动2. 曲线运动- 圆周运动的描述- 角速度与角位移- 牛顿第一、第二定律- 受力分析- 弹力与弹性势能- 惯性与质量3. 力学中的能量- 功与功率- 动能与动能定理- 机械能守恒- 力与势能- 能量守恒定律第二章:热学1. 热力学基本概念- 温度与热量- 冷热与温度的比较- 气体理论与状态方程2. 热学过程- 等温过程与等容过程- 等压过程与绝热过程- 对流、传导与辐射3. 热学定律- 热平衡定律- 热传导定律- 热辐射定律- 热力学第一、第二定律4. 热力学技术- 工作与热机效率- 热量测量与热量传递- 热泵与制冷机第三章:振动与波动1. 振动- 平衡位置与振幅- 周期与频率- 圆周振动与简谐振动- 受迫振动与共振2. 波动- 横波和纵波- 波的特征量:波长、频率和波速- 线性媒介中的波动- 波的反射、折射和干涉3. 声学基础- 声波的传播、速度与频率- 声的强度与音量- 声音的特征:音高、音质和音色- 共振和驻波4. 光学基础- 光线与视线- 光的行进速度与传播性质- 光的反射与折射- 光的干涉与衍射第四章:电学1. 电荷与电场- 电荷的性质与带电体- 电场的定义与性质- 电荷在电场中的受力与电势差2. 电流与电阻- 电流的定义与电子流动方向- 静电场与恒定电流- 电阻与电阻率3. 电路- 串联与并联电路- 配分与戴维南定理- 电流、电压与电阻之间的关系4. 电势与电容- 电势能与电位- 电容与电容量- 平行板电容器与电势差5. 磁学基础- 磁场的特性与定义- 磁感线与磁场的切线方向- 磁场对电荷与电流的作用力第五章:电磁感应1. 电磁感应定律- 法拉第电磁感应定律- 感应电动势与磁能的转化- 楞次定律与电动机2. 电磁感应定律的应用- 互感与自感- 变压器与感应电动机- 电磁波和电磁振荡第六章:原子与分子物理1. 光电效应- 光电子的特性与发射原理- 照射光强度与阻挡电压的关系- 光电效应的应用2. 原子物理- 原子结构与量子理论- 分子结构与化学键3. 核物理- 放射性衰变与探测技术- 原子核能量与核反应的释放以上是高中物理主要的知识点总结归纳,希望对您有所帮助!。
高中物理基础知识大全
高中物理基础知识大全高中物理基础知识大全一光子说⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量。
⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。
光的波粒二象性光既表现出波动性,又表现出粒子性。
大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强。
实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。
满足下列关系:从光子的概念上看,光波是一种概率波.高中物理基础知识大全二记录自由落体运动轨迹1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。
在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。
2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广自由落体运动规律1.自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。
g=9.8m/s?2.重力加速度g的方向总是竖直向下的。
其大小随着纬度的增加而增加,随着高度的增加而减少。
3.vt?=2gs竖直上抛运动处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)1.速度公式:vt=v0—gt位移公式:h=v0t—gt?/22.上升到点时间t=v0/g,上升到点所用时间与回落到抛出点所用时间相等高中物理基础知识大全三1、物质是由分子组成的。
分子若看成球型,其直径以10-10m来度量。
2、一切物体的分子都在不停地做无规则的运动①扩散:不同物质在相互接触时,彼此进入对方的现象。
②扩散现象说明:A分子之间有间隙。
B分子在做不停的无规则的运动。
③课本中的装置下面放二氧化氮这样做的目的是:防止二氧化氮扩散被误认为是重力作用的结果。
高中物理知识点总结详细
第一部分:力学1. 牛顿运动定律•定律一(惯性定律):一切物体在没有受到外力的作用时,总保持静止状态或匀速直线运动状态。
•定律二(加速度定律):物体的加速度与它所受的合外力成正比,与它的质量成反比,加速度的方向与合外力的方向相同。
•定律三(作用与反作用定律):两个物体之间的作用力和反作用力,总是同时在同一条直线上,大小相等,方向相反。
2. 力学的基本公式•位移公式:( s = v_0t + at^2 )•速度与加速度公式:( v = v_0 + at )•动量定理:( p = F t )•动量守恒定律:在不受外力的情况下,系统的总动量保持不变。
3. 能量守恒定律•系统的总能量(动能 + 势能)在不受外力作用时保持不变。
4. 浮力与升力•浮力:( F_{浮} = {液}gV{排} )•升力:( F_{升} = _{气}C_L S v^2 )第二部分:热学1. 温度与热量•温度是物体分子平均动能的度量。
•热量是热能的传递。
2. 热力学第一定律•能量不能被创造或消灭,只能从一种形式转化为另一种形式。
3. 热力学第二定律•热量不能自发地从低温物体传递到高温物体。
4. 比热容与热传导•比热容:( c = )•热传导:( Q = -kA T )第三部分:电学1. 库仑定律•两个点电荷之间的电力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比。
2. 电阻与电流•欧姆定律:( I = )•基尔霍夫电压定律:电路中任意回路电压降之和等于零。
•基尔霍夫电流定律:电路中任意节点进入电流之和等于流出电流之和。
3. 电场与电势•电场强度:( E = )•电势差:( V = )4. 磁学•安培定律:通过导体的电流产生磁场,磁场与电流方向垂直。
•法拉第电磁感应定律:变化的磁场产生电场。
第四部分:光学1. 光的传播•光在同种均匀介质中沿直线传播。
2. 光的折射与全反射•斯涅尔定律:( n_1 _1 = n_2 _2 )•全反射条件:光从光密介质射入光疏介质,入射角大于临界角。
高中物理基础知识全集
高中物理知识全集必修一一运动的描述与匀变速直线运动【一】1 运动机械运动运动是绝对的,静止是相对的。
参考系的选取是任意的2 时刻和时间2秒内指的是从起始时间开始算起2秒的时间,第2秒内指的是从第1秒到第2秒之间1秒的时间。
第2秒指的是第1秒末,第2秒初等同于第1秒末,第2秒末等同于第3秒初或者第3秒。
3 质点任何物体(在一定条件下)都可以被看成质点。
(a、物体上各点的运动状态相同;b、物体的线度相对于运动空间可以忽略不计。
)4 位移和路程位移是从初位置指向末位置的有向线段5 速度和加速度速度=位移/时间。
速率=路程/时间。
平均速度=总位移/总时间平均速度的大小平均速率=总路程/总时间如何判断物体加速还是减速>a时不一定加速:正负号只表示加速度的方向。
当a与v方向相同时物体<a时不一定减速,0做加速运动;当a与v方向相反时物体做减速运动。
加速度只与速度变化率(变化快慢)有关,跟其他都无直接关系6 图像s-t图像横轴表示时间,纵轴表示位移时,斜率表示速度。
相交表示相遇,位移相同;与横轴交叉,表示方向改变;v-t 图像横轴表示时间,纵轴表示位移时,斜率表示加速度,曲线和时间轴所围面积表示位移(有正负)。
相交表示速度相同;与横轴相交表示速度反向;斜率表示加速度;【二】7 匀变速直线运动1) 位移公式: 2021at t v s += 速度公式:at v v t +=0推论: as v v t 2202=-2) 纸带的分析(如何操作,如何处理数据以减小误差)(有些匀加速可以看成纸带模型) 平均速度公式:20t v v v += 连续相等的相邻时间间隔T 内的位移差等于恒量: 2aT s =∆ 3) 追击相遇问题(列方程法;图像法;相对运动法):一个条件即速度满足临界条件;两个关系即时间关系和位移关系二 相互作用与力的平衡【一】1 力的基本概念1)力的三要素:大小、方向、作用点2)力的性质:物质性,相互性,矢量性3)力的图示及力的示意图4)两个效果:形变或运动状态变化2 重力1)G=mg2)竖直向下3)重心3 弹力1)产生条件:A 直接接触B 发生形变。
物理知识点总结高中必修
物理知识点总结高中必修一、力学1. 运动的基本概念运动是物质在空间中的位置发生变化的过程。
运动包括直线运动和曲线运动、匀速运动和变速运动等不同的类型,以及速度、加速度、位移等基本概念。
2. 牛顿运动定律牛顿运动定律是经典力学的基础,包括三个定律:(1)牛顿第一定律:物体静止或匀速直线运动,当且仅当合外力为零时,物体的速度保持不变。
(2)牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比,且与作用力的方向相同。
(3)牛顿第三定律:相互作用的两个物体对彼此的作用力大小相等,方向相反。
3. 动能和动能定理动能是物体由于运动而具有的能量,动能定理指出,物体的动能等于其质量和速度平方的乘积的一半,即Ek = 1/2 mv^2。
4. 势能和机械能守恒定律势能是物体由于位置而具有的能量,机械能守恒定律指出,在没有摩擦和外力做功的情况下,机械能(动能和势能之和)在运动过程中保持不变。
5. 圆周运动圆周运动是物体沿着圆周轨道运动的一种形式,其特点是速度大小不变,但方向不断变化,加速度指向圆心的向心加速度的大小为a=v^2/r。
二、热学1. 热力学基本概念热力学是研究热现象和热能转化的科学,其中包括温度、热量、热容、等温过程、绝热过程等基本概念。
2. 热力学第一定律热力学第一定律,也称能量守恒定律,它规定了热量和功的相互转化关系,表示为ΔU = Q - W,其中ΔU表示内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。
3. 热力学第二定律热力学第二定律表明热量不能自发地从低温物体传递到高温物体,热量总是自发地由高温物体传递到低温物体。
4. 热力学循环热力学循环是指在一定条件下,热能由热源传递到工作物质,再由工作物质传递到冷源的过程,包括卡诺循环和斯特林循环等。
5. 热传导、热辐射和热对流热传导是指由于温度不同而导致的热能传递过程,热辐射是由于热源的辐射而导致的热能传递过程,热对流是由于流体的对流运动而导致的热能传递过程。
高中物理知识点总结及公式大全
高中物理知识点总结及公式大全高中物理是自然科学的重要组成部分,它涵盖了力学、电磁学、光学和现代物理学等领域。
通过对物理知识的学习和理解,我们能够更好地认识和解释周围的世界。
以下是高中物理的一些关键知识点和公式,它们是理解和解决物理问题的基础。
1. 力学力学是研究物体运动规律的科学。
在高中物理中,我们主要学习了运动学、动力学和能量守恒定律等概念。
- 运动学公式:位移(s)等于速度(v)乘以时间(t),即 \( s =vt \)。
- 牛顿第二定律:力(F)等于质量(m)乘以加速度(a),即 \( F= ma \)。
- 功(W)的定义:力(F)乘以位移(s)在力的方向上的分量,即\( W = Fs \cos(\theta) \),其中 \( \theta \) 是力和位移的夹角。
- 动能(KE):\( KE = \frac{1}{2}mv^2 \)。
- 势能(PE):\( PE = mgh \),其中 \( h \) 是物体相对于参考点的高度。
2. 电磁学电磁学研究电荷和电磁场的相互作用。
- 库仑定律:电荷间的作用力(F)与电荷量(q1 和 q2)的乘积成正比,与它们距离(r)的平方成反比,即 \( F = k\frac{q1q2}{r^2} \),其中 \( k \) 是库仑常数。
- 欧姆定律:电流(I)等于电压(V)除以电阻(R),即 \( I =\frac{V}{R} \)。
- 法拉第电磁感应定律:感应电动势(ε)等于磁通量变化率(\( \frac{d\Phi}{dt} \)),即 \( \varepsilon = -\frac{d\Phi}{dt} \)。
3. 光学光学是研究光的性质和行为的科学。
- 反射定律:入射角等于反射角。
- 折射定律(斯涅尔定律):\( n1\sin(\theta1) = n2\sin(\theta2) \),其中 \( n1 \) 和 \( n2 \) 是两种介质的折射率,\( \theta1 \) 和 \( \theta2 \) 分别是入射角和折射角。
所有高中物理知识点归纳
所有高中物理知识点归纳一. 力学1.运动学–速度和加速度的定义–位移、速度和加速度之间的关系–直线运动和曲线运动的区别2.牛顿力学–牛顿第一定律:惯性定律–牛顿第二定律:力和加速度的关系–牛顿第三定律:作用力和反作用力3.力的合成与分解–多个力的合成与分解–物体在斜面上的分解力4.动量与能量–动量的定义和守恒定律–动能的定义和转化–功的定义和能量转化定律5.万有引力–万有引力定律的表达式和含义–地球上物体自由落体的运动规律–行星运动和卫星轨道的解释二. 热学1.温度与热量–温度的定义和温标–热量的传递方式:传导、对流和辐射2.热力学第一定律–系统内能的变化和热量、功的关系–系统的热平衡和热力学过程3.热力学第二定律–热力学过程的可逆性和不可逆性–熵的概念和熵增加原理4.理想气体–理想气体状态方程和理想气体的性质–理想气体的温度和压强的关系5.相变–固体的熔化和凝固–液体的沸腾和凝结–气体的升华和凝华三. 光学1.光的直线传播–光的直线传播的条件–光在介质中传播的折射现象2.光的反射和折射–光的反射定律和折射定律–光的全反射现象和应用3.光的波动性–光的干涉和衍射现象–光的波长和频率4.光的光谱和色散–光的光谱分解和合成–光的色散现象和原理5.光的反射和成像–镜面反射和成像–球面镜反射和折射成像四. 电磁学1.静电学–电荷和电场的概念–静电力和电场力的计算2.电流和电路–电流的定义和电流强度的计算–电阻和电阻率的概念3.欧姆定律–欧姆定律的表达式和含义–串联和并联电阻的计算4.磁场与电磁感应–磁场的产生和磁感线的性质–法拉第电磁感应定律的表达式和应用5.电磁波–电磁波的概念和特性–光是一种电磁波的证据以上是高中物理知识点的一个简要归纳,涵盖了力学、热学、光学和电磁学的基本概念和原理。
希望这篇文章能够帮助你梳理和理解高中物理知识,为后续的学习打下坚实的基础。
最详细的高中物理知识点总结
最详细的高中物理知识点总结高中物理知识点总结(最全版)高中物理是一门基础科学学科,涵盖了广泛的知识点。
下面将对高中物理的各个知识点进行详细总结,涉及力学、热学、光学、电磁学和量子物理等多个方面。
一、力学篇1.物体的力学性质:物体的质量、重力、惯性与牛顿第一定律、可分为三类平衡、弹性与塑性变形。
2.运动与力学定律:速度、加速度与运动的描绘、牛顿第二定律、惯性系与非惯性系、牛顿第三定律、动量与动量守恒、功、功率与能量守恒、机械能、弹簧弹性势能。
3.圆周运动:角度与弧长、角速度与线速度、加速度与向心力、牛顿第二定律、离心力与引力。
4.万有引力与行星运动:万有引力定律、行星运动、开普勒定律。
5.静电场:电荷的产生与性质、库仑定律和电场强度、电场做功与电势能、电势与电势差、静电平衡和静电屏蔽。
二、热学篇1.温度与热量:热现象、温度和温标、热平衡和热量、热力学第一定律。
2.理想气体:气体微观模型、气体状态方程、热力学第一定律和等温过程、绝热过程、理想气体的内能、理想气体的功和热。
3.热传导、辐射与对流:热传导、热辐射和对流、热平衡、热传导定律、热传导的应用。
三、光学篇1.光的直线传播和反射:光的直线传播、光的反射定律、镜面成像。
2.光的折射和光的波动性:光的折射定律、光的波动性、干涉、衍射和偏振。
四、电磁学篇1.电荷与电场:电荷与电场、电场的叠加和电场线、电场强度、电势与电势差、电势的叠加、电偶极子。
2.电容与电容器:电容和电容元件、电容的计算和串并联、电容器的工作原理和应用。
3.电流与电路:电流、电路中的电压、电阻和电功率、欧姆定律、串并联电阻、电源和额定电流。
4.磁场与磁场中的电流:磁场和物体自由运动、安培力定律、电磁感应定律。
5.电磁感应和交流电:法拉第电磁感应定律、互感和自感、交流电、变压器和感应电磁场的应用。
五、量子物理篇1.光电效应和光的粒子性:光电效应的实验事实、波动粒子二象性、波粒二象性的应用。
高中物理知识点归纳
高中物理知识点归纳高中物理是一门重要的学科,涵盖了众多的知识点。
下面就为大家进行一个较为全面的归纳。
一、力学1、运动学(1)位移和路程位移是描述物体位置变化的物理量,是矢量,有大小和方向;路程是物体运动轨迹的长度,是标量,只有大小没有方向。
(2)速度和速率速度是位移与时间的比值,是矢量;速率是路程与时间的比值,是标量。
(3)加速度加速度是速度变化量与发生这一变化所用时间的比值,是描述物体速度变化快慢的物理量,是矢量。
2、牛顿运动定律(1)牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到外力迫使它改变这种状态为止。
(2)牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
(3)牛顿第三定律两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
3、功和能(1)功力与在力的方向上移动的距离的乘积。
(2)功率描述做功快慢的物理量,分为平均功率和瞬时功率。
(3)动能物体由于运动而具有的能。
(4)势能包括重力势能和弹性势能。
重力势能与物体的质量、高度有关;弹性势能与弹簧的形变程度有关。
(5)机械能守恒定律在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
4、曲线运动(1)平抛运动水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
(2)圆周运动线速度、角速度、周期、向心力等概念。
二、热学1、分子动理论(1)物质是由大量分子组成的。
(2)分子在永不停息地做无规则运动。
(3)分子间存在着相互作用力。
2、热力学定律(1)热力学第一定律一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
(2)热力学第二定律表述方式多样,常见的如热量不能自发地从低温物体传到高温物体。
三、电学1、静电场(1)库仑定律真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比。
(2)电场强度描述电场强弱和方向的物理量。
高中物理基础知识点总结归纳
05
原子物理
原子结构与能级
01
02
03
原子结构
原子由质子、中子和电子组成, 质子带正电,中子不带电,电子
带负电。
能级概念
原子中的电子在不同的能级上运 动,这些能级是离散的,称为量
子能级。
能级跃迁
电子在能级之间的跃迁会吸收或 释放能量,这是原子光谱产生的
原因。
放射性衰变
衰变类型
包括α衰变、β衰变和γ 衰变02 核聚变06Fra bibliotek现代物理
相对论基础
01 相对论原理
描述物体在高速运动或强重力场 下的物理现象的理论。
02 光速不变原理
无论光源或观察者的运动状态如 何,光速在惯性参照系中都是恒
定的。
03 质能关系
物体的质量与其所含能量之间存 在等价关系,即E=mc²。
量子力学基础
波粒二象性
描述光子和电子等微观粒子既 具有波动性又具有粒子性的双
04
热学
热力学第一定律
• 定义
• 热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换 过程中,能量的总值保持不变。
• 公式
• ΔU=Q+W
• 应用
• 在热力系统中,工作物质从高温热源吸热Q1,对外做功W,并向低温热源放热Q2,则有关 系Q1=ΔU+W+Q2,如令W=0,即无轴功时,则Q1=ΔU+Q2,也就是说,热力系内物质 的能量变化,等于它从外界吸收的热量与外界传给它的热量之和。
重性质。
不确定性原理
强调在微观尺度上,粒子的位 置和动量不能同时被精确测定。
量子态与波函数
描述量子系统的状态由波函数 描述,波函数的模平方给出粒
高中物理必考汇总知识点总结
高中物理必考汇总知识点总结高中物理必考汇总知识点总结高中物理作为一门基础课程,对于学生的科学素养和综合能力的培养起着重要的作用。
在高中阶段,物理考试也是必不可少的一项任务。
为了帮助同学们更好地备考高中物理考试,下面将对高中物理必考的知识点进行汇总总结。
一、基础力学1. 运动学运动学是力学的基础,主要研究物体的位置、速度和加速度等运动状态。
必考知识点有位移、速度、加速度等概念,以及直线运动、曲线运动的分析方法。
2. 动力学动力学主要研究物体受力的影响下,速度和加速度的变化。
必考知识点有牛顿三定律、动量等守恒定律,以及重力、弹力、摩擦力等常见力的作用和计算。
3. 万有引力万有引力是物理学中的重要概念,主要研究两个物体之间的吸引力。
必考知识点有引力公式、引力与质量的关系等。
4. 机械能守恒机械能守恒是力学中的重要定律,主要研究机械能的转化和守恒。
必考知识点有动能、势能、机械能的计算和转化等。
5. 力的合成与分解力的合成与分解是力学中的重要概念,主要研究多个力的合成或分解后的结果。
必考知识点有力的分解成水平和垂直方向的分力、合力的计算等。
二、热学1. 温度与热量温度和热量是热学的基本概念,主要研究物体的热平衡和热传递。
必考知识点有温度的测量和度量、热平衡的条件、热传递的方式等。
2. 理想气体理想气体是热学中常用的模型,主要研究理想气体的性质和过程。
必考知识点有理想气体状态方程、理想气体的变态方程和它们的应用等。
3. 热力学循环热力学循环是研究热能转换的过程,主要研究热力学系统的工作原理。
必考知识点有卡诺循环、热机效率等。
三、电学1. 电荷与电场电荷与电场是电学的基础概念,主要研究电荷的性质和电场的分布。
必考知识点有电场强度、电势、静电场等。
2. 电阻与电路电阻与电路是电学中的重要内容,主要研究电流和电压的关系以及电路的特性。
必考知识点有欧姆定律、串联与并联电路的计算等。
3. 磁场与电磁感应磁场与电磁感应是电学的重要分支,主要研究磁场与电流、磁场与运动导体之间的相互作用。
高中物理基础知识(太全了)
高中物理基础知识(太全了)
1. 力学:力学:
- 物体静止和平衡
- 物体的运动和速度
- 力的合成和分解
- 物体的加速度和力的作用
- 牛顿三定律
- 动能和势能
- 机械功和机械能守恒
- 弹性和弹性势能
- 万有引力和行星运动
- 物体的平衡和支点
- 机械震动和波动
2. 热学:热学:
- 温度和热量
- 物质内能和状态变化
- 理想气体
- 热传导、对流和辐射
- 热机和热力学效率
3. 光学:光学:
- 光的传播和反射
- 光的折射和菲涅尔公式- 光的干涉和衍射
- 光的偏振和光的波粒性- 光的颜色和色散
4. 电磁学:电磁学:
- 电荷和电场
- 静电力和库仑定律
- 电势能和电势差
- 电容和电
- 电流和电路
- 欧姆定律和电功率
- 磁场和磁力
- 安培定律和法拉第定律- 电磁感应和电磁波
- 电磁谱和电磁辐射
5. 原子物理:原子物理:
- 原子结构和质量缺失
- 元素周期表和原子序数
- 核变和放射现象
- 核能和核反应
- 量子物理和量子力学
以上是高中物理基础知识的主要内容,涵盖了力学、热学、光学、电磁学和原子物理等方面的知识。
希望这份文档能对您有所帮助!。
高中物理基础知识点总结
高中物理基础知识点总结一、引言物理是一门研究自然现象及其基本规律的科学。
高中物理课程旨在帮助学生理解这些规律,并能够应用这些知识来解释和预测周围的世界。
二、基本概念1. 物质:构成宇宙一切事物的基本实体。
2. 能量:物理系统进行工作的能力,分为动能、势能等。
3. 力:作用于物体上的推或拉,能够改变物体的运动状态。
4. 运动:物体位置随时间的变化。
5. 功:力作用于物体并使其移动的结果。
三、力学1. 牛顿运动定律- 第一定律(惯性定律):物体保持静止或匀速直线运动,除非受到外力作用。
- 第二定律(动力定律):物体加速度与作用力成正比,与物体质量成反比。
- 第三定律(作用与反作用定律):作用力与反作用力大小相等、方向相反。
2. 动量守恒定律:在没有外力作用的系统中,总动量保持不变。
3. 功和能量- 功:力沿着某路径的积分。
- 机械能:动能和势能的总和。
- 能量守恒定律:能量不能被创造或消灭,只能从一种形式转换为另一种形式。
四、热学1. 温度和热量- 温度:物体热冷程度的度量。
- 热量:能量的转移,通常由于温度差异。
2. 热力学第一定律:能量守恒在热力学系统中的表现。
3. 热传导、对流和辐射:热量传递的三种基本方式。
五、电磁学1. 静电学- 电荷:物质的一种基本性质,能引起电场。
- 库仑定律:电荷间作用力的计算。
2. 电流和电路- 电流:电荷的流动。
- 欧姆定律:电压、电流和电阻的关系。
3. 磁场- 磁场:由运动电荷产生的场。
- 安培定律和法拉第电磁感应定律:描述电流和磁场的相互作用。
六、波动和光学1. 波的基本特性- 波长、频率和振幅:波的基本参数。
- 横波和纵波:波动的两种类型。
2. 声波- 声波:空气或其他介质中的纵波。
- 多普勒效应:波源和观察者相对运动时波的频率变化。
3. 光波- 光的反射和折射:光波遇到不同介质时的行为。
- 干涉和衍射:光波叠加和绕射现象。
七、现代物理1. 相对论- 狭义相对论:不考虑重力时,物理规律的不变性。
高中物理知识点总结
高中物理知识点总结1. 力学1.1 牛顿运动定律:包括牛顿第一定律(惯性定律)、第二定律(加速度与力的关系)、第三定律(作用与反作用)。
1.2 功与能:功是力在位移方向上的分量与位移的乘积,能分为动能、势能和机械能。
1.3 动量守恒:在没有外力作用的系统中,系统总动量保持不变。
1.4 能量守恒:能量既不会凭空产生也不会凭空消失,只会从一种形式转化为另一种形式。
2. 热学2.1 热力学第一定律:能量守恒在热力学过程中的表现。
2.2 热力学第二定律:热量不能自发地从低温物体传递到高温物体。
2.3 理想气体状态方程:描述理想气体在压强、体积和温度变化下的状态关系。
3. 电磁学3.1 库仑定律:描述点电荷间相互作用力的定律。
3.2 高斯定律:通过闭合曲面的电通量与曲面内电荷量的关系来描述电场。
3.3 法拉第电磁感应定律:描述变化的磁场产生电场的现象。
3.4 麦克斯韦方程组:描述电场和磁场如何相互作用和传播的一组方程。
4. 光学4.1 光的反射定律:描述光在不同介质界面上的反射现象。
4.2 折射定律:描述光在不同介质中传播速度变化时的折射现象。
4.3 干涉与衍射:描述光波在相遇或通过障碍物时的叠加和分散现象。
5. 原子物理5.1 原子结构:包括原子核和电子云,以及电子在不同能级间的跃迁。
5.2 放射性衰变:描述放射性元素自发地放出粒子或射线的过程。
5.3 波粒二象性:光和物质粒子既具有波动性也具有粒子性。
6. 现代物理6.1 量子力学:研究微观粒子行为的物理理论,包括波函数、量子态和不确定性原理。
6.2 相对论:包括狭义相对论(时间和空间的相对性)和广义相对论(引力与时空曲率的关系)。
7. 实验技能7.1 基本测量:包括长度、时间、质量、温度等的测量方法和误差分析。
7.2 物理实验:涉及力学、热学、电磁学、光学和原子物理等领域的实验操作和数据处理。
以上总结了高中物理的主要知识点,涵盖了从基础概念到复杂理论的各个方面,为学生提供了一个全面的学习框架。
高中物理知识点总结(重点)超详细
光的偏振现象
解释光的偏振特性,以及 偏振片如何影响光的传播 方向和强度。
20XX
20XX
光的波粒二象性
描述光的双重性质,即它 既可以看作是波,也可以 看作是粒子。
20XX
20XX
光的粒子性
讨论光电效应和康普顿散 射,展示光的粒子方面。
20XX
20XX
理解赫兹的实验
分析赫兹如何通过实验证 明光是一种电磁波。
色和影响。
交流电与直流电
区分交流电(AC)和直流电 (DC),并解释它们在电磁感应
中的不同应用和表示方法。
电磁感应的应用
探讨电磁感应在实际中的应用, 例如发电机、变压器等设备中的
使用。
谢谢观看
力的单位
牛顿第二定律中,力的单位是牛顿(N), 定义为使质量为1kg的物体产生1m/s²加
速度的作用力。
独立性与同体性原则
定律中力和加速度是对应同一物体的, 且各个力的作用效果独立存在,互不影
响。
应用实例:曲线运动
在曲线运动中,加速度变化,需先求出 物体在每一点的合力,再应用牛顿第二
定律。
解析题:多物体系统动力 学
热膨胀系数
$350
绝对零度与 热膨胀
$400
不同物质的 热膨胀特性
$450
热膨胀的应 用
$500
热膨胀的实 验观察
热膨胀描述物质的 体积随温度升高而
增大的现象。
热膨胀系数是物质 的属性,用于量化 温度变化对物质体
积的影响。
绝对零度是热力学 温度的基点,此时 所有物质的热膨胀
系数均为零。
不同物质的热膨胀 系数不同,因此在 温度变化时,它们 的体积变化也会不
运动的图像分析
高中物理知识点总结(6篇)
高中物理知识点总结运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv 与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。
自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。
中心时刻的速度,平均速度相等数;求加速度有好方,ΔS 等aT平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
力1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
____分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
高中物理知识点总结(二)一、运动的`描述1、物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv 与t比。
3、速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
二、力1、解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2、分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理基础知识点
高中物理基础知识点:振动和波
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
高中物理基础知识点:电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A
位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量
(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(V o=0):W=ΔEK或
qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动
d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、
示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
高中物理基础知识点:恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U 内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此
W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P 出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、
I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并
=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA[或Rx>(RARV)1/2]选用电路条件Rx<
12.滑动变阻器在电路中的限流接法与分压接法
电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp>Rx便于调节电压的选择条件Rp。