未来十年核电先进堆型介绍

合集下载

第四代核能介绍

第四代核能介绍

第四代核能介绍面对能源危机、雾霾围城,核能以绿色、高效、低碳排放和可规模生产的突出优势,成为较为理想的替代能源。

作为一种可大规模替代化石燃料的清洁能源,核能在目前的世界能源结构中占有重要地位。

然而,由于现有大规模应用的热中子反应堆存在资源利用率低、放射性废物不断积累和潜在核安全问题,开发更加清洁、高效、安全的新型核能系统对核能可持续发展意义重大。

2014年1月,“第四代核能系统国际论坛组织(GIF)”官方发布的“第四代核能系统技术路线更新图”,选出了6种创新反应堆概念及其支持性的燃料循环供进一步的合作研究与开发。

一:气冷快堆(GFR)——快中子谱、氦冷反应堆和闭合燃料循环;二:超高温反应堆(VHTR)——采用一次通过式铀燃料循环的石墨慢化氦冷反应堆;三:超临界水冷反应堆(SCWR)——在水的热力学临界点以上运行的高温高压水冷反应堆;四:钠冷快堆(SFR)——快中子谱、钠冷堆和有效管理锕系元素和转化铀-238的闭式燃料循环;五:铅冷快堆(LFR)——快中子谱、铅或铅/铋低共熔液态金属冷却反应堆和有效转化铀-238和管理锕系元素的闭合燃料循环;六:熔盐反应堆(MSR)——在超热中子谱反应堆中用循环的熔盐燃料混合物生产裂变电力和使用全部锕系元素再循环的燃料循环。

以上反应堆预计在今后30年内可投入使用。

相对的优点包括基建费用减少,核安全性提高,核废物产生量最小,并且进一步减小了武器材料扩散的风险。

而其中,铅基反应堆备受关注。

铅基材料(铅、铅铋或铅锂合金等)作为反应堆冷却剂,能使反应堆的物理特性和安全运行具有显著优势,铅基反应堆主要特点如下。

第一,中子经济性优良,发展可持续性好。

铅基材料具有低的中子慢化能力及小的俘获截面,因此铅基反应堆可设计成较硬的中子能谱而获得优良的中子经济性,可利用更多富余中子实现核废料嬗变和核燃料增殖等多种功能,也可设计成长寿命堆芯,不仅能提高资源利用率和经济性,也有利于预防核扩散。

核反应堆及发展

核反应堆及发展

核反应堆的类型核电站中的反应堆设计具有多样性,也就是说,核反应堆具有不同类型,相应形成不同的核电站。

可以利用下列三个特点表征不同类型的反应堆。

第一,所用的核燃料可以是天然铀或浓缩铀、钮或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氮气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。

下面就是迄今国际上核电站常用的4种核反应堆型。

压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸腾的核反应堆。

目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。

沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的核反应堆。

沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。

它们都需使用低富集铀作燃料。

以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。

重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。

重水堆分压力容器式和压力管式两类。

重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。

快堆是由快中子引起链式裂变反应的核反应堆。

快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。

专家预计,快堆未来的发展将会加快起来。

前景看好的快堆现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1 %~2%。

但在快堆中,铀-238 原则上都能通过核反应转变成易裂变的钮-239而得以使用。

即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。

具体点说,在堆芯燃料钮-239的外围再生区里放置铀-238,通过钮-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次8衰变后,铀-238很快被转变成钮-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钮-239。

新型核反应堆行波堆发展前景展望

新型核反应堆行波堆发展前景展望

新型核反应堆行波堆发展前景展望近年来,新型核反应堆行波堆在领域内受到越来越多的关注和研究,其发展前景备受期待。

本文将对于新型核反应堆行波堆的基本概念、特点、应用领域以及发展前景进行展望。

一、新型核反应堆行波堆的基本概念和特点行波堆是一种利用高速中子在核燃料中作用产生链式反应的核反应堆。

与传统核反应堆不同的是,行波堆中使用的燃料是金属铀,而不是热中子反应堆中的二氧化铀或氧化铀。

由于铀在中子撞击后会发生裂变,因此行波堆中的金属铀可以同时起到燃料和中子反射体的作用。

这种特殊的燃料形式使得行波堆能够以快速中子为燃料,使用的能量密度更高,反应速度也更快。

与传统核反应堆相比,行波堆的反应速度更快,这也是其独特的特点之一。

传统的核反应堆通常需要放置在重水或轻水反应堆结构下来减缓中子,但是新型核反应堆行波堆中使用的是高速中子,因此反应速度非常快。

同时,行波堆还具有较高的燃料利用率,因为铀在行波堆发生的核反应中,会被尽可能完全地消耗,所以相对于传统核反应堆而言,燃料利用率高很多。

此外,新型核反应堆行波堆还拥有更好的安全性和稳定性。

二、新型核反应堆行波堆的应用领域新型核反应堆行波堆在能源领域的应用潜力非常大,主要体现在以下三个方面:1.燃料作为能源:行波堆可以通过燃烧燃料提供可再生的能源,这种能源形式不会造成大气污染或气候变化。

2.制造医疗同位素:行波堆可以用于制造医疗同位素,这些同位素在放射治疗中有广泛的应用。

同时,行波堆还可以用于生产重要的工业同位素,如钴-60用于腐蚀检测。

3.用作核动力引擎:行波堆还可以用于制造核动力引擎,用于飞行微型卫星、长途移民航天器和深潜器等。

三、新型核反应堆行波堆的发展前景新型核反应堆行波堆在我国能源发展中有很大的潜力和前途,其具有高效、安全、环保、低碳、可再生等多重特点,因此被广泛研究和关注。

在国内,新型核反应堆也已经逐渐成为了核能领域重点研究项目之一,目前国内在行波堆技术方面也在积极推进,包括建立了行波堆试验平台,进行了多项实验研究与应用。

小型核电反应堆的现状及未来发展

小型核电反应堆的现状及未来发展

小型核电反应堆的现状及未来发展1 核电反应堆堆型现状核能发电始于20世纪50年代,出于追求核电运行规模经济性的需要,核电机组的设计趋向于大型化,在70年代,核电机组的平均容量达到大约1000 MWe,发电用核反应堆的容量从60 MWe发展到超过1300 MWe。

目前,美国拥有104台现役核电反应堆,总容量约99210 MWe,平均每台容量为953 MWe;法国共有59台运行反应堆机组,总容量63363 MWe,平均每台容量为1074 MWe;日本拥有54台核电机组,总容量约为45468 MWe,平均每台容量为842 MWe。

这些国家拥有庞大而相对完善的电网,能承受单次1000 MWe或1300 MWe负荷的变化。

第3代核电站采用的堆型除了AP600以外也是大型机组,如1300 MW级的System 80+和ABWR,1000 MW级的AP1000 和VVER-1000,1500 MW级的EPR等。

近年来,韩国、中国等国家的核电得到了很大发展,这些国家引进或自主开发、建设的核电站基本上也是大型机组。

21世纪80~90年代,工业化国家的发电容量日趋饱和,电网开始出现容量过剩的问题,电网对大容量机组的并入显得越来越不适应,电力公司也不允许一台大型机组长时间地做低功率调峰运行, 因为这样会给经济性带来严重影响。

因此,近年来人们对中、小型反应堆(SMR)又产生了兴趣,希望这些中小型反应堆能更好地适应工业国家的电力负荷需求,以及满足那些电网不能承受大容量机组并入的发展中国家的电力需求。

1.1 小型核电反应堆的状况国际原子能机构(IAEA)将“小型”机组定义为300MWe以下的机组,而电功率在300MWe以上、600MWe以下的为中型反应堆机组。

中、小型反应堆所涉及的技术是多样化的,反应堆类型有:轻水堆、高温气冷堆、液态金属反应堆和熔盐堆,而当前最主要的2种技术均利用高温氦气直接驱动涡(气)轮机。

目前开发程度较为先进的中、小型反应堆有如下一些:美国国会现在正在筹集资金研究小型模块式核电厂和先进气冷堆设计(也是模块化,10个或更多模块机组逐步建成一个大电厂)。

10 第四代反应堆简介

10 第四代反应堆简介

气冷快堆(GFR)的主要参数
反应堆主要参数
反应堆功率 净效率(直接氦气循环) 冷却剂入口温度 冷却剂出口温度 一回路压力 平均功率密度 燃料组成 体积百分比,燃料/气体/SiC 转换比 燃耗
参数值
600MWth 48% 490℃ 850℃ 90 bar 100 MWth/m3 UPuC/SiC(70%/30%)和约20%Pu 50%、40%、10% 自给自足 5% FIMA
钠冷快堆(SFR)的主要参数及特点
增殖堆,可使用可裂 变物质
能处理锕系元素和长 寿命放射性物质
高安全性
全裕量大 主系统压力接近大气压力
低废物产量
高燃料利用率
反应堆主要参数
出口温度 压力 热功率 燃料 包壳材料 平均功率密度 转换比 燃耗
参数值
530℃-550℃ ~1个大气压 1000-5000MWth 氧化物或金属合金 铁素体或ODS铁素体 100 MWth/m3 0.5-1.30 ~150-200 GWD/MTHM
气冷快堆(GFR) 铅冷快堆(LFR) 钠冷快堆(SFR) 非常高温气冷堆(VHTR) 超临界水堆(SCWR) 熔盐堆(MSR)
气冷快堆(GFR)
冷却剂:He或 CO2 出口温度:850℃ 热功率:600MW 电功率:288MW U-TRU陶瓷弥散燃料 安全系统:能动系统和 非能动系统相结合 热效率50%
整体试验的可测量性 源项 能量释放机理
SR3-2 事故缓解功能
长的系统响应时间 长和有效的支持功能
PR1 防扩散能力 和实体保护能力
PR1-1 对偏差或未知 产物的敏感性
PR1-2 电站薄弱环节
分离材料 乏燃料品质
非能动安全功能
第四代核电站的燃料循环

核反应堆——堆型简介

核反应堆——堆型简介

核反应堆——堆型简介核电站是利用一座或若干座动力反应堆所产生的热能来发电或发电兼供热的动力设施。

目前,商业运行中的核电站都是利用核裂变反应来发电。

世界上当前运行和在建的核电站反应堆主要有压水堆(Pressurized Water Reactor,PWR)、沸水堆(Boiling Water Reactor,BWR)、加压重水堆(Pressurized Heavy Water Reactor,PHWR)、高温气冷堆(High Temperature Gas Reactor,HTGR)和快中子堆(Liquid Metal-cooled Fast BreederReactor,LMFBR)等五种堆型,但应用最广泛的是压水堆。

下面将简要介绍这五种类型核反应堆的基本特征和主要特点。

1、压水堆压水堆是采用加压轻水(H2O)作冷却剂和慢化剂,利用热中子引起链式反应的热中子反应堆。

最初是美国为核潜艇设计的一种热中子反应堆堆型。

四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,已经成为技术上最成熟的一种堆型。

压水堆核电站采用以稍加浓铀作核燃料,燃料芯块中铀-235的富集度约3%。

核燃料是高温烧结的圆柱形二氧化铀陶瓷燃块,参见图1 (a)。

柱状燃料芯块被封装在细长的锆合金包壳管中构成燃料元件(参见图1(b)),这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m,参见图1 (c)。

几百个组件拼装成压水堆的堆芯。

堆芯宏观上为圆柱形,参见图2。

轻水不仅价格便宜,而且具有优良的热传输性能,所以在压水堆中,轻水不仅作为中子的慢化剂,同时也用作冷却剂,且水在反应堆内不沸腾。

要使水不沸腾——获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态,所以压水堆是一种使冷却剂处于高压状态的轻水堆。

压水堆冷却剂入口水温一般在300℃左右,出口水温330℃左右,堆内压力15.5MPa。

我国大亚湾核电站、岭澳核电站、秦山第一核电站、秦山第二核电站、江苏田湾核电站均属于这种堆型。

四代快堆特性分析及前景展望

四代快堆特性分析及前景展望

四代快堆特性分析及前景展望作者:李伟哲覃国秀来源:《科技信息·下旬刊》2017年第06期摘要:四代核电技术共六种堆型,其中三种为热堆,三种为快堆。

快堆由于其独特的自身优势,受到广泛的关注。

本文分析了铅冷快堆、气冷快堆以及钠冷快堆的特性,并对其发展前景进行了探讨。

关键词:气冷快堆;铅冷快堆;钠冷快堆近几年,我国的核电技术发展迅速,不仅研发了具有自主知识产权的压水堆技术,并且已经将核电技术输出到了国外。

我国在大范围建设压水堆核电站的同时,也在积极研发四代堆技术。

四代反应堆包括六种堆型,包括气冷快堆、铅合金液态金属冷却快堆、液态钠冷却快堆、熔盐反应堆、超临界水冷堆、超高温气冷堆。

前三种为快堆,后三种为热堆。

快堆比热堆最大的优势是燃料的可增殖。

热堆的能量主要来源于热中子引起铀235裂变产生的热量,以及裂变产物产生的衰变热。

快堆由快中子引发裂变,主要用钚239作为核燃料。

在反应堆堆芯,钚239的外围区域放有铀238,堆内的快中子撞击钚239使其发生裂变,裂变产生的快中子被外区的铀238吸收,生成铀239,铀239属于不稳定核素,经过几次衰变后会转化为钚239。

也就是说随着反应的进行,堆芯的核燃料会反而会变多,这种现象就叫做燃料的增殖。

因此快堆技术优于热堆技术,快堆不仅可以节省燃料,还可以提高反应堆的能效。

1 气冷快堆气冷快堆,英文缩写为GFR。

是由快中子引发裂变,用氦气作为冷却剂的反应堆。

气冷快堆的燃料主要有复合陶瓷型、先进颗粒型和锕系元素混合物陶瓷包壳元件型三种,燃料循环的形式为闭式。

运行时的出口温度约为850℃。

堆芯布局可以是棱柱块状或者是针状或板状燃料组件。

GFR参考堆有一个一体化的场内乏燃料处理和再处理厂。

通过综合利用快中子谱与锕系元素的完全再循环,将长寿命放射性废物的产生量降到最低[1]。

由于冷却剂使用的是气体,因此其热导率较低,目前对气冷快堆的研究较少。

2 铅冷快堆铅合金液态金属冷却快堆,英文缩写为LFR。

超高温气冷堆介绍

超高温气冷堆介绍

超高温气冷堆(VHTR)调研报告目录0.引言 (3)1.发展历史 (3)1.1 高温气冷堆—实验堆 (3)1.2 高温气冷堆—原型堆 (3)1.3 高温气冷堆-模块式 (4)2.目前各个国家的发展状况 (4)3.VHTR反应堆结构 (5)4.VHTR堆型的优缺点 (8)5.VHTR发展趋势 (9)5.1 前景展望 (9)5.2 VHTR需要填补的技术缺口 (10)6.总结 (11)参考文献 (12)0.引言未来十几年,全世界都需要能源和优化能源基础建设来满足日益增长的电力和运输用燃料的需要。

第四代国际核能论坛(GIF)确定的6种核能系统概念具有满足良好的经济性、安全性、可持续性、防核扩散和防恐怖袭击等目标的绝对优势。

在第四代核能系统概念中,超高温气冷反应堆VHTR(Very High Temperature Reactor)作为高温气冷反应堆渐进式开发过程中下一阶段的重点对象,第四代国际核能论坛(GIF)已将VHTR列入研发计划。

VHTR将反应堆出口温度比HTGR提高100℃,达到1000℃或以上,对所用燃料和材料提出了更高要求,实现制氢的工艺设计也需要研发创新。

目前,多个国家和组织投入力量,正给予重点研发。

我国也将高温气玲堆电站列入中长期科学和技术发展重大专项规划,希望近期取得重大技术突破。

1.发展历史VHTR(Very High Temperature Reactor)是高温气冷反应堆渐进式开发过程中下一阶段的重点对象,而高温气冷堆的发展主要经历了以下阶段[1]。

1.1 高温气冷堆—实验堆英国1960年建造20MW实验堆“龙堆”(Dragon)。

美国1967年建成40MW的桃花谷(Peach Bottom)实验堆。

德国1967年建成15MW的球床高温气冷堆(A VR),并发展了具有自己特色的球形燃料元件和球床高温堆。

这三座实验堆的成功运行,证明了高温气冷堆在技术上是可行的。

1.2 高温气冷堆—原型堆美国1968年建造330MW圣·符伦堡(Fort Stvrain)电站,1976年并网发电。

关注核、关注机器人——核电站反应堆的主要堆型简介

关注核、关注机器人——核电站反应堆的主要堆型简介
镬 鬻 棼 辫
毫啊 蠢 Sei eot l pc l pr aR s
臻骥 疑爨鞣 蓼 箨鬻辫 臻 辚 雾
作 二 回路 。包 括汽 轮机 、发 电机 、冷凝 器 、给水 泵 在 内的常规发 电部分 ,俗 称常规 岛,参见 图3 的右侧
部分 。 三 回路 使用海 水 或淡水 ,其 作用 是将冷 凝器 中
压水堆 核 电站 的另一 个特 点是经 济上 基建 费用 低 、建 设周 期短 。压 水堆 核 电站结 构紧 凑 ,堆 芯功 率 密度 大 ,即体 积相 同 时压 水 堆功率 最 高 ,或 者在 相 同功 率下 压水 堆 比其他堆 型 的体积 小 ,加上 轻水
的价格 便宜 , 导致压 水堆 在经 济上基 建 费用低 和建
后 ,1 5 年 确 定 首 先 重 点发 展 压 水 堆 。 90
除 国内建造外 ,还 向国内外大量 出 口, 曾垄断了反应堆 的国际市场 。所 以压水 堆 目前在核反应堆 中占据统 治地位 。在
图 3压水堆 的核 岛和 常规岛示意图
图4 压水反应堆堆本体
路 和二 回路 的关 键设 备 ,在蒸 汽 发生器 里 ,一 回路 与 二 回路 的水 互不 交混 ,通过 管 壁发 生 了热交 换 。 从 蒸汽 发 生器产 生 的高温 蒸汽 ,流过汽 轮 机 ,推 动 发 电机 发 电 ,然 后进 入冷 凝器 ,冷 却成 液 态水后 通 过 给 水泵送 回蒸汽 发 生器 ,这样 的汽 水循 环系 统称 Байду номын сангаас
采 用高 压 的压力 容器 。这 是 由于水 的沸 点低 ,在一
个 大气压下 ,水达到 i 0 0 ℃就会沸 腾 。压水 堆核 电站 为 了提 高热 效率 ,就 必须在 不 沸腾 的前提 下提 高 反 应 堆冷 却剂 的 出 口温 度 ,因此 就必须 提 高压力 。为 了提高压力 ,就要有承受高压 的压力容 器 。这就导致 了压力容器 的制作难度和 制 作费用 的提高 。第二 ,必须采用有一 定富集度 的核燃料 。轻水吸收热 中子 的 几 率 比重水和石墨大 ,所 以轻水慢化 的 核 反应 堆无法 以天然铀作燃料来维持链 式反应 。因此轻水堆要求将天然铀浓缩 到富集度 3 左右 ,因而压水堆核 电站要 % 付 出较 高的燃料 费用。 美 国 通 过 多 种 堆 型 的 比 较 分 析

新一代核反应堆技术及其安全性评估

新一代核反应堆技术及其安全性评估

新一代核反应堆技术及其安全性评估随着人类对能源需求的不断增长,能源开发和利用已经成为全球关注的焦点。

然而,传统的化石燃料能源已经在大气污染和气候变化等方面造成了巨大的影响。

因此,寻求一种更为清洁,高效的替代能源已经成为人类必须面对的问题。

核能是一种被广泛认可的清洁能源,它可以为人类提供丰富、稳定的能源供应,特别是在电力领域。

随着核能技术的不断发展,新一代核反应堆技术成为了人们关注的热点,同时也涉及到了安全性评估等问题。

一、新一代反应堆技术新一代核反应堆技术主要包括四种:快中子反应堆、高温气冷堆、熔盐堆和固态堆。

这些技术相较于传统的压水堆等技术具有更高的安全性、更高的能量利用率和更长的寿命等优势。

快中子反应堆是一种可以利用自然铀和钍等轻度放射性元素的堆型,可以实现核废料的再生利用,同时具有更高的安全性和较长的使用寿命。

高温气冷堆则是一种利用氦气作为冷却剂的技术,具有更高的温度和热利用率,也有能够进行高温储氢等应用。

熔盐堆则是一种利用熔化的盐类作为燃料和冷却剂的技术,具有更高的能量输出和自稳定性等特点。

固态堆则是一种利用全固态燃料的技术,可以降低反应堆温度,提高安全性。

二、新一代反应堆技术的安全性评估反应堆技术的安全性评估是反应堆设计和使用的重要环节,通过对反应堆的设计、建设、调试和运行等过程进行全面严谨的评估,可以确保反应堆的安全性能。

针对新一代反应堆技术的安全性评估包括以下几个方面:(一)工程安全评估工程安全评估主要是对反应堆设计和建设过程中所涉及的材料、结构和工艺等因素进行分析和评估,以确保反应堆在建设和运行中不会存在任何工程安全隐患和事故风险。

(二)辐射安全评估辐射安全评估主要是对反应堆使用中可能产生的放射性物质进行分析和评估,以确保反应堆使用过程中散发出的放射性物质不会对人员和环境造成不良影响。

(三)运行安全评估运行安全评估主要是对反应堆运行过程中的各种因素进行分析和评估,以确保反应堆在运行中不会存在任何安全隐患和事故风险。

带你了解核电站的四种主流堆型

带你了解核电站的四种主流堆型

带你了解核电站的四种主流堆型目前全世界大约有440座核电机组在运行,其中占绝大多数(约92%)的是轻水堆,其余为重水堆以及先进气冷堆等。

轻水堆主要是压水堆和沸水堆两种类型,其中大约75%为压水堆,我国投入运行并将建造的绝大多数核电站都是压水堆型的。

核反应燃料主要是铀,每一千个铀原子当中只有七个是铀235,其余大部分是铀238。

普遍使用的压水堆主要以铀235为燃料,热中子轰击铀235,会使其裂变成2~3个快中子和两个较轻的原子核,然后快中子经慢化剂减速为热中子后继续轰击铀235,使得裂变反应能够持续进行。

第一个当然是介绍沸水堆啦。

日本福岛爆炸的堆型就是这种。

沸水堆核电站原则性流程图主要原理:主循环水泵将一回路的水直接注入核反应堆中。

由于铀235裂变时灰释放出大量的热量来。

水受热变成水蒸气。

经过汽水分离器的分离变成饱和蒸汽进入到汽轮机高压缸中。

再进入低压缸中。

由于热力学性质的变化使汽轮机叶片转动。

从而推动发电机转子转动。

于是就有了电能。

第二个就是介绍重水堆。

重水堆核电站原则性流程图1.慢化剂和冷却剂都是重水。

2.反应堆的本体是一个水平放置的圆筒形容器,在容器内贯穿了许多根水平管道---燃料管道。

冷却剂通过燃料管道将热量带出来,进过蒸汽发生器。

使得二回路的水被被加热成水蒸气。

从而推动汽轮机的运转。

快堆,是“快中子反应堆”的简称,是世界上第四代先进核能系统的首选堆型。

快堆核电站原则性流程图快堆是以钚239为燃料,钚239裂变又可将占铀大部分的铀238变成钚239,使铀的利用率提高到60%~70%,使核燃料快速增殖,所以这种反应堆又称快速增殖堆。

快堆中常用的核燃料是钚—239,而钚—239发生裂变时放出来的快中子会被装在反应区周围的铀-238吸收,又变成钚—239。

也就是说在堆中一边消耗钚—239,又一边使铀-238转变成新的钚—239,而是新生的钚—239比消耗掉的还多,从而使堆中核燃料变多。

反应开始循环持续下去。

核电站常用堆型

核电站常用堆型

1.压水堆压水堆是指使用轻水(即普通净化水)作冷却剂和慢化剂,且水在反应堆内保持液态的核反应堆。

除秦山三期外,我国目前运行的核电机组全部为压水堆。

压水堆作为一种技术十分成熟的堆型,与其他堆型相比,结构紧凑,经济上基建费用低、建设周期短、轻水价格便宜;有放射性的一回路与二回路分开,带有放射性的冷却剂不会进入二回路污染汽轮机,机组运行、维护方便。

压水堆示意图2.沸水堆沸水堆利用轻水作慢化剂和冷却剂,只有一个回路,水在反应堆内沸腾产生蒸汽直接进入汽轮机发电。

与压水堆相比,沸水堆工作压力低;由于减少了一个回路,其设备成本也比压水堆低;但这样可能使汽轮机等设备受到放射性污染,给设计、运行和维修带来不便。

沸水堆示意图汽水分离再热器由于核电厂使用的汽轮机组为饱和蒸汽机组。

蒸汽发生器产生的饱和蒸汽被送到高压缸作功,高压缸末级的排汽湿度达到了14.2%,如果此种蒸汽仍被送往低压缸,将对低压缸产生汽蚀、水锤,将大大缩短汽轮机组的使用寿命。

为避免出现这种情况,专门设计了汽水分离再热器系统。

高压缸的蒸汽作完功后,被送入到汽水分离再热器MSR(Moisture Separator and Reheater)。

在MSR 中进行分离和再热,使进入低压缸的蒸汽为过热蒸汽,减低了对低压缸叶片的冲蚀。

同时,汽水分离再热系统还起到了合理分配低压缸负荷,减轻高压缸负载的功能。

3.重水堆重水堆是以重水(氘和氧组成的化合物)作慢化剂的反应堆。

其主要优点是可以直接利用天然铀作核燃料,同时采用不停堆燃料方式;但体积比轻水堆大,建造费用高,重水昂贵、发电成本也比较高。

重水堆核电站是发展较早的核电站,我国秦山三期1、2号机组采用的是加拿大坎杜型(CANDU)压力管式重水堆CANDU加拿大皮克灵核电厂(重水堆)4.高温气冷堆高温气冷堆用氦气作冷却剂,石墨作慢化剂,堆芯出口温度较高。

高温气冷堆热效率高,建造周期短,系统简单;但堆芯出口温度为850~1000℃甚至更高,对反应堆材料的性能要求也高。

核能的发展趋势

核能的发展趋势

核能的发展趋势
核能的发展趋势主要包括以下几个方面:
1. 高温气冷堆技术的应用:传统核电站主要使用水冷堆技术,但其在燃料利用率、安全性等方面仍面临一些挑战。

高温气冷堆技术可以提高燃料利用率、增强安全性,并具备灵活性和可持续性,因此具有较大的发展潜力。

2. 第四代核能技术的研发:第四代核能技术包括钍基堆、气冷快堆、盐冷快堆等,具有更高的经济性、安全性和可持续性。

目前,相关技术正在不断研发和改进中,并有望在未来取得重要突破。

3. 小型模块化反应堆(SMR)的发展:SMR是指具有更小型、更灵活的反应堆单位,可以更好地适应多样化和分散化的能源需求。

SMR较传统核电站成本更低、建设周期更短,还具有更高的灵活性和安全性,并且可与可再生能源相结合,因此在未来可能得到更广泛的应用。

4. 核废料处理技术的改进:核能发展的一个重要问题是处理和处置核废料。

目前,人们正在研究和开发新的核废料处理技术,如核废料转化和再处理技术,以减少核废料的数量和危害,并寻找更安全的处置方法。

5. 核能与可再生能源的融合发展:核能作为一种低碳能源,具有稳定、可靠的特点,可以与可再生能源相互补充。

未来,人们将更加注重将核能与可再生能源
相结合,实现能源的多元化和可持续发展。

总的来说,核能的发展趋势是朝着高效、安全、可持续的方向发展,同时与可再生能源相结合,以满足未来能源需求和应对气候变化的挑战。

世界核电堆型知多少?

世界核电堆型知多少?

世界核电堆型知多少?尽管世界上弃核的声音不断高涨,但是在德国坚决弃核之后,世界核电站数量的减少暂时性的停滞了。

在此,小编为大家整理目前世界核电的堆型,发电量等信息,让大家对核电目前的技术水平有一个更加直观的了解。

21世纪10年代初,世界上的大多数核电站都属于第二代核电站。

1990年后期到2010年开始运行的核电站基本为先进的轻水堆核电站属于第三代核电站,包括沸水堆、压水堆核电站。

【问】目前,全球核电站多采用第三代核电技术,核电站堆型如何进行划分?全球各国的核电站堆型都用什么堆型呢?答:压水堆核电站以水堆为热源;沸水堆核电站,以沸水堆为热源,它们均属轻水堆;重水堆核电站,以重水堆为热源;快中子增殖反应堆,是由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站;压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型,主要利用核裂变燃料。

【问】世界各国核电机组的运行情况如何?在运反应堆并网发电情况又是怎样的?答:美国核电机组在运个数居世界首位,有100个运行机组,并网发电机装机99081个,并拟定了5个在建计划,目前核电发电量为190.2TW,在总发电量中占比19.4%;排在第二位的是法国,运行机组个数为58,并网发电机装机63130个,核电发电量为405.9TW,占总发电量的73.3%。

各国核电在发电总量中均起着重要作用,是保障电力供应和降低二氧化碳排放的有效选择,法国核电发电占发电总量的73.3%,比利时核电发电占发电总量的52.1%。

【问】第四代核能系统是一种具有更好的安全性、经济竞争力,核废物量少,可有效防止核扩散的先进核能系统,代表了先进核能系统的发展趋势和技术前沿。

第四代核电站的发展计划,以及目前我国核电有何进展?答:2002年9月在东京召开的GIF会议上,与会的十个国家(瑞士于2002年2月加入GIF),在94个概念堆的基础上,确定了六种第四代核电站概念堆系统,即为:气冷快堆系统;铅合金液态金属冷却快堆系统;熔盐反应堆系统;液态钠冷却快堆系统;超高温气冷堆系统;超临界水冷堆系统。

中国实验快堆-第四代堆型-未来核电的主要方向

中国实验快堆-第四代堆型-未来核电的主要方向

中国实验快堆工程——核燃料越烧越多,核废料越烧越少工程总投资:13.88亿元工程期限:1995年——2010年北京房山区中国原子能科学研究院内建设的中国第一座钠冷池式快中子增殖反应堆。

长久以来,核电一直被认为是人类在和平利用核能方面的伟大创举,目前全世界已有核电站400多座,占全世界发电总量的17%。

核电凭借其安全、高效、清洁的诸多特性,开始为越来越多的国家重视。

美国和欧洲许多国家经历了20世纪80年代初到90年代末的反核浪潮之后,又开始大力发展核电,可以预见在未来的20年内,世界范围内将掀起新一轮发展核电的热潮。

亚洲则以中国庞大的核电建设计划震撼世界,按照规划中国将在2020年前新建58座百万千瓦核电机组,这相当于目前日本核电机组的总数。

但是大规模的核电建设计划,对于日益枯竭的铀矿资源而言,是个矛盾日深的关系。

其关键症结在于目前国际上使用的压水堆核电站存在核燃料利用率低的问题,铀矿资源中只有占蕴藏量0.66%的铀-235能够在提纯处理后作为核电站燃料,而其余占天然铀99.2%以上的铀—238则只能做核废料处理。

预计到2030年,世界上易开采的低成本铀资源的80%都将被消耗掉。

而那时,正是我国核电事业大发展时期,核电站可能出现无米下锅的尴尬局面。

而快中子增殖反应堆则完全能够解决这一问题,它可以将带有放射性的铀—238从核废料变成核燃料,使铀矿资源利用率从1%提高到70%以上。

一举解决铀矿资源枯竭,核材料利用率低,和核废料难以处理等三大棘手问题。

因此开发快中子增殖反应堆,对于充分利用我国铀资源、持续稳定地发展核电、解决后续能源供应等问题具有重大的战略意义。

中国实验快堆工程中国实验快堆工程(CEFR)属于“863计划”国家重点实验性核反应堆工程,是我国第一座钠冷池式快中子反应堆。

工程选址位于北京房山区中国原子能科学研究院内,这一实验快堆由科技部、国防科工委及核工业集团公司出资兴建,总投资达13.88亿元人民币,中国原子能科学研究院负责建设管理和建成后的运行。

【核科普】一代至四代核电技术简介

【核科普】一代至四代核电技术简介

【核科普】一代至四代核电技术简介2014-02-20核电观察第一代核电技术1954年前苏联建成电功率为5MW的实验性核电厂,1957年美国建成电功率为90MW的希平港原型核电厂,这些证明了核能用于发电是可行的,国际上把上述实验性和原型核电机组称为第一代核电机组。

早期原型堆代表:德累斯顿费米一号(美)Magnox希平港(美)第二代核电技术20世界60年代后期,在实验性和原型核电机组基础上,陆续建成电功率在300MW 以上的压水堆、沸水堆、重水堆等核电机组,它们在进一步证明核能发电技术可行的同时,使核电的经济性也得以证明,可与火电、水电相竞争。

目前世界上商运的400多台核电机组绝大部分是在这段时间建成的,它们称为第二代核电机组。

第二代核电堆型代表:PWR (压水堆)VVER (压水堆)BWR (沸水堆)CANDU (重水堆)第三代核电技术20世纪90年代,美国电力研究院出台了“先进轻水堆用户要求”文件,即URD (Utility Requirements Document),用一系列定量指标来规范核电厂的安全性和经济性。

随后,欧洲出台的“欧洲用户对轻水堆核电厂的要求”,即EUR (European Utility Requirements),也表达了类似的看法。

国际上通常把URD 或EUR文件的核电机组称为第三代核电机组。

URD和EUR的主要关注点为:1)进一步降低堆芯融化和放射性向环境释放的风险,使发生严重事故的概率减少到极致,以消除社会公众的顾虑。

2)进一步减少核废物(特别是强放射性和长寿命核废物)的排放量,寻求更加的核废物处理方案,减少对人员和环境的放射性影响。

3)降低核电厂每单位千瓦的造价,缩短建设周期,提高机组热效率和可利用率,延长寿期,以进一步改善其经济性。

第三代核电堆型代表:AP1000—非能动先进压水堆EPR—欧洲压水堆APR1400—韩国先进压水堆APWR—先进压水堆(日本三菱)ABWR—先进沸水堆(GE)ESBWR—经济简化型沸水堆(GE)第四代核电技术第四代核电技术是指安全性和经济性都更加优越,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统。

世界现行核电站反应堆堆型

世界现行核电站反应堆堆型

中国
1080
3
单堆布置
177
福建福清核电站5、6号 中核/中广核 机组,广西防城港核电 站5、6号机组
4
第二代+
CNP650/CNP1000
中国核工业集团
5
第二代+
CANDU 6
中国核工业集团
6
第三代
AP1000
7
第三代
EPR
Advanced Passive PWR的简称,该机型为 西屋公司设计的3代核电机型。AP1000采用 减法理念,通过非能动技术简化设备,在 提高安全的同时降低了成本,迎合了业 美国西屋 主,受到了青睐。AP1000的特点是双环 路,屏蔽泵,非能动冷却系统,模块化建 设和系统简化。但是屏蔽泵放大的工程难 度不小。 欧洲先进型压水堆,加法理念,反应堆较 德国西门子和法国法 复杂,相应提高了成本。EPR单堆功率最 玛通联合开发 大,四环路机组,燃料组件数目241。 国核技 ACP1000在国内没有建成项目。
中国
650/1000
2
单堆布置
157
中核集团
加拿大
700
2
单堆布置
157
中核集团
秦山核电站三期
美国
1200
2
单堆布置
157
国核技
浙江三门核电站、山东 海阳核电站
欧洲
1650
4
单堆布置
241
中广核集团
广东台山核电站
中国
1000
2
单堆布置
157
国核技
暂无
中国
1000/1400
2
单堆布置
157
国核技
山东石岛湾核电站(计 划)

2023年重水堆核电站的特点和发展趋势

2023年重水堆核电站的特点和发展趋势

重水堆核电站的特点和发展趋势核反应堆是核电站中最关键的设备,也是不同类型核电站的主要差别所在。

1954年,前苏联建成世界第一座试验核电站奥勃灵斯克核电站。

1957年,美国建成世界第一座商用压水堆核电站希平港核电站。

经过半个多世纪的进展和筛选,已进展成商业规模并且不断有后续建筑项目的核电反应堆主要有3种类型:压水堆、沸水堆和重水堆。

压水堆和沸水堆源于1953年美国原创开发胜利的核潜艇动力堆;而重水堆则主要是由加拿大原创开发的特地用于核能发电的压力管式重水反应堆,也叫CANDU(坎杜)堆。

第一座示范CANDU堆于1962年建成并投入运行。

CANDU机组大部分建在加拿大,近年来进展到韩国、阿根廷、罗马尼亚和中国等6个国家。

我国大陆已建成和在建共有11台核电机组,其中秦山三期核电站的两台机组采纳CANDU堆,其余都用压水堆。

CANDU堆的核燃料加工成简洁短小的燃料棒束组件,每根燃料棒长约50厘米,外径约10厘米。

堆芯由几百个水平的压力管式燃料通道组成,每个压力管内一般装有12个燃料棒束组件。

高压冷却水从燃料棒束的缝隙间冲刷流过,不断把热量带出堆芯。

冷却水加了很高的压力之后,温度可以保持较高而不发生沸腾。

在燃料通道外侧的是低温低压的重水慢化剂,慢化剂与压力管内的高温高压冷却水是分隔开的。

核裂变产生的热量从燃料棒传递到高压冷却水,冷却水又在蒸气发生器的U型管内把热量传递给管外的一般轻水,一般轻水沸腾所产生的高温高压蒸气去驱动汽轮发电机发电。

目前的重水堆核电站所使用的冷却水是昂贵的重水,在新一代先进重水堆设计中,冷却水将采纳轻水,而重水的用途只限于作慢化剂,因而绝大部分重水可以省掉。

CANDU堆由于它的燃料棒束组件简洁短小,又加上反应堆堆芯是水平管道式的,所以在更换燃料的时候不需要停堆。

更换核燃料时,两台机器人式的换料机分别与一个通道的两端对接,一台换料机从一端将燃料棒束一个个通过燃料通道,顺着冷却剂流淌的方向推入堆芯;另一台换料机在另一端接收卸出的乏燃料棒束。

第四代核反应堆简介

第四代核反应堆简介

第四代核反应堆简介摘要:清洁、可持续能源技术的发展是现代国家发展强大的标志之一。

而核能发电实现以上要求的方向之一。

目前国际上将核反应堆按照历史沿革和技术特点分为四代。

其中第四代反应堆的技术发展是21世纪中叶的核能制高点。

本人围绕近20年来国际上提出的各种概念以及实践的技术经验。

对第四代反应堆可行的技术特点、发展趋势进行了总结剖析。

并结合实际得出钍基熔盐反应堆是未来发展的较好的方向之一。

关键词:第四代反应堆;熔盐堆;钍基燃料21世纪初,一些国际核能行业的领军单位共同讨论并建立了第四代核反应堆国际论坛(Generation Ⅳ International Forum,简称GIF),并总结提出了多种第四代反应堆的设计方案。

该论坛筛选出了6种当时科技水平下最可行的第四代反应堆堆型的设想,其分别为:液体钠冷却快中子反应堆,液体铅冷却快中子反应堆,超高温中子反应堆,超临界压力水冷堆,气体冷却快中子堆与熔盐液体反应堆。

但随着时代的发展,只有超临界压力水冷堆(SCWR)、气冷快中子堆(GFR)与熔盐液体反应堆(MSR)三个概念脱颖而出。

本文对这三种堆型进行简要介绍。

一、超临界压力水冷堆超临界压力水冷堆(以下简称超临界堆)的冷却剂使用的是超临界水。

超临界水不同于普通水,其更像是一种汽水混合物。

指的是高温高压下的致密水蒸气,密度与普通水相同。

因此该种堆型常被认为是对沸水堆的威力加强版。

其与第三代的沸水中子反应堆的主要差别在于:超临界堆的净电效率更高(比沸水堆高约10%),相比其他反应堆,由于超临界水运行时的流量较低,所以超临界压力水冷堆系统可以采用更细的管道,更节省材料和空间,因此具有更高的安全性和经济性。

作为冷却剂的超临界水是单相气体,可以采用更为简易的循环布局。

且不需要干燥器。

正是由于以上的优势,超临界堆的实际建设、运营以及维护成本理论上可以比现有轻水堆低。

但超临界堆也存在一个目前难以克服的问题,即如何抵抗高温高压下超临界水导致的腐蚀性。

核电历史回顾和第三代先进堆型简析

核电历史回顾和第三代先进堆型简析

核电历史回顾和第三代先进堆型简析摘要回顾了核电发展历史,阐述了第三代核电厂的发展背景和设计要求,简单分析了几种第三代先进堆型的设计特点。

关键词代核电厂先进堆型Abstract The paper looks back the development history of the nuclear power, explains the development background of the third generation nuclear power plant and design requirements, and analyzes the design characteristics of several typical third generation advanced reactor types.Key words Generation Nuclear Power Plant Advanced Reactor Types1 核电发展历史、现状和趋势从第一座核电站建成至今已有50年的历史,在经历了20世纪60年代末~80年代中期核电大发展以后,由于1979年美国三里岛事件和1986年前苏联切尔诺贝利事件的影响,核电的发展在世界范围内受到严重的挫折。

也正因为这些事件,给了人们对核电有更多的反思,并为21世纪迎来核电在更高水平上的发展奠定了坚实的基础。

20世纪50~60年代可视为核电发展早期。

这时期核电主要集中在美、苏、英、法和加拿大少数几个国家中,西德和日本由于二次大战后巴黎协定禁止其在战后10年内进行核研究,因而核能技术应用起步较晚。

这阶段发展的堆型可分为3种情况,一是从军用生产堆或军用动力堆转型改造过来,二是一些商用核电厂堆型的原型机组,第三则是研究探索过程中建造的一些堆型。

这阶段典型的核电机组堆型包括:英国和法国建造的一批“美诺克斯”天然铀石墨气冷堆(GCR),前苏联早期建造的轻水冷却石墨慢化堆(LGR),美国早期建造的压水堆(PWR)和沸水堆(BWR),加拿大早期建造的天然铀重水堆以及美国和前苏联早期建造的快中子增殖堆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

未来十年核电先进堆型介绍未来十年核电先进堆型介绍IntroductionofAdvancedNuclearReactorsintheDecade杨孟嘉1任俊生1周志伟2(1.中国广东核电集团公司技术中心,广东深圳,518124;2.清华大学核能技术设计研究院,北京,100084)摘要根据世界核电工业的发展现状,系统讨论了面向2010年核电市场的各种先进核电堆型、设计特点以及主要核电供应商为获得潜在用户进行的商业计划。

综述了这些先进核电堆型近期投放市场的技术和商务准备情况。

研究工作对近期中国核电工业选择先进核电堆型、确立商用核电技术的主导发展方向和健全完善核电站安全管理法规体系具有一定的参考价值。

关键词先进反应堆核电商业计划Abstract:Varioustypesofadvancednuclearreactoraimingatnuclearelectricpowermarketaroundtheyear2010,the irdesignfeaturesandthecorrespondingcommercialplansinitiatedbyworldmajorsuppliersofnuclearpo werplantsforobtainingpotentialcustomersaresystematicallydiscussedbytakingintoaccountthecurrent statusofthedevelopmentofnuclearelectricpowerindustryworldwide.Thetechnicalandcommercialpre parednessfordeployingtheseadvancednuclearreactorsinneartermhasbeensummarized.Asareference,t hepresentresearchisofconsiderableforChinesenuclearpowerindustrytoselectadvancedreactortypesan dtodeterminethemaintechnologicaldevelopmentroadmap,andtoestablisheffectivesafetyregulatorygu idelinesinnearfuture.Keywords:AdvancedreactorCommercialplanofnuclearpower在无温室气体排放的条件下,全球400多座核电站正安全可靠地为人类提供17的电力,这是源于20世纪中叶的核能技术在其沧桑的发展进程中所创造的成就。

随着上个世纪六、七十年代投入运行的核电站逐渐达到其40年的运行寿期,核能界一方面向核安全当局提出申请,要求延长运营期限;另一方面在对已有的核电机组实施渐进性设计和运行改进的基础上,面向2010年前后的核电市场,推出第三代(80年代开始发展、90年代末开始投入市场)先进轻水堆核电站和在第一代至第三代核电堆型的基础上经过渐进性设计改进的核电堆型。

本文简略介绍这两类核电堆型。

1ABWR先进沸水堆(ABWR)是在世界范围内沸水堆(BWR)设计和多年运行经验的基础上发展起来的第三代先进堆型,它基本符合国际上通行的核安全管理规定,基本满足美国用户要求文件(URD)对第三代先进轻水堆安全性、先进性、可靠性和经济性的要求。

ABWR 也是一个完成了全部工程设计、并且有实际建造和运行经验的反应堆。

早在1978年美国GE公司就开始了先进型BWR(ABWR)的研发,并与瑞典的Asea 原子能公司、意大利的Ansaldo公司以及日本的日立和东芝公司一起成立了"改进工程设计队(AET)",共同开发ABWR。

AET综合了美国、欧洲和日本在BWR方面的优点和成熟经验,考虑了最新的汽机、燃料、电子等方面的技术,完成了ABWR的概念设计。

在AET 工作的基础上,GE、日立和东芝公司通力合作,于1985年完成了ABWR的基本设计。

1987年,日本东京电力公司(TEPCO)选择GE、日立和东芝公司组成的国际联合体设计并建造柏崎·刈羽(Kashiwazaki-Kariwa)核电厂的两台ABWR机组(6号机组K6和7号机组K7)。

1987年GE公司向美国核管会(NRC)提出ABWR标准设计许可证申请;1991年,K6/K7获得日本核安全当局的建造许可;1994年ABWR得到NRC的最终设计批准(FDA);1997年,ABWR获得美国NRC标准设计证书,完成了全部设计鉴定并取得了许可证。

K6和K7分别于1996和1997年投入商业运行,预计寿期60年,建造费用约2000美元/kW,发电成本约为7美分/kWh。

还有更多的ABWR也正在申请建造。

将来的ABWR机组的建造费用预计为1700美元/kW。

ABWR采用成熟的常规核燃料,建造工期已在日本得到证明,但在经济竞争性方面存在着某些不确定性。

ABWR主要设计参数热功率MWt3926电功率MWe1350堆芯冷却剂压力MPa7.17堆芯冷却剂温度℃287堆芯冷却剂流量kg/hr52.2x106活性区长度m3.7压力壳内径m7.1燃料组件数872控制棒数205功率密度kW/l512AP-600AP-600是610MWe的压水堆。

它的堆芯、反应堆压力壳、堆内构件和燃料与现在正在运行的西屋压水堆基本相同。

降低堆芯功率密度以提供更大的热工裕度。

AP-600设计的创新方面是:反应堆和安全壳的紧急冷却依靠的是非能动的特性,例如:重力、自然循环、自然对流、蒸发和冷凝,而不是依靠交流电源和电机驱动的部件。

对AP-600非能动冷却系统的大量实验已经完成,而且得到NRC独立进行的验证。

NRC已经认证了AP-600的设计。

AP-600已完成90%的详细设计,也是采用常规核燃料。

AP-600在经济竞争性方面存在着某些不确定性。

AP-600主要设计参数热功率MWt1940电功率MWe610堆芯冷却剂压力MPa15.5堆芯冷却剂温度℃315.5热工设计流量m3/s6.32x2活性区长度m3.66压力壳内径m3.99燃料组件数145控制棒数453AP-1000AP-1000是1117MWe的压水堆,它的基本设计与AP-600相同,但是提高了输出功率以达到经济规模。

除了在一些部件的容量上的改动外,AP-1000的非能动安全系统在本质上与AP-600的相同。

因为输出功率的提高只增加了少量的投资成本,AP-1000发电成本估计可比AP-600降低30(0.036美元/kWh),因此可以预期AP-1000一旦投放市场,在经济性方面会有较大的诱惑。

AP-1000设计认证的申请计划在2002年3月提交给NRC,目前正与NRC一起开展深入的审评工作,预计2003年底能收到"最终设计批准书"。

AP1000已完成65~70%的详细设计。

AP-600和AP-1000两种堆型都有强大的国际工业基础,两者都能够具备在2010年前后投放市场的条件。

但西屋公司主要向市场推荐AP-1000。

AP-1000主要设计参数热功率MWt3400电功率MWe1117堆芯冷却剂压力MPa15.5堆芯冷却剂温度℃321热工设计流量m3/s18.92活性区长度m4.27压力壳内径m3.99燃料组件数157控制棒数534EPREPR(欧洲压水堆)是法国和德国的核工业界在N4和Konvoi基础上联合开发的新一代压水堆。

法国通过法马通公司(Framatome)与德国西门子公司(Siemens)于1989年签订了EPR开发合作协议,1991年法国电力公司和德国的一些电力公司决定参与EPR的开发工作。

Framatome和Siemens现在已经合资成立法马通先进核能公司。

EPR的设计工作从1991年开始,1994年完成概念设计,1998完成基本设计。

2000年3月,法国常设项目组在德国专家参与下完成了EPR基本设计的评审工作,并于2000年11月向法国核安全当局递交了EPR详细技术导则,目前正在做补充设计。

EPR的研发获得其他欧洲国家的协作,设计符合法国和德国的法律和法规。

EPR研发的初步计划是2006年开始建造第一座EPR,2011年投入商业运行。

EPR的研发迄今已耗资2亿多美元。

充分考虑N4和Konvoi机组的设计、运行经验反馈,EPR在安全系统的设计方面采取了一系列预防和缓解措施。

例如:重要的安全系统(如安全注入、应急给水、设备冷却和应急电源)采用四重冗余设计,这样可使机组在运行中作预防性维护,即:事故+单一故障准则+维修,而且各列之间实行严格的实体隔离,因而可缩短停堆时间(正常的停堆换料和检修时间为17天),提高机组的可用率;增加蒸汽发生器和稳压器的体积,以延长事故发生后的宽限期;采用双层安全壳,外层可抵抗外部事件,内层可将假想严重事故的后果限制在核电站内;厂房布置考虑了防飞机坠毁;即使发生了堆熔事故,熔融物也被滞留在堆芯熔渣释放区内,并可利用重力将堆内换料水贮存箱(IRWST)中的储水直接流入堆芯熔渣释放区对熔融物进行淬火和冷却。

由于单机容量大,可用率高(18个月换料时可达91%),EPR在经济上有一定的竞争力。

EPR主要设计参数热功率MWt4250电功率MWe1550堆芯冷却剂压力MPa15.5堆芯入口/出口温度℃292.5/330热工设计流量kg/s22135活性区长度m4.2压力壳内径m4.87燃料组件数241控制棒数89燃耗MWd/t650005System80System80是一个功率为1350MWe的压水堆,由ABB-CE公司(现在已与西屋公司合并)设计开发。

它符合先进轻水堆用户要求文件,并在1997年获得NRC的认证。

基于System80设计的核电站已经在韩国建造。

韩国在System80的基础上开发改进出另一种1400MWe的先进压水堆:APR-1400。

首批两台APR-1400将成为新古里核电站(Shin-Kori)的3号和4号机组,建设费用预计为1400美元/kW。

后续机组(48个月建设周期)造价有望降到1200美元/kW。

但西屋公司目前没有将其推向其它市场的计划。

6CANDU堆自1962年加拿大建成世界第一台CANDU堆型的示范核电站NPD(20MWe),经过大约40年的发展,2001年底全世界共建成CANDU堆型机组41座。

CANDU堆型核电站实际上是一种特殊的压水堆核电站,与PWR堆型核电站很相似。

两者的差异在反应堆本体,尤其是堆芯部分,而核蒸汽供应系统的主要设备和常规岛的汽轮机发电机组等设备基本上是类似的,相关技术基础也是基本相同的。

根据统计,按价格计算,CANDU和PWR核电站约有75以上的设备基本上是相同的。

相关文档
最新文档