数据插值与函数逼近问题
数学中的函数逼近与插值方法
数学中的函数逼近与插值方法函数逼近和插值方法是数学中重要的概念与技术。
在数学与应用领域,我们经常会遇到需要近似计算或者重建一个函数的情况。
函数逼近和插值方法提供了一种有效的手段,能够用一个简单的函数或者曲线来近似代替原函数,并在一定程度上保留原函数的性质与结构。
1. 函数逼近在函数逼近中,我们需要给出一个近似函数,使其能够在原函数的一定范围内进行准确的近似。
这一方法常用于数据分析和拟合,以及在一些数学问题中的近似求解。
常见的函数逼近方法包括最小二乘逼近、Chebyshev逼近和插值型逼近等。
最小二乘逼近是一种通过使残差平方和最小化来确定近似函数的方法。
它的基本思想是将原函数表示为一个线性组合,通过求解线性方程组的最优解来确定系数。
Chebyshev逼近使用Chebyshev多项式来逼近函数。
这种方法的优点是能够在给定的逼近度下,取得最均匀的最小误差。
插值型逼近则是通过在一些数据点上确定一个插值多项式,然后用该多项式来逼近原函数。
这种方法的优点是能够在给定的数据点上实现完全的逼近。
2. 插值方法插值方法是一种通过给定的数据点来确定一个连续函数的方法。
在插值中,我们希望找到一个函数,使其通过给定的数据点,并且能够在这些点之间进行连续的插值。
常见的插值方法包括线性插值、拉格朗日插值和样条插值等。
线性插值是一种简单的插值方法,它假设插值函数在两个给定数据点之间是线性的。
通过连接两个邻近点,我们可以得到一个线性函数来近似整个区间上的函数。
拉格朗日插值是一种通过拉格朗日多项式来插值的方法。
它的基本思想是通过在每个数据点上构造一个插值多项式,然后将这些多项式进行线性组合来得到插值函数。
样条插值是一种在给定数据点上通过拟合一系列分段低次多项式来插值的方法。
这样可以在各个小区间上获得更好的逼近效果。
总结起来,函数逼近与插值方法是数学中重要且常用的技术。
它们在数学建模、数据分析以及计算数值方法中都起到了关键的作用。
数学中的函数逼近与插值
数学中的函数逼近与插值数学中的函数逼近与插值是一门重要的数学分支,通过近似求解函数与数据之间的关系,可以快速计算和预测未知的数值。
本文将介绍函数逼近与插值的基本概念和方法,并探讨其在实际应用中的价值和意义。
一、函数逼近函数逼近是指通过一系列已知的数据点来建立一个近似的函数模型,以便于计算和预测未知的数值。
在实际应用中,我们经常需要使用函数逼近来处理大量的数据,从而节省计算和存储资源。
1.1 最小二乘法最小二乘法是函数逼近的常用方法,它通过最小化实际观测数据与模型预测值之间的误差平方和,来确定函数逼近的参数。
最小二乘法可以应用于线性和非线性函数逼近,是一种广泛使用的数学工具。
1.2 插值法插值法是函数逼近的一种常见技术,它通过已知的数据点构建一个多项式函数,以逼近未知的函数模型。
插值法可以根据数据点的特点选择不同的插值多项式,如拉格朗日插值、牛顿插值等。
插值法在图像处理、信号处理等领域有广泛应用。
二、函数插值函数插值是指通过已知的数据点来构建一个连续的函数模型,以便于在任意位置计算函数值。
函数插值在数学、计算机科学和工程领域具有重要的应用价值。
2.1 插值多项式插值多项式是函数插值的一种常用方法,它通过已知的数据点构建一个多项式函数,以逼近未知的函数模型。
插值多项式可以使用拉格朗日插值、牛顿插值等方法进行构造,这些方法在实际应用中具有较好的效果。
2.2 样条插值样条插值是一种更加精确和平滑的插值方法,它通过已知的数据点构建一系列分段连续的多项式函数,以逼近未知的函数模型。
样条插值可以解决插值多项式在几点处不光滑的问题,常用的样条插值方法有线性样条插值、二次样条插值和三次样条插值等。
三、函数逼近与插值在实际应用中的意义函数逼近与插值在科学研究和工程实践中具有广泛的应用,对于大数据处理、数值计算和机器学习等领域具有重要的作用和意义。
3.1 数据拟合与预测函数逼近与插值可以通过已知的数据点建立一个模型,从而对未知的数据进行拟合和预测。
逼近方法和插值方法的比较
逼近方法和插值方法的比较逼近方法和插值方法是数值分析中常用的两种数据处理技术,它们可以用于解决各种数学问题,例如函数逼近、信号处理、图像处理等。
虽然这两种方法都可以用于拟合数据,但是它们的原理与应用有很大的不同。
在本文中,我们将对逼近方法和插值方法进行比较,并分析它们的优缺点和应用场景。
一、逼近方法逼近方法是一种利用数学模型对实际数据进行拟合的方法。
与插值方法不同,逼近方法不要求通过数据点来直接计算出函数值,而是要求在整个拟合域内,最小化实际数据与拟合函数之间的误差。
因此,在逼近方法中,拟合函数不需要通过所有数据点,只需要通过一部分数据点,从而能够更好地逼近真实的函数。
逼近方法中常用的模型包括多项式模型、三角函数模型、指数模型、小波模型等。
逼近方法相较于插值方法的优点在于,它对数据中的噪声具有一定的容忍度。
由于在逼近过程中,并不要求通过所有数据点,因此可以为一些离群点和噪声点留下一定的空间。
而插值方法则要求通过所有数据点,一旦数据出现噪声点或者离群点,就会对插值结果产生极大的影响。
逼近方法缺点在于,由于逼近过程是基于模型的,因此需要先选定一种适合于实际数据的模型,否则拟合结果可能无法正确表达数据的真实本质。
逼近方法适用于数据比较平滑的情况,例如时间序列数据、声音处理等。
通过选取合适的模型,逼近方法可以更好地保留数据的特征,同时对于部分离群点的情况,也可以提供一定程度的容忍度。
二、插值方法插值方法是一种通过已知数据点,在数据点之间进行插值计算出未知数据点的数值的方法。
插值方法要求通过每个数据点,计算出它们之间的函数值,从而构建出全局的函数。
常见的插值方法包括拉格朗日插值法、牛顿插值法、分段线性插值法、三次样条插值法等。
插值方法的优点在于,它可以精确地通过所有数据来计算未知数据值。
但是,插值方法的缺点在于,它对于数据的噪声敏感,并且过度拟合的可能性会很大。
当数据点过多时,插值方法会使插值函数波动较大,从而无法反映数据的真实本质。
函数逼近与插值
函数逼近与插值函数逼近和插值是数学的两个重要分支,在工程、科学和金融等领域都有广泛的应用。
本文将从数学角度介绍这两个概念,并讨论它们的优缺点和应用领域。
函数逼近函数逼近是指用一个已知的函数来近似另一个函数的过程。
通常情况下,我们会选择一组基函数,将待逼近函数表示为基函数的线性组合形式,然后通过确定基函数的系数,使得逼近函数与原函数的误差最小。
常用的基函数包括多项式、三角函数、指数函数等,其中最为广泛应用的是多项式基函数。
多项式函数的优点在于易于计算和控制,同时由于其具有良好的局部逼近性,因此在实际应用中得到了广泛的应用。
以多项式逼近为例,设待逼近函数为$f(x)$,逼近函数为$p(x)$,则有:$$p(x)=a_0+a_1x+a_2x^2+...+a_nx^n$$其中,$a_0,a_1,a_2,...,a_n$为待求系数。
我们可以通过最小二乘法来确定这些系数,即$$\min\limits_{a_0,a_1,...,a_n}\sum\limits_{i=1}^n(f(x_i)-p(x_i))^2$$这个问题可以通过求解线性方程组的方式得到解析解,也可以通过牛顿迭代等数值优化算法得到近似解。
在实际应用中,我们通常会选择适当的基函数来进行逼近,例如在图像处理中,一般采用的是小波基函数,而在金融工程中,常用的则是Gaussian基函数。
不同的基函数对逼近结果的精确度和复杂度有着不同的影响,因此需要根据具体的需求来选择适当的基函数。
函数插值函数插值是指通过已知的样本点来求出一条经过这些点的曲线的过程。
具体来说,就是找到一个函数$p(x)$,使得$p(x_i)=f(x_i)$,其中$x_i$为已知的样本点。
该函数$p(x)$称为插值函数。
常见的插值方法包括拉格朗日插值、牛顿插值、样条插值等。
其中,拉格朗日插值最为简单直观,其基本思想是假设插值函数为一个多项式,并通过已知的样本点来确定该多项式的系数。
例如,在二次插值中,设插值函数为$p(x)=ax^2+bx+c$,则有$p(x_1)=f(x_1),p(x_2)=f(x_2),p(x_3)=f(x_3)$。
数值分析 张铁版 第6章 插值与逼近
(k 0,1, , n)
(6.5)
(6.6)
于是,所求n次插值多项式 Ln ( x) Ln ( x)称为n次LagrangBiblioteka 插值多项式. y l ( x)
k 0 k k
当n=1和n=2时,即为线性插值和抛物插值.
引入记号 n1 ( x) ( x x0 )( x x1 )( x xn ) (6.7) n 1 ( xk ) 则 lk ( x) ,k 0,1, , n 注意:基函数只与节 ( x xk )n 1 ( xk ) 点有关,而与具体的 n n 1 ( x) 被插值函数无关 于是 Ln ( x) yk
定理6.1 给定n 1个互异节点x0 , x1 , xn上的函数值y0 , y1 , yn , 则满足插值条件(6.2)的n次插值多项式Pn ( x)是存在且唯一的.
证:将插值条件P( xi ) yi, 0,1,, n) 分别代入 插值多项式(6.3) (i
a0 a1 x0 a2 x0 2 an x0 n y0 1 x0 2 n a0 a1 x1 a2 x1 an x1 y1 1 x1 a a x a x 2 a x n y 1 xn 2 n n n n 0 1 n
k 0 n
0, i k lk ( xi ) 1, i k
i, k 0,1, , n
(6.4)
由于x0 , , xk 1 , xk 1 , , xn是lk ( x)的零点 所以可设 lk ( x) Ak ( x x0 ) ( x xk 1 )( x xk 1 ) ( x xn )
( x xk )( x xk 1 ) 所以 lk 1 ( x) ( xk 1 xk )( xk 1 xk 1 )
数值分析-针对不连续函数的插值逼近
问题二 稳定性分析
问题三 算法分析
可见,随着插值点个数n的增 加,插值函数对原函数的误差 逐渐减小收敛至0,算法是稳 定且收敛的。
其他插值方法
————切比雪夫节点与lagrange插值结合
切比雪夫结点插值
在此我们选用切比雪夫插值节点 依然选用同样的Lagrange插值公式
切比雪夫结点插值
n=3插值
其他插值方法
——Berrut重心权值插值
Berrut重心权值插值
插值公式:
Berrut重心权值插值结果
n=10插值
n=20插值
Berrut重心权值插值结果
可见,重心权值插值方法可 以有效避免龙格现象,且随 着n的增加,插值函数对原 函数的拟合度越来越好。但 由于Berrut插值函数在插值 点附近函数值不存在,所以 函数不连续,随着n的增加, 插值函数出现了较多的不连 续点。
函数插值与逼近的研究
综合利用Lagrange插值、样条插值、重心权值插值逼近不连续函数
问题一
利用分段插值做出原函数图像如下:
可知x=5为函数不连续点
问题一 Lagrange插值
在这里,我们先选取拉格朗日插值
xi = (i − 1)h + a, yi = f (xi), i = 1, ...,N, h =(b − a)/(N − 1)
误差分析
切比雪夫节点插值
n=5插值
n=7插值
切比雪夫节点插值
n=9插值
n=11插值
切比雪夫节点插值 结果分析
n=5、7、11时插值函数误差
由插值结果可知,切比雪夫节点插值有效避免了插值函数在插 值区间端点附近的龙格现象。除在函数不连续点x=5处误差较大 外,算法在其他各点均逐渐收敛。但由于是n次多项式插值,在 x>5处函数波动较大,不能对函数进行很好的逼近。
第6章 函数逼近与函数插值
第六章 函数逼近与函数插值本章介绍函数逼近与插值的有关理论和算法. 函数逼近问题与插值问题两者既有联系又有区别,它们都是用较简单的函数来近似未知的、或表达式较复杂的函数. 一般来说,函数逼近是要在整个区间、或一系列离散点上整体逼近被近似函数,而在进行插值时,则须保证在若干自变量点上的函数值与被近似函数相等.6.1 函数逼近的基本概念进行函数逼近一般是在较简单的函数类Φ中找一个函数p(x)来近似给定的函数f(x),以使得在某种度量意义下误差函数p (x )−f(x)最小. 被逼近函数f(x)可能是较复杂的连续函数,也可能是只在一些离散点上定义的表格函数,而函数类Φ可以是多项式、分段多项式、三角函数、有理函数,等等. 函数逼近问题中度量误差的手段主要是函数空间的范数,下面先介绍函数空间的范数、内积等有关概念,然后讨论函数逼近问题的不同类型.6.1.1 函数空间线性空间的概念大家都很熟悉,其定义中包括一个元素集合和一个数域,以及满足一定运算规则的“加法”和“数乘”运算. 简单说,若这个元素集合对于“加法”和“数乘”运算封闭,则为一线性空间. 线性空间的元素之间存在线性相关和线性无关两种关系,进而又有空间的基和维数的概念.在这里我们先考虑连续函数形成的线性空间. 例如C [a,b ]按函数加法、以及函数与实数乘法,构成一个线性空间. 对于[a,b]区间上所有k 阶导数连续的函数全体C k [a,b ],也类似地构成一个线性空间. 我们一般讨论实数函数,因此对应的是实数域ℝ,若讨论复数函数,则相应的是复数域ℂ. 另外,与线性代数中讨论的向量空间ℝn 不同,连续函数空间是无限维的.对线性空间可以定义范数的概念(见3.1.2节). 针对实连续函数空间C [a,b ],与向量空间类似,可定义如下三种函数的范数(function norm):1) ∞-范数 设f (x )∈C [a,b ],则‖f (x )‖∞=max x∈[a,b ]|f (x )| .其几何意义如图6-1所示,即函数值绝对值的最大值.2) 1-范数‖f (x )‖1=∫|f (x )|dx b a .其几何意义如图6-2所示,即函数曲线与横轴之间的面积总和.3) 2-范数‖f (x )‖2=[∫f 2(x )dx b a ]1/2. 2-范数也常称为平方范数,其几何意义与1-范数类似. 线性空间还有一个重要概念是内积,它定义了空间中两个元素的一种运算. 下面给出一般的复数域上线性空间内积的定义.定义6.1:设S为实数域ℝ上的线性空间,∀u,v∈S,定义值域为ℝ的二元运算〈u,v〉,若满足1)〈u,v〉=〈v,u〉, (可交换性)2)〈αu,v〉=α〈u,v〉, ∀α∈ℂ(线性性1)3)〈u+v,w〉=〈u,w〉+〈v,w〉, ∀w∈S(线性性2)4)〈u,u〉≥0,当且仅当u=O时①,〈u,u〉=0, (非负性)则称〈u,v〉为一种实内积运算(inner product). 定义了内积的线性空间称为实内积空间.应说明的是,将定义6.1加以扩展可在更一般的实数域ℂ上定义内积,区别只是将第1条性质改为共轭可交换性:〈u,v〉=〈v,u〉 .例如复向量的内积为: 〈u,v〉=u T v̅,可以验证它满足上述共轭可交换性. 下面只考虑实内积,但得到的结果都可以类似地推广到复内积空间. 另外,定义6.1的条件2还说明零元素与任意元素的内积均等于0.根据内积的线性性可推出:〈α1u1+α2u2,v〉=α1〈u1,v〉+α2〈u2,v〉,∀α1,α2∈ℂ,(6.1) 更一般地有:〈∑αj u j nj=1,v〉=∑αj〈u j,v〉nj=1,∀α1,⋯,αn∈ℂ.(6.2)这里主要考虑函数空间,则(6.2)式表明,线性组合函数(与另一函数作)内积等于(相应各个函数)内积的线性组合.可以规定一种依赖于内积运算的范数:‖u‖≡√〈u,u〉 .易知这种内积导出的范数满足范数定义的三个条件(见3.1.2节),详细证明过程留给读者思考. 应注意,在向量空间中,由内积导出的范数等同于向量的2-范数. 在实函数空间C[a,b]中,一般定义内积为〈u(x),v(x)〉=∫u(x)v(x)dxba,(6.3) 因此,由它导出的范数也等同于函数空间的2-范数.下面介绍与内积有关的两个重要定理.定理6.1:设S为实内积空间,∀u,v∈S,有:|〈u,v〉|2≤〈u,u〉∙〈v,v〉 .(6.4) 这是著名的柯西-施瓦茨不等式(Cauchy-Schwarz inequality).定理6.1的证明留给读者思考,若u,v为三维向量,也请思考该定理有什么几何含义?定理6.2:设S为实内积空间,u1,…,u n∈S,则格莱姆矩阵(Gram matrix)G=[〈u1,u1〉〈u2,u1〉⋯〈u n,u1〉〈u1,u2〉〈u2,u2〉⋯〈u n,u2〉⋮⋮⋱⋮〈u1,u n〉〈u2,u n〉⋯〈u n,u n〉](6.5)非奇异的充要条件是u1,…,u n线性无关.[证明] 首先要用到线性代数中的一个基本结论:矩阵G非奇异⟺det(G)≠0⟺齐次线性方程组Ga=0只有全零解.设向量a=[a1,…,a n]T,则方程Ga=0可写成:①这里用正体的字母O表示线性空间的零元素.∑a j 〈u j ,u k 〉nj=1=0,k =1,2,⋯,n (6.6)下面证明方程组(6.6)只有恒零解的充分必要条件是u 1,…,u n 线性无关. 先证必要性,即已知方程组(6.6)只有恒零解,要证u 1,…,u n 线性无关. 采用反证法,若u 1,…,u n 线性相关,即存在不全为0的一组系数{αj ,j =1,⋯,n}使∑αj u j n j=1=O ,则∑αj 〈u j ,u k 〉n j=1=〈∑αj u j nj=1,u k 〉=〈O,u k 〉=0,(k =1,…,n ),即这组{αj }是方程组(6.6)的解,与已知条件矛盾!再证明充分性,即已知u 1,…,u n 线性无关,要证方程组(6.6)只有全零解. 仍采用反证法,若方程组(6.6)存在不全为零的一组解{αj },则∑αj 〈u j ,u k 〉n j=1=〈∑αj u j nj=1,u k 〉=0,k =1,…,n将上述方程中第k 个方程乘以αk ,累加所有方程得到,〈∑αj u j n j=1,∑αj u j nj=1〉=0 ,根据内积的定义,必有∑αj u j n j=1=O , 也就是说存在不全为0的一组{αj }j=1n 使∑αj u j n j=1=O ,这与u 1,…,u n 线性无关的已知条件矛盾!综上所述,完成了定理的证明.应注意,格莱姆矩阵是实对称矩阵,并且当u 1,…,u n 线性无关时,它是对称正定矩阵. 针对实函数空间C[a, b],常常有权函数、加权内积的概念.定义6.2:若函数ρ(x )≥0,∀x ∈[a,b],且满足1) ∫x k ρ(x )dx ba 存在,(k =0,1,…),2) 对非负连续函数g (x ),若∫g (x )ρ(x )dx =0b a 可推出g (x )≡0,则称ρ(x)为区间[a,b]上的权函数(weight function).关于权函数的定义,说明几点:● 定义中对连续性没有要求,即ρ(x )可能不是连续函数;第1个条件要求的是ρ(x )与多项式乘积为可积函数.● 定义中第2条件的意义不是很直观,较直观的一种等价形式为:不存在子区间(c,d )⊆[a,b],使ρ(x )=0,∀x ∈(c,d ),即“权函数在[a,b]中任一子区间不恒为零”. ● 一般遇到的C [a,b ]中非负函数(一定有界、可积),若不在某一子区间恒为零,则都可作权函数.定义6.3:若ρ(x )为区间[a,b]上的权函数,则可定义C [a,b ]上的内积为:〈u (x ),v (x )〉=∫ρ(x )u (x )v (x )dx b a ,(6.7)并称其为加权内积(weighted inner product).容易验证加权内积满足一般内积的定义,并且常用的函数内积(6.3)式是加权内积的特例,其对应于权函数ρ(x )≡1的情况. 根据加权内积,也可以导出范数,这种范数可看成是广义的2-范数,其公式为:‖f(x)‖=[∫ρ(x )f 2(x )dx b a ]12⁄ .6.1.2 函数逼近的不同类型在函数逼近问题中,用简单函数p(x)来近似f(x),并要求误差最小. 这里度量误差大小的标准是范数,采用不同范数时其问题的性质是不同的. 下面分两种情况作些讨论.1) ∞-范数考虑误差函数p (x )−f (x )的∞-范数,假设函数的定义域为[a, b],则可设ε=‖p (x )−f (x )‖∞=max x∈[a,b ]|p (x )−f (x )| , 因此有−ε≤p (x )−f (x )≤ε,∀x ∈[a,b ],即p (x )−ε≤f (x )≤p (x )+ε, ∀x ∈[a,b ]图6-3显示了函数p (x ),f (x ), 以及‖p (x )−f (x )‖∞之间的关系,从中可以看出,在∞-范数意义下的逼近要求使ε尽量小,也就是要p (x )在整个区间上“一致地”接近f (x ). 因此,采用∞-范数的函数逼近问题常称为最佳一致逼近.2) 1-范数和2-范数先看看误差函数p (x )−f (x )的1-范数,‖p (x )−f (x )‖1=∫|p (x )−f (x )|dx ba令A =‖p (x )−f (x )‖1,则它表示p (x )和f (x )两个函数曲线之间的面积(如图6-4所示). 在1-范数意义下的逼近,要求使A 尽量小,也就是要p (x )与f (x )曲线之间的总面积尽量小,反映出这种逼近有整个区间上“平均”误差尽量小的含义(在某个子区间上误差可能很大).2-范数的意义与1-范数大体上类似,由于它更容易处理,在实际的逼近问题中一般采用图6-3 函数p (x ),f (x ), 以及‖p (x )−f (x )‖∞之间的关系.图6-4 函数p (x ),f (x ), 以及‖p (x )−f (x )‖1之间的关系.2-范数. 这种逼近称为最佳平方逼近或最小二乘逼近(least squares fitting).从直观上看,采用∞-范数的最佳一致逼近效果更好一些,而最佳平方逼近具有平均误差最小的含义.除了度量误差函数可采用不同的范数,被逼近函数也可分为连续函数和表格函数两种情况. 表格函数就是仅在一系列离散自变量点上已知函数值的函数,可通过函数值组成的向量来刻画,有关逼近问题的求解有特殊的处理方法. 而在逼近函数类方面,多项式函数是最常用的一种. 下面给出魏尔斯特拉斯定理(Weierstrass Theorem ),它是用多项式函数进行逼近的一个重要依据.定理6.3:设f (x )∈C[a,b],则对任何ϵ>0,总存在一个多项式P (x ),使‖P (x )−f (x )‖∞<ϵ在[a, b]上一致成立.该定理的证明已超出了本书的要求,因此不做讨论. 值得一提的是,若f (x )∈C[0,1],伯恩斯坦多项式(Bernstein polynomial)②B n (f,x )=∑f (k )Q k (x )nk=0 , 其中Q k (x )=(n k)x k (1−x )n−k , 就是满足定理要求的多项式P (x ). 注意B n (f,x )为n 次多项式,并且可以证明,lim n→∞B n (f,x )=f(x)在[0, 1]上一致成立. 因此,C[0,1]中的任意函数都可以用伯恩斯坦多项式(一致)逼近到任意好的程度. 应注意,它一般不是多项式函数类ℙn 中的最佳一致逼近.最后说明一点,求最佳一致逼近多项式的方法比较复杂,感兴趣的读者请参考[4, 9]. 本章后面主要介绍求最佳平方逼近的方法,它有很广泛的应用.6.2 连续函数的最佳平方逼近为了记号的方便,在6.2节和6.3节的介绍中记函数的自变量为t.6.2.1 一般的法方程方法一. 问题描述假设对f (t )∈C [a,b ]进行函数逼近,逼近函数类Φ应是形式简单的函数类,比如多项式函数、三角函数、有理函数,等等,并且它是有限维的线性子空间. 设Φ=span {φ1(t ),…,φn (t )},则Φ的任一元素可表示为:S (t )=Σj=1n x j φj (t ), (6.8)其中x 1,…,x n ∈ℝ.连续函数的最佳平方逼近问题就是求S (t )∈Φ,使 ‖S (t )−f (t )‖2达到最小值. 利用公式(6.8)以及2-范数的定义,上述问题等价于最小化F =‖S (t )−f (t )‖22=∫[Σj=1n x j φj (t )−f (t )]2dt b a .(6.9)F 是关于实系数x 1,x 2,…,x n 的多元函数,需求出F 的最小值对应的那组系数x 1,x 2,…,x n .二. 法方程方法下面推导如何求(6.9)式的最小值点. 为了记号简便,省略函数记号中的“(t )”,即直接② 由原苏联数学家伯恩斯坦(1880—1968)于1912年提出.f ̃=f (3)=f (2)−2v 2T f (2)v 2T v 2v 2=[ −4.2061330.399807−0.004750130.0009512830.00195269], 此时矩阵A 经变换为: R =A (3)=[ −2.236068−3.35410200.790569000000] . 根据算法6.3,需求解方程R 1x =b ,其中R 1=[−2.236068−3.35410200.790569],b =[−4.2061330.399807]. 解得:x =[1.12250.5057]T ,即拟合公式为y ̃=1.1225+0.5057t ,它与例6.6, 6.7得到的结果是一样的.根据表格函数与其函数值向量的对应关系可证明,算法6.3与通过Gram-Schmidt 正交化过程求最佳逼近函数的方法在数学上是等价的. 不同之处在于:前者不涉及正交函数族,直接得到原基函数对应的拟合系数;前者的主要计算是矩阵的QR 分解,它可通过Householder 变换或Givens 旋转变换等不同方法实现. 由于算法6.3直接利用矩阵的QR 分解的特点,它更易于实现和应用,而且稳定性比算法6.2好. 最后说明一点,若初始的表格函数φ1(t ),…,φn (t )线性相关,矩阵A 不是列满秩的,QR 分解也能进行,但得到的上三角阵R 1奇异. 可以证明,这种情况下有无穷多个最小二乘解,详细的讨论请参考[6].一. 问题背景1945年7月16日,美国科学家在新墨西哥州Los Alamos沙漠试爆了世界上第一颗原子弹,这一事件令全球震惊. 但在当时有关原子弹爆炸的任何资料都是保密的,而很多其他国家的科学家非常想知道这次爆炸的威力有多大.两年之后,美国政府首次公开了这次爆炸的录像带,而其他数据和资料仍然不被外界所知. 英国物理学家G. I. Taylor(1886 ~ 1975)通过研究原子弹爆炸的录像带,建立数学模型对爆炸所释放出的能量进行了估计,得到估计值与若干年后正式公布的爆炸能量21 kt 相当接近(1 kt 为1千吨TNT 炸药的爆炸能量). Taylor 是如何根据爆炸录像估计的呢?主要是通过测量爆炸形成的“蘑菇云”半径来进行估计的(如图(A)). 因为爆炸产生的冲击波从中心点向外传播,爆炸的能量越大,在相同时间内冲击波传播得越远、蘑菇云的半径就越大. Taylor 通过图(A) 原子弹爆炸的蘑菇云.*t 的单位为ms, r 的单位为m.然后通过量纲分析法建立了蘑菇云半径r 与时间t 和爆炸能量E 的关系式,利用上述数据最后求出了爆炸的能量.二. 数学模型考虑到原子弹爆炸在极短的时间内释放出巨大的能量,蘑菇云半径r 主要与时间t 、爆炸能量E 、以及空气密度ρ等几个参数有关. 通过仔细分析这几个量的单位,采用量纲分析法得到如下的蘑菇云半径的近似表达式:r =(t 2E )15. 其中r , t , E 的单位分别为米(m), 秒(s)和焦耳,而空气密度ρ的值为1.25 (kg m 3⁄). 对这次原子弹爆炸来说,E 为一固定值,因此r 与t 2成正比. 图(B)是根据蘑菇云半径与对应时刻的数据画出的散点图,它大体反映了这个趋势. 接下来的问题是如何求未知的参数E .三. 求解过程首先,改写蘑菇云半径的公式为r =at b 的形式,通过测量数据拟合出参数a 和b ,来验证量纲分析法得到的公式. 要作线性最小二乘拟合,进一步改写公式为:lnr =lna +blnt . 根据测量数据我们得到lnr 和lnt 的数据,将它们的函数关系拟合为1次多项式,得到系数b =0.4094,其值与前面分析的结果2/5非常接近,从而验证了量纲分析得到的公式.为了更为准确地计算爆炸能量E ,将蘑菇云半径公式改写为:5lnr −2lnt =ln (E ) . 此时可根据测量数据得到5lnr −2lnt 对应的一组数据,将它拟合为0次多项式(常数),设得到拟合系数为c ,则E ≈ρ∙e c .根据此方法算出E ≈8.6418×1013,单位为焦耳,查表得知1kt=4.184×1012焦耳,因此爆炸能量约等于20.65 kt.6.4函数插值与拉格朗日插值法函数插值可看作一种“特殊”的函数逼近问题,其逼近采用的“度量”准则是要求在插值节点处误差函数的值为0. 本节先介绍关于插值(interpolation)的一些基本概念,然后讨论最简单的一种多项式插值——拉格朗日插值法.图(B) 蘑菇云半径与对应时刻的数据 rt个节点:x 0<x 1<⋯<x n 进行插值,只需将B −k k (x ),B −k+1k (x ),⋯,B n−1k (x )这n+k 个k 次B-样条函数进行组合. 可以证明,它们在区间[x 0,x n ]上的部分组成n+k 个线性无关的基函数. 因此,对于满足额外边界条件的[x 0,x n ]上的k 次样条函数,可唯一地用这些基函数的线性组合表示. 感兴趣地读者可以推导B i 3(x )的表达式,然后利用插值条件和边界条件列方程求这些基函数对应的系数,进而推导出三次样条插值函数的表达式. 这个计算过程将与上一小节的方法得到相同的结果.利用B-样条基函数,可得到确定和计算各阶样条插值的有效而稳定的方法. 此外,它在计算机图形学、几何建模,以及数值求解微分方程等领域都有广泛的应用.评述关于多项式逼近和插值问题的研究历史悠久,应用面也很广. 本章只讨论了一元函数的最佳平方逼近,更多的相关内容,包括多元函数的逼近、正交多项式等,可参考下述文献:● P . J. Davis, Interpolation and Approximation , Dover, 1975.● W. Cheney, Introduction to Approximation Theory , AMS Chelsea Publishing, 2nd edition,1998.● G. A. Baker, and P . R. Graves-Morris, Pade Approximations , Cambridge University Press,2nd edition, 1996.● W. Gautschi, “Orthogonal polynomials: Applications and computation,” Acta Numerica ,Vol. 5, pp. 45-119, 1996.最佳平方逼近的法方程方法在1795年由高斯提出. 格莱姆-斯密特正交化方法在1883年由格莱姆提出,1907年斯密特给出了现代算法. 在求解最小二乘问题中使用QR 分解方法,特别是使用Householder 变换的方法是在1965年由G. Golub ⑥提出的. 最小二乘方法是统计学的重要工具,也称为回归分析,很多常用的数据处理软件(比如微软公司的Excel 软件)都具有这个功能. 本章讨论的线性最小二乘问题实际上是一种最简化的形式,即假设待逼近函数是基函数的线性组合. 在实际应用中还常遇到非线性最小二乘问题,它属于非线性优化问题,见参考文献[6]及其中给出的更多文献. 另外,若考虑所有参量都带有随机误差的情形,则成为完全最小二乘问题,有关详细讨论见文献:● S. Van Huffel and J. Vandewalle, The Total Least Squares Problem , SIAM Press, 1991. 本章也没有讨论拟合的基函数可能线性相关的情况,这在实际中可能由于拟合模型的不合理或数值误差造成,它使得矩阵A 列不满秩. 此时最佳平方逼近解不唯一,要得到实际有用的一个逼近解,需采用列重排的QR 分解等技术,更多讨论参见文献[6]及其他文献.多项式插值问题历史非常悠久,牛顿、拉格朗日等都在这方法做出了很多贡献. 除了将函数值作为条件的插值问题,插值条件中包括各阶导数值的情况也常见于各种工程应用中. 目前,常用的文档编辑软件都已使用保形分段插值来绘制曲线,例如微软公司的Word 和Power Point 软件. 样条函数是1946年由Schoenberg 首先提出的,本章只讨论了一维数据的样条插值和B-样条函数,实际问题中还有高维的插值问题,尤其在计算机图形学中二维B-样条是一个重要的工具. 关于样条的参考文献主要有:● C. de Boor, A Practical Guide to Splines , Springer-Verlag, 2nd edition, 1984.● E. V. Shikin and A. I. Plis, Handbook on Splines for the User , CRC Press, 1995.最后,列表说明Matlab 中与本章讨论的函数逼近与插值有关的命令和功能.⑥ Gene H. Golub (1932-2007), 美国斯坦福大学计算机系教授,美国科学院、工程院、艺术与科学院三院院士,著名的数值计算专家,1996年出版的著作”Matrix Computations ” [21]被奉为矩阵计算领域的经典.线拟合与样条插值的功能.[本章知识点]: 连续函数的范数;内积及其性质;内积空间的格莱姆矩阵、及其非奇异的充要条件;权函数与加权内积;最佳一致逼近与最佳平方逼近的概念;法方程方法求连续函数的最佳平方逼近;最佳平方逼近的误差;正交函数族与Gram-Schimdit正交化过程;勒让德多项式;用正交函数族作最佳平方逼近;曲线拟合的线性最小二乘问题;线性最小二乘问题的矩阵描述;法方程方法解线性最小二乘问题;表格函数的线性无关性与相关性;利用矩阵的QR分解解线性最小二乘问题;插值的基本概念;范德蒙矩阵与多项式插值的存在唯一性;拉格朗日插值公式;拉格朗日插值余项公式;牛顿插值公式;差商的计算;牛顿插值余项公式;高次多项式插值的问题;分段线性插值;埃尔米特插值;分段三次埃尔米特插值;保形分段插值;三次样条插值及边界条件;三次样条插值的构造方法;三弯矩方程;几种插值的比较;B-样条函数的基本概念与性质.算法背后的历史:拉格朗日与插值法约瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange,1736年1月25日—1813年4月10日)是法国数学家、物理学家. 他在数学、力学和天文学三个领域中都有巨大的贡献,其中尤以数学方面的成就最为突出. 拉格朗日与同时代的勒让德(Legendre)、拉普拉斯(Laplace)并称为法国的3L.拉格朗日于1736年生于意大利西北部的都灵. 17岁时,开始专攻当时迅速发展的数学分析. 1756年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士. 1766年赴柏林任普鲁士科学院数学部主任,居住柏林达20年之久,这是他一生科学研究的鼎盛时期. 在此期间,他完成了著作《分析力学》. 1786年加入了巴黎科学院成立的研究法国度量衡统一问题的委员会,并出任法国米制委员会主任. 1795年建立了法国最高学术机构——法兰西研究院后,拉格朗。
计算方法与数值计算(2-1插值与逼近)
800 1:42.58 罗达尔
1000
1500 3:32.07 恩格尼
是否能建立竞赛距离与纪录时间之间的 函数关系,并测算男子1000米纪录。
4
200
150
100
400
600
800
1000
1200
1400
散点图
5
引例2 设f ( x) ln x,并假定已给出下列三 点 处的函数值,试近似计 算 ln11.75的值。
30
f ( n1) ( ) n Rn ( x) (x x j ) (n 1)! j 0
不能确定,实际计算时,
在[a, b]上,若有 f ( n1) ( x) M,则
n f ( n1) ( ) n M Rn ( x) ( x x j ) (n 1)! ( x x j ) (n 1)! j 0 j 0
已知函数f(x)在n+1个互异节点ax0<x1 <……< xn b
处的函数值yi = f(xi) (i=0,1,2,……,n),
则存在唯一一个次数不超过n次的多项式: Pn(x)=a0+a1x+……+anxn 满足条件Pn (xi) = yi = f(xi) 。
11
证明:设所要构造的插值多项式为:
y1 y=P1(x)
y0
x0
线性插值
18
x1
x
L1(x)= l0(x)y0 + l1(x)y1
其中
x x1 l0 ( x ) x0 x1
x x0 , l1 ( x) x1 x0
l0(x):点x0的一次插值基函数, l1(x):点x1的一次插值基函数。
插值法与逼近论
插值法与逼近论
插值法和逼近论都是数学中研究函数逼近和求解近似解的方法。
插值法是一种通过已知的数据点来确定未知函数的方法。
它的主要思想是使用已知数据点之间的函数来拟合未知函数,并在已知数据点上得到相同的函数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
逼近论是研究函数逼近的数学分支。
它的主要目标是通过一系列简单函数来近似复杂函数,从而精确计算或解决一些难题。
逼近论研究的问题包括:在某个函数空间中寻找最佳逼近函数、逼近函数的最优性、逼近函数的收敛性等。
插值法和逼近论之间存在一定的联系和区别。
插值法是在已知数据点上进行插值,通过插值函数来逼近未知函数;而逼近论是通过一系列简单函数来逼近复杂函数,有时并不需要已知的数据点。
插值法更加注重通过已知参数得到未知函数的精确解,而逼近论更注重通过简单函数近似复杂函数来解决实际问题。
插值法与逼近论
插值法与逼近论
插值法和逼近论是数学中两种不同的方法,用于处理函数的逼近问题。
插值法是一种通过在已知数据点之间插入新的数据点来逼近一个未知函数的方法。
在插值法中,通过已知数据点之间的连线或曲线来逼近未知函数。
最常见的插值方法是拉格朗日插值和牛顿插值。
插值法可以在已知数据点的区间内准确地逼近函数的值,但不能保证在数据点之外也能准确逼近函数。
逼近论则是从整体的角度考虑函数逼近的问题。
它主要关注如何用简单的函数(如多项式、三角函数等)来逼近一个复杂的函数。
逼近论的核心思想是将逼近问题转化为优化问题,通过选择合适的逼近函数,使得逼近误差最小化。
逼近论可以通过选择适当的逼近函数,对整个函数的逼近质量进行评估和优化。
在实际问题中,插值法和逼近论常常结合使用。
插值法可以通过在已知数据点上准确逼近函数的值,而逼近论可以帮助选择合适的插值函数,以获得更好的整体逼近效果。
函数逼近中的插值和逼近理论
函数逼近是数学中的一个重要分支,旨在通过已知的数据点构造一个逼近目标函数的函数,并用于预测未知数据值。
在函数逼近中,插值和逼近理论是两种常见方法。
插值是通过已知数据点在特定区间内构造一个函数,使该函数通过所有已知数据点。
插值函数在已知数据点上完全匹配原函数,但在其他位置可能会有较大误差。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值是一种通过拉格朗日多项式将函数逼近到已知数据点的方法。
该方法利用了拉格朗日多项式具有唯一性的性质,可以通过已知数据点构造一个唯一的函数。
这个唯一函数将准确地经过已知数据点,但在其他位置的逼近可能不够理想。
牛顿插值是一种利用差商和牛顿插值多项式来逼近函数的方法。
差商的定义是通过已知数据点的函数值来定义的,可以递归地计算出牛顿插值多项式的系数。
牛顿插值在构造插值函数时比拉格朗日插值更方便,并且在处理带噪声的数据时表现更好。
插值方法的优点是对已知数据点完全匹配,但缺点是在其他位置可能存在较大误差。
插值方法适用于已知数据点密集的情况,对于数据点较少或有噪声的情况可能不够适用。
逼近理论是另一种函数逼近的方法,它通过在整个区间内构造一个函数,使该函数与目标函数在整个区间上的误差最小。
逼近方法的目标是尽可能通过已知数据点,同时在整个区间上的误差最小。
常用的逼近方法有最小二乘逼近和Chebyshev逼近。
最小二乘逼近是一种通过最小化目标函数和逼近函数之间的二乘误差来逼近函数的方法。
该方法通过求解线性方程组来确定逼近函数的系数,使得目标函数和逼近函数之间的二乘误差最小。
最小二乘逼近在处理带噪声的数据时表现良好,同时对于数据点较少的情况也适用。
Chebyshev逼近是一种通过构造一系列Chebyshev多项式来逼近函数的方法。
这些多项式在某些特定点上取值最大,因此在逼近函数时能够在整个区间上准确逼近目标函数。
Chebyshev逼近在逼近理论中具有广泛的应用,能够以较高的精度逼近各种函数。
指数函数与对数函数的函数逼近与插值
指数函数与对数函数的函数逼近与插值指数函数与对数函数是高中数学中重要的函数之一,它们的函数逼近与插值方法在数学和实际问题中都有广泛的应用。
本文将介绍指数函数与对数函数的基本概念和性质,并探讨它们的函数逼近与插值方法。
一、指数函数的函数逼近与插值指数函数的一般形式为 y = a^x,其中 a > 0 且a ≠ 1。
指数函数有以下重要性质:1. 当 a > 1 时,指数函数是单调递增的;2. 当 0 < a < 1 时,指数函数是单调递减的;3. 当 x 为无理数时,指数函数的值是无理数。
对于一个给定的函数 f(x),我们希望用指数函数逼近它。
一种常用的方法是利用指数函数的性质进行函数逼近。
具体步骤如下:1. 首先,选择一个基准点 x0,计算 f(x0) 的值;2. 然后,选取一个适当的指数函数 y = a^x,并通过调整 a 的值使得指数函数经过点 (x0, f(x0));3. 根据指数函数的性质,我们可以预测指数函数在 x > x0 区间内逼近函数 f(x) 的效果。
此外,我们还可以利用指数函数的特点进行函数插值。
插值是根据已知数据点的函数值,在给定区间内求解未知数据点的函数值的方法。
具体步骤如下:1. 首先,给定一组函数值 (x1, f(x1))、(x2, f(x2))、...、(xn, f(xn));2. 然后,选择一个适当的指数函数 y = a^x,并通过调整 a 的值使得指数函数经过给定的数据点;3. 最后,计算未知数据点的函数值。
二、对数函数的函数逼近与插值对数函数的一般形式为 y = loga(x),其中 a > 0 且a ≠ 1。
对数函数有以下重要性质:1. 对于同一个底 a,对数函数是单调递增的;2. 对于底 a > 1,对数函数的定义域在 (0, +∞);3. 对于底 0 < a < 1,对数函数的定义域在 (-∞, +∞)。
数值分析一元插值(插值与逼近)
例:F ( x)
=
b0
a0 + a1 x + a2 x2 + b1 x + b2 x2 + b3 x3
n
一般地:F ( x) = cii( x) i=0
例:F( x) = a + bx + c sin x = span1, x,sin x,
数值分析
代数插值
代数插值:取 = span 1, x, x2 , , xn ,
●
y
●
● y=f(x)
y2 ● y1
y0
● g(x) yn
o x0 x1 x2
xn
x
数值分析
函数插值的基本问题
插值法:由实验或测量的方法得到所求函数 y=f(x) 在 互异点x0 , x1, ... , xn 处的值 y0 , y1 , … , yn
构造一个简单函数 F(x) 作为函数 y=f(x) 的近似表达 式
0 .6 0 .4 0 .2
0 -0 .2 -0 .4
0
0 .2
0 .4
0 .6
0 .8
1
1 .2
1 .4
1 .6
1 .8
2
8
6
4
2
2
4
6
8
15
10 5
5
Байду номын сангаас
10
15
数值分析
例如:在工程实践和科学实验中,经常需要建立 函数关系,即y=f(x)。但通常只能观测到它的部分 信息,这些值构成了观测数据:
xi
y= f(x) F(x)
使
F(x0)=y0 , F(x1)=y1 , , F(xn)=yn (a)
初识插值法和逼近法
初识插值法和逼近法插值法和逼近法是数值分析领域中常用的数值逼近方法。
两者在数学和工程领域均有广泛的应用。
本文将会介绍插值法和逼近法的基本原理、常用方法以及应用实例等内容。
一、插值法1. 插值法的基本原理插值法是利用一系列已知数据点,通过构造一个适当的函数来近似代替这些数据点之间未知函数的数值。
插值方法的基本思想是通过已知数据点的数值来推导出未知函数在数据点之间的数值,从而利用得到的函数对其他未知数据进行估计预测。
2. 常用插值方法(1)拉格朗日插值法:拉格朗日插值法是一种基于多项式的插值方法。
通过构造一个多项式函数,使其经过已知数据点,从而利用该多项式函数来逼近未知函数。
(2)牛顿插值法:牛顿插值法也是一种基于多项式的插值方法。
它通过构造一个递推公式,逐步逼近未知函数。
(3)样条插值法:样条插值法是一种相对较为复杂的插值方法。
它将函数划分为多个小区间,并在每个区间上构造一个低次多项式,利用这些多项式来逼近真实函数。
3. 插值法的应用实例插值法在工程和科学领域有广泛应用。
例如,在图像处理中,插值法常用于图像的放大和缩小。
在地理信息系统中,插值法可用于构建高程模型。
此外,插值法还在金融领域中用于利率曲线的估计等。
二、逼近法1. 逼近法的基本原理逼近法是指通过选择一个适当的函数类,使其与所需逼近的函数相似,从而用该函数类逼近未知函数。
逼近方法的基本思想是通过一些已知的函数,找到一个最接近未知函数的函数。
2. 常用逼近方法(1)最小二乘逼近法:最小二乘逼近法是一种通过最小化残差平方和来逼近未知函数的方法。
它通过构造一个最优解,选择一个函数类,使其与未知函数的残差平方和最小。
(2)离散逼近法:离散逼近法是一种基于离散数值数据的逼近方法。
它通过选择一个函数类,在已知数据点上的函数值与未知函数在这些数据点上的函数值之间的差异最小。
3. 逼近法的应用实例逼近法在信号处理、数据拟合和函数逼近等领域有广泛应用。
例如,在信号处理中,逼近法可用于去除噪声信号。
第4章 插值与逼近
i =0 j −1
(4-8)
则可将 n 次插值多项式写成如下形式:
pn (x) = ∑ a jϕ j ( x)
n
= a 0 + a1 ( x − x0 ) + L + a n ( x − x0 )( x − x1 ) L ( x − x n −1 )
j =0
(4-9)
其中待定系数 a0 , a1 , L, an 由插值条件
(1 − 2)(1 − 3) ( x − 1)( x − 2)
1 = ( x − 2)( x − 3) , 2
l1 ( x) =
( x − 1)( x − 3)
(2 − 1)(2 − 3)
= −( x − 1)( x − 3) ,
(
) (
)
(
)
于是
4.2.2 Newton插值公式
在插值问题中,为了提高插值精度,有时需增加插值节 点个数。插值节点个数发生变化后,所有的Lagrange插值基函 数都会发生变化,从而整个Lagrange插值多项式的结构发生变 化,这在计算实践中是不方便的。为了克服Lagrange插值多项 式的缺点,能灵活地增加插值节点,使其具有“承袭性”,我 们引进Newton插值公式。
xk − x j
i≠ j≠k
为f(x) 关于xi, xj, xk的二阶均差(差商)。
f [ x0 , x1 , L, xk ] =
xk − xk −1
称 (4-12)
f [ x0 , L , xk − 2 , xk ] − f [ x0 , x1 , L, xk −1 ]
函数逼近论方法
函数逼近论方法函数逼近论方法是数学分析中一种重要的方法,其主要应用于函数逼近和函数逼近的误差分析。
它是一种通过一组已知的函数来逼近一个未知的函数,并通过误差分析来确定逼近的精度和可行性的方法。
函数逼近论方法可以分为两种基本类型:插值法和最小二乘法。
插值法是通过已知的数据点去推导出未知函数,而最小二乘法则是通过已知的数据点去求解一个最优的函数逼近问题。
在插值法中,通过已知的数据点去推导出未知函数的形式,通常可以使用拉格朗日插值法或牛顿插值法。
拉格朗日插值法是通过一个多项式去逼近未知函数,这个多项式的系数可以通过已知的数据点来确定;牛顿插值法则是通过多个插值点的差商来构造一个插值多项式。
这两种方法的优缺点不同,适用于不同的情况。
例如,拉格朗日插值法的计算量较小,但插值多项式次数较高;而牛顿插值法的计算量较大,但插值多项式次数较低。
在最小二乘法中,通过已知的数据点去求解一个最优的函数逼近问题,通常可以使用最小二乘多项式逼近法或最小二乘样条逼近法。
最小二乘多项式逼近法是通过一个多项式去逼近未知函数,并使其在已知数据点处的误差平方和最小化;最小二乘样条逼近法则是通过构造一个分段多项式的组合,使其在已知数据点处的误差平方和最小化。
这两种方法的优缺点也各不相同,适用于不同的情况。
例如,最小二乘多项式逼近法适合于数据点较少的情况,而最小二乘样条逼近法则适合于数据点较多的情况。
除了插值法和最小二乘法之外,还有其他的函数逼近方法,例如曲线拟合法和逆问题法等。
曲线拟合法是通过已知的数据点去拟合一个曲线,可以使用多项式拟合、指数拟合、对数拟合等方法;逆问题法则是通过已知的数据点和一个模型,去求解一个逆问题,例如反演地震波形、恢复图像等。
函数逼近论方法在数学分析中是一种非常重要的方法,它可以通过已知的数据点去逼近一个未知的函数,并通过误差分析来确定逼近的精度和可行性。
在实际应用中,我们需要根据具体的问题选择适当的函数逼近方法,以达到最优的逼近效果。
指数函数与对数函数的函数逼近与插值理论
指数函数与对数函数的函数逼近与插值理论指数函数与对数函数是数学中常见的两类基本函数。
它们在数学建模、数据拟合和函数逼近等领域中扮演着重要的角色。
本文将探讨指数函数与对数函数的函数逼近与插值理论。
一、指数函数的函数逼近与插值指数函数可表示为f(x) = a^x,其中a为常数,x为自变量。
指数函数具有单调递增的特点,且在x轴上存在一个水平渐近线。
要进行指数函数的逼近与插值,常用的方法之一是最小二乘逼近。
最小二乘逼近是通过最小化函数残差的平方和来确定逼近函数的系数。
对于指数函数的逼近,我们可以选择一组离散点(x1, y1), (x2,y2), …, (xn, yn),其中y = a^x。
然后,通过最小二乘法计算出使得残差平方和最小的a值,进而得到逼近的指数函数。
此外,我们还可以使用拉格朗日插值法进行指数函数的插值逼近。
拉格朗日插值法是通过构造满足离散点上函数值和导数连续的多项式来逼近原函数。
在指数函数的插值逼近中,我们可以根据离散点构造拉格朗日多项式,从而得到插值逼近的指数函数。
二、对数函数的函数逼近与插值对数函数可表示为f(x) = loga(x),其中a为常数,x为自变量。
对数函数具有单调递增的特点,且在x轴上存在一个垂直渐近线。
与指数函数类似,对于对数函数的逼近与插值,我们同样可以采用最小二乘逼近法和拉格朗日插值法。
在最小二乘逼近中,我们可以选择一组离散点(x1, y1), (x2, y2), …, (xn, yn),其中y = loga(x)。
通过最小二乘法计算出使得残差平方和最小的a值,从而得到对数函数的逼近。
对于对数函数的插值逼近,我们可以使用拉格朗日插值法。
根据离散点构造拉格朗日多项式,从而得到插值逼近的对数函数。
三、函数逼近与插值的应用指数函数与对数函数的函数逼近与插值在实际应用中具有广泛的应用。
以下是一些典型的应用场景:1. 数据拟合:在某些实验或调查中,得到的数据可能符合指数函数或对数函数的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年1月24日3时45分
MATLAB语言与应用
3
6.1.1 一维数据的插值问题
2020年1月24日3时45分
MATLAB语言与应用
4
【例6-1】已知的数据点来自函数
根据生成的数据进行插值处理,得出较平滑的曲线 直接生成数据。
2020年1月24日3时45分
MATLAB语言与应用
5
[max(abs(y0-y1)), max(abs(y0-y2)), . . . max(abs(y0-y3)),max(abs(y0-y4))]
9Байду номын сангаас
【例6-3】
2020年1月24日3时45分
MATLAB语言与应用
10
2020年1月24日3时45分
MATLAB语言与应用
11
2020年1月24日3时45分
MATLAB语言与应用
12
6.1.3 二维一般分布数据的插值问题
2020年1月24日3时45分
MATLAB语言与应用
13
【例6-4】
在x [3,3],
2020年1月24日3时45分
MATLAB语言与应用
14
2020年1月24日3时45分
MATLAB语言与应用
15
6.1.4 高维插值问题
三维的网格数据:
维网格数据的生成:
2020年1月24日3时45分
MATLAB语言与应用
16
【例6-5】
2020年1月24日3时45分
MATLAB语言与应用
17
2020年1月24日3时45分
MATLAB语言与应用
24
样条函数拟合
pp = spline(x,y)
样条函数求值
xx = 0:.25:10; yy=ppval(pp,xx); plot(x,y, 'o', xx,yy)
2020年1月24日3时45分
MATLAB语言与应用
25
6.2.3 函数线性组合的曲线拟合方法
2020年1月24日3时45分
MATLAB语言与应用
35
【例6-11】
2020年1月24日3时45分
MATLAB语言与应用
36
>> y1=c8f3(a, x); plot(x, y, x, y1)
2020年1月24日3时45分
MATLAB语言与应用
37
本章内容简介
函数名 interp1() interp2() griddata() meshgrid() interp3() ndgrid() interpn()
2020年1月24日3时45分
MATLAB语言与应用
26
其中
该方程的最小二乘解为:
2020年1月24日3时45分
MATLAB语言与应用
27
【例6-8】
2020年1月24日3时45分
MATLAB语言与应用
28
2020年1月24日3时45分
MATLAB语言与应用
29
【例6-9】
2020年1月24日3时45分
函数功能 三元一般分布数据的插值 N维一般数据插值 多项式函数拟合 多项式函数求值 三次样条函数拟合 三次样条函数求值 利用最小二乘法的曲线参数拟合
2020年1月24日3时45分
MATLAB语言与应用
39
本章内容简介
由已知样本点去计算其他点函数值的方法称为数 据插值,本章介绍了一维数据插值的方法及 MATLAB 求解,介绍了二维网格数据及一般分布 数据的插值问题求解,并简单介绍了高维数据插 值的求解。
函数功能 一维数据插值,实现各种插值算法 二维网格数据插值,实现各种插值算法 任意分布点数据的二维插值 二维、三维网格数据生成 三元网格数据插值 N维网格数据生成 N维网格数据插值
2020年1月24日3时45分
MATLAB语言与应用
38
本章内容简介
函数名 griddata3() griddatan() polyfit() polyval() spline() ppval() lsqcurvefit()
xx、yy分别为需要插值的点与值
pp为结构数据类型,包括length(x)-1个3阶多项 式的系数矩阵。
2020年1月24日3时45分
MATLAB语言与应用
23
【例6-7】 已知x = 0:10; y = sin(x)的11个点, 用三次样条函数拟合数据。
x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy)
第6章 数据插值与函数逼近问题
2020年1月24日3时45分
MATLAB语言与应用
1
主要内容
数据插值问题 函数拟合(逼近)问题
2020年1月24日3时45分
MATLAB语言与应用
2
6.1 数据插值
一维数据的插值问题 二维网格数据的插值问题 二维一般分布数据的插值问题 高维插值问题
6.2 由已知数据拟合数学模型
多项式拟合 样条函数插值与拟合 函数线性组合的曲线拟合方法 最小二乘曲线拟合
2020年1月24日3时45分
MATLAB语言与应用
18
6.2.1 多项式拟合
2020年1月24日3时45分
MATLAB语言与应用
19
【例6-6】
2020年1月24日3时45分
介绍由已知样本点数据获得函数模型的方法,即 函数拟合方法。如给定数据的多项式函数拟合、 样条函数拟合、函数线性组合的曲线拟合方法、 最小二乘曲线拟合方法等。
2020年1月24日3时45分
MATLAB语言与应用
6
【例6-2】编写一段程序,允许利用插值方法手工绘
制一条光滑的曲线
2020年1月24日3时45分
MATLAB语言与应用
7
2020年1月24日3时45分
MATLAB语言与应用
8
6.1.2 二维网格数据的插值问题
2020年1月24日3时45分
MATLAB语言与应用
MATLAB语言与应用
30
2020年1月24日3时45分
MATLAB语言与应用
31
6.2.4 最小二乘曲线拟合
2020年1月24日3时45分
MATLAB语言与应用
32
2020年1月24日3时45分
MATLAB语言与应用
33
【例6-10】
2020年1月24日3时45分
MATLAB语言与应用
34
MATLAB语言与应用
20
2020年1月24日3时45分
MATLAB语言与应用
21
6.2.2 样条函数插值与拟合
6.2.2.1 三次样条函数
2020年1月24日3时45分
MATLAB语言与应用
22
6.2.2.2 spline函数的插值与拟合
yy = spline(x,y,xx) pp = spline(x,y)