北师大版八年级数学下册 一元一次不等式 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《4 一元一次不等式》教案

第1课时

教学目标

知识目标:

1、掌握一元一次不等式的概念;

2、熟练掌握较为简单的一元一次不等式的解法,并能正确地将不等式的解集表示在数轴上. 过程性目标:

1、介绍一元一次不等式的概念;

2、引导学生体会通过综合利用不等式的概念和基本性质解一元一次不等式. 情感态度目标:

通过实例让学生经历求一元一次不等式的解的过程,探索一元一次不等式的解法与一元一次方程解法的异同,从中感受到新旧知识的迁移和更新.

教学重难点

重点:一元一次不等式的解法.

难点:解一元一次不等式时,去分母及化系数为1,这两步当乘数是负数时改变不等号的方向.

教学过程

一、课前练习:

1、直接写出下列一元一次不等式的解集.

(1)-x <2; (2)1-x <x -1;

(3)2x -3>1; (4)5

x ≤x . 2、解下列不等式,并把解集在数轴上表示出来.

(1)3

1x <-1; (2)6-(x -1)<1. 二、一元一次不等式的概念:

问:这些不等式中含有几个未知数,未知数的次数是多少,含有未知数的式子是什么样的代数式?

答:这些不等式有一个共同的特点:

只含有一个未知数,并且未知数的最高次数是1,系数不等于0,这样的不等式叫做一元一次不等式.

说明:它们都只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.

三、解不等式:

解下列不等式并把它的解集在数轴上表示出来:

(1)x-8<3;(2)3x>7;

(要求学生能够说出变形的方法和其依据)

问:通过以上例题的解答,我们来总结一下一元一次不等式的解法,并和一元一次方程的解法作一下比较,看看他们有哪些类似之处?有什么不同?(可安排学生进行讨论和交流.)由学生得出以下结论,教师作适当的总结.

(1)解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.(2)解一元一次不等式和解一元一次方程步骤类似,但要注意在不等式两边都乘以(或除以)同一个负数时,不等号方向必须改变.

四、检测反馈:

1、解下列不等式,并把解集在数轴上表示出来:

(1)2x+1>3;(2)2-x<1;

(3)2(x+1)<3x;(4)3(2x+2)≥4(x-1)+7.

2、a取什么值时,代数式4a+2的值

(1)大于1?(2)等于1?(3)小于1?

3、甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球定价每盒5元,现两家商店搞促销活动,甲店:每买一副乒乓球拍赠送一盒乒乓球;乙店:按定价的九折优惠.某边需购球拍4副,乒乓球若干盒(不少于4盒).

设购买乒乓球盒数为x(盒),在甲商店付款为y

甲(元),在乙商店付款为y

(元),分别

写出y

甲,y

与x的关系式;就乒乓球盒数讨论去哪家商店买合算?

第2课时

教学目标

知识目标:

1、较熟练的解一元一次不等式.

2、会求不等式的整数解.

3、会用一元一次不等式解决简单的实际问题.

过程性目标:

1、引导学生体会通过综合利用不等式的概念和基本性质解一元一次不等式;

2、指导学生将文字表达转化为数学语言,从而解决实际问题.

情感态度目标:

在进行实际问题讨论的过程中,让学生体验合作交流精神,探索运用数学知识解决实际问题的方法与途径,提高学生参与数学活动的兴趣.

教学重难点

重点:一元一次不等式的解法以及将实际问题转化成一元一次不等式的数量关系. 难点:在实际问题中建立一元一次不等式的数量关系.

教学过程

一、复习练习:

1、解下列不等式,并把解集在数轴上表示出来.

14-4x >0;

2、只含有一个未知数,并且未知数的最高次数是1,系数不为0,这样的不等式叫做一元一次不等式.

3、(1)解一元一次不等式的一般步骤:去分母,去括号,移相,合并同类项,系数化为1.

(2)解一元一次不等式和解一元一次方程步骤类似,但要注意在不等式两边都乘以(或除以)同一个负数时,不等号方向必须改变.

二、新课讲解:

例1、解不等式,并把它解集在数轴上表示出来:

24+x +3

12+x ≥0 由学生得出以下结论,教师作适当的总结.

(1)解法步骤类似: 去分母,去括号,移项,合并同类项,系数化为1.

(2)求一元一次不等式的整数解比求一元一次方程的解集多一个步骤:就是在解集中找出整数解.

例2、张玲有1元和5角的硬币共15枚,这些硬币的总数大于10.5元.问张玲至少有多少枚1元的硬币?

分析:以“硬币的总数大于10.5元”为不等量关系,列不等式.

三、交流反思:

师生共同回顾:

用一元一次不等式解决简单的实际问题时,先要设出未知数,再根据题中不等量关系列出不等式,最后解一元一次不等式.

四、检测反馈:

1、a <0时,ax -b ≥0的解集为_______.

2、当x 时_______,4

23x + 的值是非正数. 3、求3)3(2-x ≤6

45-x -1的负整数解. 4、一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个

工程调整工期,要求提前两天完成挖土任务.问以后6天内平均每天至少要挖土多少m3.五、课堂总结:

如何求不等式的特殊解?应用解不等式解决实际问题的方法和步骤是什么?谈自己的收获和体会.

相关文档
最新文档