空分冷箱基础设计浅析
浅谈空分冷箱和压缩机基础施工_杨国锋
![浅谈空分冷箱和压缩机基础施工_杨国锋](https://img.taocdn.com/s3/m/ea6f4c8584868762caaed521.png)
空调系统的相关负荷量,然后参照系统的设备进行有效控制,如果按 照了实际情况来进行复核变化将使得运行工况得到调整,促进了空调 节能的进步,能够缓解能源紧张的趋势。 科
● 【参考文献】
[1]何雪冰,刘宪英.中央空调 节 能 有 关 问 题 的 研 讨//99 西 南 地 区 暖 通 制 冷 学 术 年会论文集. [2]彦 启 森 ,主 编 .空 气 调 节 用 制 冷 技 术 .中 国 建 筑 工 业 出 版 社 ,1981,7(1). [3]钱 以 明 .高 层 建 筑 空 调 与 节 能 .同 济 大 学 出 版 社 ,1990,2(1). [4]周 谟 仁 ,主 编 .流 体 力 学 泵 与 风 机 .中 国 建 筑 工 业 出 版 社 ,1985,12(2).
在中央空调水系统设计时要对冷却水泵、冷冻水泵、冷却塔风机 的容量进行合理的设计。 在使用变频调速系统时要参照末端负荷的变 化情况来为水泵驱动电机的输入频率的调节发出作用,这样能使得水 泵的转速得到协调,实现水泵调节供水流量的要求从而实现节能。 中 央空调设备不仅要选择效率高的空调设备,还要对控制方式找出最佳 方案,这就需要借助于控制策略以及控制技术来实现。 准确计算暖通
1 工程概况
1.1 冷箱基础工程概况 开 空 产 四 万 空 分 装 置 主 冷 箱 基 础 的 平 面 呈 矩 形 , 长 21.20m,宽
13.00m,基础厚度 为 4.50m。 基 础 埋 深 :地 面±0.00 以 下 为 3.5m;地 面± 0.00 以上为 1.00m。 基础混凝土强度等级为 C30,抗 渗 等 级 为 S12,抗 冻等级为 F250;基础上部三边挑出 200mm 宽挑檐。 1.2 压缩机基础工程概况
预防:混凝土浇筑前,安排专人与供电部门联系确保供电,防止突 然停电。 并安排电工值班,一旦供电线路发生故障,立即处理。 4.4 脱皮、麻面
浅谈大型空分冷箱安装
![浅谈大型空分冷箱安装](https://img.taocdn.com/s3/m/be476d3acaaedd3382c4d31f.png)
浅谈大型空分冷箱安装作者:田真来源:《中国科技纵横》2013年第04期【摘要】本文是根据我们公司今年承建的中煤陕西榆林榆横煤化工60000m3/h空分装置施工经验,对冷箱的安装工艺、工序以及施工要点进行了归纳总结,希望为以后此类冷箱的施工提供参考。
【关键词】冷箱板冷箱内的设备施工工序我公司承建的中煤陕西榆林榆横煤化工60000m3/h空分装置,现正在紧张建设中。
这是我公司有史以来承建的最大空分装置,在国内同类空分装置中也属大型。
而冷箱做为空分装置重点设备,是整个安装施工的主线,也是难点和重点。
这套空分冷箱高度达到74米,不包括设备,总重达到600余吨。
冷箱越高越重,安装难度和危险性越来越大。
当然,冷箱内设备、管道等的安装难度也就随之提高了。
现将冷箱板和附属梯子平台、冷箱内的设备、分二大部分进行叙述。
1 施工难点及特点1.1 冷箱壳体该冷箱由杭氧供货,主要由主冷箱、板式换热器冷箱、主冷凝蒸发器冷箱以及风力框架四部分组成。
主冷箱外形尺寸:W12200×L8000×H73500mm;板式换热器冷箱外形尺寸:W12200×L8000×H12000mm;主冷凝蒸发器冷箱外形尺寸:W12200×L7500×H13000mm;风力框架高6500mm,重量12.66吨。
1.2 冷箱内设备冷箱内共有设备18台,主冷箱有下塔、上塔(分上、下段到货)、增效塔与粗氩冷凝器复合以及2台液空液氮过冷器,副冷箱内有8台低压板式换热器、3台高压板式换热器、1台气液分离器以及1台主冷凝蒸发器。
1.3 冷箱内管道冷箱内管道主要由工艺管道、φ12仪表管、密封气管三部分组成,根据杭氧提供的管道材料表,冷箱内工艺管线共约1760米,其中不锈钢管道约230米,铝管道1530米;φ12仪表管2100米,其中不锈钢管300米,铝管1800米;密封气管目前未知。
各类阀门282个,管线材质主要包括5052-H112、5083-H112以及0Cr18Ni9三种,管径规格包含φ18×2至Φ1320×10mm。
空分设备冷箱钢结构设计安全性分析
![空分设备冷箱钢结构设计安全性分析](https://img.taocdn.com/s3/m/b0b61cad76c66137ee0619e2.png)
空分设备冷箱钢结构设计安全性分析洪梦丽,周慧明,张云,黄伟林,缪建莉摘要:介绍钢结构的优势及钢结构工程施工中存在的问题,从防脆性、强度与稳定性、防腐性等方面阐述了钢结构的各项安全性能要求。
关键词:空分设备;冷箱;钢结构;安全性引言近些年我国冶金、石化、石油、化肥等工业得到飞速发展,国内对空分设备的需求不断加大,空分设备冷箱也不断向更大、更高发展,因此对冷箱钢结构的设计质量和性能提出了更高的要求m。
冷箱内装载有氧、氮、氮等气体分离设备的核心单元。
冷箱钢结构作为一个壳体,主要作用是装载保温材料,为内部设备提供一个稳定的低温环境,同时也是空分设备各种附属设备的载体。
整个冷箱钢结构需承受风雪载荷,地震载荷,安装、运行、维修时的种种载荷。
其中影响最大的是风载荷,随着我国南方地区经济的高速发展,沿海空分设备的建设日益增多,如福建个别地区,风压已达到1.0kN/m2,设计难度较大。
笔者在设计国外空分项目时感触明显,特别是欧洲国家对钢结构的计算确认、审查有一套完整的法规和相应的机构在监督。
而我国针对该领域的研究较少,缺乏专业的监管措施和机构,如果设计、施工、监管等方面不加以重视,难免产生安全隐患。
1钢结构的优势钢结构在目前的工程材料中占有非常重要的地位,这是因为钢结构具有其他材料不能比拟的优点。
首先,钢结构的质量小,机械性能好,可以承受较大的载荷。
钢结构件截面尺寸小,同样跨度同样载荷时,钢屋架的重量不及钢筋混凝土屋架的1/3。
其次,金属材质均匀,钢结构制作、安装机械化程度高。
钢结构所用的材料多样,加工简便,容易保证质量,适合成批大量生产。
钢结构由专业钢结构厂家生产,在工地上用电焊或螺栓连接,施工安装简便迅速,可提高施工速度,而且螺栓连接的钢结构便于改造拆迁。
正因为钢结构具有这些优良的特点,钢结构的应用得到了快速的发展。
随着世界钢产量大幅度增加,钢结构也相应扩展了应用领域,特别是在大跨度、高耸、超高层、重型、动力载荷结构范围内,钢结构大量被使用,当然也用于空分设备冷箱。
空分装置冷箱和压缩机基础施工方案
![空分装置冷箱和压缩机基础施工方案](https://img.taocdn.com/s3/m/3da25c27ae1ffc4ffe4733687e21af45b307feb6.png)
空分装置冷箱和压缩机基础施工方案在空分装置的运作过程中,冷箱和压缩机扮演着至关重要的角色。
冷箱作为空分装置中的核心部件,负责将空气冷却至所需温度,而压缩机则是空气压缩的关键设备。
在进行安装和施工时,需要特别注意施工方案的设计与执行,以确保设备的正常运转和长期稳定性。
冷箱基础施工方案1. 地基准备在安装冷箱之前,必须确保地基平整、坚固,并符合设计要求。
应根据冷箱的尺寸和重量确定地基的具体尺寸和承重能力,以确保设备稳固安全地安放在地基上。
2. 冷箱安装在冷箱安装时,应遵循制造商提供的安装说明书,按照其中的步骤和方法进行安装。
安装过程中需特别注意冷箱的定位和水平度,确保设备安放正确且水平,以避免设备运转过程中出现问题。
3. 冷箱连接连接冷箱时,应按照设计要求连接冷却管道和电气线路。
连接管道时应仔细检查管道接口的密封性和安全性,确保气体传输的畅通与安全。
压缩机基础施工方案1. 压缩机基座在安装压缩机之前,应先制作良好的基座。
基座的设计应考虑到承重能力、防震性能以及后期维护工作的便捷性。
基座的尺寸和高度应符合压缩机的安装要求。
2. 压缩机安装在安装压缩机时,应严格按照压缩机的安装说明书进行操作,确保安装步骤的正确性。
安装过程中应特别注意压缩机的定位和固定,防止设备在运转过程中产生位移或震动。
3. 压缩机连接连接压缩机时,应根据设计要求连接压缩机的进气口和排气口。
连接管道时应注意安全密封和气密性,以确保压缩机正常运转。
综上所述,空分装置中冷箱和压缩机的基础施工方案至关重要,合理的施工方案能够确保设备的正常运转和长期稳定性。
在实际工程中,施工人员应严格按照设计要求和操作规程进行操作,并定期进行设备的检查与维护,以确保设备的长期运行和性能稳定。
大型现代空分“圆形冷箱”
![大型现代空分“圆形冷箱”](https://img.taocdn.com/s3/m/744bed15cec789eb172ded630b1c59eef8c79ada.png)
大型现代空分“圆形冷箱”大型现代空分“圆形冷箱”引言:随着全球工业化和城市化的不断发展,高效能的制冷技术扮演着至关重要的角色。
大型现代空分“圆形冷箱”是一种颇具创新性和高效能的制冷装置,通过它可以实现高效降温、降低能耗和节约资源。
本文将介绍“圆形冷箱”的原理、设计特点以及对环境和经济的影响。
一、原理1. 制冷工作循环大型现代空分“圆形冷箱”采用蒸汽压缩制冷工作循环,包括蒸发器、压缩机、冷凝器和膨胀阀。
在循环中,制冷剂从蒸发器中吸热,通过压缩机提高压力,然后在冷凝器中放热,最后通过膨胀阀降低压力重新进入蒸发器。
2. 圆形结构“圆形冷箱”采用了特殊的圆形结构设计,使得内部的制冷管路能够更加紧凑,减少能量损失。
同时,圆形结构还提供了更大的冷却面积,增强了制冷效果。
二、设计特点1. 高效节能相比传统的制冷装置,大型现代空分“圆形冷箱”具有更高的效能和更低的能耗。
其采用了先进的压缩机技术和高效的换热器材料,使得制冷效果更佳,能源利用率更高。
同时,圆形结构的设计减少了能量损失,从而进一步降低了能耗。
2. 大容量大型现代空分“圆形冷箱”设计为大容量制冷装置,能够满足工业和商业领域的高需求。
无论是大型工厂还是超市、购物中心,圆形冷箱都能够提供稳定的制冷效果,确保产品的储存和运输安全。
3. 环保材料在现代制冷技术的发展中,环保越来越成为重要的考虑因素。
大型现代空分“圆形冷箱”采用了环保材料制造,如无氟制冷剂和绿色冷却介质,减少了对臭氧层的破坏和温室气体的排放。
这种环保设计不仅符合国际环保要求,也有助于保护环境和人类健康。
4. 智能控制系统大型现代空分“圆形冷箱”配备了智能控制系统,能够实时监测和调节制冷过程中的温度、湿度和压力等参数。
通过自动化调节,能够提高制冷效果、节约能源,并防止制冷装置出现故障。
三、对环境和经济的影响1. 环境影响大型现代空分“圆形冷箱”通过减少能耗和采用环保材料,减少对环境的负面影响。
其低温容量和高效能使得制冷作业更加高效,减少了温室气体排放和对自然资源的消耗。
大型空分制氧装置冷箱配管技术浅析
![大型空分制氧装置冷箱配管技术浅析](https://img.taocdn.com/s3/m/2ab3bf33f61fb7360a4c653e.png)
大型空分制氧装置冷箱配管技术浅析摘要:随着空分技术的发展和大型空分装置的国产化,空分装置的控制要求越来越快、越来越准确,控制回路也越来越复杂。
一些厂家提出了优化控制和自动变负荷调节的控制要求。
冷箱配管是大型空分制氧装置安装过程中的一个重要环节。
冷箱管道技术直接关系到空分装置的整体安装质量和进度。
管道设计的原则是满足工艺流程的要求,保证管道及相关设备的安全和经济。
满足工艺要求是管道设计的首要任务。
空分装置的冷箱管道中有饱和气体、液体或两相流介质。
工艺流程中对管道有许多详细的要求,需要管道设计人员加以注意。
关键词:空分制氧装置;冷箱配管技术;在大型空分制氧装置的建设中,应提前做好冷箱管道的预制工作准备,在施工过程中把握主要施工要点,在施工中注意效率和安全。
冷箱管道施工是大型空分制氧装置建设过程中的重要环节。
随着空分设备规模的不断扩大,冷箱管道的优化设计已成为提高设备安全性和经济性的有效手段,也是设计者的一项长期任务。
在更新设计方法的同时,设计师应到空分设备的生产安装现场,根据实际生产能力及时改进设计。
从材料的选择到安装,每一项都要了解,发现问题,挖掘潜力,改进,为优化设计提供切实的保障。
一、概述冷箱管道的结构不同于一般管道工程。
首先,冷箱的管道多为低温液体或低温气体管道,对焊接质量要求较高。
管道安装时应考虑冷热补偿。
其次,冷箱管道的空间位置紧凑,管道的走向复杂,管道的直径不同,且管道的安装难度很大。
第三,冷箱管道施工的安全风险因素远远大于普通管道,因此在各个环节实施安全措施显得尤为重要。
长期以来,我公司在国内组织建设了多个大型空分制氧项目,积累了丰富的冷箱管道安装经验。
冷箱内容器及管道分布密集,大部分管道需要进行预制。
为了保证冷箱管道施工的顺利进行,需要根据实际情况提前规划好管道预制段。
通过在计算机上预先安装管道,可以检测到在施工现场可能的碰撞点。
同时,计算机可以看到如何设置预制管道的起点和终点,从而合理安排管道的安装和施工。
高耸结构之空分冷箱基础结构设计原理
![高耸结构之空分冷箱基础结构设计原理](https://img.taocdn.com/s3/m/c9da2c17ff00bed5b9f31d0b.png)
一
冷箱 计算 简 图见 图 4 。
嵫 妞 , l
逝
1 . 0 5 0处 隔 水 层 上 基 础 底 板 惯 性 距 I = 1
L 皿
监 照 &
5 2 0 . 3 6 m 4 。 A= 1 6 2 . 4 4 9 5 1 T I 。 形心 X 0 = 5 . 2 4 m, 形 心 距
= 3 x 1 5 6 x 2 6 6 9 = 2 0 2 k P a ( 桩 基 . . 一 … ~
3 a = 3 x 2 . 6 6 9= 8 . 0 0 7 I l l < 0 . 7 5 b= 0 . 7 5 ×1 0 . 9= 8 . 1 7 5
0 . 5 5 0 . 5 5
2 01 6 . 9 2 0 8 0 . 0 8
注: M一 1 n 1 m 不锈 钢 板 隔 水 层 ( - 1 . 0 5 0 ) 上 1 . 7 5 I 1 " 1 处; M 一1 mm 不 锈 钢 板 隔 水层 ( 一 1 . 0 5 0 ) 下 1 . 9 5 1 T I 处
Y
q
1 0 . 7 7 . 9 1 0 . 4 3 1 3 . 6 1 7 - 3 2 0 . 5 4 1 0 . 8
M
9 9 5 . 1 0 9 5 3 . 9 3
M
1 2 4 5 . 4 8 l 0 6 1 . 7 6
0 . 8 7 0 . 8 7 0 . 8 7 0 . 8 7 0 . 8 7 0 . 8 7
隔水 层下 基础 采用 桩基 础 。 本工 程 冷箱 基 础采 用 大块 式 基础 , 不考 虑 地震 力作 用 . 故 由风荷 载控 制 。
1 . 2 _ 1内 力 计 算
空分设备整装冷箱的结构设计
![空分设备整装冷箱的结构设计](https://img.taocdn.com/s3/m/c346e0265a8102d276a22f30.png)
Ke y wo r d s :Ai r s e p a r a t i o n p l a n t ;S e l f - c o n t a i n e d c o l d b o x ;L o a d c a l c u l a t i o n;Co l d b o x ma t e i r a l
结构 设计 。
根据标准 《 碳素结构钢》 ( G B / T 7 0 0 -2 0 0 6 ) 第5 . 4 . 4条 规 定 :Q 2 3 5 . A钢 在冷 弯试验 合格 时, 抗拉 强 度 上 限可 以不作 为 交货 条 件 ,但 在 标 准 《 钢结构设计规范》 ( G B 5 0 0 1 7 -2 0 0 3 )中第 3 . 3 . 3 条 明确规 定 :焊接 承重 结构 以及 重要 的非焊 接承 重
随着 中国制 造业 飞速 发展 ,空分行 业 与 国外企
空分 设备 整装 冷箱 的型 钢选择 方 管 。
业合作的项 目日益增多 ,国外客户希望设备现场安 装 简 单 ,施工 周 期短 。整装 冷箱 是在 制造 公 司 内制
造完 成 、整体 交 货 的设备 , 目前 已成 为 中小 型空分 设 备 用户 首选 的冷箱 类 型 。下面 以福 建岩 兴气 体有 限公 司 ( 以下 简 称 :福建 岩兴 )4 1 0 0 m / h液 体 空 分 设 备 为例 ,阐述 空 分设 备整 装 冷箱 的材 料选 择 和
结构 采用 的钢 材还 应具 有冷 弯试验 的合 格保 证 。综 上所 述 ,4 1 0 0 m / h液 体空 分 设 备 整装 冷箱 的材 料
选择 Q 2 3 5 一 B钢 。
1 冷箱材料的选 择
冷箱 设计 主要是 选择 合理 的材料 牌号 以及 型钢 的规 格尺 寸 ,在保 证 强度 的前 提 下 ,优化 型钢 的规 格 尺 寸 ,追求 经 济利 益 。 目前 国内大 部分 常规 空分 设 备 冷箱 的主 体材 料是 Q 2 3 5钢 ,以工 字 钢 和 H 型 钢为 主 。而整 装 冷箱 是 整体 出厂 ,不 需要 像 常规 冷 箱 一 样在 现 场安 装 。所 以福建 岩兴 4 1 0 0 m / h液体
大型空分的冷箱设计
![大型空分的冷箱设计](https://img.taocdn.com/s3/m/0bf8a1e3941ea76e58fa0419.png)
] ]
永箱
] ] 一一 一一一一 一一
图2 管道三维效果图
三 霉 ㈣ 嚣
和模拟计算 ,以确定 合理 的阀 门位
上 一J
— .
i = £ 冷器
L i m _ 霹 J
_ . 一
置 、管径大小殷是 否需要气泵 ,从 而保证两相流体流动 顺畅 避免形成 柱寒流 ,提高装 置运 行的稳定性和 r 靠性 。 人 窄 分 冷 箱 内 板式 换 热 器
找商 机 ,积极把产 品推 出国门 ,走
向世 界 。
建立平 台定制 ,走 在市场前面 ,引
导 用户选用环保节能 产品和平 台产
品。
保持活 力和竞争 力就要 有创新的魄
力 。唯 有创新 ,泵 阀企业才能有 可 持续性 发展 。 泵 阀企 业必须具有深 刻的节能 环 保意 识,不断淘汰高耗 能 、低效
大型空分的冷箱设计
杭 州福 斯 达深 冷 装 备股 份有 限公 司 ( 浙江 3 l 1 1 0 0 ) 巨小 虎 冶 小军 王 建 刚
一
、
前言
冷箱设计进行了介 绍
。
统从而 降低系统阻 力及建 造成本 ,
有利于冷箱 结构紧凑 、外形规 则从
冷 箱 作 为 空 分 装 置 的 核 心 设
( 收稿 日期 :2 O 1 7 / 1 0 / l 2 )
2 0 1 年 1
7 年 第 】 期 ’ ’ w w
.
督
e l x . n} c o
2 7
J 一● r
r
l 流 体 机 械
杂,系统 可靠性差 ,另外无需 外加循环氧 泵。粗氩塔方面 ,采用粗氩塔 单
浅谈空分装置冷箱基础混凝土施工
![浅谈空分装置冷箱基础混凝土施工](https://img.taocdn.com/s3/m/178f34f8102de2bd960588cb.png)
浅谈空分装置冷箱基础混凝土施工摘要:空分装置冷箱基础混凝土施工中涉及到特殊混凝土试配、大体积混凝土浇筑与振捣、混凝土养护及测温,以上控制点是工业建筑中混凝土施工质量控制的难点和要点。
本文对新能凤凰(滕州)能源有限公司二期空分装置冷箱基础的混凝土施工进行介绍。
关键词:冷箱基础混凝土施工1工程概况及技术要求本基础长18.4m,宽16.8m,最大高度4.0m,混凝土量约1088.23m3。
基础混凝土强度等级C30,抗冻等级F300,抗渗等级P12,混凝土中掺入HT-4型高效复合抗裂防水剂。
2施工方法2.1C30F300P12抗冻抗渗混凝土原材控制及试配根据市场调查,本地能做此类试配和冻融循环300次试验的权威检测机构为枣庄科润建设工程材料检测有限公司。
混凝土原材使用中联普通42.5级袋装水泥,邹城粉煤灰Ⅰ级F类,0.5~31.5碎石,中砂,洁净水。
石子含泥量<1%,砂子含泥量<2%。
外加剂按设计要求选用HT-4型高效复合抗裂防水剂,其掺量为水泥重量10%,抗冻等级可达F300以上,抗渗等级可达P12以上。
2.2混凝土运输本工程混凝土采用JS500型强制式搅拌机现场搅拌,HBT60输送泵输送,振捣棒捣实。
因冷箱基础面积大,混凝土浇筑前在冷箱基础中间安装布料机。
使用布料机泵送混凝土节省了混凝土浇筑过程中安拆泵管所增加的时间和人工费用,更重要的是很大程度上减少了混凝土输送过程对冷箱基础预埋件及螺栓位置精度的影响。
2.3混凝土浇筑与振捣冷箱基础混凝土浇筑前必须先清除模板内杂物,冲洗干净。
采用平面分层从中间向四周进行浇筑,即将整个浇筑层分为多层浇筑,分层厚度宜为0.4~0.6m,当已浇筑的下层混凝土尚未凝结时,就开始浇筑上层。
混凝土坍落度初期可为180~200mm,根据泵送浇筑时自然形成一个坡度的实际情况,在每道浇筑带前后布置三道振捣棒,前道振捣棒布置在底排钢筋处和混凝土坡脚处,确保下部混凝土密实,后道振捣棒布置在混凝土卸料点,解决上部混凝土的捣实,并尽量振成平面。
浅析空分冷箱内小管道的设计
![浅析空分冷箱内小管道的设计](https://img.taocdn.com/s3/m/9dfe8c79caaedd3383c4d396.png)
浅 析 空 分 冷 箱 内小 管 道 的设 计
宋军帅, 周金 娟 , 尹 本 宽
( 开封空分集团 设计研究 院有 限公 司 , 河南 开封 4 7 5 0 0 0 )
摘要: 阐 明 了空 分 冷 箱 内小 管 道 的设 计 重 要 性 , 论 述了各类型小管道的设计要点 , 对 小 管 道 的 支 撑 和 保 护 做 了 简 要
1 冷 箱 内小 管 道 的设 计 要 点
通常 认 为 , 小 管道是 指公 称 直径 小于 8 0的各类
管道 。由于冷 箱 内超 低 温 运 行 的 特 点 , 本 文 小 管道 的材 质仅 为 不锈钢 和 铝合金 。
1 . 1 小 管道 的工 艺设 计
钢 铁冶 金 、 石油化工 、 煤 化 工 和 大 型 化 肥 等 企 业 对
介绍 。
关键 词 : 空分 ; 冷箱 ; 小管道设计 ; 分ห้องสมุดไป่ตู้ ; 保 护 中图分类号 : T B 6 5 7 . 7 文献标志码 : A 文章编号 : 1 0 0 7 - 7 8 0 4 ( 2 0 1 7 ) 0 3 - 0 0 1 7 — 0 3
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 7 — 7 8 0 4 . 2 0 1 7 . 0 3 . 0 0 5
第3 5卷 第 3期
2 0 1 7年 6月
低 温 与 特 气
L o w T e mp e r a t u r e a n d S p e c i a l t y G a s e s
Vo 1 .3 5. No . 3
J u n . , 2 0 1 7
・
工 艺与设 备 ・
空分冷箱方案
![空分冷箱方案](https://img.taocdn.com/s3/m/5a4fad3d6c85ec3a87c2c5ab.png)
1、工程概况中国石化安庆分公司化肥油改煤工程项目,位于化肥生产装置区的北侧。
空压机基础、氮压机基础位于空分装置区压缩机厂房中。
而其他的设备基础在整个空分装置区中分散布置。
地质条件:在基础底标高-3.1m层,根据地质勘探报告,土质为①层杂填土,地下水位在标高-10.53m处,因基础已被处理(桩基,非我单位施工),故基础土质不影响整个工程施工。
其它的设备基础为普通的硅酸盐水泥混凝土,而空压机基础、氮压机基础为大型钢筋混凝土设备基础,其特点:承台混凝土外加剂采用WG-高效复合防水剂,掺入量为1.2%,承台混凝土是指:空压机承台标高-0.8m以下混凝土,氮压机承台标高-1.4m以下的混凝土。
其它部位混凝土仍然按原设计采用WG-HEA高效抗裂防水剂,掺入量为10%。
在空、氮压机基础上部有许多钢套管,安装精度也是比较高;承台基础为大体积钢筋混凝土基础,养护是很关键的,因此制定了本施工方案。
1.1工程概况表表1-12、编制依据2.1施工图0307-04000-06236-22~412.2施工合同0307-M0031-0052.3《建筑地基基础工程施工质量验收规范》GB50202-2002 2.4《混凝土结构工程施工质量验收规范》GB50204-2002 2.5《建筑工程施工质量验收统一规范》GB50300-20012.6《化三建施工工艺标准》Q/HSEJ1~J42.7《化三建安全技术操作规程》Q/HSZ03-01-20042.8《混凝土泵送施工技术规程》JGJ/T10-953、施工准备工作3.1场地平整:将现场的障碍物及垃圾清理,由测量测出场地的方格网图。
3.2施工道路:利用现场现有的临时道路。
3.3施工用水:由业主指定位置接入。
水管采用6′的管子,需用水量约为2000t。
3.4施工用电:由业主或甲方指定位置接入。
二级配电箱一个,用VV-1-3×7+2×3.5电缆引入现场三级配电箱,装电表计量;施工用电的最大负荷为150KW。
浅谈大型设备基础的设计与施工
![浅谈大型设备基础的设计与施工](https://img.taocdn.com/s3/m/5879bfcb844769eae109ed77.png)
浅谈大型设备基础的设计与施工摘要:大型设备基础设计的成功与否与工艺及设备专业的密切配合关系极大,土建专业人员应深入了解设备的工作特性、安装和检修情况、荷载、地脚螺栓方位及对基础设计的要求等。
施工前应进行图纸会审,根据一系列理论计算提出施工阶段的综合抗裂措施,制定关键部位的施工作业指导书。
关键词:大型设备;基础;设计;施工引言:设备基础设计成功与否,与工艺和设备专业密切配合关系极大,土建专业人员应深入了解设备的工作特性、安装和检修情况、荷重、地脚螺栓、方位以及对基础设计的要求等。
大型设备基础一般属于大体积混凝土范畴,故其施工应重点考虑混凝土硬化时产生较大水化热及收缩应力而造成的混凝土开裂。
1 大型设备基础的重要性设备基础上安装价格较为昂贵的生产设备,若出现问题将危及生产,其后果严重,故安全等级一般取二级,基础采用整体性较好的混凝土结构。
鉴于项目设备日渐大型化,大型设备基础的成功浇筑为设备顺利安装创造条件成为施工管理中必须加强重视的控制节点。
石化项目中设备基础大致可分类为泵类,槽、储罐类,工业炉,冷箱,塔形设备基础及压缩机基础。
本文以空分冷箱基础为例,从设计构造及施工角度出发对冷箱基础在设计与施工中应该引起足够重视的环节进行剖析。
2 大型设备基础的设计2. 1 设计时应取得的资料1)工艺条件图。
包括设备布置,冷箱几何尺寸和箱底标高,冷箱设备总重、物料重、配管等附件重、隔冷填料重、冷箱底的温度、地脚螺栓的位置和规格、安装要求等。
2)冷箱在装置中的坐标位置、基础顶面的设计标高。
3)建设场地的工程地质和水文地质勘察资料。
2. 2 冷箱基础计算应考虑的荷载冷箱基础的计算应考虑的永久荷载包括:设备重、物料重、隔冷填料重、基础自重、对由永久荷载效应控制的基本组合,分项系数取1.35。
可变荷载包括:风荷载、雪荷载,分项荷载系数取1.4。
2. 3 冷箱基础设计的构造要求由于冷箱基础本体混凝土经常处于负温下,故应有抗冻标号不应小于D100,而含水率直接影响抗冻能力,故对混凝土有抗渗等级要求不小于P12。
空分设备冷箱的钢结构设计浅析
![空分设备冷箱的钢结构设计浅析](https://img.taocdn.com/s3/m/5536f2a80029bd64783e2ceb.png)
设计方 案 ,针对环 境和各 种 载荷条 件进行 冷箱结 构
强 度 分 析 , 以 确 保 冷 箱 钢 结 构 满 足 在 运 输 、安 装 和
住 宅建筑 中更 能发挥 其 自身优 势 。
空 分 设 备 冷 箱 是 一 个 特 殊 的 钢 结 构 建 筑 , 它 所
使 用过程 中的强度 、刚度 和稳 定性 等方 面的要求 。
se lsr c ur fc l ox i e ald.Thec l o fars p r to lnti r p s d t e in a u e vs s te tu t e o o d b sd t i e o d b x o i e a a in p a sp o o e o d sg nd s p r ie a
周 超
( 州 杭 氧 股 份 有 限 公 司 设 计 院 ,浙 江 省 杭 州 市 东新 路 3 8号 3 0 0 ) 杭 8 10 4
摘 要 :空分设 备冷 箱需要 为 内部设备 提供 一 个超低 温环境 ,对空分 设备 的安全 运行 有直接 影
响 。 介 绍 空 分 设 备 冷 箱 的 工 作 特 点 以 及 冷 箱 钢 结 构 设 计 的 基 本 要 点 ,详 细 说 明 了 冷 箱 钢 结 构 设 计 流 程 , 并 提 出空 分 设 备 冷 箱 应 该 作 为 一 个 特 殊 的 建 筑 物 来 进 行 设 计 和 监 管 。
12 冷 箱 钢 结 构 的 经 济 性 .
处 的工作 环境 以及载 荷条件 都有 别 于一般 的钢 结构 建 筑 ,需 要 为内部设 备提 供一 个超低 温环 境 。国 内 尚无 针对 此领域 的理 论体 系 ,也缺乏 专业 的监 管措
施 和 机 构 ,如 果 在 设 计 和 监 管 方 面 对 空 分 设 备 冷 箱
浅谈空分冷箱和压缩机基础施工
![浅谈空分冷箱和压缩机基础施工](https://img.taocdn.com/s3/m/41e7e93e10661ed9ad51f3d7.png)
高度的中部升没混凝土浇筑 L和振捣 u. J 浇筑和振捣柱子下 半部的混 凝土 . 在基础顶板 的模 扳上浇筑和振捣柱子上 半部混凝土。 柱子模板采用爪编胶 合小模板 , 内术楞采用方木 . 外面采J 双钢 H j 管和对拉螺朴加固.柱子模板下端 f . 四垃圾 清理 口 3 压缩机基础顶板的模板 基础顶板的模板采 用胶合小模板 . 楞术采用方术 : 基础顶板侧模 板 内侧设垂直术楞 . 删设水平本 铹. 厩用方木和钢管架子进行支 外 外 撑加 固 基础顶板 的底模板采用双层胶合木模板 : 模板的支撑 系统采 用钢管脚于架搭设 31 j 缩机和冷箱螺栓预 钢套管及预埋件准确定位的措施 ._ E 3 1 )在钢套管 下端 j与钢食管内径一样的木模板固定在基础顶板 扫 的模板上 . 钢套管下端 人圆小模板 2 在钢套管直线 布置 的上 用短钢筋与钢套管焊牢 . ) 短钢筋上端 与通 长钢管焊牢 . 长 通 钢管与用边支撑架子用扣件扣牢。 3 预 件用铁钉 直接 固定在模扳上 . ) 周边用塑料胶带与模板粘贴 严密 . . 基础上面的预埋 件在混凝土浇筑前埋设 , 并与钢筋或模板 、 架子冷箱 基 础 施 工 力‘ . 案 根 据 冷箱 基 础 特点 . 础 混 凝 土 分 两 次 浇 筑 第 一 次 浇筑 混凝 土 基 的范围包括紫铜板防渗箱 四周及防渗箱底板 以下到基础底 ( - . 0 从+ 0 00 米到一 .0 )混凝土浇筑厚度 为 1 35 0 . . ( 备基础底全胁渗水箱底 面 5米 设 下 )局 部厚 度 为 3 , . 。 5米 第一 次浇筑混凝土后保温保湿 I .随后进行 防渗水箱焊接制 2天 作、 安装 、 榆验。 第二次浇筑 完成安装上部外模板 、 通风管 、 绑扎顶部 钢筋 、 预埋件 、 螺栓 芯模等工作 L . 第二次浇筑防渗箱 内部的混凝 土至 设餐基础顶面 . 混凝士 浇筑最大厚度为 3冰 22 压缩 机 基 础施 工 方 案 . 压缩 栊 基 础 分 三次 施 工 : 一 次 为 底饭 施 工 , 二 次 为柱 子 施 工 , 笫 第 第三次为顶板施工 压缩机基础底板上的附属没备基础在底板施 工时 做好插筋. 待底板施工后 、 柱子施工前施 工 压缩机基础顶板上的台阶 与顶 板 一起 施 工
浅析空分塔主冷箱基础结霜现象
![浅析空分塔主冷箱基础结霜现象](https://img.taocdn.com/s3/m/de2b6bfaf61fb7360b4c65fe.png)
浅析空分塔主冷箱基础结霜现象摘要:简介3200 Nm3/h 空分设备保冷箱基础出现结霜现象,并对结霜部位、结霜成因、结霜现象发生时应采取措施以及从中获得的经验、教训等方面进行简要阐述。
关键词:空分设备;冷箱;结霜;措施神木富油能源科技有限公司制氢车间空分岗位自2010年10月投产运行以来,运行状况相对良好。
期间,因外界电网电力供应不稳定等因素,导致空分紧急停车,系统开停车多次频繁。
2011年8月,随着外界环境温度的逐渐降低,发现空分分馏塔过冷器下部基础表面温度缓慢下降,并且冷箱南侧、北侧有结霜现象,且日渐严重。
空分塔保冷箱结霜现象,在深冷空分行业中是不多见的,在我厂是是第一次发生,为此,我们对这一现象进行了分析、研究,并相应采取了一些相应措施。
1 结霜部位分析结霜部位主要有两处:一为空分塔保冷箱北侧距基础0.2米处,宽度约为0.4m,长度为0.9m,霜层最厚可达2cm。
二为空分塔保冷箱南侧距基础0.4米处,宽度约为0.2米,长1.2米,霜层厚度可达1cm,并且两处沿空分塔呈现对称状态。
另外,在基础结霜严重时,空分塔保冷箱底部东西两侧四条通风管内部出现部分结霜现象,更严重的通风管直接被堵死。
空分系统在正常运行时,有许多造成冷损的原因,出主板式换热器热端温差急剧增大、保冷材料受潮结块、塔内出现砂眼、阀门连接处发生微,都将成为空分分馏塔塔内冷损现象,而最为直观的表现就是塔体保冷箱外侧发生结霜现象。
目前虽不能影响空分分馏塔的正常运行,但长期的泄露将会导致泄露孔隙增大,泄露量增大,导致冷量损失过多,空分无法保证正常液氧液面而被迫停车处理。
2 结霜原因分析因本厂结霜部位是发生在空分塔保冷箱的基础表面以上,而在空分塔保冷箱下部有多个液体排放管线和吹除管线,如下塔液空、上塔液氧、液氮排放管线,液空去上塔管线、过冷器进出口管线等等,因此,我们通过从冷箱内部结构图、管道布置图、近年来主冷箱内部基础表面温度变化趋势、以及在空分液氧中碳氢化合物等含量偏高,进行排放液氧、液氮时,基础表面温度变化状态等四方面分析,从而彻底排除了各个液体管泄露的可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础设计浅析前言记得20世纪的五、六十年代,某国一台小型空分,其冷箱底部是以木板、木块绝热的。
由于设备漏液,长时间未能发现,致使木板、木块逐渐被氧化,最终燃烧、爆炸,损失惨重。
在当时的空分行业引起了极大的震动。
20世纪的70年代初,我国的××、××、××、××钢厂、××碱厂等也发生多起空分冷箱基础冻胀、隆起、龟裂和倾斜,以致空分设备停产,对冷箱基础进行修复改造、易地重建,给企业造成重大损失。
这多起基础事故在当时的冶金系统,乃至全国空分行业引起了极大关注。
1974年冶金部率先组织制定了“制氧空分设备基础设计、施工暂行规定(草案)”并颁布试行。
这是迄今为止我国各部委唯一一个关于空分冷箱基础设计、施工规定。
空分冷箱基础在装置运行中承载大、经常处于低温状态,它的稳固、平整直接影响冷箱内低温塔器的正常运行。
因此,空分冷箱基础在工厂设计中是极重要的组成部分。
伴随着我国空分设备五十多年来的进步、发展,空分冷箱基础设计也经历了由不成熟、频繁发生事故到逐渐成熟、设计得心应手,使用稳定可靠、有所发展的过程。
1.空分冷箱基础传热及设计要点1.1蓄冷器空分流程时代,空分冷箱基础内的温度场(不论是平面或是断面)是多场叠加的。
这些温度场的中心分别是下塔、液空吸附器、液氧吸附器、蓄冷器等。
各设备的温度场严格讲都是球面分布的。
同时,热交换是辐射、传导和对流的综合结果,但以传导为主。
因此,计算极为繁琐,结果也并不准确。
由于在设计和运行中,主要考察的是这些冷设备对冷箱基础的影响,并不关心冷设备之间的互相影响,因此,设计中就简化为只考虑冷设备单向冷箱基础传导的平板传热。
随着空分技术的进步,蓄冷器流程逐渐被切换板式流程和分子筛流程所取代。
空分冷箱内的设备日趋减少。
其温度场也趋于简单。
设计中主要考虑下塔对基础的影响就可以了。
1.2基于1.1中所说空分冷箱中设备对基础传冷的特点。
空分冷箱基础设计是主要考虑的原则是:1.2.1空分冷箱中低温设备(主要是下塔)对基础的传冷形式主要考虑平板传导作用。
为了不使冷箱基础接受过低的温度,保证基础的正常、稳定运行,通常需要采取如下措施:A.尽量减少向基础的传冷:其方法不外乎*加大冷设备与基础顶面间的距离。
*冷设备与基础顶面间充填绝热性能好的保冷材料。
*使冷设备与基础间的绝热材料经常保持良好的隔冷状态。
B.使设备传给基础的冷量尽快散失:即设法使基础向周围空气的给热系数增大和尽量加大基础的散冷面积。
对于一个建设在特定场地的冷箱基础对周围环境的给热系数往往无法人为地改变。
因此,加大基础的散冷面积便是经常使用的首选手段。
C.防止地下水的渗透、冻结对基础造成破坏。
上世纪70年代初,冶金系统发生的几起空分冷箱基础破坏,都是由于漏液跑冷,基础处于低温,周围土壤的浸润水分大量向基础渗透、聚集,致使基础发生冻结、膨胀造成破坏。
1.2.2基础的稳固性和足够的强度。
1.2.3基础的经济性:包括了基础材料的选择、施工的难易以及维护方便与否。
2. 空分冷箱基础的典型形式2.1 基础顶面与冷箱底板间带有通风加热层的基础:这是国内使用较早的大型空分基础。
制氧机厂20世纪60年代生产的制氧机组就曾使用这类基础。
当时是室内布置。
这种基础本体是普通混凝土实体式。
基础顶面埋设了若干槽钢(立放),这些槽钢间构成了通风风道。
同时在槽钢的通道间布置有蒸汽管,防止发生漏液能及时对冷箱底板加热,以避免过多冷量传向基础。
详见图1。
图12.2 实体式基础基础本体为一个混凝土实体式构筑物。
基础顶面有一层钢丝网,防止基础面龟裂,提高防水性能。
在基础周边增加若干钢筋,提高基础的整体性。
基础的地下部分有沥青防水层。
这种基础最为简单,多用于地下水位较低、气候干燥、沙质土壤的北方地区。
1970年建于××的×××设备厂首套蓄冷器流程的机组的冷箱基础就是这种形式。
在30年的运行中从未发生过问题。
20世纪的70年代由××引进的6500机组,当初××要求的也只是钢筋混凝土实体式基础,基础顶面也没有珠光砂混凝土隔热层。
施工中用户为了保险在基础顶面增加了300mm厚的珠光砂混凝土隔热层。
典型的实体式基础详见图2。
2.3 带有通风管的空分冷箱基础×钢公司在20世纪的六、七十年代引进的的10000空分冷箱基础(蓄冷器流程)是这类基础的典型代表。
最初建议在基础顶面铺152mm厚的泡沫玻璃砖。
但是,后来取消了这层泡沫玻璃砖。
而在地上基础本体内增加了混凝土通风管,管直径300mm, 管间净距300~400mm,自然通风散冷,效果也很好。
装置运行一个月后测量,室外阳光下气温33℃,通风管内25℃。
为防止地下水渗入基础,混凝土中加了防水剂。
同时基础垫层上和侧面铺设了4mm厚的钢板,侧板伸至地面以上。
钢板外面还涂有二度樟丹,一度沥青漆。
2.4 带有通风管和珠光砂混凝土隔冷层的基础。
详见图3。
目前,这种形式的基础适用于大中型空分基础。
没有地域限制。
是一种比较成熟、可靠的通用形式。
这种基础源于上世纪六、七十年代由日本引进的空分设备。
至今在形式、要求和施工方法上基本没有多大变化。
基础顶面的设计温度,根据国内设备制造厂提供的数据在-50~-90℃,和类似基础的实测数据相当。
工厂设计中要求通风管内夏季温度不低于0℃,即使0℃层不下降至地面以下。
否则对基础的散冷和防冻不利。
为安全起见,基础使用的混凝土还要用耐低温混凝土,标号在M75以上。
即冻融次数达150~200次。
这种基础的施工要求比较高,特别是珠光砂混凝土层施工中,强度和导热系数指标往往难以同时达到设计要求。
此外,要保证珠光砂混凝土层彻底干透也比较困难。
图3.2.5.承台式冷箱基础:详见图4。
这种基础多用于地下水位偏高、地面水较多的情况。
例如××××3200机组采用的就是承台式基础。
冷箱设备安装于承台之上,承台上也有珠光砂混凝土隔冷层。
而承台是依靠若干根混凝土柱支撑的。
支撑部分完全暴露于大气中,形成四面通风的地下室,散冷条件极好。
避免了基础本体渗水冻胀的可能。
如果发生地下室积水,可以随时清除。
实践证明,这种形式的基础对多雨、地下水位较高的地区是很适用的。
图4.2.6.框架式基础:详见图5。
随着空分流程的发展以及空分设备制造技术和制造质量的提高。
如焊接冷阀门的使用,冷管道设计软件的广泛使用等都大大提高了空分设备的设计和制造质量。
大大减少了冷箱内设备、管道漏液的可能。
目前,有的冷箱内的低温设备连续运行5~7年不停车。
这就从根本上改善了空分基础的工作条件。
此外,随着国家的改革开放,中国的设备走向世界。
因此,不同国家、不同地区的用户对我们的传统设计观念提出了质疑。
要求我们改变观念,进行创新。
以适应不同用户,同时也提高了自身的竞争力。
××××集团公司在出口的1350全液体空分设备和第二套独立的液化装置上都设计了框架式基础。
经过两年的运行,证明是成功的。
这里将它称为框架式基础结构。
基础本体是素混凝土或钢筋混凝土实体结构。
冷箱底板采用了不锈钢板,以防漏液。
冷箱底板和混凝土基础用钢框架和地脚螺栓联成一体。
混凝土基础表面的标高可以定为0.00,不必像带有通风管的基础那样抬到1m高。
以××××设备集团出口的液体设备基础为例。
混凝土基础顶面标高为0.00m,冷箱底板的标高为+0.45m,即框架高度为450mm。
基础顶面与冷箱底板间形成450mm的通风空间,冷设备和热基础不直接接触。
混凝土基础仅仅是一个承载结构。
无需耐低温混凝土和珠光砂混凝土隔冷层。
方便了设计、施工,降低了成本。
图5.3.对框架式基础结构的几点认识3.1 任何形式的冷箱基础的安全、可靠的运行,都是以设备的制造、安装质量为前提条件的。
框架式基础结构也不例外。
3.2 框架式基础结构从根本上使混凝土基础脱离了低温工作条件。
基础可以按照常温混凝土支承结构进行设计。
3.3 由于混凝土基础脱离了低温工作条件。
因此,彻底消除了混凝土基础在低温下产生渗水、冻胀发生破坏的可能。
3.4 施工、安装方便,时间短,费用省。
特别对于组装式冷箱的安装更为方便。
3.5 由于基础高度的降低,将导致梯子、平台以及相连的生产厂房高度的降低,有一定的经济效益。
3.6 这种基础结构有可能加大冷箱底板的跑冷损失。
3.7. 冷箱安装后,通风层的清理和钢结构件的防腐维护不方便。
尤其是大型空分冷箱基础。
3.8. 经过设备制造厂和工厂设计单位的共同努力,这种基础结构用于中型空分已经显示出了它的优点。
将它推广应用到大型空分也应当可行。