植物发育分子生物学.ppt

合集下载

(推荐)植物发育生物学被子植物花器官发育的分子模型

(推荐)植物发育生物学被子植物花器官发育的分子模型

5.边缘滑动模型
边 缘 滑动模型(shifting border model或sliding boundarymodel) (图)解释了B功能基因表达区域的可塑性, 在花发育进程中, B功能基因的表达区域扩展到外层而导 致花瓣状器官的分化, 使外轮器官与内层花瓣在形态上具 有一致性(如单子叶植物百合、郁金香; 基部核心双子叶 植物毛茛、耧斗菜等), 这种B 功能基因功能延伸到外轮 花器官的分子模型又称为修饰的ABC 模型(modified ABC model) , 但此种分子模型并不适用于所有的单子叶植物 类群。
就拟南芥而言, A+E 功能基因控制萼片发育; A+B+E 功 能基因控制花瓣发育; B+C+E功能基因控制雄蕊发育; C+E 功能基因控制雌蕊发育。
3.四分子模型
通过凝胶阻滞、酵母双杂交等分子生物学实验,人们发现 花的同源蛋白能通过聚合作用形成同源或者异源二聚体, 进而组装形成多聚复合体发挥作用。为了解释这些蛋白如 何通过相互作用来调控花器官的发育,Theissen 等结合MADS蛋白多聚体的研究,提出了“四因子”模 型(quartet model),认为花器官是由4 种同源异型蛋白复合体通过结合在目标基因启动子区域来 调节基因开闭,进而调控花器官的发育。
Wild-type:
A功能基因包括拟南芥的APETALA1 (AP1)和AP2 基因、金鱼草 的AP2-like基因LIPLESS1和LIPLESS2(LIP1、LIP2), 单独决
定第1轮萼片属性。
A-function mutant:
B功能基因包括拟南芥的APETALA3 (AP3)和PISTILLATA(PI) 基因、金鱼草的DEFICIENS (D E F) 和GLOBOSA (GLO)基因,

第一章 绪论3分子生物学课件

第一章 绪论3分子生物学课件

1.3 分子生物学与生物化学之间的关系
分子生物学发展的三大支撑学科: 1、细胞学:研究细胞的结构与功能。细胞的化学组
成,细胞器的结构,细胞骨架,生物大分子在细胞中
的定位及功能。 2、遗传学:研究基因的遗传与变异。基因结构,基 因复制,基因表达,基因重组,基因突变。 3、生物化学:研究活性物质代谢规律。
第一个细菌基因的克隆,开创了基因工程新纪元,标志
着人类认识生命本质并能主动改造生命的新时期开始,
1980年。
5. 1975年,Kohler和Milstein巧妙地创立了
淋巴细胞杂交瘤技术,获得了珍贵的单克隆抗体;
1984年。
6. 1975-1977年,Sanger和Gilbert发明了 DNA序列测定技术;1977年第一个全长5387个核苷 酸的Φ X174基因组序列由Sanger测定完成;1980年, 1958年。
划,2003年4月14日美、英、日、法、德和中国科学家经
过13年努力共同绘制完成了人类基因组序列图)。
3. PCR技术的建立(1983年,Mullis,PCR被喻 为加速分子生物学发展进程的一项“简单而晚熟”的 技术,1993年)。 4. 单克隆抗体及基因工程抗体的发展和应用 (生物制品生产,如酶、细胞因子、干扰素、生长激 素、胰岛素等,疾病的诊断、治疗和研究)。 5. 基因表达调控机理(反义RNA技术、RNAi干扰、 基因芯片)。 6. 细胞信号转导机理研究成为新的前沿领域(G 蛋白、细胞凋亡、细胞癌变、细胞分化)。 7. 基因组学、蛋白质组学、生物信息学成为新 的前沿领域。
分子结构生物学 分子发育生物学 分子细胞生物学 分子免疫学 分子遗传学 分子数量遗传学
分子神经生物学
分子育种学 分子肿瘤学

植物生理与分子生物学课件-9[1].14

植物生理与分子生物学课件-9[1].14

植物生理学与分子生物学Plant Physiology and Molecular Biology植物生理与分子生物学课程安排第一篇分子与细胞生物学基础第二篇光合作用第三篇营养与水分第四篇呼吸与代谢第五篇生长发育第六篇植物信号与信号转导第七篇植物与环境第一篇分子与细胞生物学基础内容植物基因组的研究方法: 主要研究目标:基因组学概述基因组(genome):单倍体全部基因组研究内容:基因组学基因组学(Genomics)(Genomics)(Genomics)::基因组学的分类:结构基因组学(structural genomics):意义:功能基因组学(functional genomics):主要研究内容::主要研究内容基因的识别、鉴定和克隆。

基因结构与功能及其相互关系的研究。

基因表达调控的研究。

目标::目标静态动态任务:: 任务比较基因组学(comparative genomics)概念的含义:比较基因组学的应用:目前从模式生物基因组研究中得出一些规律:研究意义:药物基因组学(Medical Genomics) :营养基因组学(Nutritional Genomics): 次级代谢生物信息学(Bioinformatics):仅仅从基因的角度来研究是远远不够的。

蛋白质组学蛋白质组学(proteomics)(proteomics)最终目标:: 最终目标生物基因组大小基因组大小((bp )T4噬菌体T4 phage2.0×105大肠杆菌Escherichia coli 4.2×106酵母Sccharomyces cereviside 1.5×107拟南芥Arabidopsis thaliana 1.0×108线虫Caenorhbditis elegans 1.0×108果蝇Drosophila melanogaste r 1.65×108水稻Oryza sativa 4.3×108小鼠Mus musculus3.0×109人类Homo sapiens 3.3×109玉米Zea mays5.4×109小麦Triticum aestivum1.6×1010不同生物基因组大小基因组学的发展1. 人类基因组计划弹计划阿波罗登月计划《癌症研究的转折点:测序人类基因组》基因组计划?四张图四张图——————遗传图遗传图遗传图、、物理图物理图、、转录图转录图、、序列图基因组研究大事年表。

植物发育生物学

植物发育生物学

细胞生物学技术在植物发育生物学中应用
细胞培养技术
通过植物组织培养和细胞培养技术,研究植物细胞的分裂 、分化和发育过程及其调控机制。
细胞成像技术
利用荧光显微镜、共聚焦显微镜等成像技术观察植物细胞 的结构、动态和互作,揭示细胞在植物发育中的功能和调 控机制。
细胞凋亡检测技术
运用TUNEL等技术检测植物发育过程中的细胞凋亡现象, 研究其在植物发育中的作用和调控机制。
幼苗在光、温度、水分等条件适宜 时,进行光合作用,合成有机物质 ,促进根系和地上部分的生长。
营养生长
植物通过根系吸收土壤中的水分和 矿质营养,以及叶片进行光合作用 ,合成有机物质,用于植物体的构 建和生长。
光、温度、水分等环境因子对生长发育影响
光的影响
光是植物进行光合作用的 能量来源,对植物的形态 建成、生理代谢以及生长 发育都有重要影响。
植物细胞在分裂后,需要合成新的细 胞壁并加厚原有的细胞壁,以维持细 胞的形态和强度。
内质网和高尔基体扩展
内质网和高尔基体等膜系统扩展,为 细胞合成和分泌蛋白质、脂质等物质 提供足够的场所。
03
植物组织器官形成与分化
愈伤组织诱导和器官发生途径
愈伤组织诱导
通过外植体培养在适宜条件下诱导产生无序生长的细胞团, 即愈伤组织。
赤霉素
促进茎的伸长、引起植 株快速生长、解除休眠 和促进花粉萌发等生理
作用。
脱落酸
抑制细胞分裂和伸长, 促进叶和果实的衰老和
脱落。
基因表达调控在器官形成中作用
转录因子调控
01
通过转录因子与特定基因启动子的相互作用,调控基因的转录
水平,从而影响器官的形成和发育。
表观遗传学调控

植物发育分子生物学ppt课件

植物发育分子生物学ppt课件
从种子或幼苗阶段开始,就已经开始了花决定的基因表达调控,春化作用 (vernalization)决定开花与否就是一种早期控制花发育的表达调控的例 子,营养生长过程中环境中光周期的长短、光质(红外/远红外、蓝光的照 射)以及植物内在的因素如赤霉素、碳水化合物代谢等因素都能诱导花的形 成。这些内外因素通过开花决定基因的表达调控,诱导花的发端,从而决定 开花的时间。
PPLP
PPLP
FY
FPA 编码一个RNA 结合蛋白, FVE 编码一个含有WD重复序列蛋白,在抑制 FLC 表达方面,它们属于同一个上位效应组。然而它们的作用机制还不清楚。
体中, FLOWERING LOCUS C (FLC)有很高浓度的积累,说明FLC 是
一个关键的抑制因子。
精选编辑ppt
12
春化作用和自调控途径的一些基因通过不同的分子机制抑制和下调FLC的表达, 使开花能够进行。
1、自开花调控途径对FLC表达的抑制 抑制FLC表达的基因有FCA、 FY、 FPA、 FVE、 LD、 FLD。
精选编辑ppt
9
Pathways That Enable the Floral Transition
Boss, P. K., et al. Plant Cell 2004;16:S18-S31
精选编辑ppt
10
Copyright ©2004 American Society of Plant Biologists
精选编辑ppt
6
Resetting, Repression, and Promotion Phases in the Life Cycle
Boss, P. K., et al. Plant Cell 2004;16:S18-S31

植物发育生物学

植物发育生物学
5
2. 植物的生长发育与动物的不同
1、动物在胚胎发育中可移动,植物的则不能移动,细胞间 彼此连结很紧密。
2、动物细胞通常没有细胞壁,植物则有,因此细胞死后仍 保持一定的形态,死细胞和活细胞共同组成植物体。
6
3、植物细胞比动物细胞更容易表现出全能性,容易在人工培养 的条件下发育成新的个体或器官。 4、动物胚胎发育完成后几乎是全面的生长,成熟动物体中不在 特定部位保留干细胞群(相当于植物中的分生组织细胞),不 再增加新的器官和组织。植物则是在特定部位保留有分生组织 细胞群,形成局部生长,一生中不断形成新的器官和组织。
22
与苔藓类植物相比.蕨类植物体形大小、分布区域 等方面均有显著的不同。蕨类植物小的仅若11厘米,大 的可高达百米,它们不仅能够像苔藓类植物那样生存在 潮湿的地区,而且还可以生存于水中或干热的沙漠地区。
主要得益于其维管系统的分比。 主要是孢子体
23

24
肾蕨
其他蕨类蕨
桫椤 有柄石韦
25
槐叶苹(Salvinia)
42
松柏类植物的生活周期
43
松柏类的生活 周期
44
1、藻类、苔藓类和蕨类植物中,物种的传播均是以单细胞的 形式进行,而在裸子植物中,则都是以多细胞的形式进行,如 种子和花粉; 2、在孢子体的形态建成过程中,出现了多细胞的、具有特定 结构的茎端分生组织,通过茎端分生组织的活动,形成了完成 生活周期所必需的不同类型的侧生器官(如不同类型的营养性 叶和大小孢子叶); 3、在裸子植物生活史中,其孢子体的形态建成的复杂性大大 增加。除了由茎端分生组织所形成的侧生器官类型增加之外, 还有茎的形成、根系的形成以及根和茎的次生生长等。
10
石莼是生活史比较复杂的绿藻。它是一种片状的结 构。但需要注意的是,这种片状结构既可能是由单倍 体细胞构成,也可能是由二倍体细胞构成

植物发育分子生物学(1)

植物发育分子生物学(1)
请叙述从花粉落到柱头到受精的过程 花粉落到结构匹配的柱头上后,紧密配合柱头的结构。花粉外被和柱头分泌物 流动到花粉与柱头接触的脚处混合并相互作用后,使花粉吸水膨胀、萌发。花粉 管穿入柱头,沿着花柱内的传输管道向着胚珠的方向生长。其间传输通道壁细胞 分泌多肽、糖蛋白、细胞壁物质水解酶,作为营养物质和细胞壁生长有关物质帮 助花粉管生长。同时从柱头到胚珠,NO 和 GABA 呈浓度梯度分布,引导花粉 管向着胚珠生长。胚珠内中心细胞表达的基因 CCG 和助细胞表达的 MYB98 都是胚珠引导花粉管进入胚珠的必须信号。花粉管进入胚珠后,经过助细胞的纤 维突起装置,花粉管破裂,精子释放到助细胞内,引起助细胞进入程序化死亡和 细胞破裂,向胚囊内释放大量钙离子,同时在通向中心细胞和卵细胞途径中搭起 肌动蛋白冠样桥,指引和帮助精子进入中心细胞和卵细胞授精。 四、选择题 1. 在远红光下起关键作用的光受体是( A ) A. 光敏素 A B. 趋光素 C. 光敏素 B D. 隐花素 (光敏素:是一种 N 端感光区与线形四环吡咯发色团结合的蛋白质复合体,接 收红光/远红光后,蛋白质的构象改变,C 端激酶活化,通过磷酸化将光信号传 导下去。 在远红光下,PHYA 可能是唯一的光受体) 2.AP1 是( A )类开花决定基因 A.A B.B C.C D.D (A 基因是 AP1/AP2,B 基因是 AP3/PI,C 基因是 AG) 3. 短日下促进开花的重要激素是:( A ) A. 赤霉素 B. 细胞分裂素 C. 生长素。 D. 脱落酸 (赤霉素是开花决定过程中的重要激素,其促进短日条件下的花,独立于春化作 用,不同于光周期的作用,在一些植物中可以取代春化作用,RGA 是开花过程 中赤霉素信号转导的重要因子;在长日条件下对开花决定影响较小) 4.SHR 在( A )转录。 A. 中柱内 B. 中柱外 C. 皮层 D. 内、表皮 (SHR 转录只在中柱中进行,翻译后的蛋白质运输到内皮层、静止中心和皮层 /内皮层起始细胞) 5.STM 和 KNAT1 在茎顶端分生组织从内层单向运输到表皮,( A )是决定区 域。 A.KNOX 同源盒 B.BLH C.生毛细胞中 GL2 只受到 CPC 的抑制作用,最终造成根毛的形成。 两类 MYB 类的调控因子比例 WER/CPC 决定细胞命运:非生毛细胞中高

分子生物学(共19张PPT)

分子生物学(共19张PPT)

04
蛋白质的结构与功能
蛋白质的分子组成与结构
氨基酸通过肽键连 接形成多肽链,即 蛋白质的一级结构 。
多条多肽链组合在 一起,形成蛋白质 的三级结构。
蛋白质的基本组成 单位是氨基酸,共 有20种常见氨基酸 。
多肽链经过盘绕、 折叠形成二级结构 ,主要形式包括α螺旋和β-折叠等。
在特定条件下,蛋 白质可形成四级结 构,由多个亚基组 成。
发展历程
从20世纪50年代DNA双螺旋结构 的发现开始,分子生物学经历了 飞速的发展,成为现代生命科学 中最为活跃和前沿的领域之一。
分子生物学的研究对象与任务
研究对象
主要包括DNA、RNA、蛋白质Байду номын сангаас生 物大分子,以及它们之间的相互作用 和调控机制。
研究任务
揭示生物大分子的结构、功能及其相 互作用机制;阐明基因表达调控的分 子机制;探索生物大分子在生命过程 中的作用和意义。
转录因子
01
真核生物中存在大量转录因子,它们与DNA特定序列结合,激
活或抑制基因转录。
表观遗传学调控
02
通过DNA甲基化、组蛋白修饰等方式,改变染色质结构,影响
基因表达。
microRNA调控
03
microRNA是一类小分子RNA,通过与mRNA结合,抑制其翻
译或促进其降解,从而调节基因表达。
基因表达调控的分子机制
发育生物学研究生物体的发育过程,而分子 生物学则揭示了发育过程中基因表达和调控 的分子机制。
02
DNA的结构与功能
DNA的分子组成与结构
DNA的基本组成单位
脱氧核糖核苷酸,由磷酸、脱氧核糖 和碱基组成。
DNA的碱基
DNA的双螺旋结构

植物生理ppt课件

植物生理ppt课件
植物对盐碱环境的适应
植物对温度变化的适应
通过调节细胞膜流动性、增加热休克 蛋白合成等方式适应温度变化。
通过提高渗透压、积累有机酸、合成 抗盐蛋白等方式适应盐碱环境。
2023
PART 04
植物的光合作用与呼吸作 用
REPORTING
光合作用的过程与机理
总结词
光合作用是植物通过叶绿体将光能转化为化学能的过程,它分为光反应和暗反 应两个阶段。
增加细胞内糖分和脂肪含量
在寒冷条件下,一些植物会增加细胞内的糖分和脂肪含量 ,以提高细胞的抗冻能力。
调节膜脂组成
植物通过调节膜脂的组成来适应低温环境,如增加不饱和 脂肪酸含量、降低膜流动性等。
产生抗冻蛋白
一些植物在低温条件下会产生抗冻蛋白,这些蛋白能够与 冰晶结合,防止细胞内冰晶形成,从而保护细胞结构不受 破坏。
2023
PART 05
植物的生长与发育
REPORTING
植物生长的调控机制
激素调节
植物激素如生长素、赤霉素、细 胞分裂素等对植物生长具有重要 调节作用,影响细胞分裂、伸长
和分化。
营养物质
植物通过吸收土壤中的水分、矿物 质等营养物质,调节自身生长和发 育。
环境因素
光照、温度、湿度等环境因素通过 影响植物激素的合成与代谢,进而 调控植物生长。
植物生理学的重要性
植物生理学是农业、林业、园艺等学 科的基础,对于解决粮食、环境、资 源等问题具有重要意义,同时对于人 类健康和生态平衡也有重要影响。
植物生理学的研究内容和方法
研究内容
植物生长发育与调控、光合作用 与呼吸作用、水分和营养吸收与 运输、植物激素与信号转导等。
研究方法
实验研究、数学建模、计算机模 拟、同位素标记等。

植物学pptPPT课件

植物学pptPPT课件

01
节、节间、叶痕、芽等
茎的主要功能
02
支持叶、花和果实、输导水分和养分、贮藏有机物质
茎的变态类型
03
地上变态茎(如茎卷须、叶状茎等)、地下变态茎(如块茎、
根状茎等)
13
叶的结构与功能
2024/1/26
叶的基本结构
叶片、叶柄、托叶
叶的主要功能
光合作用、蒸腾作用、呼吸作用、吸收作用等
叶的变态类型
苞片、鳞叶、叶状柄等
2024/1/26
02 03
植物的进化历程
经历了由水生到陆生、由简单到复杂、由低级到高级的漫长进化过程。 在这个过程中,植物逐渐发展出了多样化的形态结构和生理功能,以适 应不断变化的环境条件。
植物进化的驱动力
包括自然选择、遗传变异、基因重组和生物间的相互作用等多种因素。 这些因素共同作用,推动着植物不断向着更高级、更复杂的方向发展。
2024/1/26
16
植物分类的原则与方法
形态分类原则
根据植物的形态、结构特征 进行分类,如根、茎、叶、 花、果实和种子等器官的特 征。
系统发育原则
根据植物的亲缘关系和演化 历程进行分类,通过比较基 因组、分子生物学等手段揭 示植物间的亲缘关系。
居群分类原则
根据植物的地理分布、生态 环境和适应性进行分类,强 调植物与其生存环境的关系 。
现代植物学
现代植物学在分子生物学、基因组 学等领域取得了重要进展,对植物 生命现象的研究更加深入和全面。
5
植物学的研究意义
揭示生命本质
保护生态环境
植物作为生命世界的重要组成部分,研究 植物有助于揭示生命的本质和演化规律。
植物在维护生态平衡、保护生物多样性等 方面具有重要作用,植物学研究有助于制 定科学合理的生态保护措施。

植物的发育生物学

植物的发育生物学
,植物发育生物学的研究正朝着更加系统、全面的方向发展。
02
植物细胞发育与分化
细胞分裂与增殖
有丝分裂
植物细胞通过有丝分裂进行增殖 ,包括DNA复制、纺锤体形成、
染色体分离等步骤。
无丝分裂
部分植物细胞可进行无丝分裂,如 细菌细胞和某些原生动物细胞,此 过程不涉及纺锤体和染色体的变化 。
细胞周期
植物细胞的分裂和增殖遵循细胞周 期,包括DNA合成期(S期)和分裂期 (M期)。
跨学科合作与创新思维在植物发育生物学研究中的应用
01
整合多组学数据解析植物发育过程: 随着高通量测序技术的发展,多组学 数据整合分析已成为植物发育生物学 研究的重要手段。通过整合基因组学 、转录组学、蛋白质组学和代谢组学 等多组学数据,可以全面解析植物发 育过程中的基因表达调控和代谢变化 。
02
利用合成生物学手段探索植物发育新 机制:合成生物学是一门新兴的交叉 学科,旨在通过设计和构建新的生物 部件、设备和系统来探索生命过程的 新机制。将合成生物学手段应用于植 物发育生物学研究,有助于发现新的 发育调控机制和实现农作物性状的定 向改良。
高温和低温等温度逆境会对植物的细胞膜 系统、光合作用、呼吸作用等产生不利影 响,从而影响植物的正常生长。
光照逆境
土壤逆境
光照不足或光照过强等光照逆境会影响植 物的光合作用和生长发育,导致植物生物 量下降、品质变差。
土壤盐碱、重金属污染等土壤逆境会破坏 植物的根系生长环境,影响植物对水分和 养分的吸收,从而影响植物的正常生长。
03
结合计算生物学和人工智能技术挖掘 植物发育数据中的信息:计算生物学 和人工智能技术的发展为处理和分析 大规模生物数据提供了有力支持。利 用这些技术,可以对植物发育过程中 的海量数据进行深度挖掘和分析,发 现新的发育调控机制和预测植物表型 变化。

植物学(完整课件)

植物学(完整课件)
植物学(完整课件)
CONTENTS
• 植物学概述 • 植物细胞与组织 • 植物的营养器官 • 植物的繁殖器官 • 植物的生长发育 • 植物的分类与进化
01
植物学概述
植物学的定义与研究对象来自植物学的定义植物学是研究植物生命现象和植 物界演化规律的科学,涉及植物 的形态、结构、生理、生态、分 类、进化等方面。
生活在水中,无根、茎、叶的分化,通过光合 作用制造有机物。
01
地衣植物
由藻类和真菌共生而成,具有独特的 形态和生理特征。
03
蕨类植物
具有真正的根、茎、叶和孢子囊,生活在阴 湿环境中。
05
02
菌类植物
包括细菌、真菌等,无叶绿素,不能进行光 合作用,通过吸收其他生物体或有机物的营 养而生活。
04
苔藓植物
开花与传粉
受精与结实
花粉在柱头上萌发,产生花粉管,将 精子输送到胚珠内与卵细胞结合,形 成受精卵,进而发育成种子。
植物开花后,雄蕊产生花粉,雌蕊柱 头接受花粉,完成传粉过程。
植物生长与发育的调控
01
激素调节
植物激素在植物生长和发育过程中起着重要的调节作用,如生长素、赤
霉素、细胞分裂素等。
02
环境因子
根的类型
主根、侧根、不定根
茎的结构与功能
茎的基本结构
节、节间、叶痕、芽
茎的主要功能
支持叶、花和果实,输导水分和无机盐, 贮藏营养物质
茎的类型
直立茎、缠绕茎、攀援茎、匍匐茎
叶的结构与功能
叶的基本结构
01
叶片、叶柄、托叶
叶的主要功能
02
光合作用,蒸腾作用,吸收和分泌作用
叶的类型
03

《植物生理学》课件

《植物生理学》课件
要点一
内源调节
植物通过激素等内源调节物质来调控自身的生长和发育。
要点二
外源调节
环境因素如光照、温度、水分、养分等对植物生长具有重 要影响。
植物的生殖生理与发育过程
植物的生殖生理
植物通过生殖过程产生种子,实现繁殖。
植物的发育过程
植物从种子萌发到开花结果的整个过程,包 括营养生长和生殖生长两个阶段。
THANKS FOR WATCHING
氧气释放
在光合作用的光反应阶段,水 分子被分解为氧气和质子,氧 气被释放到大气中。
能量利用
植物通过光合作用将太阳能转 化为化学能,这些能量被用于 植物的生长、发育和繁殖等生
命活动。
04
植物的呼吸作用
呼吸作用的基本概念
01
呼吸作用
指植物在有氧条件下,将稳定的 化学能转化为ATP和NADPH的 过程。
详细描述
植物生理学主要研究植物如何获取养 分、水分,如何进行光合作用、呼吸 作用等生理过程,以及植物如何适应 环境变化等方面的内容。
植物生理学的学科地位与意义
总结词
植物生理学是生物学的重要分支,对于理解植物生长发育、 适应环境等过程具有重要意义,也为农业、林业等实践领域 提供了理论基础。
详细描述
植物生理学是生物学的基础学科之一,对于理解植物生命活 动的本质和机制具有重要作用。同时,植物生理学的研究成 果也为农业、林业等实践领域提供了重要的理论支持和实践 指导。
感谢您的观看
光合细胞
进行光合作用的细胞主要是叶绿体中的叶肉细胞 。
光合色素
叶绿体中的色素,包括叶绿素a、叶绿素b、胡萝 卜素和叶黄素等,主要吸收光能。
光合作用的机理与过程
光能吸收 电子传递

现代分子生物学(课堂PPT)

现代分子生物学(课堂PPT)

Frederick Sanger
酶法核苷酸测 序的设计者
Walter Gilbert 化学测序法的设计者
Paul Berg
DNA重组,在细菌中表 达胰岛素
DNA重组技术的元老
测定了牛胰岛素的化学结构而获 1958 年的 Nobel 化学奖
25
1984 Kohler(德) Milstein(美) Jerne(丹麦)
15
2、 重要机制的发现 * 1949 Chargaff 测定出不同来源的A、T、G、 C 四种核酸碱基 * 1950 Chargaff Markham A=T G=C * 1953 Watson &Crick DNA Double Helix Model
随着DNA双螺旋结构的提出和蛋白质空间结构的解析开始了分 子生物学时代,此后对遗传信息的载体DNA和生物功能的体现者 蛋白质的研究的研究也成为生命科学研究的主要内容
Francis Jacob Jacques Monod 提出并证实了Operon作为调节细菌细 胞代谢的分子机制 首次提出mRNA分子的存在
22
1969 Nirenberg(美) Holly & Khorana
Marshall W. Nirenberg
破译了遗传密码
Robert W. Holley 酵母Ala-tRNA的 核苷酸序列并证 明了所有tRNA三 级结构的相似性
断裂基因(splitting gene) PCR仪的发明者 基因定点突变
1994 Gilman & Rodbell 发现G蛋白在细胞信号传导中的作用
1995 Lewis(美)、Nusslein-Volhard(德)、Wieschaus(美) 20世纪40~70年代先后独立鉴定了控制果蝇( Drosophila ) 体节发育基因
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转录产物被有选择性地加工控制开花时间活性的蛋白质。FCA 通过促进在第三个内含子中切断
链并进行多聚腺苷酸的修饰,形成一条无活性的转录产物,降低活性产物
的量而实现对其本身表达的负调控。FCA的这种负调控需要与其C端WW蛋白
质结合位点结合的FY基因蛋白产物的共同作用。
决定开花的途径被Boss等人(plant cell,16:S18)分为使能够开花(花决定) 和促进开花两类。
促进开花的途径有光周期、激素、光质、环境温度等,这类途径激活开花基因的表 达,被称为综合者(integrator)。
另一类基因通过控制开花抑制基因的表达影响开花,这类基因是enable pathway的基因,它们使开花能够进行。
Resetting, Repression, and Promotion Phases in the Life Cycle
Pathways That Enable or Promote the Floral Transition Determine Flowering Time
一、使开花能够进行的途径
由花序生长顶端生长延长形 成花序,在花序上的顶端和腋 间分生组织形成花分生组织。
第一节 开花决定
开花决定是在整个生活周期中一系列环境因素和内在因素共同控制的有序的基因表 达调控控制下植物营养生长向生殖生长的转变,即茎营养分生组织向花序分生组织 的转变。
从种子或幼苗阶段开始,就已经开始了花决定的基因表达调控,春化作用 (vernalization)决定开花与否就是一种早期控制花发育的表达调控的例 子,营养生长过程中环境中光周期的长短、光质(红外/远红外、蓝光的照 射)以及植物内在的因素如赤霉素、碳水化合物代谢等因素都能诱导花的 形成。这些内外因素通过开花决定基因的表达调控,诱导花的发端,从而 决定开花的时间。
两个 N-端 RNA 结合区域与3‘端目标RNA结合起来进行作用,FCA pre-mRNA就是一个
目标
RNA binding RNA binding
WW-蛋白结合
FCA
mRNA
WD-repeat
PPLP
PPLP
FY
FPA 编码一个RNA 结合蛋白, FVE 编码一个含有WD重复序列蛋白,在抑制 FLC 表达方面,它们属于同一个上位效应组。然而它们的作用机制还不清楚。
FLC 是一个关键的抑制因子 ,FLC 基因编码MADS类型的转录因子,通过抑制 FLOWERING LOCUS T(FT) 和SUPPRESSOR OF OVEREXPRESSION OF CONSTANTS(SOC1) 而抑制决定花分生组织特性的基因LEAFY(LFY)和 APETALA1(AP1)的表达,从而抑制开花 。
植物发育生物学
营养生长
生殖生长
生殖发育可以分为三个阶段: 花的发育 配子体的发育和配子形成 传粉受精与合子的形成
第一章 植物花的发育
包括开花决定、花的发端和花器官形成
开花决定过程使营养生长茎端转变形成花序生 长顶端(或花生长分生组织),
花的发端,将未来花器官 的各部分预先规划定位。
花的发端在基因表达调控 网络中处于关键阶段。
2、春化作用对FLC表达的抑制
春化作用指过冬植物经过冬季的低温逐渐积累某种物质,下调FLC的表达, 加速开花的过程。
在一定时间范围内,春化作用的低温处理具有数量累积效应,低温处理 的时间越长,开花越早。
低温处理的过程发生在营养生长期间,低温处理的效果不受有丝分裂影响, 可以保持到开花。
经过低温处理的枝条剪切插枝后仍能开花。
指调节与激活开花途径的综合因子(integrator)相佶抗的抑制因子 (repressor)的途径,其中包括增强和降低抑制因子的活性调节。
抑制因子:Flowering lotus C(FLC)、Terminal Flower1(TFL1)、Short vegetative phase(SVP)、Target of eat1/2(TOE1/2), 以及FLC类似基因
Pathways That Enable the Floral Transition
春化作用和自调控途径的一些基因通过不同的分子机制抑制和下调FLC的表达, 使开花能够进行。
1、自开花调控途径对FLC表达的抑制 抑制FLC表达的基因有FCA、 FY、 FPA、 FVE、 LD、 FLD。
FCA 编码含有两个RNA结合位点和C端一个WW蛋白质结合位点的基因,它的
LUMINIDEPENDENS (LD) 和 FLOWERING LOCUS D (FLD)是另外两个抑制FLC表达的基 因。LD也是 RNA结合蛋白,位于核中,可能在核中通过与上述两种蛋白相似的作用 对FLC进行RNA加工的调控。而FLD则可能通过对与FLC所在的染色质组蛋白末端脱酰 基化阻止 FLC的转录,从而促进开花。
在种子发育过程中,母体受到的低温处理的春化效果要消除掉,使种子在 萌发后重新设置新的低温循环 。
Brassicaceae 十字花科、Poaceae禾本科 、 Amaranthaceae 苋科三科植物春化作用机理不同
十字花科拟南芥: 在冬季低温过程中,VIN3和分别在FLC第一个内 含子和3’起始转 录的非编码RNA COLDAIR和COOLAIR 转录,VIN3与Polycomb Repressive Complex 2 (PRC2)复合物结合形成冷专一的复合物 PRC2,使FLC沉默。COLDAIR在这个过程中引导PRC2到FLC位点。 而PRC2(含VRN2)在FLC位点将H3K27甲基化。 VERNALIZATION1(VRN1) 和LIKE-HETEROCHROMATIN PROTEIN1将FLC位点的H3K9甲基化,使FLC沉默稳定。稳定的 FLC沉默使FT表达,FT从叶中运输到顶端分生组织,与碱性亮氨 酸拉链蛋白FD结合,激活开花同源复合物,促进开花。
FCA mRNA前体
活性mRNA
无活性mRNA
FY 编码一个含WD重复序列、C端含有两个PPLP序列、在真核生物中高度保守的蛋白,
它的酵母同源基因Pfs2p编码参与RNA 3’加工的蛋白质复合体的一个必需组分蛋白,因
此一个可能的模式是通过FCA 的WW domain 和 FY 的PPLP domain的相互作用把FCA的
相关文档
最新文档