碳钢与铸铁的拉伸

合集下载

低碳钢、铸铁的拉伸试验

低碳钢、铸铁的拉伸试验

低碳钢、铸铁的拉伸试验
低碳钢和铸铁是最常用的金属材料,它们用于各种应用,其中拉伸试验也十分重要,旨在测试材料强度和可靠性。

此外,拉伸试验也可以帮助我们确定材料的断裂模式和断裂行为,评估特定材料在不同情况下的变形程度,同时测量材料伸长度和抗拉强度。

因此,针对低碳钢、铸铁的拉伸试验非常重要。

基本的拉伸试验要求,在准备好的试样上加载静压力,检验样品的强度、缺陷检测和拉伸行为,并在拉伸过程中记录应变数据,以确定拉伸的极限和变形行为,最终确定材料的抗拉强度、延展率和断裂点等。

低碳钢或铸铁在拉伸试验中,可能会遭受断裂和各种数量限制,这个数量由材料的性质和试样表面的准备程度决定,它不仅受到拉伸和变形的程度,并且由材料的显微组织和原材料的化学成分等因素决定。

从微尺度上看,可以通过伪共振、双夹层波等显微技术获得更好的数据,更好地评估其拉伸行为。

在进行拉伸试验之前,一定要对试样进行正确的抛光和清洁处理,以降低断层边缘损伤,去除金属表面不锈钢或微小缺陷,否则可能会对测试结果产生影响,影响拉伸试验结果的可靠性。

最终,强度测试用螺纹规要与无螺纹按照相应的标准和技术运行,以确定低碳钢、铸铁的性状和拉伸伸长行为。

总之,低碳钢和铸铁的拉伸试验十分重要,需要正确准备,进行测试和记录结果,以确定它们的性能和行为特征,从而帮助我们评估它们的强度和可靠性。

实验一 低碳钢和铸铁拉伸时力学性能的测定

实验一 低碳钢和铸铁拉伸时力学性能的测定

实验一低碳钢和铸铁拉伸时力学性能的测定实验目的通过拉伸试验,测量低碳钢和铸铁的拉伸力学性能,了解材料的力学行为,衡量不同材料的优劣和适用性,以此来探究材料的物理性能和工程设计之间的关系。

实验原理拉伸试验是一种重要的材料力学测试方法,利用拉伸试验机对一定尺寸的试样施加不断增加的轴向拉力,测定材料随着受力程度的变化而发生的拉伸变形,以及拉伸过程中产生的力学参数的变化,从而得出材料的强度、韧性、延伸率等性能指标。

实验步骤1. 准备工作•将低碳钢和铸铁试样剪切成标准的“工程”尺寸,即长度为200mm左右(需要根据实际试验情况调整尺寸),宽度和厚度分别适应材料的形状和大小。

•对试样进行表面处理,包括去毛刺,打磨,确保表面光滑。

•设置拉伸试验机,调整初始拉伸速度为5-10mm/min左右。

2. 实验操作•将试样夹紧在拉伸试验机上,确保有效载荷线与试样夹持面法线平行。

•用计算机控制拉伸试验机自动拉伸试样,测试过程中将实时计算拉力、位移和应力应变曲线。

•拉伸到试样断裂为止,记录下断口形貌及其它有关数据。

3. 数据处理•根据拉伸试验的原理和实验得到的数据,计算低碳钢和铸铁的拉伸强度、屈服强度、延伸率等性能指标。

•对实验结果进行比较分析,评估低碳钢和铸铁不同力学性能之间的差异和共性。

实验注意事项•操作过程中需要谨慎,尤其是在进行试样夹持、固定和载荷设置等方面,要确保试验安全性和精密性。

•试样的制备和表面处理必须准确无误,以免影响实验结果和数据可靠性。

•必须使用标准化的试验设备和测试程序,严格按照操作指南进行试验操作和数据处理,以确保实验结果正确可靠。

实验结果实验结果表明,低碳钢的拉伸强度和屈服强度均优于铸铁,但铸铁的延伸率和塑性较低,易于脆断。

因此,在材料选择和设计中需要根据实际使用环境和功能要求,综合考虑材料的各项力学性能指标,选择最合适和可靠的材料。

实验通过本次实验,我们成功地测定了低碳钢和铸铁的拉伸力学性能,并使用数据处理技术比较分析了不同材料之间的特点和优缺点,揭示了材料物理性能与工程设计之间的密切关系。

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告一、实验目的。

本实验旨在通过对低碳钢和铸铁的拉伸实验,了解两种材料的机械性能,探究它们在受力过程中的表现及性能差异。

二、实验原理。

拉伸实验是通过对材料施加拉力,观察其受力变形情况,从而得出材料的拉伸性能参数。

在实验中,我们将对低碳钢和铸铁进行拉伸实验,通过拉伸试验机施加拉力,测量其应力-应变曲线,得出材料的屈服强度、抗拉强度、断裂伸长率等参数,从而对两种材料的性能进行比较分析。

三、实验步骤。

1. 将低碳钢和铸铁试样分别固定在拉伸试验机上;2. 施加拉力,记录应力-应变曲线;3. 测量材料的屈服强度、抗拉强度、断裂伸长率等参数;4. 对实验结果进行分析和比较。

四、实验数据及分析。

经过拉伸实验,我们得到了低碳钢和铸铁的应力-应变曲线,通过对曲线的分析,得出了以下数据:低碳钢:屈服强度,250MPa。

抗拉强度,400MPa。

断裂伸长率,25%。

铸铁:屈服强度,150MPa。

抗拉强度,300MPa。

断裂伸长率,5%。

通过对比两种材料的拉伸性能参数,可以得出以下分析:1. 低碳钢的屈服强度和抗拉强度均高于铸铁,表明低碳钢具有更好的抗拉性能;2. 低碳钢的断裂伸长率远高于铸铁,表明低碳钢具有更好的延展性,更适合用于受力较大、需要一定延展性的场合;3. 铸铁的屈服强度和抗拉强度较低,但硬度较高,适合用于一些对硬度要求较高的场合。

五、实验结论。

通过本次实验,我们对低碳钢和铸铁的拉伸性能进行了比较分析,得出了以下结论:1. 低碳钢具有较好的抗拉性能和延展性,适合用于需要抗拉性能和延展性的场合;2. 铸铁具有较高的硬度,适合用于对硬度要求较高的场合;3. 不同材料具有不同的机械性能,需要根据具体使用场合选择合适的材料。

六、实验总结。

本次拉伸实验使我们更加深入地了解了低碳钢和铸铁的机械性能,对于工程材料的选择和应用具有一定的指导意义。

在今后的工程实践中,我们应根据具体的使用场合和要求,选择合适的材料,以确保工程质量和安全。

低碳钢拉伸试验报告

低碳钢拉伸试验报告

低碳钢拉伸试验报告篇一:实验一低碳钢拉伸试验报告试验一低碳钢拉伸试验报告实验一低碳钢和铸铁的拉伸实验一、实验目的1、测定低碳钢拉伸时的屈服极限σs、强度极限σb、伸长率和断面的收缩率;测定铸铁的抗拉强度。

2.观察了低碳钢拉伸过程中的屈服和颈缩现象,分析了低碳钢和铸铁试样的拉伸断裂。

二、实验设备万能试验机,试件,游标卡尺。

(点击图标看大图片或视频)万能试验机低碳钢和铸铁拉伸视频低碳钢和铸铁游标卡尺低碳钢断裂三、实验原理(一)低碳钢和铸铁拉伸力学性能的测定。

实验时,试验机可自动绘出低碳钢和铸铁的拉伸图。

从图中可以看出,材料在低碳钢的拉伸过程中经历了四个阶段:1、正比例阶段,拉伸图是一条直线。

2.在屈服阶段,拉伸图呈锯齿状。

以匀速旋转的读数板上的指针来回摆动,此时记录的载荷为屈服载荷PS。

然后可以计算屈服极限。

3、强化阶段,屈服后,曲线又缓慢上升,这段曲线的最高点,拉力达到最大值――最大荷载pb,即可计算出强度极限。

4.在颈缩阶段,拉伸图上的载荷迅速降低,曲线滑动,试样开始产生局部伸长和颈缩,直到试样在颈缩处断裂。

测量断裂后试件标距的长度和断口处的直径,可计算材料的伸长率和断面的收缩率。

四、实验步骤(一)低碳钢的拉伸试验1.准备好试件,通过试件落地的声音判断是低碳钢还是铸铁。

声音是脆钢和钝铸铁的声音。

2、测量试件的直径,并量出试件的标距,打上明显的标记。

在标距中间和两端相互垂直的方向测量每次的直径,取最小值的平均值计算横截面积。

3、估算最大载荷,配置相应的摆锤,选择合适的测力度盘。

开动试验机使工作台上升一点。

调当激活指针到达零点时,驱动指针接近激活指针,并调整绘图设备。

4、安装试件。

5.启动试验机,缓慢、均匀地加载。

注意指针的旋转和自动绘图。

请注意,屈服荷载的值已被捕获并记录下来。

注意观察颈缩现象。

试件断裂后立即停车,记录最大荷载pb。

6.取下试件,用油卡尺测量断裂后的标距和最小直径。

(二)铸铁拉伸实验1.准备试件(除标距不确定外,其余同低碳钢)。

低碳钢和铸铁拉伸破坏形式

低碳钢和铸铁拉伸破坏形式

低碳钢和铸铁拉伸破坏形式
低碳钢和铸铁在拉伸破坏形式上有着明显的区别。

首先,低碳钢在拉伸破坏时往往表现为延展性断裂。

这意味着
在受力作用下,低碳钢会发生明显的塑性变形,使得材料在破坏前
能够发生较大的变形,这种变形会伴随着明显的颈缩现象,最终导
致材料断裂。

这种延展性断裂的特点使得低碳钢在一定程度上具有
良好的韧性和抗拉伸性能。

而铸铁在拉伸破坏时通常表现为脆性断裂。

铸铁的碳含量较高,晶粒较大,因此在受力作用下很难发生显著的塑性变形,材料容易
出现微裂纹,随着裂纹扩展,最终导致材料迅速破裂。

这种脆性断
裂的特点使得铸铁在拉伸性能方面相对较差,容易出现断裂现象。

综上所述,低碳钢和铸铁在拉伸破坏形式上的不同主要表现为
低碳钢的延展性断裂和铸铁的脆性断裂。

这种不同的破坏形式反映
了它们在力学性能上的差异,也对它们在工程实践中的应用提出了
不同的要求。

材料拉伸与压缩实验报告参考

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验一、实验目的1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ;2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图P-ΔL 曲线; 二、实验设备微机控制电子万能材料试验机、直尺、游标卡尺; 三、实验试祥1.为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示:图1用于测量拉伸变形的试件中段长度标距L 0与试件直径d;必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ52、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内:1≤d h≤3为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑; 四、实验原理图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS,即得屈服极限:图2屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断;以试样的初始横截面面积A;除P b 得强度极限为延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率:铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂;没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限;图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致的,而且s P 也基本相同,所以说,低碳钢材料在压缩时的E 和s σ都与拉伸时大致相同,低碳钢的塑性好,由于泊松效应,试件越压越粗,不会破坏,横向膨胀在试件两端受到试件与承垫之间巨大摩擦力的约束,试件被压成鼓形,进一步压缩,会压成圆饼状,低碳钢试件压不坏,所以没有强度极限;图5为铸铁试件压缩图,P-ΔL 比同材料的拉伸图要高4-5倍,当达到最大载荷b P 时铸铁试件会突然破裂,断裂面法线与试件轴线大致成045~055的倾角;这表面,铸铁压缩破坏主要是由剪应力引起的; 五、实验步骤低碳钢拉伸试验步骤:图4图51、测量试样尺寸测定试样初始横截面面积Aο时,在标距Lο的两端及中部三个位置上,沿两个互相垂直的方向,测量试样直径,以其平均值计算各横截面面积,取三个横截面面积中的最小值为Aο;2、检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;3、安装试件;安装时仅将试件上端夹紧,下端悬空,然后再试件上夹持引伸计;4、启动下降按钮将试件移下,停止安装好试件,进行调零,回到试验初始状态;5、根据实验设定,启动实验开关进行加载,注意观察试验中的试件及计算机上的曲线变化;6、实验完成,保存记录数据;7、试件破坏后非破坏性试验应先卸载,断开控制器并关闭,关闭动力系统及计算机系统,清理还原;铸铁压缩试验步骤:1、测量试样尺寸,测量试样两端及中间等三处截面的直径,取三处中最小一处的平均直径0d作为计算原截面积0A之用;2、调整试验机,选择测力度盘,调整指针对准零点,并调整自动绘图器;电子万能试验机按软件操作指南步骤进行;3、安装试样,将试样两端面涂上润滑油,然后准确地放在试验机活动台支承垫的中心上;4、检查及试车液压试验机试车时将试验机活动台上升,试件亦随之上升,当试件上端面接近承垫时应减慢活动台上升速度,避免突然接触引起剧烈加载,当试件与上承垫刚接触时,将自动绘图笔调整好,使它处于工作状态,用慢速预加少量载荷;然后卸载近零点,以检查试验机工作是否正常;5、进行试验铸铁试件,缓慢而均匀地加载,同时使用自动绘图装置绘出P-L∆曲线,直到试件破裂为止,记下破坏载荷b P;6、结束工作打开回油间,将载荷卸掉,取下试件,使试验机复原;六、数据处理低碳钢拉伸:试样直径d断面收缩率:灰铸铁直径d :、,平均值 铸铁的强度极限:=3,110^-4mm=A P b b01×100%=210^-4-10^-5/210^-4=72%%=105-80/80=% 100 00 1l l l。

低碳钢和铸铁拉伸时破坏原因

低碳钢和铸铁拉伸时破坏原因

低碳钢和铸铁拉伸时破坏原因
低碳钢和铸铁是两种常见的材料。

在进行拉伸测试时,它们可能会出现破坏现象。

那么,这些破坏现象是什么原因引起的呢?本文将从以下几个方面进行探讨。

1. 材料强度
低碳钢和铸铁的强度是决定其拉伸破坏的关键因素。

低碳钢的强度较高,因此其更难破坏。

与之相反,铸铁的强度较低,容易在拉伸过程中出现破坏。

2. 材料的韧性
韧性是一个材料在受力过程中承受塑性变形的能力。

在拉伸测试时,如果材料的韧性不足,很容易在受到极端应力时出现破坏。

低碳钢通常具有较高的韧性,因此其更难破坏。

而铸铁的韧性较差,拉伸时容易出现断裂等现象。

3. 金相结构
金相结构是指材料的微观结构。

不同的金相结构会影响材料的力学性能。

对于低碳钢而言,通常具有致密的奥氏体结构,因此其强度和韧性均较好。

而铸铁的金相结构通常是片状珠光体,这种结构在受到应力时容易产生裂纹,因此容易在拉伸测试时出现破坏。

4. 热处理工艺
热处理工艺是指对材料进行热处理以改变其金相结构和力学性能的过程。

不同的热处理工艺会对材料的拉伸性能产生不同的影响。

例如,
通过正火可以增加低碳钢的硬度和强度,提高其抗拉强度和韧性。


对于铸铁,热处理则主要通过调节其铸造温度和速度来改善其金相结
构和力学性能。

综上所述,低碳钢和铸铁在拉伸测试时出现破坏的原因主要有材料强度、韧性、金相结构以及热处理工艺等方面的差异。

了解这些差异,
可以帮助我们更好地选择适合的材料,从而提高产品的品质和可靠性。

实验一 低碳钢、铸铁的拉伸实验

实验一 低碳钢、铸铁的拉伸实验

实验一 低碳钢、铸铁的拉伸实验拉压实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定材料力学性能的方法之一。

一、实验目的:1、了解万能材料试验机的结构及工作原理,熟悉其操作规程及正确使用方法。

2、通过实验,观察低碳钢和铸铁在拉伸时的变形规律和破坏现象,并进行比较。

3、测定低碳钢拉伸时的屈服极限σs 、强度极限σb 、延伸率δ和截面收缩率ψ,铸铁拉伸时的强度极限σb 。

二、实验设备及试样1、万能材料试验机2、游标卡尺3、钢直尺4、拉伸试样:图2.7 拉伸试样由于试样的形状和尺寸对实验结果有一定影响,为便于互相比较,应按统一规定加工成标准试样。

图2.7分别表示横截面为圆形和矩形的拉伸试样。

L 0是测量试样伸长的长度,称为原始标距。

按现行国家GB6397-86的规定,拉伸试样分为比例试样和非比例试样两种。

比例试样的标距L 0与原始横截面A 0的关系规定为00A k L = (2.2)式中系数k 的值取为 5.65时称为短试样,取为11.3时称为长试样。

对直径d 0的圆截面短试样,0065.5A L ==5d 0;对长试样, 000103.11d A L ==。

本实验室采用的是长试样。

非比例试样的L 0和A 0不受上列关系的限制。

试样的表面粗糙度应符合国标规定。

在图2.7中,尺寸L称为试样的平行长度,圆截面试样L不小于L0+d 0;矩形截面试样L不小于L0+b 0/2。

为保证由平行长度到试样头部的缓和过渡,要有足够大的过渡圆弧半径R。

试样头部的形状和尺寸,与试验机的夹具结构有关,图2.7所示适用于楔形夹具。

这时,试样头部长度不小于楔形夹具长度的三分之二。

三、实验原理及方法常温下的拉伸实验是测定材料力学性能的基本实验。

可用以测定弹性E和μ,比例极限σp ,屈服极限σs (或规定非比例伸长应力),抗拉强度σb ,断后伸长率δ和截面收缩率ψ等。

这些力学性能指标都是工程设计的重要依据。

1、低碳钢拉伸实验1)、屈服极限σs 及抗拉强度σb 的测定对低碳钢拉伸试样加载,当到达屈服阶段时,低碳钢的P-△L曲线呈锯齿形(图2.8)。

材料力学低碳钢铸铁拉伸实验报告

材料力学低碳钢铸铁拉伸实验报告

材料力学低碳钢铸铁拉伸实验报告材料力学实验报告实验目的:1.了解和掌握材料拉伸试验的基本原理和操作方法;2.通过拉伸试验获取低碳钢和铸铁的力学性能参数,如抗拉强度、屈服强度、延伸率等;3.分析和对比低碳钢和铸铁的力学性能,并探讨其差异。

实验器材:1.拉伸试验机2.低碳钢和铸铁试样3.卡尺4.万能试验机5.整定尺实验步骤:1.试样制备利用卡尺测量低碳钢和铸铁试样的尺寸。

根据实验要求,制备符合标准的试样。

2.实验装置搭建将试样夹持于拉伸试验机上,确保试样夹持牢固。

3.实验参数设定启动拉伸试验机,设置拉伸速度为固定值。

根据试验标准,设置合适的拉伸速度。

4.开始拉伸试验启动拉伸试验机,进行拉伸实验。

记录试样在拉伸过程中所产生的变形、力值等数据。

5.绘制力与变形曲线利用万能试验机绘制力与变形曲线。

在拉伸试验过程中,通过力传感器和位移传感器实时记录和绘制曲线。

6.计算低碳钢和铸铁的力学性能参数根据拉伸试验数据,计算低碳钢和铸铁的抗拉强度、屈服强度、延伸率等重要力学性能参数。

实验数据:实验结果及分析:1.低碳钢的力学性能参数:通过拉伸试验数据计算得出低碳钢的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。

2.铸铁的力学性能参数:通过拉伸试验数据计算得出铸铁的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。

3.力学性能参数对比及分析:比较低碳钢和铸铁的力学性能参数,并分析其差异。

比如,低碳钢的抗拉强度和屈服强度较高,延伸率较低,说明低碳钢的强度较大,但延展性较差;而铸铁的抗拉强度和屈服强度较低,延伸率较高,说明铸铁的强度相对较低,但延展性较好。

结论:通过本次拉伸实验,我们获取并分析了低碳钢和铸铁的力学性能参数。

通过对比两种材料的实验结果,我们发现它们在抗拉强度、屈服强度和延伸率等方面存在明显差异。

这些数据和结论为进一步研究材料力学性能提供了重要依据。

实验中的不确定因素和改进措施:1.实验设备和试样不同批次或品质的差异可能会对实验结果产生一定影响。

低碳钢和铸铁的拉伸实验

低碳钢和铸铁的拉伸实验

低碳钢和铸铁的拉伸实验材料科学是一门研究材料性质和应用的学科,其中材料的力学性质是其中一个重要方面。

拉伸实验是研究材料力学性质的一种有效手段,能够通过实验获得材料的力学参数,并对其中的力学行为进行深入分析。

本次实验选取了两种常见的材料,低碳钢和铸铁,对其进行拉伸实验,以便对材料的力学性质有更深入的了解。

下面将对实验设计、实验步骤、实验结果和实验结论进行详细描述。

一、实验设计1. 实验目的本次实验旨在通过拉伸实验研究低碳钢和铸铁的力学性质,了解它们的力学参数和力学行为。

2. 实验原理拉伸实验是材料力学性质研究的一种基本手段。

在拉伸实验中,材料试样在外力作用下逐渐变形,变形过程中采集材料的力学参数(如应力、应变、模量等),并绘制应力与应变曲线,以反映材料的力学特征。

3. 实验流程本次拉伸实验的流程主要包括以下步骤:(1)准备试样:从低碳钢和铸铁的坯料中分别制作薄板试样,切割成符合标准要求的尺寸,并进行加工处理。

(2)装置拉伸实验机:将试样安装在拉伸实验机中。

(3)进行拉伸实验:通过拉伸实验机对试样进行正常拉伸,控制拉伸速度并采集实验数据。

(4)处理实验数据:计算得到应力-应变曲线,分析材料的力学参数和力学行为。

二、实验步骤拉伸实验机、低碳钢试样、铸铁试样、卡尺、万能试验机。

(3)进行拉伸实验:控制万能试验机的拉伸速度,逐渐地对低碳钢和铸铁试样进行拉伸,同时利用卡尺来测量试样的伸长量。

三、实验结果1. 低碳钢的应力-应变曲线拉伸前长度L0:100mm原始截面积S0:100mm^2最大载荷Fmax:5000N施力断口长度:70mm根据实验数据,使用公式计算得到低碳钢的应力-应变曲线如下图所示:铸铁的拉伸实验数据如下所示:从低碳钢的应力-应变曲线可以看出,低碳钢的强度和延展性都较好。

在拉伸过程中,低碳钢的应力随着应变的增加而逐渐增加,直至达到最大值。

此时,低碳钢已经进入了屈服区,继续施加外力,其应力开始下降。

低碳钢和铸铁的拉伸实验

低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。

2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。

3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。

二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。

图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。

为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。

对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。

其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。

低碳钢拉伸铸铁拉伸图1-2 拉伸试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。

用准确的拉σ-曲线。

首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。

图1-3 低碳钢拉伸曲线OA段,没有任何残留变形。

在弹性阶段,载荷与变形(1) 弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。

在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。

力为比例极限p(2) 屈服阶段对应拉伸图上的BC段。

金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。

在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。

这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。

实验一低碳钢和铸铁的拉伸实验

实验一低碳钢和铸铁的拉伸实验

第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。

2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。

3、测定铸铁拉伸时的强度极限σb。

4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。

二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。

为了便于互相比较应按统一规定加工成标准试件。

试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。

本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。

为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。

图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。

材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。

1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。

低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。

应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。

试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。

图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。

过了直线弹性段,尚有一极小的非直线弹性段。

弹性阶段包括直线弹性段和非直线弹性段。

当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。

低碳钢和铸铁的拉伸实验报告总结

低碳钢和铸铁的拉伸实验报告总结

低碳钢和铸铁的拉伸实验报告总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!低碳钢和铸铁的拉伸实验报告总结1. 引言在工程领域中,对于材料的性能评估至关重要。

低碳钢、铸铁的拉伸试验

低碳钢、铸铁的拉伸试验

实验一:低碳钢、铸铁拉伸试验一、实验目的本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。

它是力学性能试验中最基本最常用的一个。

一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。

试验提供的E,ReL,Rm,A和Z等指标,是评定材质和进行强度、刚度计算的重要依据。

本试验具体要求为:1.了解材料拉伸时力与变形的关系,观察试件破坏现象。

2.测定强度数据,如屈服点ReL,抗拉强度Rm。

3.测定塑性材料的塑性指标:拉伸时的伸长率A,截面收缩率Z。

4.比较塑性材料与脆性材料在拉伸时的机械性质。

二、实验仪器与设备:①微机控制电液伺服万能试验机型号SHT5305 最大负荷300kN 1台②全数字闭环测控系统型号DCS-300 1台③电子引伸计 1个④游标卡尺0-150mm 最小刻度0.02mm⑤刻度尺 0-30cm 最小刻度0.5mm⑥橡皮筋 2条三、实验原理进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。

一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。

但是F-ΔL曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。

因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示:R=F/S0——试样的名义应力ε=∆ L/ L0——试样的名义应变S0和L0分别代表初始条件下的面积和标距。

R-ε曲线与F-ΔL曲线相似,但消除了几何尺寸的影响。

因此,能代表材料的属性。

单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。

如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。

不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。

低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。

低碳钢拉伸试验报告

低碳钢拉伸试验报告

低碳钢拉伸试验报告篇一:实验一低碳钢拉伸试验报告实验一低碳钢拉伸试验报告实验一低碳钢和铸铁的拉伸实验一、实验目的1、测定低碳钢拉伸时的屈服极限σs 、强度极限σb、伸长率和断面的收缩率;测定铸铁的抗拉强度。

2、观察低碳钢拉伸时的屈服和颈缩现象,对低碳钢和铸铁试件拉伸的断口进行分析。

二、实验设备万能试验机、试件、游标卡尺。

(点击图标看大图片或视频)万能试验机低碳钢和铸铁拉伸视频低碳钢和铸铁游标卡尺低碳钢拉断三、实验原理(一)低碳钢和铸铁拉伸时力学性能的测定。

实验时,试验机可自动绘出低碳钢和铸铁的拉伸图。

从图中可以看出低碳钢拉伸过程中材料经历的四个阶段:1、正比例阶段,拉伸图是一条直线。

2、屈服阶段,拉伸图成锯齿状。

读数盘上原来匀速转动的指针来回摆动,记录这时候的荷载即为屈服荷载PS。

进而可以计算出屈服极限。

3、强化阶段,屈服后,曲线又缓慢上升,这段曲线的最高点,拉力达到最大值——最大荷载Pb,即可计算出强度极限。

4、颈缩阶段,拉伸图上荷载迅速减小,曲线下滑,试件开始产生局部伸长和颈缩,直至试件在颈缩处断裂。

测量断裂后试件标距的长度和断口处的直径,可计算材料的伸长率和断面的收缩率。

四、实验步骤(一)低碳钢的拉伸试验1、准备试件,通过试件落地的声音来判定是低碳钢还是铸铁。

声音清脆的是钢,沉闷的是铸铁。

2、测量试件的直径,并量出试件的标距,打上明显的标记。

在标距中间和两端相互垂直的方向各量一次直径,取最小处的平均值来计算截面面积。

3、估算最大载荷,配置相应的摆锤,选择合适的测力度盘。

开动试验机使工作台上升一点。

调主动指针到零点,从动指针与主动指针靠拢,调整好绘图装置。

4、安装试件。

5、开动试验机并缓慢均匀加载。

注意观察指针的转动和自动绘图情况。

注意捕捉屈服荷载的值并记录下来。

注意观察颈缩现象。

试件断裂后立即停车,记录最大荷载Pb。

6、取下试件,用油标卡尺测量断后标距、最小直径。

(二)铸铁拉伸实验1、准备试件(除不确定标距外其余同低碳钢)。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验低碳钢和铸铁是两种具有不同力学性能的材料,在拉伸和压缩试验中表现出明显的差异。

下面是这两种材料的拉伸和压缩试验的详细介绍。

1.低碳钢低碳钢是一种塑性材料,因此在拉伸试验中,低碳钢的应力-应变曲线呈现出明显的塑性变形阶段。

在弹性阶段,应力与应变成正比,低碳钢的弹性模量约为200-250GPa。

当应力超过弹性极限后,低碳钢进入塑性变形阶段,变形量逐渐增大,但应力增长速度减缓。

在塑性阶段后期,低碳钢发生颈缩现象,局部截面面积减小,应力集中,最终导致试样断裂。

在压缩试验中,低碳钢的应力-应变曲线与拉伸试验类似,但在压缩情况下,不会出现颈缩现象。

由于低碳钢具有较好的塑性,因此其抗压强度高于抗拉强度。

2.铸铁铸铁是一种脆性材料,因此在拉伸试验中,铸铁的应力-应变曲线呈现出明显的脆性断裂特征。

铸铁的弹性模量约为150-200GPa,略低于低碳钢。

在拉伸过程中,铸铁的变形量很小,并且应力增长速度迅速下降。

当应力达到一定值后,铸铁突然断裂,断口呈脆性断裂特征。

在压缩试验中,铸铁的应力-应变曲线也呈现出明显的脆性断裂特征。

铸铁在压缩情况下具有较高的抗压强度,但与低碳钢相比仍然较低。

综上所述,低碳钢和铸铁在拉伸和压缩试验中的表现具有明显的差异。

低碳钢具有较好的塑性和较高的抗拉强度,而铸铁则呈现出脆性断裂特征和较低的抗压强度。

这些差异使得这两种材料在不同的应用场景中有各自的优势和局限性。

在实际工程应用中,应根据具体受力情况和使用要求来选择合适的材料。

例如,对于需要承受较大拉力的结构部件,应选择低碳钢等塑性材料;而对于一些需要承受较大压力且对脆性断裂不敏感的结构部件,铸铁等脆性材料可能更为合适。

此外,对于材料的加工和制造工艺也需要考虑,以充分发挥材料的力学性能并降低成本。

为了获得更准确的结果,实际测试中需要注意以下几点:(1)测试前应对材料进行充分的预处理,以消除材料内部的缺陷和应力;(2)测试过程中应保证试样的尺寸和形状符合标准要求,以确保结果的准确性;(3)在测试过程中应使用合适的加载设备和测试仪器,以确保测试结果的可靠性;(4)测试后应对结果进行分析和处理,以得出材料的力学性能参数和结论。

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

竭诚为您提供优质文档/双击可除低碳钢和铸铁拉伸实验报告篇一:低碳钢、铸铁的拉伸试验工程力学实验报告实验名称:试验班级:实验组号:试验成员:实验日期:一、试验目的1、测定低碳钢的屈服点?s,强度极限?b,延伸率?,断面收缩率?。

2、测定铸铁的强度极限?b。

3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4、熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺三、设备简介万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2、测控部分:指示试件所受载荷大小及变形情况。

四、实验原理低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。

低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。

做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。

需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。

大致可分为四个阶段:(1)弹性阶段(ob段)在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量e。

线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其(:低碳钢和铸铁拉伸实验报告)弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告实验目的,通过对低碳钢和铸铁的拉伸实验,探究它们的力学性能和拉伸特性。

实验原理,拉伸试验是通过加载试样,使其在拉伸力的作用下逐渐拉伸,以破坏试样为结束,来确定材料的拉伸性能。

在拉伸试验中,我们通常关注材料的屈服点、抗拉强度、断裂伸长率等参数。

实验步骤,首先,准备好低碳钢和铸铁的试样。

然后,将试样固定在拉伸试验机上,施加逐渐增大的拉伸力,记录拉伸过程中的应力-应变曲线。

最后,观察试样的断裂形态,并计算出材料的力学性能参数。

实验结果,通过拉伸试验得到的应力-应变曲线可以清晰地反映出低碳钢和铸铁的拉伸性能。

从曲线上我们可以看出,低碳钢的屈服点较高,抗拉强度也较大,而铸铁的屈服点较低,但断裂伸长率较高。

这说明低碳钢具有较好的强度和刚性,而铸铁具有较好的韧性。

实验分析,低碳钢和铸铁的力学性能差异主要来自其组织和化学成分的不同。

低碳钢中碳含量较低,具有较细的晶粒和均匀的组织结构,因此具有较高的强度;而铸铁中含有较多的碳和硅等合金元素,使其具有较大的断裂伸长率和较好的耐磨性。

结论,通过本次拉伸实验,我们对低碳钢和铸铁的力学性能有了更深入的了解。

低碳钢具有较好的强度和刚性,适用于要求高强度的场合;而铸铁具有较好的韧性和耐磨性,适用于要求耐磨性能的场合。

在工程实践中,我们可以根据材料的不同特点,选择合适的材料应用于不同的工程领域。

总结,拉伸实验是一种常用的材料力学性能测试方法,通过实验我们可以全面了解材料的力学性能和拉伸特性。

在工程实践中,我们需要根据材料的具体特点,选择合适的材料以满足工程需求,从而保障工程的质量和安全。

希望本次实验能对大家有所启发,谢谢阅读。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳钢与铸铁的拉伸、压缩实验(实验一)一、目的1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。

2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。

3、测定压缩时低碳钢的屈服极限s σ。

和铸铁的强度极限b σ。

4、观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。

5、掌握电子万能试验机的原理及操作方法6、了解液压万能试验机的工作原理及操作方法。

二、设备微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。

三、拉伸试祥1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示:图1用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。

必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ52、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内:1≤d h≤3为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑。

四、实验原理图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的图2曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限: 0A PsS =σ屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。

以试样的初始横截面面积A 。

除P b得强度极限为0A P bb =σ延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为%10001⨯-=l l l δ 断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。

的一端的距离不在标距长度的中央31区域内,要采用断口移中的办法;以度量试件位断后的标距,设两标点CC 1之间共有10格,断口靠近左段,如图3,从临近断口的第一刻线d 起,向右取10/2=5格,记作a ,这就相当于把断口摆在标距中央,再看a 点到C 1点有多少格,就由a 点向左取相同的格数,记作b ,令L ˊ表示C 至b 的长度,L ’表示b 至a 的长度,则L ′+2L ‘′的长度中包含的格数等于标距长度内的格数10,即L′+2L ‘′=L 1。

图3试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率:010100%ψA -A =⨯A铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。

没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。

图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致的,而且s P 也基本相同,所以说,低碳钢材料在压缩时的E 和s σ都与拉伸时大致相同,低碳钢的塑性好,由于泊松效应,试件越压越粗,不会破坏,横向膨胀在试件两端受到试件与承垫之间巨大摩擦力的约束,试件被压成鼓形,进一步压缩,会压成圆饼状,低碳钢试件压不坏,所以没有强度极限。

图5为铸铁试件压缩图,P-ΔL 比同材料的拉伸图要高4-5倍,当达到最大载荷b P 时铸铁试件会突然破裂,断裂面法线与试件轴线大致成045~055的倾角。

这表面,铸铁压缩破坏主要是由剪应力引起的。

五、实验步骤拉伸试验步骤:1、试件准备(1)测量试样尺寸 测定试样初始横截面面积A ο时,在标距L ο的两端及中部三个位置上,沿两个互相垂直的方向,测量试样直径,以其平均值计算各横截面面积,取三个横截面面积中的最小值为A ο。

2、试验机准备使用电子万能试验机时(1)检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;(2)启动试验机的动力电源及计算机的电源;(3)调出试验机的操作软件,按提示逐步进行操作;(4)安装试件。

安装时仅将试件上端夹紧,下端悬空,然后再试件上夹持引伸计;(5)启动下降按钮将试件移下,停止安装好试件,进行调零,回到试验初始状态;(6)根据实验设定,启动实验开关进行加载,注意观察试验中的试件及计算机上的曲线变化;(7)实验完成,保存记录数据,打印实验数据报告;(8)试件破坏后(非破坏性试验应先卸载),断开控制器并关闭,关闭动力系统及计算机系统,清理还原。

图4 图5使用液压万能试验机时(1)调整试验机 按要求调整检查万能材料试验机,根据Pb =ζb ×Α。

估计试件的最大载Pb ,按最大载荷数值为度盘测力范围的40%-80%的标准来选择度盘和与其相匹配的摆锤,并调整示力指针为零。

(2)安装试样 先将试件安装在试验机上夹头内,再移动下夹头使之达到适当位置,须注意使试样垂直,并把试样下端夹紧。

(3)检查及预拉 请教师检查以上实验步骤完成情况。

开动试验机,并使自动绘图器工作。

预加少量载荷(勿使应力超过比例极限),然后卸载接近零点,以检查试验机是否处于正常状态。

(4)进行试验①打开送油阀,用慢速加载,缓慢而均匀地使试件产生变形,注意观察测力指针的转动、自动绘图的情况和相应的试验现象,以测力指针停止转动的载荷或指针多次回转时,第一次回转后的最小载荷作为屈服点载荷P s ,并注意观察是否出现滑移线。

②屈服后在强化阶段任一点处,停止加载,然后卸载,再重新加载,以观察冷作硬化现象。

③继续加载直至试件断裂。

在断裂前注意观察颈缩现象。

此时拉力达到最大载荷,测力指针开始回转,而副针停留位置的读数,即最大载荷Pb ,试件断裂后停机,取下试件。

铸铁试验只要记下最大载荷及绘出拉伸图。

④取下自动绘图仪所绘的拉伸曲线图纸,以便写实验报告时参考。

(5)试验结束打开回油阀,将载荷卸掉,清理实验现场。

压缩试验步骤:1、测量试样尺寸,测量试样两端及中间等三处截面的直径,取三处中最小一处的平均直径0d 作为计算原截面积0A 之用。

2、调整试验机,选择测力度盘,调整指针对准零点,并调整自动绘图器。

电子万能试验机按软件操作指南步骤进行。

3、安装试样,将试样两端面涂上润滑油,然后准确地放在试验机活动台支承垫的中心上。

4、检查及试车液压试验机试车时将试验机活动台上升,试件亦随之上升,当试件上端面接近承垫时应减慢活动台上升速度,避免突然接触引起剧烈加载,当试件与上承垫刚接触时,将自动绘图笔调整好,使它处于工作状态,用慢速预加少量载荷。

然后卸载近零点,以检查试验机工作是否正常。

5、进行试验对于抵碳钢试件,缓慢而均匀地加载,注意观察测力指针的转动情况和绘图纸上所描的曲线,以便及时而正确地读出屈服载荷S P ,并把它记录下来,算出屈服极限S σ0A P S S =σ 对于铸铁试件,缓慢而均匀地加载,同时使用自动绘图装置绘出P-L ∆曲线,直到试件破裂为止,记下破坏载荷b P ,并算出强度极限b σ: 0A =b b P σ6、结束工作 打开回油间,将载荷卸掉,取下试件,使试验机复原。

六、注意事项1、试验时,必须严格遵守试验机的操作规程,液压试验机工作台升降电机只能用于升降工作台,不能用于加荷。

2、电子万能试验机的试验程序设定后,不能随意改动。

在实验过程中操作软件一定要按部就班,以免产生误操作,损坏试验机。

3、压缩试件要尽量放在压板中心,以免载荷偏心。

4、如果在试验过程中,由于某种特殊或意外的原因,液压试验机油泵突然停止工作,此时应将负荷卸掉使油压降低。

检查后,重新开动油泵进行试验,不应在高压下起动,以免发生意外损坏。

七、实验报告试验结果应以表格或图线的形式表达,并附以必要的文字说明,包括下列内容: ①料力学性能指标:ζS 、ζb 、δ、Ψ的计算。

②将P-ΔL 实验曲线转换成ζ-ε曲线,将上述机械性能指标标注在曲线上,要有数值和单位。

③画出试件断口形状图。

④比较两种材料的机械性能特点,并分析其破坏原因。

八、预习及思考讨论题预习实验指导书,并回答以下思考题。

(1)参考试验机自动绘图仪绘出的拉伸图,分析从试件加力至断裂的过程可分为哪几个阶段?相应于每一阶段的拉伸曲线的特点和物理意义是什么?(2)ζS 和ζb 是不是试件在屈服和断裂时的真实应力?为什么?(3)由拉伸试验测定的材料机械性质在工程上有何实用价值?(4)试验时如何观察碳钢的屈服极限?(5)WE-30液压试验机上的两个马达各有何用途?能否用工作台升降电机对试件加载?(6)拉伸和压缩时,低碳钢的屈服点是否相同,铸铁的强度极限是否相同?(7)压缩试件为什么要做成短而粗的圆柱形,长了会有什么影响?(8)铸铁试件压缩破坏时断裂面法线与试件轴线夹角约成多少?为什么?弯曲正应力实验(实验二)一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。

3、初步掌握电测方法。

二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。

4、温度补偿块一块。

三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。

用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。

根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:x MyI σ=式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。

由上式可知,沿横截面高度正应力按线性规律变化。

实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。

当增加压力P ∆时,梁的四个受力点处分别增加作用力/2P ∆,如图1所示。

为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了5片应变片(见图1)(其中:b=10.8 mm; h=40 mm; C=121 mm ),各应变片的粘贴高度见弯曲梁上各点的标注。

此外,在梁的上表面沿横向粘贴了第6片应变片。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。

相关文档
最新文档