模式识别结课论文
模式识别人工智能论文
模式识别人工智能论文
本文研究的是基于模式识别的人工智能,旨在分析模式识别技术如何帮助实现人工智能。
它介绍了模式识别的基本概念,以及它在人工智能中的作用。
在模式识别技术的基础上,它给出了一些实际应用的示例,例如文本分析,图像识别和语音识别。
此外,它还探讨了模式识别在人工智能中的潜在挑战,并给出了解决方法。
首先,本文简单介绍了模式识别的基本概念。
模式识别是机器学习和人工智能的重要分支,它旨在分析数据,对输入数据进行有意义的分析,以确定它们的关系和结构。
它是人工智能中非常重要的一个技术,可以帮助机器学会从数据中提取特征,并建立模型来预测可能发生的结果。
其次,本文介绍了模式识别在人工智能中的作用。
它可以用来开发机器学习和计算机视觉系统,这些系统可以用于自动识别和分析文本,图像和视频等信息。
例如,使用模式识别技术,可以开发文本分析系统,该系统可以自动分析文本,从中提取有用的信息,从而节省人力。
此外,它还可以用来开发图像识别系统,可以快速识别不同类型的图片,比如动物、植物、自然场景等,并返回分析结果。
模式识别大作业
模式识别大作业引言:转眼之间,研一就结束了。
这学期的模式识别课也接近了尾声。
我本科是机械专业,编程和算法的理解能力比较薄弱。
所以虽然这学期老师上课上的很精彩,但是这学期的模式识别课上的感觉还是有点吃力。
不过这学期也加强了编程的练习。
这次的作业花了很久的时间,因为平时自己的方向是主要是图像降噪,自己在看这一块图像降噪论文的时候感觉和模式识别的方向结合的比较少。
我看了这方面的模式识别和图像降噪结合的论文,发现也比较少。
在思考的过程中,我想到了聚类的方法。
包括K均值和C均值等等。
因为之前学过K均值,于是就选择了K均值的聚类方法。
然后用到了均值滤波和自适应滤波进行处理。
正文:k-means聚类算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数。
k-means 算法接受输入量k ;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
均值滤波是常用的非线性滤波方法 ,也是图像处理技术中最常用的预处理技术。
它在平滑脉冲噪声方面非常有效,同时它可以保护图像尖锐的边缘。
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
再用模板中的全体像素的平均值来代替原来像素值。
即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y)m为该模板中包含当前像素在内的像素总个数。
时间序列分析中模式识别方法的应用-模式识别论文
时间序列分析中模式识别方法的应用摘要:时间序列通常是按时间顺序排列的一系列被观测数据,其观测值按固定的时间间隔采样。
时间序列分析(Time Series Analysis)是一种动态数据处理的统计方法,就是充分利用现有的方法对时间序列进行处理,挖掘出对解决和研究问题有用的信息量。
经典时间序列分析在建模、预测等方面已经有了相当多的成果,但是由于实际应用中时间序列具有不规则、混沌等非线性特征,使得预测系统未来的全部行为几乎不可能,对系统行为的准确预测效果也难以令人满意,很难对系统建立理想的随机模型。
神经网络、遗传算法和小波变换等模式识别技术使得人们能够对非平稳时间序列进行有效的分析处理,可以对一些非线性系统的行为作出预测,这在一定程度上弥补了随机时序分析技术的不足。
【1】本文主要是对时间序列分析几种常见方法的描述和分析,并重点介绍神经网络、遗传算法和小波变换等模式识别方法在时间序列分析中的典型应用。
关键字:时间序列分析模式识别应用1 概述1.1 本文主要研究目的和意义时间序列分析是概率论与数理统计学科的一个分支,它是以概率统计学作为理论基础来分析随机数据序列(或称动态数据序列),并对其建立数学模型,即对模型定阶、进行参数估计,以及进一步应用于预测、自适应控制、最佳滤波等诸多方面。
由于一元时间序列分析与预测在现代信号处理、经济、农业等领域占有重要的地位,因此,有关的新算法、新理论和新的研究方法层出不穷。
目前,结合各种人工智能方法的时序分析模型的研究也在不断的深入。
时间序列分析已是一个发展得相当成熟的学科,已有一整套分析理论和分析工具。
传统的时间序列分析技术着重研究具有随机性的动态数据,从中获取所蕴含的关于生成时间序列的系统演化规律。
研究方法着重于全局模型的构造,主要应用于对系统行为的预测与控制。
时间序列分析主要用于以下几个方面:a 系统描述:根据观测得到的时间序列数据,用曲线拟合的方法对系统进行客观的描述;b 系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;c 未来预测:一般用数学模型拟合时间序列,预测该时间序列未来值;d 决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到偏离目标时便可进行控制。
模式识别人工智能论文【范本模板】
浅谈人工智能与模式识别的应用一、引言随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造.但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。
虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。
这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。
这时,能够提高计算机外部感知能力的学科—-模式识别应运而生,并得到了快速的发展,同时也成为了未来电子信息产业发展的必然趋势。
人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。
近年来电子产品中也加入了诸多此类的功能:如手机中的指纹识别解锁功能;眼球识别解锁技术;手势拍照功能亦或是机场先进的人耳识别技术等等.这些功能看起来纷繁复杂,但如果需要一个概括的话,可以说这都是模式识别技术给现代生活带来的福分.它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知,从而将非电信号转化为计算机可以识别的电信号.二、人工智能和模式识别(一)人工智能。
人工智能(Artificial Intelligence),是相对与人的自然智能而言的,它是指采用人工的方法及技术,对人工智能进行模仿、延伸及扩展,进而实现“机器思维"式的人工智能.简而言之,人工智能是一门研究具有智能行为的计算模型,其最终的目的在于建立一个具有感知、推理、学习和联想,甚至是决策能力的计算机系统,快速的解决一些需要专业人才能解决的问题。
从本质上来讲,人工智能是一种对人类思维及信息处理过程的模拟和仿真。
(二)模式识别。
模式识别试验(基于Fisher准则线性分类器设计)
模式识别实验(三)一、实验名称基于Fisher准则线性分类器设计二、实验目的:本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher准则方法确定最佳线性分界面方法的原理,以及Lagrange乘子求解的原理。
三、实验原理:线性判别函数的一般形式可表示成其中根据Fisher选择投影方向W的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W的函数为:上面的公式是使用Fisher准则求最佳法线向量的解,该式比较重要。
另外,该式这种形式的运算,我们称为线性变换,其中(m1-m2)式一个向量,Sw-1是Sw的逆矩阵,如(m1-m2)是d维,Sw和Sw-1都是d×d维,得到的也是一个d维的向量。
向量就是使Fisher准则函数达极大值的解,也就是按Fisher准则将d维X 空间投影到一维Y空间的最佳投影方向,该向量的各分量值是对原d维特征向量求加权和的权值。
以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量 的计算方法,但是判别函数中的另一项w0尚未确定,一般可采用以下几种方法确定w0如或者或当与已知时可用……当W 0确定之后,则可按以下规则分类,使用Fisher 准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。
四、实验内容:已知有两类数据1ω和2ω二者的概率已知=0.6,=0.4。
1ω中数据点的坐标对应一一如下:数据:x =0.2331 1.5207 0.6499 0.7757 1.0524 1.19740.2908 0.2518 0.6682 0.5622 0.9023 0.1333-0.5431 0.9407 -0.2126 0.0507 -0.0810 0.73150.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 y =2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.83401.87042.2948 1.7714 2.3939 1.5648 1.93292.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604 z =0.5338 0.8514 1.0831 0.4164 1.1176 0.55360.6071 0.4439 0.4928 0.5901 1.0927 1.07561.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548 数据点的对应的三维坐标为2x2 =1.4010 1.23012.0814 1.1655 1.3740 1.1829 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.79091.3322 1.1466 1.7087 1.59202.9353 1.46642.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414y2 =1.0298 0.9611 0.9154 1.4901 0.8200 0.93991.1405 1.0678 0.8050 1.2889 1.4601 1.43340.7091 1.2942 1.3744 0.9387 1.2266 1.18330.8798 0.5592 0.5150 0.9983 0.9120 0.71261.2833 1.1029 1.2680 0.7140 1.2446 1.33921.1808 0.5503 1.4708 1.1435 0.7679 1.1288z2 =0.6210 1.3656 0.5498 0.6708 0.8932 1.43420.9508 0.7324 0.5784 1.4943 1.0915 0.76441.2159 1.3049 1.1408 0.9398 0.6197 0.66031.3928 1.4084 0.6909 0.8400 0.5381 1.37290.7731 0.7319 1.3439 0.8142 0.9586 0.73790.7548 0.7393 0.6739 0.8651 1.3699 1.1458数据的样本点分布如下图:0.511.522.5五、实验要求:1. 可以选择二维的数据,或者选择三维的数据作为样本。
神经网络论文
人工智能专题报告题目模式识别及人工神经网络概述姓名专业学号学院电脑科学与技术学院内容摘要:模式识别是一项极具研究价值的课题,随着神经网络和模糊逻辑技术的发展,人们对这一问题的研究又采用了许多新的方法和手段,也使得这一古老的课题焕发出新的生命力.目前国际上有相当多的学者在研究这一课题,它包括了模式识别领域中所有典型的问题:数据的采集、处理及选择、输入样本表达的选择、模式识别分类器的选择以及用样本集对识别器的有指导的训练。
人工神经网络为数字识别提供了新的手段。
正是神经网络所具有的这种自组织自学习能力、推广能力、非线性和运算高度并行的能力使得模式识别成为目前神经网络最为成功的应用领域。
关键词:模式识别,神经网络,人工智能,原理,应用Abstract:Pattern recognition is an extremely valuable project research, with neural network and fuzzy logic technology development, people on this subject, and adopted many new methods and means, also make the ancient subject coruscate gives new vitality. Current international has quite a number of scholars in the study of this topic, and it includes pattern recognition field of typical problems: the data acquisition, processing and selection, input data express choice, the choice of mode identification classifier and using samples of the reader has guidance training. Artificial neural network for digital recognition to provide a new way. It is neural network which has this kind of self-organization self-learning capability, generalization, nonlinear and computing highly parallel ability makes the pattern recognition become the neural network was the most successful application fields.引言具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。
模式识别人工智能论文
模式识别人工智能论文
模式识别是计算机视觉(CV)领域中重要的研究内容,也是人工智能(AI)领域中关键技术之一、模式识别通过分析不同类型的数据,识别出
其中的模式,以便对输入的特征或材料进行分类和分析。
它被用于更广泛
的计算机视觉应用,如图像分割,图像检索,图像检测,图像建模,图像
深度学习,机器视觉,以及计算机自动控制等应用。
目前,深度学习技术在模式识别领域取得了重大进展。
深度学习模型
具有有效的表示学习能力,可以从大量复杂数据中学习特征,从而更加准
确地预测和分析出数据中的模式。
例如,深度学习模型可以用于图像识别,通过训练模型来学习图像中各个对象的特征,从而可以准确地识别和分类
图像中的对象。
另外,语音识别也可以借助深度学习模型,根据不同语音
的特征,识别出不同的语音。
此外,深度学习模型可以用于识别和分析文本,可以分析文本中的主题,情感,语义等信息。
随着计算机视觉和人工智能的快速发展,模式识别技术也在不断地演
进和创新,提高了视觉计算和人工智能的性能。
模式识别论文--结束版本
1判别函数分类器的设计与实现1 判别函数分类器1.1 判别函数概念直接用来对模式进行分类的准则函数。
若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。
如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。
0)(32211=++=w x w x w d X 式中: 21,x x 为坐标变量。
图1-1 两类二维模式的分布将某一未知模式 X 代入: 32211)(w x w x w d ++=X 若0)(>X d ,则1ω∈X 类; 若0)(<X d ,则2ω∈X 类;若0)(=X d ,则21ωω∈∈X X 或或拒绝 维数=3时:判别边界为一平面。
2x 1x2维数>3时:判别边界为一超平面。
1.2 判别函数正负值的确定判别界面的正负侧,是在训练判别函数的权值时确定的。
图1-2 判别函数正负的确定d (X ) 表示的是一种分类的标准,它可以是1、2、3维的,也可以是更高维的。
1.3 确定判别函数的两个因素1)判决函数d (X )的几何性质。
它可以是线性的或非线性的函数,维数在特征提取时已经确定。
已知三维线性分类 —— 判决函数的性质就确定了判决函数的形式:4332211)(w x w x w x w d +++=X非线性判决函数,其示意图如下图所示1x 03图1-3 非线性判决函数图示2)判决函数d (X )的系数,由所给模式样本确定的。
2感知器算法设计与实现对一种分类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。
但“赏罚概念( reward-punishment concept )” 得到广泛应用。
2.1 感器算法原理及特点2.1.1 感知器算法原理两类线性可分的模式类 21,ωω,设X W X d T)(=其中,[]T 121,,,,+=n n w w w w W ,[]T211,,,,n x x x =X 应具有性质(2-1)对样本进行规范化处理,即ω2类样本全部乘以(-1),则有:2)-(2 0)(T>=X W X d ⎩⎨⎧∈<∈>=21T,0,0)(ωωX X X W X 若若d2x1x2x 1x4感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。
毕业设计--基于模式识别的水果智能分类系统[管理资料]
毕业设计基于模式识别的水果智能分类系统基于模式识别的水果智能分类系统摘要本论文综合运用了数字图像处理,模式识别的理论来构建起一个简单的水果智能分类系统。
实现了在相同条件下拍摄的水果图片的特征提取和种类识别,在此基础上设计出了基于人工神经网络的水果智能分类器,由计算机自动调整神经网络中各个权值,达到水果种类识别的自动化。
数字图像处理对源位图进行了加工,是特征提取的基础。
数字图像处理的理论涉及到彩色图像的灰度化、中值滤波、二值化、轮廓提取、种子填充、轮廓跟踪等。
其中,二值化采用了基本自适应门限的方法。
模式识别包括了特征提取和分类器的设计,是种类识别的关键。
特征提取主要利用了水果的几何特征,反映了水果的大小和形状。
分类器的设计主要采用了人工神经网络的方式来实现,具体说来是利用了神经网络中反向传播算法来进行网络训练,并利用训练结果完成了水果种类的智能识别。
关键词:特征提取人工神经网络二值化基本自适应门限反向传播算法A Intellective System for Fruit ClassificationBased on Pattern RecognitionAbstractIn this paper, we apply the theory of digital image processing and pattern recognition to construct a simply and intellective system for fruit classification based on pattern recognition. We have already fulfilled characteristic withdrew and type recognition for the pictures of fruit which are photographed under the same condition .We have also designed a categorize machine based on artificial neuro-network , which can adjust the weights of neuro-network automatically by computer in order to recognize the type of the fruit.Digital image processing deals with the original bitmap ,which is the basis of characteristic withdrew .The theory of digital image processing refers to the gradation of color image ,median filter ,image binary, outline withdrew ,the seed fills ,outline track and so on. Among them, image binary makes use of the basic auto-adapted threshold method.Pattern recognition involves characteristic withdrew and the design of categorize machine, which are the keys of type recognition. The characteristic withdrew has mainly used fruit's geometry characteristics ,which reflect fruit’s size and shape .The categorize machine is designed by means of artificial neuro-network, which uses the algorithm of Back-Propogation in detail and completes the fruit type intelligent recognition by using the training results. Keywords:characteristic withdrew, artificial neuro-network, image binary, basic auto-adapted threshold, the algorithm of Back-Propogation.目录摘要 (I)Abstract (III)第1章绪论 (6)模式识别的发展情况 (6)模式识别和模式的概念 (6)模式识别的应用 (7)水果智能分类系统的研究情况 (7)国内研究现状 (7)国外研究现状 (8)第2章图像采集 (9)图像采集的几种方法 (9)本课题所采用的图像采集方法 (9)第3章图像预处理 (11)数字图像处理的基本内容 (11)常用的几种图像文件 (11)与设备无关位图 (12)位图的显示 (14)彩色图像的颜色空间转换 (15)彩色图像的灰度化处理 (17)将伪彩色图像转化为灰度图 (17)将24位真彩位图转化为灰度图 (17)中值滤波 (18)图像的二值化处理 (18)基本全局门限 (19)基本自适应门限 (20)第4章图像分割与特征提取 (21)消除小杂质区域面积 (21)二值图像的区域标记 (21)二值图像的小区域消除 (22)消除大杂质区域 (22)轮廓提取 (23)种子填充 (24)消除杂质区域 (25)特征提取简介 (25)本系统的特征提取 (26)特征形成 (26)特征获取 (26)第5章分类器的设计 (28)人工神经网络基础 (28)人工神经元 (28)前馈神经网络 (29)反向传播算法的应用(BP法) (29)数据归一化 (29)BP算法 (30)神经网络设计思路 (32)结论 (34)致谢 (36)参考文献 (35)附录 (32)第1章绪论1.1模式识别的发展情况模式识别[1]诞生于20世纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。
“模式识别”课程开放式案例教学设计
LI Yu, U SUN a g・ YU Jixi n Li
( ol ̄ f Eltr ncS in ea d E g n ei g,Na in l ie s y o f n e T c n lg C a g h 1 0 3 h n ) C l e e to i ce ( n n ie rn e o t a v ri f De e s eh oo y, h n s a 4 0 7 ,C ia o Un t
r l tons p wih h ore nd pr c i e ,wean l z n tt ub t s r m a tc ls i ntfc r s a c ea i hi t t e is a a tc s a y e a d ge he s a ks f o pr c ia ce ii e e r h
K e wo ds o n i s a e t a hi y r : pe n t nc e c ng; e i r c r e; a t r e og to s m na ou s p t e n r c nii f l
“ 式识 别 ” 程 理 论 性 强 , 及 的 数 学 知识 较 模 课 涉
关 键 词 : 放 式 案 例 教 学 } 堂 研 讨 ; 式 识 别 开 课 模
中图 分 类 号 : 3 G4 4
文献标识码 : A
文章 编 号 :0 80 8 《 0 1 0 1 3 0 10 6 6 2 1 )30 0 —3
Ope n t nc a hi sg f Pa t r c g ii n Co r e n I s a e Te c ng De i n o t e n Re o n to u s
t a h ng,t s a r a a e t e on e i n a i ec i hi p pe dv nc s h c c pto nd mpl me a i n of t o n i s a c — e c i i h i e nt to he pe ~n t n e t a h ng wh c s
模式识别实验报告
实验一Bayes 分类器设计本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
1实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即则k a 就是最小风险贝叶斯决策。
2实验内容假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。
现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率密度曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进行分类。
3 实验要求1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。
2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。
机器学习与模式识别论文
机器学习与模式识别论文1. 引言机器学习与模式识别是当今计算机科学领域中的重要研究方向。
它们利用统计学、人工智能和数据挖掘等技术,致力于让计算机具备从数据中学习和识别模式的能力。
本文将对机器学习与模式识别的基本概念、发展历程以及相关算法进行探讨。
2. 机器学习基本概念2.1 监督学习监督学习是机器学习的一种基本方法,它通过训练数据集中的标记信息,来预测新数据的标签。
监督学习算法包括决策树、支持向量机等。
2.2 无监督学习无监督学习是指在训练数据集中没有标记信息的情况下,通过对数据的统计特征进行分析,发现数据的内在规律。
聚类算法和关联规则挖掘是常用的无监督学习方法。
3. 模式识别算法3.1 主成分分析(PCA)主成分分析是一种常用的线性降维方法,它通过线性变换将原始数据映射到一个低维空间中,保留最重要的特征。
PCA在图像处理和人脸识别等领域有着广泛的应用。
3.2 支持向量机(SVM)支持向量机是一种二分类模型,它通过构建一个最优超平面来将不同类别的数据样本分开。
SVM 在文本分类、生物信息学等领域表现出色。
3.3 深度学习深度学习是机器学习和模式识别领域的热门技术,它模仿人脑神经网络的结构和工作原理,利用多层次的神经网络进行学习和模式识别。
深度学习在图像识别和自然语言处理等方面取得了显著的突破。
4. 应用领域4.1 图像识别机器学习与模式识别在图像识别领域有着广泛的应用。
通过训练算法,计算机可以从图像中识别出不同的对象,如人脸、车辆等。
4.2 自然语言处理自然语言处理是机器学习与模式识别的重要应用领域之一。
它可以让计算机理解和处理人类语言,包括机器翻译、文本分类等任务。
4.3 医学诊断机器学习与模式识别在医学领域的应用也日益重要。
通过分析医学图像和病例数据,计算机可以辅助医生进行疾病诊断和预测。
5. 发展趋势机器学习与模式识别是一个不断发展的领域,未来的发展方向包括以下几个方面:5.1 深度学习的进一步发展,包括网络结构的改进和算法的优化;5.2 数据挖掘和知识发现的研究,从海量数据中挖掘有用的模式;5.3 多模态学习的研究,融合多种数据源进行综合分析。
模式识别实验报告
二、实验步骤 前提条件: 只考虑第三种情况:如果 di(x) >dj(x) 任意 j≠ i ,则判 x∈ωi 。
○1 、赋初值,分别给 c 个权矢量 wi(1)(i=1,2,…c)赋任意的初
值,选择正常数ρ ,置步数 k=1;
○2 、输入符号未规范化的增广训练模式 xk, xk∈{x1, x2… xN} ,
二、实验步骤
○1 、给出 n 个混合样本,令 I=1,表示迭代运算次数,选取 c
个初始聚合中心 ,j=1,2,…,c;
○2 、 计 算 每 个 样 本 与 聚 合 中 心 的 距 离
,
。
若
, ,则
。
○3 、 计 算 c 个 新 的 聚 合 中 心 :
,
。
○4 、判断:若
,
,则 I=I+1,返回
第二步 b 处,否则结束。 三、程序设计
聚类没有影响。但当 C=2 时,该类别属于正确分类。 而类别数目大于 2 时,初始聚合中心对聚类的影响非常大,仿真
结果多样化,不能作为分类标准。 2、考虑类别数目对聚类的影响: 当类别数目变化时,结果也随之出现变化。 3、总结 综上可知,只有预先分析过样本,确定合适的类别数目,才能对
样本进行正确分类,而初始聚合中心对其没有影响。
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
初始聚合中心为(0,0),(2,2),(5,5),(7,7),(9,9)
K-均 值 聚 类 算 法 : 类 别 数 目 c=5 9
8
7
6
5
4
模式识别与智能系统硕士毕业论文选题(100个)
模式识别与智能系统硕士毕业论文选题(100个)网络头像的识别与分类研究基于深度学习的前列腺癌超声图像辅助诊断技术研究基于多模型交互的关键设备剩余寿命预测目标驱动的移动机器人自主导航研究基于C3D-BiLSTM网络和代价敏感学习的阿尔兹海默症图像分类算法分布式延时工业系统软测量建模与应用基于显著性区域的无参考图像质量评价方法研究弱监督时序动作检测算法研究基于判别式分类器的视频目标跟踪算法研究基于情感特征解耦学习的表情识别方法研究非线性系统滤波粒子退化解决策略与方法研究视频超分辨率重建中的细节保持算法研究基于视频内容的动态摘要生成算法研究基于目标表示增强的相关滤波跟踪算法研究基于GNN的小样本分类算法研究基于非负矩阵分解的降维方法研究与应用基于编解码模型的视频文本描述算法研究基于GAN和GRU的时间序列预测和填补方法研究人与物交互行为识别方法研究混合交叉熵算法求解模糊分布式流水线复杂调度问题神经网络多任务连续学习中灾难性遗忘问题的研究基于深度学习的可回收垃圾视觉分拣系统基于人体姿态迁移的视频生成方法研究基于图卷积的图像文本描述算法研究基于深度度量学习的小样本图像分类方法研究多源域深度迁移学习方法研究基于线结构光的旋转物体动态三维测量方法第一视角行为识别算法研究核相关滤波与卷积神经网络相结合的目标跟踪算法的研究基于主动Lamb波的碳纤维复合材料疲劳损伤结构健康监测方法研究面向森林火情的无人机航迹规划算法研究基于U-net的光纤散斑图像复原研究管路系统的分数阶减振降噪研究及故障分析管路系统的分数阶减振降噪研究及故障分析基于SiamRPN网络的回归损失函数及视觉跟踪研究基于信号质量评估的日常血氧及心率检测研究基于YOLOv3的目标检测方法研究基于扫频听觉诱发电位的听力损失检测方法研究基于光度学分析的高精度结构光三维重建方法研究基于神经肌肉生理信息的吞咽与发音功能评估方法研究基于机器学习的医学影像模态转换及其临床应用基于智能鲁棒模式识别的临床可行的多自由度控制假肢方法研究基于深度学习的磁共振动态成像基于孪生网络的单目标跟踪算法研究复杂场景下基于YOLOv3的人脸检测研究基于学习人类策略的移动机器人控制方法研究基于多源神经信号融合的人体运动意图识别研究肝肿瘤超声引导穿刺机器人的系统设计与控制基于中层语义表征的视频行为分析识别方法研究基于视觉的机械臂智能抓取系统研究基于主动红外入侵探测器的室内人员计数方法研究基于深度学习的金刚石锯片裂纹检测方法研究基于迁移强化学习的跨区互联电网调度优化多品种单站点外骨骼人机生产线系统的建模与优化研究快速超像素图像分割算法及其应用研究基于点云数据的SLAM图优化研究基于机器视觉的碳纤维预浸料表面质量检测研究基于机器视觉的汽车路况感知技术研究纤维素基离子电驱动器与纳米发电机的设计及性能研究基于磁阻测量的硬质合金锯片检测方法研究网约车用户出行行为分析及需求预测——以海口市为例服务机器人远程过程调用框架设计与实现——以表情识别为例基于2D旋转激光的室内三维SLAM技术研究基于网络表示学习的异常用户检测方法研究基于深度神经网络的高光谱波段选择方法研究基于SSD的小目标检测算法研究基于注意力机制的生成式对抗网络的图像增强和补全算法研究机载综合导航系统建模及其实现基于生成式对抗网络的图像识别研究基于移动端的艺术品智能识别地下隧道电缆环境下的少样本目标检测算法研究基于xPC实时平台的HIL架构设计关键技术研究与实现PROFIBUS现场总线通信性能仿真研究常规岛仪表系统可靠性建模分析AST电磁阀失电特性研究与可靠性分析规模化风电机组调频性能关键技术研究及应用核电常规岛给水系统可靠性分析及故障诊断基于自由基光谱的预混火焰温度检测研究前臂静脉特征的提取与匹配方法研究基于深度信息的室内场景分割算法研究基于语义分割的图像篡改盲取证技术研究永磁同步电机转速环控制策略研究基于深度学习的极光局部结构识别与定位基于双目视觉的道路场景语义分割技术研究基于强化学习的足式机器人控制方法研究考虑动态干扰和间歇运动的运动目标检测方法研究基于LoRa物联网组网方法研究与系统实现面向康复的运动想象脑电分析及结合VR训练研究基于组合模型的燃煤电站电煤库存短期预测方法研究基于可分离信号的Wiener模型辨识方法研究基于案例推理的时间限制进食治疗肥胖方法研究面向旅游领域的实体预测方法研究基于改进RPN的深度学习目标检测方法研究基于物联网技术的图像火焰检测系统设计基于姿态分析和局部特征的人脸识别系统研究基于卷积神经网络的飞机蒙皮紧固件腐蚀损伤检测研究贝叶斯网络分类器的参数学习算法研究与实现基于稀疏表示的超分辨率重建关键技术研究基于DSmT的多粒度信息融合方法及其应用研究基于先验约束的超分辨率图像复原方法研究。
华南理工大学《模式识别》大作业报告
华南理工大学《模式识别》大作业报告题目:模式识别导论实验学院计算机科学与工程专业计算机科学与技术(全英创新班)学生姓名黄炜杰学生学号 201230590051指导教师吴斯课程编号145143课程学分2 分起始日期 2015年5月18日实验内容【实验方案设计】Main steps for the project is:1.To make it more challenging, I select the larger dataset, Pedestrian, rather than thesmaller one. But it may be not wise to learning on such a large dataset, so Inormalize the dataset from 0 to 1 first and perform a k-means sampling to select the most representative samples. After that feature selection is done so as to decrease the amount of features. At last, a PCA dimension reduction is used to decrease the size of the dataset.2.Six learning algorithms including K-Nearest Neighbor, perception, decision tree,support vector machine, multi-layer perception and Naïve Bayesian are used to learn the pattern of the dataset.3.Six learning algorithm are combing into six multi-classifiers system individually,using bagging algorithm.实验过程:NormalizationThe input dataset is normalized to the range of [0, 1] so that make it suitable for performing k-means clustering on it, and also increase the speed of learning algorithms.SamplingThere are too much sample in the dataset, only a smallpart of them are enough to learn a good classifier. To select the most representative samples, k-means clustering is used to cluster the sample into c group and select r% of them.There are 14596 samples initially, but 1460 may be enough, so r=10. The selection of c should follow three criterions:a) Less drop of accuracyb) Little change about ratio of two classesc) Smaller c, lower time complexitySo I design two experiments to find the best parameter c:Experiment 1:Find out the training accuracy of different amountof cluster. The result is shown in the figure on the left. X-axis is amount of cluster and Y-axis is accuracy. Red line denotes accuracy before sampling and blue line denotes accuracy after sampling. As it’s shown in the figure, c=2, 5, 7, 9, 13 may be good choice since they have relative higher accuracy.Experiment 2:Find out the ratio of sample amount of two class. The result is shown in the figure on the right. X-axis is amount of cluster and Y-axis is the ratio. Red line denotes ratio before sampling and blue line denotes ratio after sampling. As it’s shown in the figure, c=2, 5, 9 may be good choice since the ratio do not change so much.As a result, c=5 is selected tosatisfy the three criterions.Feature selection3780 features is much more than needed to train a classifier, so I select a small part of them before learning. The target is to select most discriminative features, that is to say, select features that have largest accuracy in each step. But there are six learning algorithm in our project, it’s hard to decide which learning algorithm this feature selection process should depend on and it may also has high time complexity. So relevance, which is the correlation between feature and class is used as a discrimination measurement to select the best feature sets. But only select the most relevant features may introduce rich redundancy. So a tradeoff between relevance and redundancy should be made. An experiment about how to make the best tradeoff is done:the best amount of features isFind out the training accuracy of different amountof features. The result is shown below. X-axis is amount of features and Y-axis is accuracy. Red line denotes accuracyPCATo make the dataset smaller, features with contribution rate of PCA ≥ 85% is selected. So we finally obtain a dataset with 1460 samples and 32 features. The size of the dataset drops for 92.16% but accuracy only has 0.61% decease. So these preprocessing steps are successful to decrease the size of the dataset.Learning6 models are used in the learning steps: K-Nearest Neighbor, perception, decision tree, support vector machine, multi-layer perception and Naïve Bayesian. I designed a RBF classifier and MLP classifier at first but they are too slow for the reason that matrix manipulation hasn’t been designed carefully, so I use the function in the library instead. Parameter determination for these classifiers are:①K-NNWhen k≥5,the accuracy trends to be stable, so k=5②Decision treeMaxcrit is used as binary splitting criterion.③MLP5 units for hidden is enough。
模式识别技术原理论文
模式识别技术原理论文摘要:未来的时代,将会是信息科技的时代,是人工智能的时代,是计算机的模式识别活动替代人类活动来高效完成工作的时代。
模式识别技术的不断发展将会给刑事科学技术带来更多的应用前景,也标志着刑事科学技术的现代化建设,将会随着模式识别发展的步伐登上一个全新的高度,为未来的打击犯罪和维护正义增添新的利剑!存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式(pattern)。
而针对现代信息科技的狭义领域内,模式可以说是为了能让计算机执行和完成分类识别任务,通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息。
从这些大量的信息及数据出发,模式识别(Pattern Recognition)便是用计算机实现人对各种事物或现象的分析,描述,判断,识别的过程。
模式识别技术的发展是从1929年G. Tauschek发明数字阅读机开始的,直到20世纪70年代,一些发达国家开始将模式识别应用到刑事侦查部门。
随着科技的不断进步,模式识别在刑事科学技术方面的应用越来越广泛,发挥的作用也越来越大,从某种意义上说模式识别促进了侦查和刑事技术手段的发展。
一、模式识别系统模式识别是解决如何利用计算机对样本进行模式识别,并对这些样本进行分类。
执行模式识别的计算机系统被称为模式识别系统。
一个完整的模式识别系统,由数据获取、预处理、特征提取、分类决策和分类器设计5部分组成。
可以分为上下两部分:上半部分完成未知类别模式的分类;下半部分完成分类器的设计训练过程。
1.数据获取及预处理数据获取是通过传感器,将光或声音等信息转化为计算机能够识别的电信息的过程。
为了更准确有效的读取信息,对由于信息获取装置或其他因素所造成的信息退化现象进行复原、去噪,从而加强信息的利用率,这个过程就是预处理。
2.特征提取由于数据获取部分所获得的原始信息数据量相当庞大,为了将这种维数较高的模式空间转换为维数较低的特征空间,从而实现分类识别,得到最能反映分类本质特征的向量,这个对特征进行抽取和选择的过程即为特征提取。
模式识别论文(Pattern recognition)
模式识别论文(Pattern recognition)Face recognition based on sparse representationImage sparse representation of the image processing in the exergy is very suitable for image sparse representation of the image obtained by decomposition of gaugeThe calculations are enormous. Using MP implementation method based on image sparse decomposition algorithm using genetic algorithm for fast exergy processThe best atom is decomposed at each step.The problem of face recognition is a classical pattern recognition problem. In recent years by the Exergy Theory of compressed sensing based on dilute inspired exergySparse representation of face recognition technology has been extensively studied. Face recognition based on sparse representation is the construction of words using training picturesThe sparse linear combination coefficients and exergy exergy code by solving an underdetermined equation to obtain the test images according to these coefficientsThe image recognition classification.Keywords image processing in the sparse representation of the MP within the genetic algorithm of sparse decompositionFace, recognition, via, sparse, representationAbstract:, sparse, representation, of, images, is, very, suitable,, for, image, processing,But, the, computational, burden, in, sparse, decomposition, process, image, is, huge,, A, newFast, algorithm, was, presented, based, on, Matching, Pursuit (MP), image, sparseDecomposition. At, first, Genetic, Algorithms (GA), was, applied, to, effectively, searchIn, the, dictionary, of, atoms, for, the, best, atom, at, each,, step, of, MPFace, recognition, problem, is, a, classic, problem, of, pattern,, recognition., In, recentYears, inspired, by, the, theory, of, perception, is, compressed, sparseRepresentation-based, face, recognition, technology, has, been, widely, studied., FaceRecognition, based, on, sparse, representation, is, to, take, advantage,, of, the, trainingImages, constructed, dictionary, owed, by, solving, a, the, most,, sparse, linear, combinationCoefficients, given, equation, to, obtain, the, test, images, then, these, coefficients, toIdentify image classification.Key words: image processing; sparse representation; sparse decomposition;Matching Pursuit; Genetic Algorithms0 Introduction the current face recognition technology of rapid development especially the exergy basedStatic face detection and recognition, and face feature extractionMulti face recognition based on multi pose has been achievedA great deal of research. But the exergy exergy in more complex environmentsSuch as facial expression recognition, illumination compensation and Guang ZhaomoThe establishment of the model, the treatment of age changes, and a variety of testing dataThere is a lack of effective methods for fusion.Face recognition includes three steps in face detectionMeasurement, face feature extraction, face recognition and verification. There arePeople on thisExtension of the exergy based on the above three stepsOn Exergy increased early standardization, and correction and later pointsClass and management these two steps.The research of face recognition started in the late 1960sL2]. Has experienced 40 years of development. Roughly divided into threeThree stages:The first stage is the initial stage from 60s to the end of exergyLate 80s. The main technique adopted at that time was baseTo set the structure characteristics of the face recognition method of exergy isAs a general pattern recognition problem is studied. generationThe figures include Bledsoe (Bledsoe) and Gordon Stein(Goldstein), Harmon (Harmon), and Kim Wu Hsiung(KanadeTakeo) et al. At that time almost all were identifiedThe process relies on manual operation and results in no exergy into very important practical applications in not many basically noHave practical application.The second stage is in the exploration stage from 70s to eightThe ten age. During this period, as well as engineers in the smokeLead neuroscientists and psychologists to the fieldResearch. The former is mainly through the perception mechanism of the human brainTo explore the possibility in automatic face recognition while the orderSome theoretical obtained has some defects and partial nature but inEngineering techniques for design and implementation of algorithms and systemsThe personnel have the important theory instructionsignificance.The third stage is the stage of rapid development in the last century from the nineFrom the ten to the present. Computer vision and pattern recognition technologyIn the rapid development of computer image processing technology and drivesThe rapid development of face recognition. Governments are also heavily financedIn the study of face recognition and achieved fruitful results.Among them, Eigenfaee and Fisherface is this momentThe most representative, the most significant achievements of the twoThree kinds of face recognition algorithms have become the base of face recognitionAlgorithms and industrial standards.1 sparse representation of the mathematical form of sparse representation of the face recognition problem is represented mathematicallyF = A X Y is in the m where Y is the dimension of natural channelNo, A is also known from a predefined dictionary based X is a natural increase.The n-dimensional sparse representation of signals under predefined bases. KnownBased on the original signal by solving its in the predefined baseIn the sparse representation is a sparse encoding problem in the following twoSolution method]3-1 [fSparse encoding f sparse regularization constraints K||X|| S.T. ||AX-Y||argmin0?The 22 rate in XThe error constrained sparse encoding exergy in FRate of 220 ||AX-Y|| S.T. ||X||argmin?XType F XIs the original signal Y, under the predefined baseThe sparse representation coefficient of exergy is share error tolerance share K is sparseShare threshold 0||The || said in that the number of columns of 0l norm vector 0Number of elements.Sparse coding and compressed sensing reconstruction of signals haveThat rate and the minimum eight norm can be very goodRestructure。
模式识别实验报告哈工程
一、实验背景随着计算机科学和信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。
模式识别是指通过对数据的分析、处理和分类,从大量数据中提取有用信息,从而实现对未知模式的识别。
本实验旨在通过实践操作,加深对模式识别基本概念、算法和方法的理解,并掌握其应用。
二、实验目的1. 理解模式识别的基本概念、算法和方法;2. 掌握常用的模式识别算法,如K-均值聚类、决策树、支持向量机等;3. 熟悉模式识别在实际问题中的应用,提高解决实际问题的能力。
三、实验内容本次实验共分为三个部分:K-均值聚类算法、决策树和神经网络。
1. K-均值聚类算法(1)实验目的通过实验加深对K-均值聚类算法的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组二维数据,包括100个样本,每个样本包含两个特征值;② 初始化聚类中心:随机选择K个样本作为初始聚类中心;③ 计算每个样本到聚类中心的距离,并将其分配到最近的聚类中心;④ 更新聚类中心:计算每个聚类中所有样本的均值,作为新的聚类中心;⑤ 重复步骤③和④,直到聚类中心不再变化。
(3)实验结果通过实验,可以得到K个聚类中心,每个样本被分配到最近的聚类中心。
通过可视化聚类结果,可以直观地看到数据被分成了K个类别。
2. 决策树(1)实验目的通过实验加深对决策树的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组具有分类标签的二维数据,包括100个样本,每个样本包含两个特征值;② 选择最优分割特征:根据信息增益或基尼指数等指标,选择最优分割特征;③ 划分数据集:根据最优分割特征,将数据集划分为两个子集;④ 递归地执行步骤②和③,直到满足停止条件(如达到最大深度、叶节点中样本数小于阈值等);⑤ 构建决策树:根据递归分割的结果,构建决策树。
(3)实验结果通过实验,可以得到一棵决策树,可以用于对新样本进行分类。
3. 神经网络(1)实验目的通过实验加深对神经网络的理解,掌握其基本原理和实现方法。
模式识别学习报告(团队)
模式识别学习报告(团队)简介该报告旨在总结我们团队在模式识别研究中的成果和收获。
模式识别是一门重要的学科,它涉及到从数据中识别和分类出模式和结构。
通过研究模式识别,我们可以更好地理解和处理各种数据,并应用到实际问题中。
研究内容我们团队在研究模式识别时,主要涉及以下内容:1. 模式识别算法:我们研究了各种常用的模式识别算法,包括K近邻算法、支持向量机、决策树等。
通过研究这些算法,我们可以根据不同的数据和问题选择合适的方法进行模式识别。
2. 特征提取和选择:在模式识别中,选择合适的特征对于识别和分类模式至关重要。
我们研究了特征提取和选择的方法,包括主成分分析、线性判别分析等,可以帮助我们从原始数据中提取重要的特征。
3. 模型评估和选择:为了评估和选择模式识别模型的性能,我们研究了各种评估指标和方法,包括准确率、召回率、F1分数等。
通过合适的评估方法,我们可以选择最合适的模型来应对具体问题。
研究成果通过团队研究,我们取得了以下成果:1. 理论知识的掌握:我们对模式识别的基本概念和原理有了较为深入的了解,并能够灵活运用于实际问题中。
2. 算法实现和编程能力的提升:我们通过实践练,掌握了常用模式识别算法的实现方法,并在编程中加深了对算法的理解。
3. 团队合作和沟通能力的提高:在研究过程中,我们通过合作完成了多个小组项目,提高了团队合作和沟通的能力。
总结通过研究模式识别,我们不仅增加了对数据的理解和处理能力,还提高了团队合作和沟通的能力。
模式识别是一个不断发展和应用的领域,我们将继续深入研究,并将所学知识应用到实际问题中,为社会发展做出更大的贡献。
参考[1] 孙建华. 模式识别与机器研究[M]. 清华大学出版社, 2019.[2] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Science & Business Media.。
模式识别总结
监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
1、写出K-均值聚类算法的基本步骤,算法:第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。
聚类中心的向量值可任意设定,例如可选开始的K个模式样本的向量值作为初始聚类中心。
第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K个聚类中心中的某一个zj(1)。
假设i=j时,,则,其中k为迭代运算的次序号,第一次迭代k=1,Sj表示第j个聚类,其聚类中心为zj。
第三步:计算各个聚类中心的新的向量值,zj(k+1),j=1,2,…,K求各聚类域中所包含样本的均值向量:其中Nj为第j个聚类域Sj中所包含的样本个数。
以均值向量作为新的聚类中心,可使如下聚类准则函数最小:在这一步中要分别计算K个聚类中的样本均值向量,所以称之为K-均值算法。
第四步:若,j=1,2,…,K,则返回第二步,将模式样本逐个重新分类,重复迭代运算;若,j=1,2,…,K,则算法收敛,计算结束。
线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式识别论文
题目基于Matlab 的语音识别系统
Title: the voice recognition system based on matlab
摘要
语音是人的自然属性之一,是人类信息交流的基本手段。
语音中包含有多种信息,如语义信息、语言信息、说话人信息、情感信息等。
语音识别就是从语音信号中识别出这些信息。
按照任务的不同,语音识别可以分为四个方面:说话人识别、语种识别、关键词识别和连续语音识别。
语音识别是以声音作为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。
语音识别作为一门兼具理论价值与应用价值的研究课题,得到越来越多研究者的兴趣和关注,各种各样的语音识别方法层出不穷。
本次课程论文通过分析MFCC系数和语音识别的基本原理,应用Matlab 设计实验程序并结合VQ矢量量化模型完成语音识别的VQ实现。
本次课程论文通过语音识别的相关的背景、步骤以及原理,设计了一个mat lab语音识别实验,并包含了实验的流程和结果。
关键词:语音识别;Matlab;模式识别
一、引言:近年来,语音识别作为一门兼具理论价值与应用价值的研究课题,得到越来越多研究者的兴趣和关注,各种各样的语音识别方法层出不穷。
本次课程论文通过语音识别的基本原理,应用Matlab 设计实验程序。
语音识别是以声音作为研究对象它是语音信号处理的一个重要研究方向,是模式识别的一个分支涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。
二、.原理分析
1 语音识别系统的特征提取
语音识别系统中的特征提取即提出适合分类的某些信息特征(如说话人,或语言特征,或关键词特征),次特征应能有效地区分不同的模式,而且对同种方式的变化保持相对稳定。
目前的语音识别系统主要依靠较低层次的声学特征进行识
别。
语音识别特征大致可以分为3类:
(1)线性预测系数及其派生参数,如线性预测系数、线谱对系数、线性预测倒谱系数及其组合参数。
(2)由语音频谱直接导出的参数,如基音及其轮廓、美尔频率倒谱系数、感知线性预测参数、口音敏感倒谱系数。
(3)混合参数。
混合参数由以上不同的参数组成的矢量。
2 语音识别系统的分类模型
模型建立是指在训练阶段用合适的模型来表征这些参数,使得模型能够代表该语言的语音特性。
对模型的选择主要应从语音的类型、所期望的性能、训练和更新的难易程度以及计算量和存储量等方面综合考虑。
可分为以下四类:
(1)模板匹配模型:从每种模型的训练语句中提取相应的特征矢量,这些特征矢量称为模板。
识别时,从语音信号中按同样的处理法提取测试模板,并且与其相应的参考模板相比较。
模板匹配模型的不足之处在于不能全面地反映样本分布及统计特性,适应性较差。
典型的模板匹配模型有最邻近模型、动态时间规整模型和矢量量化模型。
(2)概率统计生成模型(又称参数模型):语音信号具有短时平稳性,通过对稳态特征如基音、声门增益、低阶反射系数的统计分析,可以利用均值、方差等统计量和概率密度函数进行分类判决。
概率统计生成模型采用某种概率密度函数来描述语音特性在特性空间的分布情况,并以该概率密度函数的一组参数作为语音模型。
概率统计生成模型由于考虑了语音的统计特性,能较全面地反映语音的统计信息,其优点是不用对特征参量在时域上进行规整。
典型的概率统计生成模型有隐马尔可夫模型和高斯混合模型。
(3)神经网络模型:人工神经网络在某种程度上模拟了生物的感知特性,它是一种分布式并行处理结构的网络模型,具有自组织和自学习能力、很强的复杂分类边界区分能力以及对不完全信息的稳健性,其性能近似理想的分类器。
其缺点是训练时间长,动态时间规整哪里弱。
目前常用的神经网络模型有多层次感知器、径向基函数网络、自组织映射网络和支持向量机网络等。
(4)融合模型:把以上分类方法与不同特征进行有机组合可显著提高语音识别的性能。
三、语音识别系统的结构
1 一个完整的语音识别系统包括预处理、特征提取、模型建立、模式匹配和判决规则等5个部分。
语音识别是属于人工智能领域中的一项技术,从本质上讲,语音识别技术是一个语音信号模式识别问题,它由训练(或注册)和识别(或测试)两个阶段完成。
从训练语音中提取语音特征、建立参考模型并储存的过程称为训练阶段;从待识别语音中提取语音特征,依据参考模型进行比较和判决的过程称为识别阶段。
.2 语音信号预处理
实际的语音信号是模拟信号,因此在对语音信号进行数字处理之前,首先要将模拟语音信号以采样周期采样,采样周期的选取应根据模拟语音信号的带宽来确定,以避免信号的频域混叠失真。
在对离散后的语音信号进行量化处理过程中会带来一定的量化噪声和失真。
语音信号的预处理包括预加重和加窗分帧处理。
3 语音识别的特征提取
语音线性预测的基本思想是:由于语言样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值,即一个语音信号的抽样值可以用过去若干个取样值得线性组合来逼近。
通过使实际语音抽样和线性预测抽样之间的误差在某个准则下达到最小值来决定唯一的一组预测系数。
4 用矢量量化聚类法生成码本
将每个待识别的说话人看作是一个信源,用一个码本来表征。
码本是从该说话人的训练序列中提取的特征矢量聚类而生成。
只要训练的序列足够长,可认为这个码本有效地包含了说话人的个人特征,而与讲话的内容无关。
本系统采用基于分裂的算法设计码本。
4.实验设计
先读入原始语音信号,显示其波形,然后通过预加重滤波器,即可得到预加重语音信号,之后就可以对语音信号进行短时平均幅度和平均过零率分析,同时,也可以通过相应的计算得到语音信号的部分特征参数(LPC谱和LPC倒谱)
5 实验结果及总结
经试验,可以显示出应有的波形,得出预期实验结果。
经过本次课程论文学习,我已对语音识别有了一定的研究;本实验在matlab平台上基本实现了说话人的语音;虽然本次实验的结果比较理想,但是语音识别还有很多;本次设计中主要涉及到了语音识别的基本原理、系数的算法、矢量量化聚类法、说话人识别技术以及matlab编程知识。
本实验在matlab平台上基本实现了说话人的语音识别,从实验结果来看,基本上实现了预定的目的。
本实验的程序代码参考了部分参考书籍和网上资料,但它们的代码在matlab上运行均会出现一些错误,无法正常运行,本人通过多次修改调试并改进,终于使程序成功运行,并得到较为理想的结果。
当然,在这个过程中也碰到过很多各种各样的问题,一开始语音录入的时候,打算叫几个人
来录音,但是后来觉得太麻烦了,直接用一段音频(mp3音乐)就算了,但是问题来了,有时因为音频时间可能太长了导致程序运行的时间很长,或者电脑直接就死机了,后来想起酷我有个制作铃声的工具,然后就用这个工具将比较长的音频截成一段时间很短的音频,大概就是10秒钟,这样的话,我就只需找几个不同的歌手就可以达到不同说话人的目的了,还挺方便的。
用matlab程序实现相应的功能其实难度还是挺大的,语音识别的大概流程和理论算法我都有一定的了解,但是用matlab语言描述出来,用实现的话很多时候都是无从下手,尤其是涉及比较多的函数的时候,不过经过这次实验,我的matlab编程实现能力又得到了一定的提高。
调程序的时候也真的很需要耐心,因为这个问题解决了,再运行的时候,也继续会有下一个问题的出现,最怕的就是要验证问题是否解决的时候,程序需要运行很长的时间,程序运行完了,问题还没有解决,不断地修改,不断的等待,可能有时候真的会不耐烦,所以调程序需要耐心,我在调试生成码本那个程序的时候就是这样的,还好最终都能实现了。
虽然本次实验的结果比较理想,但是语音识别还有很多的模型、方法和技术。
本次实验只是模拟了说话人的识别,但是语音识别其实还有其它方面的任务,仍然有很大的空间值得去学习和提高。
6 参考文献
百度文库及matlab软件。