初三数学专题训练(九)
(完整word版)初三数学基础练习卷9(含答案).doc
初三数学基础练习卷9一、选择题(下列各题所给答案中,有且只有一个答案是正确的,每小题 3 分,共30 分)1. 2 的相反数是()1B.- 2 C. 2 D. 2 A.22.下列计算中,正确的是()A.a 21 2B.2a 2 3a 3 a 3 b) 2 6 b 2 D.a 3 2 a 6 a a C.(a aa3.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是( )4.一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2, 0, 2,3,0, 2,3,1, 2,那么这十天中次品个数的()A.平均数是 2 B.众数是 3 C.中位数是 1.5 D .方差是 1.255.若反比例函数y k1,2) ,则这个函数的图象一定经过点()的图象经过点 (xA.( 2,1) 1 ,C.(2,1) D. 1 ,B. 2 22 26.设两圆的半径分别为R 和 r ,圆心距为d,且关于 x 的方程 x2-2(R- d)x+r2=0 有两个相等的实数根,则两圆的位置关系是()A.外离B.外切C.内切 D .内切或外切7.桌子上摆放着若干个碟子,从三个方向上看,三种视图如下,则桌子上共有碟子()俯视图主视图左视图A.8个B.10 个C. 12 个D.14 个8.在直角坐标系中,O 为坐标原点,已知M(-1,1) ,在 y 轴上确定点N,使△ MON 为等腰三角形,则符合条件的点N 的个数共有()A.1 个B.2 个C.3 个D.4 个9.如图,在△ ABC 中, AB =AC ,AD⊥ BC 于 D ,∠ C=20°,沿 AD 剪开,若将△ABD 绕点 D 顺时针旋转角α后,斜边恰好过原△ ABC的顶点A,则旋转角α的大小为()A. 40°B. 20°C. 70°D. 50°10.下列四个命题①等式(6 x) 2= x-6成立的条件是x< 6②一直角三角形的两边长为 3 和 4,则斜边上的中线长为 2.5③顺次连结对角线相等的四边形四边中点所得的四边形是正方形④如果一个图形经过位似变换得到另一个图形,那么这两个图形一定相似其中假命题有()...A.4 个B.3 个C.2 个D.1 个二、填空题(每空 2 分,共 16 分)11.如果x 1 在实数范围内有意义,则x 的取值范围是.12.滴水穿石,水滴不断地落在一块坚硬的石头上,一年后石头上形成了一个深为- 24.347 ×10 m 的小洞,按照这个速度,一百年后这个小洞的深度为m(保留两个有效数字).213.因式分解: 2m-8 =.14.如图,⊙ O 的弦 AB= 8,OC⊥ AB 于点 D,交⊙ O 于点 C,且 CD= 2,那么⊙ O 的半径为______.15.如图,已知梯形 ABCD 中,AD ∥BC,∠ C=90 °,以 CD 为直径的圆与 AB 相切,AB=6 ,那么梯形 ABCD的中位线长是.COODA D BABC第14题图第18题第 15题图第 16题16.如图, AB 是半⊙ O 的直径, C、D 是半圆的三等分点,若AB=2,P 是直径 AB 上的任意一点,则图中阴影部分的面积是 _________ _.17.已知某二次函数图象满足:( 1)对称轴平行于y 轴;( 2)图象与坐标轴恰有两个公共点;( 3)当 x> 1 时, y 的值随 x 的增大而减小 .请你写出一个同时具备上述特征的二次函数表达式:.18、如图,∠ AOB= 45°,过 OA 上到点 O 的距离分别为1,3, 5, 7,9, 11,的点作 OA 的垂线与OB 相交 ,得到并标出一组黑色梯形,它们的面积分别为S1, S2, S3, S4,观察图中的规律,求出第10 个黑色梯形的面积 S10 = .三、解答题0-cos45o+ -12220.(本题 4 分)( 1)计算:- 1 +(4 -π)3(x 1) 2x 3( 2)解不等式组:x1x,并写出不等式组的整数解.(本题5分)3 221.(本题 8 分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交 CE 的延长线于 F ,且 AF BD ,连结 BF .( 1)求证:D是BC的中点.( 2)如果AB AC ,试判断四边形AFBD 的形状,并证明你的结论.AFEB D C22. (本题 8 分)如图,某边防巡逻队在一个海滨浴场岸边的 A 点处发现海中的 B 点有人求救,便立即派三名救生员前去营救. 1 号救生员从 A 点直接跳入海中; 2 号救生员沿岸边 (岸边看成是直线 ) 向前跑到C 点,再跳入海中; 3 号救生员沿岸边向前跑300m 到离 B 点最近的D 点,再跳入海中.救生员在岸上跑的速度都是 6m/ s,在水中游泳的速度都是2m/ s.若∠ BAD=45°,∠ BCD=60°,三名救生员同时从 A 点出发,请说明谁先到达营救地点B.( 2 1.4,3 1.7)23.( 1)2008年我国部分地区发生了“手足口”病情,这是一种肠道传染病,其主要是通过接触被感染的手、食品及生活用品等引起感染 .小军和他的同学在小区里开展了一次安全卫生宣传,并抽样调查了居民对“手足口”病的了解情况,结果如下:了解 A 比较了解(知道传染 B 一般了解(只知道是传染 C 不了解(没有关注,程度途径和预防措施)病,但途径和预防不清楚)不清楚是什么)人数30 40 ※根据抽样调查结果回答下列问题:(本题 6分)①请将 B,C标注在扇形统计图对应的区域中,本次抽样调查中,“不了解”(即C)的人数是人;②若小区有居民约5000人,根据抽样调查,试估计该小区约有多少人对“手足口”这一病情“比较了解”(即A)?初三数学基础卷9( 2)位于坐标原点的一个质点M 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,....并且向上、向右移动的可能性相同.(本题 7 分)①列出质点M 移动 3 次时所有可能的方法,并用坐标表示出它的位置;②求质点M 移动 3 次后位于点(1, 2)的概率.24.(本题 8 分)家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R( kΩ)随温度 t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到 30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升 1℃,电阻增加4kΩ.15⑴求当 10≤t≤30时, R 和 t 之间的关系式;⑵求温度在 30℃时电阻 R 的值;并求出 t≥30时, R 和 t 之间的关系式;⑶ 家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过 6 k Ω?初三数学基础卷 9答案一、1.B2.C3. B 4.D5.C6.D7. C8.D9.A10. B .二、填空 (每空 3 分,共 30 分)11. x ≥- 112. 4.313.( m+2 )( m -2)14. 515.316..17. y=-( x - 1) 2 等 18. 76.3三、解答 (共90 分)20.( 1) 0( 2)- 2<x ≤ 0,整数解 - 1, 0.21.( 1)先 △ AEF ≌△ DEC —————————— 2 分∴ AF=CD —————————— 3 分 ∵ AF=BD ∴ BD=CD∴ D 是 BC 的中点.——————————4 分( 2)如果 ABAC ,四 形 AFBD 是矩形. -----------5 分∵ AF=BD , AF ∥ BD∴四 形 AFBD 是平行四 形—————————— 6 分∵ AB=AC , BD=CD∴∠ ADB=90 °∴四 形 AFBD 是矩形——————————8 分22. 解:( 1)在 △ ABD 中,∠ A=45°,∠ D=90°, AD=300 ,AD2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∴ AB=300cos45BD AD tan45300.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分在 △ ABD 中,∵∠ BCD=45° ,∠ D=90°,∴ BCBD 300 200 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分sin 6032∴ CDBD 300 100 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分tan 6031 号救生 到达B 点所用的3002150 2 210(秒).⋯⋯⋯⋯⋯⋯5 分22 号救生 到达B 点所用的300 100 3200 3 250 3 (秒).⋯ 6 分62 50191.733 号救生 到达B 点所用的300 300 200 (秒).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分6 2∵ 191.7< 200< 210,初三数学基础卷 923.( 1)①图略,—————————2 分30 人——————————4 分② 1500—————————— 6 分( 2)①向上移动 3个单位, M ( 0, 3)向上移动 2个单位,向右移动 1个单位, M ( 1, 2) 向上移动 1个单位,向右移动 2单位, M (2, 1)向右移动 3个单位, M ( 3, 0)—————————— 4分② 1—————————— 6分46024.⑴当 10≤t ≤ 30时, R2 分——————————t⑵当 t=30 时, R=2 ;—————————— 3 分当 t ≥30时, R4t 6 —————————— 5 分15⑶令 R=6,求得 t=45,—————————— 6 分所以当 10≤t ≤45 时,发热材料的电阻不超过6 k Ω. —————————— 8 分。
最新初三上数学培优专题讲义九AB------相似三角形
初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。
求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。
(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。
(3)BD 2=AD·DF 吗?请说明理由。
考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。
变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。
中考数学九年级专题训练50题含答案
中考数学九年级专题训练50题含答案一、单选题1.若23a b =,则a b b +的值为( ) A .23 B .53 C .35 D .322.下列函数关系式中属于反比例函数的是( )A .3y x =B .3y x =-C .23y x =+D .3x y += 3.已知反比例函数k y x=(0k <)的图象上有两点()()1122,,,A x y B x y ,且12x x <,则12y y -的值是( )A .正数B .负数C .非正数D .不能确定 4.在函数y=中,自变量的取值范围是A .x≠B .x≤C .x ﹤D .x≥ 5.一个几何体的三视图如图,则该几何体是( )A .B .C .D .6.已知二次函数2y ax bx c =++的图象如图所示,有下列结论: ①11024a b c ++>; ①方程20ax bx c ++=的两根之积小于0;.①y 随x 的增大而增大;=+的图象一定不经过第四象限.其中正确的结论有()①一次函数y ax bcA.4个B.3个C.2个D.1个7.如图,在①O内有折线OABC,其中OA=8,AB=12,①A=①B=60°,则BC的长为()A.19B.16C.18D.208.如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则CO:C ′O的值为()A.1:2B.2:1C.1:4D.1:39.关于抛物线244=﹣,下列说法错误的是()y x x+A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=2D.当x>2时,y随x的增大而减小10.已知①O的半径为5cm,点P在直线l上,且点P到圆心O的距离为5cm,则直线l与①O()A.相离B.相切C.相交D.相交或相切11.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.ABBC=DEEFB.ABAC=DEDFC.EFBC=DEABD.OEEF=EBFC12.用5个完全相同的小正方体组成如图所示的立体图形,它的俯视图是()A.B.C.D.13.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为()A.0.7B.0.65C.0.58D.0.514.如图,在①O中,直径AB①弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.①A=12①BOD D.①A=12①ACD15.如图,在矩形ABCD中,AB=3,BC=4,点P在AD上,若将①ABP沿BP折叠,使点A落在矩形对角线AC上,则AA′的长为()A.95B.94C.185D.9216.如图,在Rt ABC中,90C∠=︒,6AC=,8BC=,点F在边AC上,并且2CF=,点E为边BC上的动点,将CEF△沿直线EF翻折,点C落在点P处,则点P 到边AB距离的最小值是().A.1B.4C.1.2D.2.417.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米18.如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数kyx=(k≠0,x<0)的图象上,点C的坐标为(2,2-),则k的值为()A.4B.2C.2-D.4-19.如图,四边形ABCD为半径为R的O的内接四边形,若AB R=,CD=,4AD,BC=O的直径为()=A.4B.C.8D.二、填空题20.如图,AB是①O的直径,BC与①O相切于点B,AC交①O于点D,若①ACB=50°,则①BOD=______度.21.如图,在长方体ABCD EFGH-中,棱BC与棱AE的位置关系是______.22.测得一种树苗的高度与树苗生长的年数有关的数据如下表所示(树高原高100 cm)假设以后每年树苗的高度的变化规律与表中相同,请用含n ( n 为正整数)的式子表示生长了n 年的树苗的高度为__________cm.23.如图:折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知AB=8,①B=300,则CD 的长是_______.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________ 25.如图,已知AB CD EF ∥∥,则下列四个结论①EF BE CD EC =;①AE BE ED EC =;①1EF EF AB CD+=中,正确的有__________(填正确结论序号).26.比的意义:两个数____又叫做两个数的比.“:”是比号,读作比;比号前面的数叫做比的____,比号后面的数叫做比的____.27.如图所示是某商场营业大厅自动扶梯示意图,自动扶梯AB 的长为12米,大厅两层之间的高度BC 的长为6米,自动扶梯AB 的坡比BC i AC==_______________________.(坡比是坡面的铅直高度BC 与水平宽度AC 之比)28.设α,β是关于4x 2﹣4mx +m +2=0的两个实数根,当α2+β2有最小值时,则m 的值为_____.29.如图,ABC 是O 的内接三角形,点D 是BC 的中点,已知98AOB ∠=,120COB ∠=,则ABD ∠的度数是________度.30.如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为__________厘米.31.抛物线21212y x x =++与y 轴的交点是________,解析式写成2()y a x h k =-+的形式是________,顶点坐标是________.32.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将①ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin①ECF =__________.33.在平面直角坐标系中,M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,)b ,则b 的取值范围是_____.34.如图,正比例函数y =kx 与反比例函数y =6x的图象有一个交点A (m ,3),AB ①x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数解析式是___.35.如图,已知点A (0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,①α=75°,则直线y x b =+的解析式为_________.36.在①ABCD 中,E 是AD 上一点,23AE DE =,连接BE 、AC 相交于F ,则下列结论:①23AE BC =;①ΔΔ425AEF CBF S S =;①52BF EF =;①Δ1031ABF CDEF S S =四边形,正确的是 __________.37.点C 是AB 的黄金分割点,4AB =,则线段AC 的长为__________.38.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若2AC BC ==,则图中阴影部分的面积是_______.39.如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是______.三、解答题40.如图1,在四边形ABCD 中,AB ①AD ,AB ①BC ,以AB 为直径的①O 与CD 相切于点E ,连接OC 、OD .(1)求证:OC ①OD ;(2)如图2,连接AC 交OE 于点M ,若AB =4,BC =1,求CM AM的值.41.已知ABC ①111A B C △,111A B C △①222A B C △,则ABC 与222A B C △有怎样的关系?为什么?42.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件.设这段时间内售出该商品的利润为y 元.(1)直接写出利润y 与售价x 之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?43.某商场销售一批工艺品,平均每天可售出20件,每件赢利45元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件工艺品每降价1元,商场平均每天可多售出4件.(1)设每件工艺品降价x 元,商场销售这种工艺品每天盈利y 元,求出y 与x 之间的函数关系式;(2)每件工艺品降价多少元时,才能使每天利润最大,最大利润为多少?44.某水库大坝的横截面是如图所示的四边形ABCD ,其中AB①CD .大坝顶上有一瞭望台PC ,PC 正前方有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,渔船N 在俯角45β=︒,已知MN 所在直线与PC 所在直线垂直,垂足为点E ,且PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方加固,坝底BA 加宽后变为BH ,加固后背水坡DH 的坡度为,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)45.某公园在一个扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱子OA ,在A 处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高109m ,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A 点的坐标为(O ,109),水流的最高点B 的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF 的一块三角形区域地块①OEF 中,现要建造一个矩形GHMN 花坛,如图2的设计方案是使H 、G 分别在OF 、OE 上,MN 在EF 上.设MN =2x ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?46.解方程:(1)()()3525x x x +=+(2)22310x x --=47.在阳光体育活动时间,小亮、小莹、小芳到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余两人中随机选取一人打第一场,选中小莹的概率是________.(2)如果确定小亮打第一场,用投掷硬币的方法确定小莹、小芳谁打第一场,并决定小亮做裁判,由小亮抛掷一枚硬币,规定正面朝上小莹胜,反面朝上小芳胜,最终胜两局以上者(包括两局)打第一场.小亮第一次投掷的结果是正面朝上,请用列表或画树状图的方法表示最后两次投掷硬币的所有情况,并求小芳打第一场的概率.48.在ABC 中,90BAC ∠=︒,AB AC =,点D 在边BC 上,13BD BC =,将线段DB 绕点D 顺时针旋转至DE ,记旋转角为α,连接BE ,CE ,以CE 为斜边在其一侧制作等腰直角三角形CEF .连接AF .(1)如图1,当180α=︒时,请直接写出....线段AF 与线段BE 的数量关系; (2)当0180α︒<<︒时,①如图2,(1)中线段AF 与线段BE 的数量关系是否仍然成立?请说明理由;①如图3,当B ,E ,F 三点共线时,连接AE ,判断四边形AECF 的形状,并说明理由.49.已知抛物线214y x bx c =++与x 轴交于A ,B 两点(点A 在点B 左边),与y 轴交于点C.直线1y x42=-经过B,C两点.(1)求抛物线的解析式;(2)如图1,动点M,K同时从A点出发,点M以每秒4个单位的速度在线段AB上运动,点K AC上运动,当其中一个点到达终点时,另一个点也随之停止运动设运动的时间为()0t t>秒.①如图1,连接MK,再将线段MK绕点M逆时针旋转90︒,设点K落在点H的位置,若点H恰好落在抛物线上,求t的值及此时点H的坐标;②如图2,过点M作x轴的垂线,交BC于点D,交抛物线于点P,过点P作PN BC⊥于N,当点M运动到线段OB上时,是否存在某一时刻t,使PNC△与AOC相似.若存在,求出t的值;若不存在,请说明理由.参考答案:1.B 【分析】依据23a b =,可得a 23=b ,代入即可得出答案案. 【详解】①23a b =, ①3a =2b ,①a 23=b , ①2533b b a b b b ++==. 故选:B .【点睛】本题考查了比例的性质,解题时注意:内项之积等于外项之积.2.B【分析】根据反比例函数的定义进行判断.【详解】A 、该函数是正比例函数,故本选项错误;B 、该函数符合反比例函数的定义,故本选项正确;C 、该函数是二次函数,故本选项错误;D 、该函数是一次函数,故本选项错误;故选:B . 【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是k y x=(0k ≠) . 3.D【分析】分,A B 在同一象限,和不在同一象限,两种情况进行讨论求解即可.【详解】解:①k y x =(0k <), ①反比例函数的图象过二、四象限,在每一个象限内,y 随x 的增大而增大,当,A B 在同一象限时:①12x x <,①12y y <,①120y y -<,当,A B 不在同一象限时,①12x x <,①A 在第二象限,B 在第四象限,①120y y >>,①120y y ->;综上:12y y -的值无法确定;故选D .【点睛】本题考查比较反比例函数的函数值大小.熟练掌握反比例函数的性质,是解题的关键.注意,分类讨论.4.C【详解】 1-2x≥0且x-≠0 解得:x ﹤.故选C5.D【分析】根据主视图与左视图可以判断几何体的下部是柱体,上部为台体,再结合俯视图即可确定答案.【详解】由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选:D .【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.6.B【分析】根据二次函数的图象与性质依次判断即可求出答案.【详解】①由图象可知:x =2时,y >0,①y =4a +2b +c >0, 即a +12b +14c >0,故①正确; ①由图象可知:a >0,c <0,①ax 2+bx +c =0的两根之积为c a<0,故①正确; ①当x >−2b a时,y 随着x 的增大而增大,故①错误;①由图象可知:−2b a>0, ①b <0,①bc >0, ①一次函数y =ax +bc 的图象一定不经过第四象限,故①正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.D【分析】延长AO 交BC 于D ,根据①A 、①B 的度数易证得①ABD 是等边三角形,由此可求出OD 、BD 的长;过O 作BC 的垂线,设垂足为E ;在Rt①ODE 中,根据OD 的长及①ODE 的度数易求得DE 的长,进而可求出BE 的长;由垂径定理知BC=2BE ,由此得解.【详解】解: 延长AO 交BC 于D ,作OE①BC 于E ;①①A=①B=60°,①①ADB=60°;①①ADB 为等边三角形;①BD=AD=AB=12;①OD=4,又①①ADB=60°, ①DE=12OD=2;①BE=10;①BC=2BE=20;故选D . 【点睛】此题主要考查了等边三角形的判定和性质以及垂径定理的应用,解答此题的关键是正确做出辅助线,得到①ADB为等边三角形.8.A【分析】根据位似图形的性质知:BC①C′B′,则①BCO①①B′C′O′,根据该相似三角形的对应边成比例得到答案.【详解】解:如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则①ABC与①A′B′C′的相似比为1:2.①①ABC与①A′B′C′是位似图形,①BC∥C′B′,①①BCO①①B′C′O′.①CO:C′O=BC:B′C′=1:2.故选:A.【点睛】本题考查了位似图形的性质:两个图形的对应边平行,面积的比等于位似比的平方.9.D【分析】根据抛物线解析式求出顶点坐标和对称轴,利用二次函数的性质即可判断.【详解】解①a=1>0,①开口向上,故A正确;①22=﹣=(﹣),442y x x x①顶点坐标(2,0),对称轴x=2,①抛物线的顶点在x轴上,①与x轴有两个重合的交点,故B、C正确;①抛物线开口向上,对称轴为直线x=2,①当x>2时,y随x的增大而增大,故D错误.故选:D.【点睛】本题考查抛物线与x轴的交点以及二次函数的性质,解题的关键是熟练掌握配方法全等抛物线的顶点坐标,对称轴,属于中考常考题型.10.D【分析】直接根据直线与圆的位置关系即可得出结果;【详解】①①O的半径为5cm且点P到圆心O的距离为5cm,当OP的距离是圆心到直线的距离时,①点P在圆上,①直线l与①O相切,当OP的距离不是圆心到直线的距离时,得到直线与圆相交.故答案选D.【点睛】本题主要考查了直线与圆的位置关系,准确分析判断是解题的关键.11.D【分析】直接根据平行线分线段成比例定理进行判断即可得出结论.【详解】A、①直线a①直线b①直线c,①ABBC=DEEF,正确,故本选项不符合题意;B、①直线a①直线b①直线c,①ABAC=DEDF,正确,故本选项不符合题意;C、①直线a①直线b①直线c,①EFBC=DEAB,正确,故本选项不符合题意;D、不能证明OEEF=EBFC,错误,故本选项符合题意.故选D.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.12.D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为1,1,1,故选D.【点睛】本题主要考查了三视图的知识,关键是找准俯视图所看的方向.13.D【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率mn分别为:0.65、0.7、0.58、0.52、0.51、0.5,可知频率都在0.5上下波动,所以估计这个运动员射击一次,击中靶心的概率约是0.5,故选D.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.14.C【分析】根据垂径定理判断即可.【详解】连接DA,①直径AB①弦CD,垂足为M,①CM=MD,①CAB=①DAB,①2①DAB=①BOD,①①CAD=12①BOD.故答案选:C.【点睛】本题考查了垂径定理及其推论,解题的关键是熟练的掌握垂径定理及其推论.15.C【分析】在Rt ABC 中,由勾股定理求得AC ,根据折叠可得到BP 是AA '的垂直平分线,从而得到BP AA '⊥,2AA OA ''=,而由矩形ABCD 可知AB BC ⊥,从而可以得到90AOB ABC ∠=∠=,以及12901390∠+∠=∠+∠=,,进而可证得AOB ABC ~,由相似的性质求得线段长度.【详解】解:由题意知, AB BC ⊥,BP AA '⊥,2AA OA ''=,①90AOB ABC ∠=∠=,① 12901390∠+∠=∠+∠=,,①23∠∠=,①AOB ABC ∠=∠,23∠∠=,①AOB ABC ~, ①AB AO AC AB=,在Rt ABC 中,AC =, ①29=5AB AO AC =,182=5AA OA '=, 故答案选:C .【点睛】本题考查垂直平分线的判定和性质,相似三角形的判定和性质,矩形的性质,勾股定理,比较综合.16.C【分析】先依据勾股定理求得AB 的长,然后依据翻折的性质可知PF =FC ,故此点P 在以F 为圆心,以2为半径的圆上,依据垂线段最短可知当FP ①AB 时,点P 到AB 的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】解:如图所示:当PE ①A B .在Rt①ABC中,①①C=90°,AC=6,BC=8,①AB,由翻折的性质可知:PF=FC=2,①FPE=①C=90°.①PE①AB,①①PDB=90°.由垂线段最短可知此时FD有最小值.又①FP为定值,①PD有最小值.又①①A=①A,①ACB=①ADF,①①AFD①①AB C.①AF DFAB BC=,即4108DF=,解得:DF=3.2.①PD=DF-FP=3.2-2=1.2.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.B【分析】根据地形图上的等高线的比例尺和图上距离求得两点间的实际距离,再利用解直角三角形的知识求得山顶的海拔高度即可.【详解】解:①两点的图上距离为6厘米,例尺为1:50000,①两点间的实际距离为:6÷150000=3000米,①从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30°,米,①点M的海拔为250米,①山顶P的海拔高度为=1732+250=1982米.故选B .【点睛】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形.18.D【分析】根据反比例函数的几何意义只要求出矩形OGAH 的面积也可,依据矩形的性质发现S 矩形OGAH =S 矩形OECF ,而S 矩形OECF 可通过点C (2,2-)转化为线段长而求得,再根据反比例函数的所在的象限,确定k 的值即可.【详解】解:如图,根据矩形的性质可得:S 矩形OGAH =S 矩形OECF ,①点C 的坐标为(2,-2),①OE=2,OF=2,①S 矩形OECF =OE•OF=4,设A (a ,b ),则OH=-a ,OG=b ,①S 矩形OGAH =OH•OG=-ab=4,又①点A 在函数k y x=(k≠0,x <0)的图象上, ①4k ab ==-;故选:D. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.19.C【分析】取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,先证得①AOB =60°及①COD =120°,可得AOD+①BOC =180°,再利用垂径定理可得①AOG+①BOF =90°,最后通过证①BOF①①OAG 得OF =AG =2,再利用勾股定理求解即可.【详解】解:如图,取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,①OA =OB =AB =R ,①①AOB 为等边三角形,①①AOB =60°,①OE①CD,CD =,①12CE CD R ==, 在Rt①COE 中,2sin CE COE CO R ∠===①①COE =60°,①①COD =2①COE =120°,①①AOD+①BOC =360°﹣①COD ﹣①AOB =180°,①OF①BC ,OG①AD ,①AG =12AD =2,BF =12BC =①AOG =12①AOD ,①BOF =12①BOC , ①①AOG+①BOF =12(①AOD+①BOC )=90° 又①①AOG+①OAG =90°,①①BOF =①OAG ,①①BOF =①OAG ,①BFO =①OGA =90°,OB =OA ,①①BOF①①OAG (AAS ),①OF =AG =2,在Rt①BOF中,4OB ==,①O 的直径=2OB =8,故选:C .【点睛】本题考查了垂径定理,等边三角形的判定及性质,解直角三角形,全等三角形的判定及性质和勾股定理,通过理清题目意思并作出正确的辅助线是解决本题的关键.20.80【分析】根据切线的性质得到①ABC=90°,根据直角三角形的性质求出①A,根据圆周角定理计算即可.【详解】解:①BC是①O的切线,①①ABC=90°,①①A=90°-①ACB=40°,由圆周角定理得,①BOD=2①A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.21.异面【分析】棱BC与棱AE不在同一平面内,属于异面线段.【详解】解:棱BC与棱AE不在同一平面内,属于异面线段,故答案为:异面.【点睛】本题考查了认识立体图形,理解异面直线的意义是正确解题的前提.22.100+5n【分析】从上表可以看出,树每年长高5厘米.所以生长了n 年的树苗的高度为100+5n.【详解】解:根据题意有:生长了n 年的树苗的高度为100+5n故答案为100+5n.【点睛】本题的关键是算出树每年长高多少厘米.通过观察,分析、归纳并发现其中的规律.23.【详解】试题分析:根据题意,得①EAD=①B=30°,AE=BE=4.设DE=x,则AD=2x,根据勾股定理,得x2+16=4x2,解得x=.①DE=.考点:了翻折变化;角平分线的性质;勾股定理24.6【分析】根据根与系数的关系变形后求解.【详解】解:①x 1、x 2是方程x 2−2x−1=0的两根,①x 1+x 2=2,x 1×x 2=−1,①x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为6.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 25.①①【分析】~BEF BCD ∆∆根据相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可得三组三角形相似,然后依据相似三角形的性质:对应边成比例即可进行判断,得出结果.【详解】解:①∵EF CD ∥,∴~BEF BCD ∆∆, ∴EF BE CD BC=,故①错误; ①AB CD ∥,∴~AEB DEC ∆∆, ∴AE BE ED EC=,故①正确; ①AB EF ∥,∴~DEF DAB ∆∆, ∴EF DF AB BD=, 由①得:~BEF BCD ∆∆, ∴EF BF CD BD=, 1EF EF DF BF BD AB CD BD BD BD+=+==,故①正确; 综合可得:①①正确,故答案为:①①.【点睛】题目主要考查相似三角形的判定定理和性质,熟练掌握相似三角形的判定定理和性质是解题关键.26. 相除 前项 后项【解析】略27【分析】铅直高度BC 可得①ACB =90°,由勾股定理AC =AB 的坡比即可.【详解】解:①BC ①AC ,①①ACB =90°,在Rt △ABC 中,①AB =12米,BC =6米,由勾股定理=①自动扶梯AB 的坡比BC i AC ==.【点睛】本题考查解直角三角形应用,掌握坡比概念,利用勾股定理求出AC 是解题关键.28.-1【分析】由已知中α,β是方程4x 2-4mx+m+2=0∥∥x∥R∥∥∥∥∥∥∥∥∥∥∥∥∥∥≥0∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥α2+β2的表达式,然后根据二次函数的性质,即可得到出m 为何值时,α2+β2有最小值,进而得到这个最小值.【详解】解:①关于4x 2﹣4mx +m +2=0的两个实数根,①b 2﹣4ac =(-4m )2-4×4(m +2)≥0,①m 2﹣m ﹣2≥0,即21924m ⎛ ⎪⎝⎭≥⎫-, ①m ≥2或m ≤﹣1,①α+β=﹣44m -=m ,α•β=14(m +2), ①α2+β2=(α+β)2﹣2αβ=m 2﹣2×14(m +2)=m 2﹣12m -1=(m -14)2-1716, ①当m =-1时,α2+β2有最小值,故答案为-1.【点睛】本题考查的知识点是一元二次方程根的颁布与系数的关系,二次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解, 29.101【分析】根据周角为360°,可求出①AOC 的度数,由圆周角定理可求出①ABC 的度数,关键是求①CBD 的度数;由于D 是弧BC 的中点,根据圆周角定理知①DBC =12①BAC ,而①BAC 的度数可由同弧所对的圆心角①BOC 的度数求得,由此得解.【详解】①①AOB =98°,①COB =120°①①AOC =360°-①AOB -①COB =142°,①①ABC =71°,①D 是弧BC 的中点,①①CBD =12①BAC ,又①①BAC =12①COB =60°,①①CBD =30°,①①ABD =①ABC +①CBD =101°,故答案为101度.【点睛】本题主要考查了圆心角、圆周角的应用能力,解此题的要点在于求①CBD 的度数.30.()3【分析】四边形ABCD 是菱形,由图象可得AC 和BD 的长,从而求出OC 、OB 和ACB ∠.当点P 在A D -段上运动且P 、Q 两点间的距离最短时,此时PQ 连线过O 点且垂直于BC .根据三角函数和已知线段长度,求出P 、Q 两点的运动路程之和.【详解】由图可知,2AC BD ==(厘米),①四边形ABCD 为菱形①11122OC AC OB BD ====(厘米) ①30ACB ∠=︒P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC .此时,P 、Q 两点运动路程之和2()S OC CQ =+①3cos 2CQ OC ACB =⋅∠==(厘米)①3232S ⎫==⎪⎭(厘米)故答案为3).【点睛】本题主要考查菱形的性质和三角函数.解题的关键在于从图象中找到菱形对角线的长度.31. ()0,1 21(2)12y x =+- ()2,1-- 【分析】令抛物线的x =0,即可求得与y 轴交点坐标;将等号右边配成完全平方式即可;根据抛物线的顶点式解析式即可求出其顶点坐标.【详解】令x =0,则y =1,即抛物线与y 轴的交点为(0,1);y =12 (x 2+4x )+1=12 (x 2+4x +4)−1=12(x +2)2−1, ①顶点坐标为(−2,−1).故答案填空为(0,1),y =12 (x +2)2−1,(−2,−1).【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与应用.32.45 【详解】过E 作EH①CF 于H ,则有①HEC+①ECH=90°,由折叠的性质得:BE=EF ,①BEA=①FEA ,①点E 是BC 的中点,①CE=BE ,①EF=CE ,①①FEH=①CEH ,①①AEB+①CEH=90°, ①①ECH=①AEB ,即①ECF=①AEB ,在矩形ABCD 中,①①B=90°,, ①sin①ECF=sin①AEB=AB AE=45 , 故答案为45.33.32b -≤≤-【分析】延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E ,即可求出CE 的长,设点A 的坐标为(x ,1),由题意可得1≤x ≤3,用x 和b 表示出AD 、BD 、AE ,然后证出①BDA ①①AEC ,列出比例式即可求出b 与x 的二次函数关系,然后根据x 的取值范围即可求出b 的取值范围.【详解】解:延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E①①AEC =90°①M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),①MN ①y 轴①CE =1,①DBA +①DAB =90°设点A 的坐标为(x ,1),由题意可得1≤x ≤3①AD =x ,BD =yA -yB =1-b ,AE =xC -xA =4-x①AB AC ⊥①①EAC +①DAB =90°①①DBA =①EAC①①BDA =①AEC =90°①①BDA ①①AEC ①=BD AD AE CE 即141-=-b x x 整理,得241=-+b x x =()223x --,b 是x 的二次函数,其中1>0①1≤x ≤3①当x =2时,b 最小,最小值为-3;当x =1时,b 最大,最大值为-2①-3≤b ≤-2故答案为:-3≤b ≤-2.【点睛】此题考查的是相似三角形的判定及性质和二次函数的应用,掌握相似三角形的判定及性质和利用二次函数求最值是解决此题的关键.34.y =32x ﹣3. 【分析】可以先求出点A 的坐标,进而知道直线平移的距离,得出点B 的坐标,平移前后的k 相同,设出平移后的关系式,把点B 的坐标代入即可.【详解】①点A (m ,3)在反比例函数y =6x的图象, ①3=6m,即:m =2, ①A (2,3)、B (2,0)点A 在y =kx 上,①k =32①y =32x ①将直线y =32x 平移2个单位得到直线l , ①k 相等设直线l 的关系式为:y =32x +b ,把点B (2,0)代入得:b =﹣3, 直线l 的函数关系式为:y =32x ﹣3; 故答案为y =32x ﹣3. 【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k 值相等,是解决问题的关键. 35.5y x =+【分析】首先根据直线y=x+b (b >0)与x 轴、y 轴分别交于点C 、点B ,求出点C ,点B 的坐标各是多少;然后根据①α=75°,①BCA=45°,应用三角形的外角的性质,求出①BAC 的度数是多少,进而求出b 的值是多少即可.【详解】如图,,①直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,①点C的坐标是(-b,0),点B的坐标是(0,b),①①α=75°,①BCA=45°,①①BAC=75°-45°=30°,tan30=︒=解得b=5.故答案为y=x+5.【点睛】(1)此题主要考查了解直角三角形问题,要熟练掌握,解答此题的关键是要明确解直角三角形要用到的关系:①锐角直角的关系:①A+①B=90°;①三边之间的关系:a2+b2=c2.(2)此题还考查了一次函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.36.①①①【分析】根据平行四边形的性质可得AD BC∥,AD BC=进而可得AEF CBF∽△△,根据23AEDE=,即可求得25AEBC=,ΔΔ425AEFCBFSS=,52BFEF=进而判断①①①,根据三角形的面积和平行四边形的面积可得,分别用ABCDS表示出ABFS△与CDEFS四边形,进而求得其比值【详解】解:四边形ABCD是平行四边形∴AD BC∥,AD BC=∴AEF CBF∽△△AF AE EFCF BC BF∴==23AEDE=25AEAD∴=∴25AE AEBC AD==∴2425AEFCBFS AES BC⎛⎫==⎪⎝⎭。
2024年最新人教版初三数学专项训练
2024年最新人教版初三数学专项训练2024年最新人教版初三数学专项训练一、代数基础代数是数学的一个重要分支,它涉及到数的认识、基本运算、代数式和方程等方面。
掌握好代数知识,可以为后续学习打好基础。
1.数的认识与基本运算(1)整数、小数、分数、有理数、无理数等数的概念及性质。
(2)加减乘除、乘方、开方等基本运算及技巧。
(3)实数的大小比较、绝对值等性质及应用。
2.代数式与方程的基本概念及简单应用(1)代数式的概念及分类(单项式、多项式等)。
(2)代数式的化简与求值方法。
(3)方程的概念、分类及解法(一元一次方程、一元二次方程等)。
(4)方程的应用题及解题技巧。
3.不等式的性质及简单应用(1)不等式的概念及分类(一元一次不等式、一元二次不等式等)。
(2)不等式的解法及技巧。
(3)不等式在实际问题中的应用。
二、方程与不等式方程与不等式是代数中的重要内容,它们在解决实际问题中具有广泛的应用。
4.方程的基本概念及解题方法(1)方程的概念及分类。
(2)方程的解法及技巧(代入法、消元法、换元法等)。
(3)方程的应用题及解题技巧。
5.不等式的性质及简单应用(1)不等式的概念及分类。
(2)不等式的解法及技巧。
(3)不等式在实际问题中的应用。
6.方差、标准差等统计知识的简单介绍方差、标准差是统计学中常用的概念,它们可以用来衡量数据的离散程度。
简单介绍方差、标准差的计算方法和应用。
三、函数与图像函数是描述变量之间关系的数学模型,图像则是函数表达的一种形式。
7.函数的基本概念及解题方法(1)函数的定义及分类。
(2)函数的性质及研究方法(定义域、值域、单调性、奇偶性等)。
(3)函数的图像绘制及应用。
8.图像的绘制与基本性质(1)图像的绘制方法及技巧。
(2)图像的基本性质及研究方法(对称性、平行性、垂直性等)。
(3)图像在实际问题中的应用。
9.极值与最值问题的简单介绍极值和最值是函数研究中的重要概念,它们可以用来解决实际问题中的最优化问题。
专题09 图形的旋转(解析版)-2020-2021学年九年级数学上册期末综合复习
2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题09图形的旋转【典型例题】1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC 绕点C旋转.(1)当△DEC统点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;①当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.【答案】解:(1)①∵∠B=30°,∠ACB=90°,∴∠CAD=90°﹣30°=60°.∵CA=CD,∴△ACD是等边三角形,∴∠ACD=60°,∴旋转角为60°.故答案为:60°.①如图2中,作CH⊥AD于H.∵CA=CD,CH⊥AD,∴∠ACH=∠DCH.∵∠ACH+∠CAB=90°,∠CAB+∠B=90°,∴∠ACH=∠B,∴∠ACD=2∠ACH=2∠B=2α,∴旋转角为2α.故答案为:2α.(2)小杨同学猜想是正确的.证明如下:过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,∵∠ACB=∠DCE=90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3.∵BN⊥CD于N,EM⊥AC于M,∴∠BNC=∠EMC=90°.∵△ACB≌△DCE,∴BC=EC,在△CBN和△CEM中,∠BNC=∠EMC,∠1=∠3,BC=EC,∴△CBN≌△CEM(AAS),∴BN=EM.∵S△BDC12=•CD•BN,S△ACE12=•AC•EM.∵CD=AC,∴S△BDC=S△ACE.【专题训练】一、选择题1.在平面直角坐标系中,若点P①m①m①n)与点Q①①2①3)关于原点对称,则点M①m①n)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A2.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【答案】C4.如图,点E是正方形ABCD的边DC上一点,把①ADE绕点A顺时针旋转90°到①ABF的位置,若四边形AECF的面积为25①DE=3,则AE的长为()A B.5C.8D.4【答案】A5.(2020·河南初三三模)如图,将△ABC绕点C①0①-1①旋转180°得到△A′B′C,设点A的坐标为(a①b),则点A′的坐标为① ①A .①-a ①-b ①B .①-a ①-b -1①C .①-a ①-b +1①D .①-a ①-b -2①【答案】D6.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .902α-D .2α 【答案】C7.如图,在等腰直角三角形ABC 中,90BAC ∠︒=,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE AF AC =+B .180BEO OFC ∠∠=︒+C .2OE OF BC +=D .12ABC AEOF S S ∆=四边形【答案】C二、填空题8.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.【答案】19.在平面直角坐标系中,O为坐标原点,点A1),将OA绕原点逆时针方向旋转90°得OB,则点B的坐标为_____①【答案】10.如图,在△ABC中,∠CAB①65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′①AB,则∠B′AB等于_____①【答案】50°11.如图,已知△ABC,D是AB上一点,E是BC延长线上一点,将△ABC绕点C顺时针方向旋转,恰好能与△EDC重合.若∠A=33°,则旋转角为_____°.【答案】82°12.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD 上,且DE =EF ,则AB 的长为_____.【答案】13.(2020·河北其他)如图,将Rt ABC ∆的斜边AB 绕点A 顺时针旋转()090αα︒︒<<得到AE ,直角边AC绕点A 逆时针旋转()090ββ︒︒<<得到AF ,连结EF .若=3AB ,=2AC ,且B αβ+=∠,则=EF _____.【答案】14.四边形ABCD 、四边形AEFG 都是正方形,当正方形AEFG 绕点A 逆时针旋转45°(45BAE ∠=︒)时,如图,连接DG ,BE ,并延长BE 交DG 于点H ,且BH DG ⊥.若4AB =,AE =则线段BH的长是________.三、解答题15.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.【答案】解:(1)它的旋转中心为点A①①2)它的旋转方向为逆时针方向,旋转角是45度;①3)点A①B①C的对应点分别为点A①E①F.16.(2020·浙江台州·初三月考)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:∠BCE∠∠B1CF.(2)当旋转角等于30°时,AB 与A 1B 1垂直吗?请说明理由. 【答案】解:(1)证明:两块大小相同的含30°角的直角三角板,所以①BCA =①B ′CA ′ ①①BCA -①A ′CA =①B ′CA ′-①A ′CA 即①BCE =①B ′CF①{B B BC B CBCE B CF∠=∠'='∠=∠',①①BCE ①①B ′CF (ASA );(2)解:AB 与A ′B ′垂直,理由如下: 旋转角等于30°,即①ECF =30°, 所以①FCB ′=60°, 又①B =①B ′=60°,根据四边形的内角和可知①BOB ′的度数为360°-60°-60°-150°=90°, 所以AB 与A ′B ′垂直.17.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A ①1①1①①B ①4①1①①C ①3①3①① ①1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1① ①2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2① ①3)判断以O ①A 1①B 为顶点的三角形的形状.(无须说明理由)【答案】(1)如图所示,△A1B1C1即为所求;①2)如图所示,△A2B2C2即为所求;①3)三角形的形状为等腰直角三角形,OB=OA11B即OB2+OA12=A1B2①所以三角形的形状为等腰直角三角形.18.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【答案】(1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.19.将两块三角板按图1摆放,固定三角板ABC,将三角板CDE绕点C按顺时针方向旋转,其中∠A=45°,∠D=30°,设旋转角为α,(0°<a<80°)(1)当DE∥AC时(如图2),求α的值;(2)当DE∥AB时(如图3).AB与CE相交于点F,求α的值;(3)当0°<α<90°时,连结AE(如图4),直线AB与DE相交于点F,试探究∠1+∠2+∠3的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.【答案】①1①∵DE∥AC①∴∠D①∠ACD①30°①①∵∠BCA①90°①∴∠BCD①∠BCA①∠ACD①60°①①α①60°①①2①∵DE∥AB①∴∠E①∠CF A①60°①①∵∠CF A①∠B+∠BCE①∴∠BCE①15°①∴∠BCD①∠ECD+∠BCE①105°①①α①105°①①3①①①①①①①①①105°①∵∠ACD+∠CAB①∠D+∠AFD①∠CAB①45°①∠D①30°①∴∠AFD①∠ACD①15°①①∵∠1+∠2①∠AFD①∠3①90°①∠ACD①∴∠1+∠2+∠3①∠AFD+90°①∠ACD①90°+15°①105°.。
九年级中考数学综合训练题9(培优)
九年级中考数学综合训练题(9)1.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣12.下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°4.已知线段a,b,c,如果a:b:c=1:2:3,那么:的值是()A.:B.:C.:D.:5.请用科学记数法表示325904.2万为()A.3.259042×109B.3.259042×108C.3.259042×107D.3.259042×10106.如图,从一块直径为4dm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为()dm2. A.4π B.16πC.4π D.8π7.按规律排列的一组数据:,,□,,,,…,其中□内应填的数是()A.B.C.D.8.分解因式:a2﹣9b2=.9.某人有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中为红珠,为绿珠,有8个黑珠.问他的蓝珠最多有个.10.先化简,再求值:,其中x为整数且满足不等式.11.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,交ED 的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=1时,求AC的长.12.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象在第二象限交于点B,与x轴交于点C,点A在y轴上,满足条件:CA⊥CB,且CA=CB,点C的坐标为(﹣3,0),cos∠ACO=.(1)求反比例函数的表达式;(2)直接写出当x<0时,kx+b<的解集.13.如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O 的切线,分别与OE、AF的延长线交于点C、D.(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.14.已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN 于D 、C 两点(1)如图1,求证:AB 2=4AD ·BC ;(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积.15. 该地某科技企业2021年12月份并未如期收到补贴,这样导致对2021年的净利润影响达到700万元,若剔除补贴延迟的影响,2021年的净利润增长达到60%,而若不剔除补贴延迟的影响,2021年的净利润增长只达到55%. 【问题探究】(1)2021年该企业净利润是多少万元?(2)又据统计,2021年12月该企业不含补贴,净利润为2100万元,2022年1月不含补贴净利润比上月增加一个分数m ,2022年2月比上月增加的分数刚好是2m ,这两个月的补贴金额相等,都在2021年12月基础上增加了一个分数,并且由于扶持力度的加大,这个分数恰好也是2m .据推算,若以后各月不含补贴净利润和补贴金额均稳定在2月份的水平不变,2022年该企业净利润将比2021年再次大增87.5%.求m 的值.16.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx =+,当10x =时,400y =;当20x时,1000y =.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件? (3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示).17.问题提出如图(1),在△ABC 中,AB =AC ,D 是AC 的中点,延长BC 至点E ,使DE =DB ,延长ED 交AB 于点F ,探究AFAB的值. 问题探究(1)先将问题特殊化.如图(2),当∠BAC =60°时,直接写出AFAB的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC 中,AB =AC ,D 是AC 的中点,G 是边BC 上一点,1CG BC n=(n <2),延长BC 至点E ,使DE =DG ,延长ED 交AB 于点F .直接写出AFAB的值(用含n 的式子表示).18.抛物线y =x 2-1交x 轴于A ,B 两点(A 在B 的左边).(1)□ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上.①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标; ②如图(2),若点D 在抛物线上,且□ACDE 的面积是12,求点E 的坐标; (2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点,若直线l 与抛物线只有一个公共点,求证FG +FH 的值是定值.。
2008年初三数学解答题专题训练(9):统计与概率初步
数.
方案 3 所有 评 委所 给分 数 的 中位 数 . : 方案 4 所有 评 委所 给分 数 的众数 . :
为 了探究 上述 方案 的合 理 性 , 对 某 个 同学 先
维普资讯
{ l ⑥ 匮 i3/ j 4 ( 专 练 ‘ ■ 二 题 一 )
20 0 8留韧 量 学田留题 e题 醯 9 醯 翻窜韧
( 苏省 泰 兴 市黄 桥 初级 中学 2 5 1 ) 李 印 江 2 4 1
【 题 意 图】 选
占令 甩 3 . , 88 石 32 . % 1 . 4 97 2 . % 83
4 在一 个不 透 明的 口袋里 装 有 只有颜 色不 同 .
的黑 、 白两 种颜 色 的球 共 2 O只 ,某 学 习小组 做摸
球 实验 , 球搅 匀后 从 中随 机 摸 出一 个 球记 下颜 将 色 , 把它 放 回袋 中,不 断重复 . 再 下表 是 活动进行
20 0 5年北京市水资源分布 图( 单位 : m。 亿 )
1某学 校举 行 演讲 比赛 , 出 了 l 同学 担 . 选 o名
任 评委 , 并事 先 拟 定 从 如 下 4个 方 案 中选 择 合 理
的方案来 确定 每 个演 讲 者 的最 后 得分 .
方 案 l 所 有评 委所 给 分数 的平 均数 . :
水 龄 的 比例
() 1 北京 市水 资源 全部 由永定 河水 系 、 白河 潮
水 系、 北运 河水 系 、 蓟运 河水 系、 大清 河水 系提 供. 请 你 根 据 以上 信 息 补 全 2 0 0 5年北 京 市 水 资源 统
中考数学九年级专题训练50题-含答案
中考数学九年级专题训练50题含答案_一、单选题1.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .B .C .D .12.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为x ,则得方程( ) A .()2001722x -=⨯ B .()22001%72x -= C .()2200172x -=D .220072x =3.如图,已知BD 与CE 相交于点A ,DE BC ∥,如果348AD AB AC ===,,,那么AE 等于( )A .247B .1.5C .14D .64.如图,CD 是⊙O 的直径,A ,B 是⊙O 上的两点,若15ABD ∠=°,则 ⊙ADC 的度数为( )A .55°B .65°C .75°D .85°5.一元二次方程()()()221211x x x --+=的解为( ) A .2x = B .121,12x x =-=-C .121,22x x ==D .121,12x x ==-6.如图,在Rt ABC 中,90C ∠=︒,10AB =,8AC =,D 是AC 上一点,5AD =,DE AB ⊥,垂足为E ,则AE =( )A .2B .3C .4D .57.如图,抛物线211242y x x =--与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线MN 平行于x 轴,与抛物线相交于M ,N 两点,则线段MN 的长为( )AB C .D .8.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( )A .B .C .D .9.如图,O 中,弦AB AC ⊥,4AB =,2AC =,则O 直径的长是( ).A .B .CD 10.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1B .3或1C .3-或1D .3或1-11.2022年,某省新能源汽车产能达到30万辆.到了2024年,该省新能源汽车产能将达到41万辆,设这两年该省新能源汽车产能的平均增长率为x .则根据题意可列出的方程是( ) A .()301241x +=B .()230141x += C .()()23030130141x x ++++=D .()23030141x ++=12.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( ) A .134B .154C .238D .25813.下列说法正确的是( )A .了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B .若一组数据2、2、3、4、4、x 的众数是2,则中位数是2或3C .一组数据2、3、3、5、7的方差为3.2D .“面积相等的两个三角形全等”这一事件是必然事件 14.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上B .今年夏天马鞍山不会下雪C .随意掷两枚质地均匀的骰子,朝上的点数之和为1D .库里罚球投篮3次,全部命中15.如图是二次函数2(1)2y a x =++图象的一部分,则关于x 的不等式2(1)20a x ++>的解集是( )A .x<2B .x>-3C .-3<x<1D .x<-3或x>116.已知抛物线y =ax 2+bx +3中(a ,b 是常数)与y 轴的交点为A ,点A 与点B 关于抛物线的对称轴对称,二次函数y =ax 2+bx +3中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是( )A .抛物线的对称轴是x =1 B .当x =2时,y 有最大值-1C .当x <2时,y 随x 的增大而增大D .点A 的坐标是(0,3)点B 的坐标是(4,3)17.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( ) A .0B .﹣2C .1D .318.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =++<交x 轴于A ,B 两点(B 在A 左侧),交y 轴于点C .且CO AO =,分别以,BC AC 为边向外作正方形BCDE ,正方形ACGH .记它们的面积分别为12,S S ,ABC 面积记为3S ,当1236S S S +=时,b 的值为( )A .12-B .23-C .34-D .43-19.将方程()()212523x x x x -=--化为一般形式后为( ) A ..2x -8x-3=0 B .9.2x +12x-3=0 C .2x -8x+3=0D .9.2x -12x+3=020.如图,抛物线y=14(x+2)(x ﹣8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D .下列结论:⊙抛物线的最小值是-8;⊙抛物线的对称轴是直线x=3;⊙⊙D 的半径为4;⊙抛物线上存在点E ,使四边形ACED 为平行四边形;⊙直线CM 与⊙D 相切.其中正确结论的个数是( )A .5B .4C .3D .2二、填空题21.已知反比例函数1ky x-=,每一象限内,y 都随x 的增大而增大,则k 的值可以是(写出一个即可)_____.22.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).23.如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.24.若二次函数261(0)y mx mx m =-+>的图象经过A (2,a ),B (﹣1,b ),C (5,c )三点,则a ,b ,c 从小到大排列是_____.25.如图,AB 是O 的直径,点M 在O 上,且不与A 、B 两点重合,过点M 的切线交AB 的延长线于点C ,连接AM ,若⊙MAO=27°,则⊙C 的度数是______.26.如图,在平面直角坐标系中,点E 在x 轴上,E 与两坐标轴分别交于A B C D 、、、四点,已知()()6,0,2,0A C -,则B 点坐标为___________27.请写出一个以2和-5为根的一元二次方程:______________________. 28.已知ab =2,那么3232a b a b-+=______.29.二次函数2y x x 2=+-的图象与x 轴有______个交点. 30.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 31.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km32.皮影戏中的皮影是由________投影得到.33.计算:011(2019)12sin 45()3π---+=____.34.如图,在Rt △ABC 中,⊙C =90°.△ABC 的内切圆⊙O 切AB 于点D ,切BC 于点E ,切AC 于点F ,AD =4,BD =6,则Rt △ABC 的面积=_____.35.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为____cm 2.36.若一个圆锥的底面积为16πcm 2,母线长为12cm ,则该圆锥的侧面积为_____. 37.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.38.如图(1),在Rt ABC △中,=90ACB ∠︒,点P 以每秒1cm 的速度从点A 出发,沿折线AC CB -运动,到点B 停止,过点P 作PD AB ⊥,垂足为D ,PD 的长()y cm 与点P 的运动时间()x s 的函数图象如图(2)所示,当点P 运动5s 时,PD 的长是___________.39.在平面直角坐标系中,经过反比例函数ky x=图象上的点A (1,5)的直线2y x b =-+与x 轴,y 轴分别交于点C ,D ,且与该反比例函数图象交于另一点B .则BC AD +=______.三、解答题40.解方程:2(2)9x -=. 41.已知二次函数y=﹣x 2+2x+3(1)在如图所示的坐标系中,画出该函数的图象 (2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?42.在直角坐标平面内,直线y =12x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣212x +bx +c 经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果⊙ABE 的面积与⊙ABC 的面积之比为4:5,求⊙DBA 的余切值;(3)过点D 作DF ⊙AC ,垂足为点F ,联结CD .若⊙CFD 与⊙AOC 相似,求点D 的坐标.43.如图,已知直线2y x =与双曲线ky x=的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求k 的值和B 点坐标;(2)设点()(),00P m m ≠,过点P 作平行于y 轴的直线,交直线2y x =于点C ,交双曲线ky x=于点D .若POC △的面积大于POD 的面积,结合图象,直接写出m 的取值范围.44.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆. (1)若该小区家庭轿车的年平均增长量都相同, 请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.45.为了测量某教学楼CD 的高度,小明在教学楼前距楼基点C ,12米的点A 处测得楼顶D 的仰角为50°,小明又沿CA 方向向后退了3米到点B 处,此时测得楼顶D 的仰角为40°(B 、A 、C 在同一水平线上),依据这些数据小明能否求出教学楼的高度?若能求,请你帮小明求出楼高;若不能求,请说明理由. 2.24)46.(1)用配方法解方程:x2﹣2x﹣1=0.(2)解方程:2x2+3x﹣1=0.(3)解方程:x2﹣4=3(x+2).47.梯形ABCD中DC⊙AB,AB =2DC,对角线AC、BD相交于点O,BD=4,过AC的中点H作EF⊙BD分别交AB、AD于点E、F,求EF的长.48.计算:3-+;⊙222602cos458︒+︒+︒sin45cos60tan3049.小明根据学习函数的经验,对函数y=|x2﹣2x|﹣2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:(1)在给定的平面直角坐标系中;画出这个函数的图象,⊙列表,其中m=,n=.⊙描点:请根据表中数据,在如图所示的平面直角坐标系中描点:⊙连线:画出该函数的图象.(2)写出该函数的两条性质:.(3)进一步探究函数图象,解决下列问题:⊙若平行于x轴的一条直线y=k与函数y=|x2﹣2x|﹣2的图象有两个交点,则k的取值范围是;⊙在网格中画出y=x﹣2的图象,直接写出方程|x2﹣2x|﹣2=x﹣2的解为.参考答案:1.A【详解】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.2.C【分析】设调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x ,则:2200(1)72.x -=故选:C .【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.3.D【分析】证明ABC ADE △△∽ ,由相似三角形的性质得出AB AC AD AE=,则可得出答案. 【详解】解:⊙DE BC ∥,⊙ABC ADE △△∽, ⊙AB AC AD AE =, 即483AE =, ⊙6AE =,故选:D .【点睛】本题考查了相似三角形的判定与性质,熟记性质是解题的关键.4.C【分析】根据圆周角定理可得⊙ACD =15°,再由直径所对的圆周角是直角,可得⊙CAD =90°,即可求解.【详解】解:⊙⊙ACD =⊙ABD ,15ABD ∠=°,⊙⊙ACD =15°,⊙CD 是⊙O 的直径,⊙⊙CAD =90°,⊙⊙ADC =90°-⊙ACD =75°.故选:C【点睛】本题主要考查了圆周角定理,熟练掌握在同圆(或等圆)中,同弧(或等弧)所对的圆周角相等,直径所对的圆周角是直角是解题的关键.5.C【分析】根据因式分解法解一元二次方程,即可求解.【详解】解:()()()221211x x x --+= ()()212110x x x ----=,()()2120x x --=, 解得121,22x x ==, 故选C .【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 6.C【分析】先证明⊙ADE ⊙⊙ABC ,得出对应边成比例,即可求出AE 的长.【详解】解:⊙ED ⊙AB ,⊙⊙AED =90°=⊙C ,⊙⊙A =⊙A ,⊙⊙ADE ⊙⊙ABC , ⊙AD AE AB AC =,即5108AE =, 解得:AE =4.故选:C .【点睛】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.7.D【分析】利用二次函数图象上点的坐标特征求出点A 、B 、C 、D 的坐标,由点A 、D 的坐标,利用待定系数法求出直线AD 的解析式,利用一次函数图象上点的坐标特征求出点E的坐标,再利用二次函数图象上点的坐标特征得出点M 、N 的坐标,进而可求出线段MN 的长.【详解】当0y =时,2112042x x --=, 解得:1224x x =-=,,⊙点A 的坐标为(-2,0);当0x =时,2112242y x x =--=-, ⊙点C 的坐标为(0,-2);当2y =-时,2112242x x --=-, 解得:1202x x ==,,⊙点D 的坐标为(2,-2),设直线AD 的解析式为()0y kx b k =+≠,将A(-2,0),D(2,-2)代入y kx b =+,得:2022k b k b -+=⎧⎨+=-⎩,解得:121k b ⎧=-⎪⎨⎪=-⎩, ⊙直线AD 的解析式为112y x =--, 当0x =时,1112y x =--=-, ⊙点E 的坐标为(0,1-).当1y =-时,2112142x x --=-,解得:1211x x ==⊙点M 、N 的坐标分别为(1,-1)、(1-1),⊙MN=(11=故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点M 、N 的坐标是解题的关键.8.A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A 不可能,即不会是梯形.故选A .【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9.A【分析】连接BC ,由90BAC ∠=︒可知BC 为直径,利用勾股定理求解即可.【详解】解:连接BC ,如图:⊙AB AC ⊥,⊙90BAC ∠=︒,⊙BC 为直径,由勾股定理可得:BC =故选:A【点睛】此题考查了圆的有关性质,勾股定理,解题的关键是熟练掌握圆的相关知识. 10.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果.【详解】解:⊙A 、B 两点关于y 轴对称,⊙223x x +=,⊙()()310x x +-=,解得3x =-或1,故选:C .【点睛】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.11.B【分析】设这两年该省新能源汽车产能的平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】解:设这两年该省新能源汽车产能的平均增长率为x ,根据题意得,()230141x +=, 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.12.A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答. 【详解】 抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.13.C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得.【详解】解:A 、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B 、因为一组数据2、2、3、4、4、x 的众数是2,所以2x =,将这组数据按从小到大进行排序为2,2,2,3,4,4,则第三个数和第四个数的平均数为中位数, 所以中位数是23 2.52+=,则此项说法错误,不符题意; C 、这组数据的平均数为2335745++++=, 则方差为222221(24)(34)(34)(54)(74) 3.25⎡⎤⨯-+-+-+-+-=⎣⎦,此项说法正确,符合题意;D 、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C .【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键.14.C【分析】事件的发生的概率为0,即为一定不可能发生的事件.【详解】解:C 中事件中两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了不可能事件的定义,熟悉掌握概念是解决本题的关键.15.C【分析】直接根据二次函数的图像和性质即可得出结论.【详解】二次函数y =a(x +1)2+2的对称轴为x =﹣1,⊙二次函数y =a(x +1)2+2与x 轴的一个交点是(﹣3,0),⊙二次函数y =a(x +1)2+2与x 轴的另一个交点是(1,0),⊙由图像可知关于x 的不等式a(x +1)2+2>的解集是﹣3<x <1.故选C.【点睛】本题主要考查二次函数的图像与性质,找出y=a(x+1)2+2与x轴的两个交点是解本题的关键.16.D【分析】利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,然后根据x=-1时,y=8,判断增减性,再利用x=0时,y=3,结合对称轴,即可得出A、B点坐标.【详解】)⊙当x=1和3时,y=0,⊙抛物线的对称轴是直线x=2,故A选项错误;又⊙x=-1时,y=8,⊙x<2时,y随x增大而减小;x>2时,y随x增大而大,故C选项错误;⊙x=2时,y有最小值,故B选项错误;⊙x=0时,y=3,则点A(0,3),⊙点A与点B关于抛物线的对称轴对称,⊙B点坐标(4,3),⊙A、B、C错误,D正确.故选:D .【点睛】此题主要考查了二次函数的性质,由表格数据获取信息是解题的关键.17.D【分析】先找出二次函数y=2x2﹣2x+3的对称轴为直线x=12,求得a+b=1,再把x=1代入y=2x2﹣2x+3即可.【详解】解:⊙当x=a或x=b(a≠b)时,二次函数y=2x2﹣2x+3的函数值相等,⊙以a、b为横坐标的点关于直线x=12对称,则122a b+=,⊙a+b=1,⊙x=a+b,⊙x=1,当x=1时,y=2x2﹣2x+3=2﹣2+3=3,故选D.【点睛】题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质是解题的关键.18.B【分析】先确定(0,3)C 得到3OC OA ==,利用正方形的性质,由1236S S S +=得到2222163(3)2OC OB OC OA OB +++=⨯⨯⨯+,求出OB 得到0()9,B -,于是可设交点式(9)(3)y a x x =+-,然后把(0,3)C 代入求出a 即可得到b 的值.【详解】解:当0x =时,233y ax bx =++=,则(0,3)C ,3OC OA ∴==,(3,0)A ∴,1236S S S +=,2222163(3)2OC OB OC OA OB ∴+++=⨯⨯⨯+, 整理得290OB OB -=,解得9OB =,(9,0)B ∴-,设抛物线解析式为(9)(3)y a x x =+-,把(0,3)C 代入得9(3)3a ⨯⨯-=,解得19a =-, ∴抛物线解析式为1(9)(3)9y x x =-+-, 即212393y x x =--+,23b ∴=-. 故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和正方形的性质.19.C【分析】通过去括号、移项、合并同类项将已知方程转化为一般形式.【详解】解:由原方程,得2x-4x 2=10x-5x 2-3,则x 2-8x+3=0.故选C .【点睛】本题考查了一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.20.D【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴.⊙D 的半径计算,主要是计算AB ,将y=0,带入就可以解得.【详解】解:根据抛物线的解析式y=14(x+2)(x ﹣8)将其化为一般式可得213442y x x =-- ⊙错误,抛物线的最小值是2134(4)25421444⎛⎫⨯⨯-- ⎪⎝⎭=-⨯ ;⊙正确,抛 物线的对称轴是323124--=⨯ ;⊙错误,根据y=14(x+2)(x ﹣8)可得,要使y=0,则 x=-2或8,因此(2,0)A - ,(8,0)B ,可得10AB = ,所以⊙D 的半径的半径为5;⊙错误,抛物线上不存在点E ,使四边形ACED 为平行四边形;⊙正确,直线CM 与⊙D 相切 故选D【点睛】本题主要考查二次函数的性质,二次函数的最值,对称轴,交点坐标一直是考试的重点内容,必须熟练的掌握.21.2【分析】根据反比例函数的性质,每一象限内,y 都随x 的增大而增大,则1-k<0解出k 值范围,取合适的数即可.【详解】⊙反比例函数1k y x -=,每一象限内,y 都随x 的增大而增大, ⊙1-k<0,⊙k>1,取k=2,满足题意,故答案为:2.【点睛】本题考查了反比例函数的增减性,理解反比例函数的增减性是解题的关键. 22.⊙、⊙、⊙【详解】本题考查的是由三视图判断几何体依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可. ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故答案为⊙⊙⊙.23【分析】连接BC,连接CO并延长CO交AB于点H,切线性质定理得⊙OCD=90°,CD AB得CH⊙AB,由垂径定理可得CH垂直平分AB,可推出ABC为等边三角形,进//而得出答案.【详解】解:如图,连接BC,连接CO并延长CO交AB于点H,⊙,直线CD与O相切于点C,⊙OC⊙CD⊙⊙OCD=90°⊙//CD AB⊙⊙AHC=⊙OCD=90°⊙CH⊙AB⊙AH=BH⊙CH垂直平分AB⊙AC=BC=⊙AB AC⊙AC=BC=AB⊙ABC为等边三角形,⊙60A∠=︒,⊙cos⊙A【点睛】本题考查垂径定理、切线的性质定理等,熟练掌握垂径定理是解题的关键.24.a<c<b【分析】抛物线开口向上,可根据二次函数的性质拿出对称轴,再根据A,B,C三点横坐标到对称轴的距离判断大小关系.【详解】由题意对称轴x=-62m m-=3, A 点横坐标到对称轴的距离为3-2=1B 点横坐标到对称轴的距离为3-(-1)=4C 点横坐标到对称轴的距离为5-3=2⊙4>2>1⊙b >c >a,从小到大排列为a <c <b.【点睛】考察二次函数的性质,根据横坐标到对称轴的距离即可判断大小关系,不需要求出具体坐标.25.36【详解】如图:连接MO,因为M 为切点,所以OM⊙MC, ⊙OMC=90°,因为OA=OM,所以⊙MAO=⊙OMA= 27°,所以⊙MOC=54°,所以⊙C=90°-54°=36°26.(0,-【分析】根据A 、C 的坐标得到圆的半径长和OE 长,利用勾股定理求出OB 的长,得到点B 坐标.【详解】解:如图,连接BE ,⊙()6,0A ,()2,0C -,⊙8AC =,4BE CE ==,2OC =,⊙422OE =-=,⊙在Rt OBE 中,OB =⊙(0,B -.故答案是:(0,-.【点睛】本题考查圆的性质和平面直角坐标系,解题的关键是根据已知点坐标得到线段长,结合几何的性质求点坐标.27.答案不唯一,如【详解】试题分析:方程的根的定义:方程的根就是使方程左右两边相等的未知数的值. 答案不唯一,如.考点:一元二次方程的根的定义28.12 【分析】由已知可得a=2b ,代入式子进行计算即可.【详解】⊙a b=2, ⊙a=2b , ⊙3a 2b 3a 2b -+=6262b b b b -+=12, 故答案为12. 【点睛】本题考查了比例的性质,得出a=2b 是解题的关键.29.两【分析】二次函数2y x x 2=+-的图象与x 轴的交点个数,即是2x x 2=0+-解的个数.【详解】令2x x 2=0+-,即()()120x x -+=解得x=1或x=-2,二次函数2y x x 2=+-的图象与x 轴有两个交点.故答案为两【点睛】此题考查抛物线与坐标轴的交点,解题关键在于使函数值等于0.30.<【分析】根据反比例函数的性质即可解答.【详解】当x=2时,632y==,⊙k=6时,⊙y随x的增大而减小⊙x>2时,y<3故答案为<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.31.6.【分析】过点C作CE⊙BD于E构造直角三角形,由方位角确定⊙ECD=60°,在Rt⊙CED 中利用三角函数AB=CD•cos⊙ECD即可.【详解】过点C作CE⊙BD于E,由湖的南,北两端A和B⊙⊙EBA=⊙BAC=90º,又⊙BEC=90º则四边形ABCE为矩形,⊙AB=CE⊙点D位于点C的北偏东60°方向上,⊙⊙ECD=60°,⊙CD=12km,在Rt⊙CED中,⊙CE=CD•cos⊙ECD=12×12=6km,⊙AB=CE=6km.故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.32.中心【分析】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【详解】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【点睛】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.33.3【分析】原式第一项利用零指数幂法则计算,第二项根据绝对值的代数意义去绝对值符号,第三项代入特殊角三角函数值计算,第四项利用负整数指数幂法则进行计算,最后进行加减运算即可得到结果.【详解】解:011(2019)12sin 45()3π-︒--+=123-+=13=3【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.24【分析】设内切圆半径为r ,根据内切圆的性质和勾股定理求出r 即可.【详解】设内切圆半径为r,则OE=OF=OD=r易知BD=BE=6,AD=AF=4⊙Rt△ABC中,AC2+BC2=(4+r)2+(6+r)2=AB2=100解得r=2,则AC=6,BC=8⊙S△ABC=24【点睛】本题考查的是三角形,熟练掌握熟练掌握三角形的内切圆是解题的关键. 35.16π.【分析】根据大圆的弦AB与小圆相切于点C,运用垂径定理和勾股定理解答.【详解】设AB切小圆于点C,连接OC,OB,⊙AB切小圆于点C,⊙OC⊙AB,⊙BC=AC=12AB=12×8=4,⊙Rt⊙OBC中,OB2=OC2+BC2,即OB2-OC2= BC2=16,⊙圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=16π(cm2).故答案为:16π.【点睛】本题考查了圆的切线,熟练掌握圆的切线性质定理,垂径定理和勾股定理是解决此类问题的关键.36.48πcm2【分析】根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.【详解】解:⊙圆锥的底面面积为16πcm2,⊙圆锥的半径为4cm,这个圆锥的侧面积为:212412482cm ππ⨯⨯⨯= 故答案为:48πcm 2.【点睛】本题考查了圆锥的计算,解题的关键是根据圆锥的底面面积得出圆锥的半径.37.-【分析】作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,⊙AOD=60°,求出点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -, ⊙线段OA 绕点О按顺时针方向旋转60︒得到线段,OD⊙OA=OD=m ,⊙AOD=60°, ⊙1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,⊙点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭, ⊙点B 、D 都在反比例函数()0k y k x=≠的图象上,⊙1322m m -=, 解得124,0x x ==(不合题意,舍去),⊙点B 坐标为(-,⊙4k =--故答案为:-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.38.1.2cm【分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sinB 的值,可求出PD .【详解】解:由题图(2)可得3AC =cm ,4BC =cm ,5AB ∴=cm. 当5x =时,点P 在BC 边上,⊙5AC CP +=cm ,2BP AC BC AC CP ∴=+--=,在Rt ABC △中,3sin 5AC B AB ==, 在Rt PBD △中, 36sin 2 1.255PD BP B ∴=⋅=⨯==(cm ).【点睛】此题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC 、BC 的长度.39.【分析】先分别求出k ,b 的值得到函数解析式,得到点C ,D 的坐标,勾股定理求出CD 及AB 的长,即可得到答案. 【详解】解:将点(1,5)代入k y x =,得k =5,⊙5y x=, 将点(1,5)代入y =-2x +b ,得-2+b =5,解得b =7,⊙y =-2x +7,当527x x=-+时,解得x =1或x =2.5, 当x =2.5时,y =2,⊙B (2.5,2),令y =-2x +7中x =0,得y =7;令y =0,得x =3.5,⊙C (3.5,0),B (0,7),⊙CD =⊙AB⊙BC +AD =CD -AB故答案为:【点睛】此题考查了待定系数法求函数解析式,一次函数图象与坐标轴的交点,勾股定理,正确掌握待定系数法求出解析式是解题的关键.40.15 =x,21x=-【分析】直接利用开平方的方法解一元二次方程即可得到答案.【详解】解:(1)⊙()229x-=,⊙23x-=±,解得15 =x,21x=-.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.41.(1)图象见解析;(2)-1<x<3;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.【详解】试题分析:(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.试题解析:(1)列表:描点、连线可得如图所示抛物线.(2)当-1<x <3时,y >0;(3)当x <1时,y 随x 的增大而增大.当x >1时,y 随x 的增大而减小.42.(1)y =﹣21322x -x +2;(2)98;(3)(﹣32,258)或(﹣3,2). 【分析】(1)由直线得到A 、C 的坐标,然后代入二次函数解析式,利用待定系数法即可得;(2)过点E 作EH ⊙AB 于点H ,由已知可得141252AB EH AB OC =⨯ ,从而可得EH 、HB 的长,然后再根据三角函数的定义即可得;(3)分情况讨论即可得.【详解】(1)令直线y =12x +2中y =0得12x +2=0解得x =-4,⊙A (-4,0),令x =0得y =2,⊙C (0,2) 把A 、C 两点的坐标代入212y x bx c =-++得, 2840c b =⎧⎨-=⎩, ⊙322b c ⎧=-⎪⎨⎪=⎩ , ⊙213222y x x =--+ ;(2)过点E 作EH ⊙AB 于点H ,由上可知B (1,0), ⊙45ABE ABC S S ∆∆=, ⊙141••252AB EH AB OC =⨯ , ⊙4855EH OC ==, 将85y =代入直线y =12x +2,解得45x =- ⊙4855E ⎛⎫- ⎪⎝⎭, ⊙49155HB =+= , ⊙90EHB ∠=︒ ⊙995cot 885HB DBA EH ∠===; (3)⊙DF ⊙AC ,⊙90DFC AOC ∠=∠=︒,⊙若DCF CAO ∠=∠,则CD//AO ,⊙点D 的纵坐标为2,把y=2代入213222y x x =--+得x=-3或x=0(舍去), ⊙D (-3,2) ;⊙若DCF ACO ∠=∠时,过点D 作DG ⊙y 轴于点G ,过点C 作CQ ⊙DG 交x 轴于点Q ,⊙90DCQ AOC ∠=∠=︒ ,⊙90DCF ACQ ACO CAO ∠+∠=∠+∠=︒,⊙ACQ CAO ∠=∠,⊙AQ CQ =,设Q (m ,0),则4m + ⊙32m =- , ⊙302Q ⎛⎫- ⎪⎝⎭,, 易证:COQ ∆⊙DCG ∆ , ⊙24332DG CO GC QO === ,设D (-4t ,3t+2)代入213222y x x =--+得t=0(舍去)或者38t =, ⊙32528D ⎛⎫- ⎪⎝⎭,. 综上,D 点坐标为(﹣32,258)或(﹣3,2) 43.(1)2k =;点B 的坐标为()1,2--(2)1m >或1m <-【分析】(1)利用待定系数法进行求值即可;(2)结合图象,可知当PC >PD ,POC △的面积大于POD 的面积,由此可知1m >或1m <-.(1)解:⊙点()1,A a 在直线2y x =上,⊙212a =⨯=,⊙点A 的坐标是()1,2, 代入函数k y x=中,得212k =⨯= ⊙直线2y x =经过原点⊙由双曲线的对称性可知,点A 与点B 关于原点对称,点B 的坐标为()1,2--; (2)如图所示:⊙点A 的坐标是()1,2,点B 的坐标为()1,2--,若POC △的面积大于POD 的面积,则:PC >PD ,结合图象可知此时:1m >或1m <-,【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.44.(1)25%;(2)室内21露天66;室内22露天62;室内23露天58;室内24露天54;【分析】(1)设平均增长率为x ,根据题意可列出关于x 的一元二次方程,解方程即可. (2)设室内车位为a 个,露天车位为b 个,根据计划投入15万元用于建若干个停车位,可列出一个关于a ,b 的方程,再根据计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,列出关于a ,b 的不等式,解不等式可求出a 的范围,因为a 是整数,所以最后的方案有有限个.【详解】(1)设平均增长率为x ,根据题意得2640(1)1000x += 解得125%4x ==或94x =-(不符合题意,舍去)。
初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)
平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
1.32的倒数是( ). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( ).A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 ( ). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 ( ).A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1- B )0 C )1 D )26. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.7.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
中考数学九年级上册专题训练50题-含答案
中考数学九年级上册专题训练50题含答案一、单选题1.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上2.若线段MN的长为2cm,点P是线段MN的黄金分割点,则最短的线段MP的长为()A.)1cm B C.(3cm D3.如图,将一块正方形空地划出部分区域进行绿化,绿化后一边减少了3m,另一边减少了2m,剩余面积为230m的矩形空地,则原正方形空地的边长为()A.6m B.7m C.8m D.9m︒+︒-︒的结果是()4.计算tan602sin452cos30C D.1A.2B5.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线⊙剪开,则虚线⊙所对的圆弧长和展开后得到的多边形的内角和分别为()A .,1802π︒ B .,5404π︒ C .,10804π︒ D .,21603π︒6.两个相似三角形的面积比为1⊙4,那么它们的周长比为( )A .B .2⊙1C .1⊙4D .1⊙2 7.下列一元二次方程中,有两个不相等的实数根的是( )A .2104x x -+=B .2230x x -+=C .220x x ++=D .220x x += 8.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB =2.若AC =2,则BD 的长为( )A .B .4CD .29.如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB 的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD =9.6米,留在墙上的影长CD =2米,则旗杆的高度( )A .12米B .10.2米C .10米D .9.6米 10.两个相似三角形的周长之比为3:2,其中较小的三角形的面积为12,则较大的三角形的面积为( )A .27B .18C .8D .311.如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,则图中阴影部分的面积为( )A .163π-B .43πC .163π-D .3π 12.如图,AB 为⊙O 直径,点C ,D 在⊙O 上且AC BC =.AD 与CO 交于点E ,⊙DAB =30°,若AO =CE 的长为( )A .1BC 1D .2 13.如图,在平面直角坐标系中,⊙P 过O (0,0),A (3,0),B (0,﹣4)三点,点C 是OA 上的点(点O 除外),连接OC ,BC ,则sin⊙OCB 等于( )A .45B .43C .34D .3514.如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,1AC =,以A 为圆心AC 为半径画圆,交AB 于点D ,则阴影部分面积是( )A 3π-B 6πC 6πD .π15.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC交于D 点.若⊙BFC =20°,则⊙DBC =( )A .30°B .29°C .28°D .20°16.已知a 是方程x 2﹣3x ﹣2=0的根,则代数式﹣2a 2+6a +2019的值为( ) A .2014 B .2015 C .2016 D .2017 17.已知实数a 是一元二次方程270x x +-=的根,则4371a a a ++-的值为( ) A .48 B .49 C .50 D .5118.用配方法解方程2210x x --=时,配方结果正确的是( )A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x += 19.一个矩形内放入两个边长分别为3cm 和4cm 的小正方形纸片,按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm 2;按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm 2,若把两张正方形纸片按图⊙放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为( )A .6cm 2B .7 cm 2C .12cm 2D .19 cm 2 20.如图,四边形ABCD 是正方形,动点E 、F 分别从D 、C 两点同时出发,以相同的速度分别在边DC 、CB 上移动,当点E 运动到点C 时都停止运动,DF 与AE 相交于点P ,若AD=8,则点P 运动的路径长为( )A .B .C .4πD .2π二、填空题21.已知关于x 的方程(x ﹣1)2=5﹣k 没有实数根,那么k 的取值范围是 ___. 22.如图,将四边形ABCD 绕顶点A 顺时针旋转45︒至四边形AB C D '''的位置,若4cm AB =,则图中阴影部分的面积为________2cm .23.如图,⊙O 是⊙ABC 的外接圆,AB =AC ,若⊙OBC =20°,则⊙ACB =_____°.24.若关于x 的一元二次方程2320ax a ++=有实数根,则a 的取值范围是______. 25.若m ,n 是一元二次方程2510x x --=的两个实数根,则26m m n --的值是________.26.已知y=x 2+x ﹣14,当x=____________时,y=﹣8.27.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x ,根据题意可列方程是_______. 28.直角三角形纸片的两直角边长分别为6,8,现将⊙ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan⊙CBE 的值是_____.29.已知26a -100a +7=0以及27b -100b +6=0,且ab ≠1,则a b的值为__________.30.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C 距离地面的高度为2.5m ,宽度AB 为1m ,则该圆形门的半径应为_____m .31.在△ABC 中,⊙C =90°,cosA c =4,则a =_______. 32.关于x 的一元二次方程()291600x ax a ++=>)有两个相等的实数根,则a 的值为_________.33.如图,⊙ABC 内接于O ,AB 为O 的直径,点D 为O 上的一点,且4AB =,15DCB ∠=︒,则劣弧AD 的长为______(结果保留π).34.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.35.如图,AB 是O 的直径,E 是O 上的一点,C 是弧AE 的中点,若A 50∠=,则AOE ∠的度数为________°.36.如图,在矩形ABCD 中,5AD =,4AB =,E 是BC 上的一点,3BE =,DF AE ⊥,垂足为F ,则tan FDC ∠=_______.37.若tana=12,则sina=___________________. 38.用配方法将2810x x --=变形为2(4)x m -=,则m=_________.39.如图,等腰BAC 中,120ABC ∠=︒,4BA BC ==,以BC 为直径作半圆,则阴影部分的面积为________.40.如图,ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE 沿直线DE 翻折得到FDE ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.三、解答题41.根据下列条件分别找到图1中的圆心O 和图2中的圆心P 的位置。
二次项系数不为1的十字相乘
x 2 2 5x 5 0
2 x 2 5x 2 0
x 2 5x 6 0
x 2 8x 16 0
6x 2 x 2 0
x 2 (1 3 ) x 3 0
2 x 2 5x 3 0
3x 2 8 x 3 0
x 4 10 x 2 9 =0
6 x 4 7 x 2 2 0 分解因式: 7( x y)3 5( x y) 2 2( x y) ;
(a 2 8a) 2 22(a 2 8a) 120 .
2
初三数学专题训练
《二次项系数不为 1 的十字相乘》专题
班级 姓名
世界上那些最容易的事情中,拖延时间最不费力。
( x 1)( x 2) (2 x 1)( x 2) (2 x 1)( x 2)
(2 x 1)(3x 2)
(2 x 1)( x 2)
于下一行。像这种借助画十字交叉分解系数,从而帮助我们把二次三项式分解因式的方法, 通常叫做十字相乘法。一般地我们也可以ቤተ መጻሕፍቲ ባይዱ这种方法进行解一元二次方程。 例: 解:
6x 2 7 x 2 0
2 3
1 2
(2 x 1)(3x 2) 0
2x 1 0 或 3x 2 0 1 3 x1 , x 2 2 2
1
初三数学专题训练
x 2 3x 2 =0
x 2 4x 21 =0
2 x 2 7 x 3 =0
6 x 2 7 x 5 =0
2 x 2 5x 3 0
2 x2 15x 7 =0
3a 2 8a 4 =0
2023年九年级数学中考专题训练反比例函数与几何综合含答案解析
中考专题训练——反比例函数与几何综合1.如图,一次函数图象与x 轴、y 轴分别交于点A 和点B ,与反比例函数图象交于点C 和点D ,其中点D 的横标为1,1OA OB ==.(1)如图1,求一次函数和反比例函数的表达式;(2)如图2,点E 是x 轴正半轴上一点,2OE OB =,求BDE △的面积;(3)在(2)的条件下,直线BE 向上平移,平移后的直线过点D 且交y 轴于点F ,点M 为平面直角坐标系内一点,是否存在以B 、D 、F 、M 为顶点的四边形是平行四边形,若存在,直接写出点M 的坐标;若不存在,请说明理由.2.如图,点A 是反比例函数y =m x(m <0)位于第二象限的图象上的一个动点,过点A 作AC ⊥x 轴于点C ;M 为是线段AC 的中点,过点M 作AC 的垂线,与反比例函数的图象及y 轴分别交于B 、D 两点.顺次连接A 、B 、C 、D .设点A 的横坐标为n .(1)求点B 的坐标(用含有m 、n 的代数式表示);(2)求证:四边形ABCD 是菱形;(3)若⊥ABM 的面积为4,当四边形ABCD 是正方形时,求直线AB 的函数表达式.3.如图,A 为反比例函数k y x=(其中0x >)图像上的一点,在x 轴正半轴上有一点B ,10OB =.连接OA 、AB ,且13OA AB ==.(1)求反比例函数的解析式;(2)过点B 作BC OB ⊥,交反比例函数k y x=(其中0x >)的图像于点C ,连接OC 交AB 于点D . ⊥求OC 的长;⊥求DO DC 的值. 4.如图,将一个长方形放置在平面直角坐标系中,OA =2,OC =3,E 是AB 中点,反比例函数图象过点E 且和BC 相交点F .(1)直接写出点B 和点E 的坐标;(2)求直线OB 与反比例函数的解析式;(3)连接OE 、OF ,求四边形OEBF 的面积.5.如图,在直角坐标中,矩形OABC 的顶点O 与坐标原点重合,顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为()2,3,反比例函数k y x=是的图像经过BC 的中点D ,且与AB 交于点E ,连接DE .(1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且FBC DEB ∽,求直线FB 的解析式.(3)若点P 在y 轴上,且OPD △的面积与四边形BDOE 的面积相等,求点P 的坐标.6.已知在平面直角坐标中,点A (m ,n )在第一象限内,AB ⊥OA 且AB =OA ,反比例函数y =k x的图象经过点A(1)当点B 的坐标为(4,0)时(如图1),求这个反比例函数的解析式;(2)当点B 在反比例函数y =k x的图象上,且在点A 的右侧时(如图2),用含字母m ,n 的代数式表示点B 的坐标;(3)在第(2)小题的条件下,求n m的值.7.如图1,在平面直角坐标系xOy 中,函数m y x=(m 为常数,1m >,0x >)的图象经过点(),1P m 和()1,Q m ,直线PQ 与x 轴、y 轴分别交于C ,D 两点.(1)求OCD ∠的度数;(2)如图2,连接OQ 、OP ,当POC OCD DOQ ∠=∠-∠时,求此时m 的值;(3)如图3,点A 、点B 分别是在x 轴和y 轴正半轴上的动点.再以OA 、OB 为邻边作矩形OAMB .若点M 恰好在函数m y x=(m 为常数,1m >,0x >)的图象上,且四边形BAPQ 为平行四边形,求此时OA 、OB 的长度.8.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,对角线OB 长为8,且30COB ∠=︒,D 是AB 边上的点,将ADO △沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处.(1)求OE 的长;(2)点E 在一反比例函数的图象上,那么该函数的解析式;(3)反比例函数与BC 交于M 点,连接OM ,求OBM 的面积.9.如图,已知点()3,1A -,()2,2B -,反比例函数()0k y x x=<的图象记为L . (1)若L 经过点A .⊥求L 的解析式;⊥L 是否经过点B ?若经过,说明理由;若不经过,请判断点B 在L 的上方,还是下方.(2)若L 与线段AB 有公共点,直接写出k 的取值范围.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x(x <0)的图象相交于点A (﹣1,2)、点B (﹣4,n ).(1)求此一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若点H (﹣12,h )也在双曲线上,那么在y 轴上存在一点P ,使得|PB ﹣PH |的差最大,求出点P 的坐标.11.如图,直线y =﹣12x +7与反比例函数y =m x (m ≠0)的图象交于A ,B 两点,与y 轴交于点C ,且点A 的横坐标为2.(1)求反比例函数的表达式;(2)求出点B 坐标,并结合图象直接写出不等式m x <﹣12x +7的解集; (3)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.12.如图,一次函数2y x b =-的图象与反比例函数k y x=的图象交于点A 、B 两点,与x 轴、y 轴分别交于C 、D 两点,且点A 的坐标为()3,2.(1)求一次函数和反比例函数的表达式.(2)求AOB 的面积.(3)点P 为反比例函数图像上的一个动点,PM x ⊥轴于M ,是否存在以P 、M 、O 为顶点的三角形与COD △相似,若存在,直接写出P 点的坐标,若不存在,请说明理由.13.已知反比例函数12m y x-=(m 为常数)的图象在第一、三象限.(1)求m 的取值范围;(2)如图,若该反比例函数的图象经过ABCO 的顶点B ,点,A C 的坐标分别为()2,0,1,2,求出m 的值;(3)将ABCO 沿x 轴翻折,点C 落在C '处,判断点C '是否落在该反比例函数的图象上?14.如图,一次函数y =mx+1的图象与反比例函数y =k x 的图象相交于A 、B 两点,点C 在x 轴正半轴上,点D(1,﹣2),连结OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数的值小于2时,x 的取值范围;(3)设点P 是直线AB 上一动点,且OAP S △=12S 菱形OACD ,求点P 的坐标.15.如图,在第一象限内有一点A (4,1),过点A 作AB⊥x 轴于B 点,作AC⊥y 轴于C 点,点N 为线段AB 上的一动点,过点N 的反比例函数y =n x交线段AC 于M 点,连接OM ,ON ,MN . (1)若点N 为AB 的中点,则n 的值为 ;(2)求线段AN 的长(用含n 的代数式表示);(3)求⊥AMN 的面积等于14时n 的值.16.如图,直线11y k x b =+与反比例函数22k y x=的图象交于A 、B 两点,已知点(),4A m ,(),2B n ,AD x ⊥轴于点D ,BC x ⊥轴于点C ,3DC =.(1)求m ,n 的值及反比例函数的解析式;(2)结合图象,当21k k x b x+≤时,直接写出自变量x 的取值范围; (3)若P 是x 轴上的一个动点,当ABP 的周长最小时,求点P 的坐标.17.如图,一次函数1y kx b =+的图象与反比例函数26y x=的图象交于(2,)A m ,(,1)B n 两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.18.如图,反比例函数m y x=与一次函数y kx b =+的图象交于A (1,3)和B (-3,n )两点.(1)求m 、n 的值;(2)当x 取什么值时,一次函数的值大于反比例函数的值.(3)求出⊥OAB 的面积.19.如图1,一次函数y =kx -4(k≠0)的图象与y 轴交于点A ,与反比例函数y =-12x(x <0)的图象交于点B (-6,b ).(1)b =__________.k =__________.(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 且平行于y 轴的直线l 交该反比例函数的图象于点D ,连接OC ,OD ,若⊥OCD 的面积=8,求点C 的坐标.(3)将第(2)小题中的⊥OCD 沿射线AB 方向平移一定的距离后,得到⊥O′C′D′,若点O 的对应点O′恰好落在该反比例函数图象上(如图2),求此时点D 的对应点D′的坐标.20.如图,直线AD :33y x =+与坐标轴交于A D 、两点,以AD 为边在AD 右侧作正方形ABCD ,过C 作CG y ⊥轴于G 点.过点C 的反比例函数(0)k y k x=≠与直线AD 交于,E F 两点. (1)求证:⊥AOD⊥⊥DGC ;(2)求E 、F 两点坐标;(3)填空:不等式33k x x+>的取值范围是_________.参考答案1.(1)1y x =+,2y x =;(2)32(3)17(1,)2M ,21(1,)2M ,33(1,)2M -- 【分析】(1)根据题意,分别求得,A B 点的坐标,用待定系数法求得一次函数的解析式,再求得D 点的坐标,用待定系数法求反比例函数解析式即可;(2)过点D 作DG x ⊥轴于点G ,根据BDE S S =△梯形BOGD DGE BOE S S +-△△求解即可;(3)根据平行线的性质,分情况讨论,⊥当BF 为边时,32BF DM ==,上、下平移点D 即可求得M 点的坐标⊥当FB 为对角线时,根据FH BH =,DH MH =,利用中点坐标求解M 的坐标【详解】(1)点A 和点B 分别是x 轴、y 轴的点,且1OA OB ==,根据图像可知: (1,0),(0,1)A B -设直线AB 的解析式为:y kx b =+ 将点(1,0),(0,1)A B -代入,得:01k b b -+=⎧⎨=⎩解得:11k b =⎧⎨=⎩ 1y x ∴=+点D 在直线AB 上,且横标为1, 112D y ∴=+=(1,2)D ∴ 又D 在反比例函数图像上设反比例函数解析式为:m y x =, 将(1,2)D 代入,得2m ∴=2y x∴= (2)如图,过点D 作DG x ⊥轴于点G ,则2DG =,1OG =2OE OB =2OE ∴=,1EG OE OG ∴=-=BDE S S =△梯形BOGD DGE BOE S S +-△△111=()222OB DG OG EG DG OE OB +⋅+⋅-⋅111(12)11221222=+⨯+⨯⨯-⨯⨯ 32= (3)存在,理由如下: 设直线BE 的解析式为y ax b =+ (2,0),(01)E B ,201a b b +=⎧∴⎨=⎩解得:121a b ⎧=-⎪⎨⎪=⎩ 112y x ∴=-+ 平移后经过点D (1,2)设平移后的直线DF 的解析式为12y x c =-+ 将D (1,2)代入,求得52c = 5(0,)2F ∴ 53122BF ∴=-= 如图:以B 、D 、F 、M 为顶点的四边形是平行四边形 ⊥当BF 为边时,//BF DM 时,32BF DM == ,B F 都在y 轴上//DM y ∴轴(1,2)D17(1,)2M ∴或者21(1,)2M⊥当FB为对角线时,设对角线,FB DM交点为H ∴FH BH=,DH MH=,设(,)M x y5(0,),(0,1)2F B7(0,)4H∴(1,2)D117(1)0,(2)224x y∴+=+=解得132xy=-⎧⎪⎨=⎪⎩33(1,)2M∴--综上所述,17(1,)2M,21(1,)2M,33(1,)2M--【点睛】本题考查平移的性质,一次函数与反比例函数图像的性质,待定系数法求解析式,平行四边形的判定与性质,熟练一次函数与反比例函数图像的性质是解题的关键.2.(1)B(2n,2mn);(2)见解析;(3)y=x+【分析】(1)由点A在双曲线上,确定出A坐标,进而得出B的坐标,即可得出结论;(2)由(1)得到的点B,D,M的坐标判断出MB MD AM MC==,,得出四边形ABCD是平行四边形,再用BD AC⊥即可;(3)由(2)结合AC BD=建立方程求出n,m,从而得到点B,A的坐标即可.【详解】(1)当x n=时,myn=,()m A n n∴,, 由题意知,BD 是AC 的中垂线,∴点B 的纵坐标是2m n , ∴把2m y n=代入m y x =得2x n =, ∴B (2n ,2m n ); (2)证明:⊥BD ⊥AC ,AC ⊥x 轴,⊥BD ⊥y 轴,由(1)知,B (2n ,2m n ),A (n ,m n), ⊥D (0,2m n ),M (n ,2m n ), ⊥BM =MD =﹣n ,⊥AC ⊥x 轴,⊥C (n ,0),⊥AM =CM ,⊥四边形ABCD 是平行四边形.又⊥BD ⊥AC ,⊥平行四边形ABCD 是菱形;(3)当四边形ABCD 是正方形时, ABM 为等腰直角三角形,AM BM ∴=, ABM 的面积是4,2142ABM S AM ∴==, 22AM BM ∴==,M 为线段AC 的中点,22AC AM BD BM ∴====2n ∴=-,m n=((A B ∴--,, 设直线AB 的解析式为y kx b =+,b b ⎧-+=⎪∴⎨-+=⎪⎩, 解得1k b =⎧⎪⎨=⎪⎩直线AB 的函数表达式为y =x +【点睛】此题是反比例函数综合题,主要考查了待定系数法,菱形的性质,正方形的性质,等腰三角形的性质,三角形的面积公式,解本题的关键是用m ,n 表示出点A ,B ,D ,M 的坐标.3.(1)60y x =;(2)⊥;⊥4【分析】(1)要求k 的值,只需要求出A 的坐标即可,所以过A 作AE x ⊥轴于E ,由于OA AB =,所以5OE EB ==,利用勾股定理求出AE 的长,得到A 的坐标(5,12),代入到反比例函数解析式中即可解决; (2)⊥因为BC x ⊥轴,所以C 的横坐标为10,由于C 在反比例函数图象上,所以可以求出C 的纵坐标,在直角三角形OBC 中,利用勾股定理可以求出OC 的长度;⊥要求DO DC的值,由OC 的长度已知,所以只需要求出DO 或者DC 的长度即可,因为D 是直线OC 和直线AB 的交点,所以求出直线OC 和直线AB 的解析式,联立两个函数解析式,求得D 的坐标,进而求出线段OD 的长度,即可解决,此题也可以平行线构造相似来解决.【详解】解:(1)过A 作AE OB ⊥于E ,如图1,OA AB =,152OE BE OB ∴===, ∴12AE =,A ∴的坐标为(5,12), A 为反比例函数k y x=(其中0)x >图象上的一点, 60∴=k ,∴反比例函数的解析式为:60y x=; (2)⊥10OB =,B ∴的坐标为(10,0),BC x ⊥轴交反比例函数图象于C 点,C ∴的横坐标为10,令10x =,则606y x==, (10,6)C ∴, 6BC ∴=,∴OC ;⊥设直线OC 为y mx =,代入点C 的坐标得35m =, ∴直线OC 的解析式为35y x =, 设直线AB 的解析式为(10)y n x =-,代入点A 的坐标得125n =-, ∴直线AB 的解析式为12245y x =-+, 联立1224535y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得8245x y =⎧⎪⎨=⎪⎩, D ∴的坐标为24(8,)5,∴OD =,∴CD OC OD =-, ∴4DO DC=.【点睛】本题是一道反比例函数综合题,注意等腰三角形的性质和勾股定理在求线段时的作用,求线段比可以用直接解析法和相似来转化.4.(1)B (2,3),E (2,32);(2)33,2y x y x==;(3)3 【分析】(1)根据OA =2,OC =3,得到点B 的坐标;根据E 是AB 的中点,求得点E 的坐标,(2)运用待定系数法求直线OB 的解析式,再进一步运用待定系数法求得反比例函数的解析式;(3)根据反比例函数的解析式求得点F 的横坐标,再进一步根据四边形的面积等于矩形的面积减去两个直角三角形的面积进行计算.【详解】解:(1)⊥OA =2,OC =3,E 是AB 中点,⊥B (2,3),E (2,32); (2)设直线OB 的解析式是y =k 1x ,把B 点坐标代入,得k 1=32, 则直线OB 的解析式是y =32x . 设反比例函数解析式是y =2k x, 把E 点坐标代入,得k 2=3,则反比例函数的解析式是y =3x; (3)由题意得Fy =3,代入y =3x, 得Fx =1,即F (1,3).则四边形OEBF 的面积=矩形OABC 的面积﹣⊥OAE 的面积﹣⊥OCF 的面积=2×3﹣12⨯1×3﹣12⨯2×32=3. 【点睛】本题考查反比例函数系数k 的几何意义、待定系数法求反比例函数解析式、矩形的性质、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式,灵活应用是关键,本题是中考的常考题型5.(1)3k =;32,2⎛⎫ ⎪⎝⎭;(2)2533y x =+;(3)()0,6或()0,6- 【分析】(1)由B 点的坐标,可得出D 点的坐标,利用反比例函数图像上点的坐标特征可求出k 值,由E 点在AB 上可得出点B 的横坐标,再利用反比例函数图像上点的坐标特征可求出E 点的纵坐标,进而可得出E 点的坐标;(2)由(1)可得出BD =1,BE =,CB =2,由⊥FBC ⊥⊥DEB ,利用相似三角形的性质可求出CF 的长,结合OF =OC -CF 可得出OF 的长,进而可得出点F 的坐标,由点F ,B 的坐标,利用待定系数法即可求出直线FB 的解析式;(3)由AOE COD OABC BDOE S S S S =--△△矩形四边形,可求出四边形BDOE 的面积,由点P 在y 轴上及⊥OPD 的面积与四边形BDOE 的面积相等,可求出OP 的长,进而可得出P 点的坐标.【详解】解:(1)在矩形OABC 中,⊥B 点坐标为(2,3),⊥BC 边中点D 的坐标为(1,3),又⊥反比例函数k y x=图像经过点(1,3)D , ⊥31k =, ⊥3k =,⊥E 点在AB 上,⊥E 点的横坐标为2,又⊥3y x=经过点E ,⊥E 点纵坐标为32, ⊥E 点坐标为32,2⎛⎫ ⎪⎝⎭, (2)由(1)得1BD =,32BE =,2CB =,⊥FBC DEB ∽, ⊥BD BE CF CB =,即3122CF =, ⊥43CF =, ⊥53OF =,即点F 的坐标为50,3⎛⎫ ⎪⎝⎭, 设直线FB 的解析式为()110y k x b k =+≠,而直线FB 经过()2,3B ,50,3F ⎛⎫ ⎪⎝⎭, ⊥13253k b b =+⎧⎪⎨=⎪⎩, ⊥125,33k b ==, ⊥直线FB 的解析式为2533y x =+; (3)⊥131232313222AOE COD BDOE OABC S S S S =--=⨯-⨯⨯-⨯⨯=四边形矩形,由题意,得13,12OP DC DC ⋅==, ⊥6OP =,⊥点P 的坐标为()0,6或()0,6-.【点睛】本题考查了矩形的性质、反比例函数图像上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图像上点的坐标特征求出k 值;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用三角形面积的计算公式,求出OP 的长.6.(1)y =4x ;(2)(m +n ,n -m );(3【分析】(1)根据等腰直角三角形性质,三线合一,直角三角形斜边上的中线等于斜边的一半,得到点A坐标,代入解析式即可得到y =4x. (2)过点A 作AE⊥x 轴于点E ,过点B 作BD⊥AE 于点D ,构造一对全等三角形,得到AE=BD=n ,OE=AD=m ,所以B (m+n ,n -m ).(3)把点A 和点B 的坐标代入反比例函数的解析式得到关于m 、n 的等22m n mn -=,两边除以2n ,换元法解得n m =. 【详解】解:(1)过A 作AC ⊥OB ,交x 轴于点C ,⊥OA =AB ,⊥OAB =90°,⊥⊥AOB 为等腰直角三角形,⊥AC =OC =BC =12OB =2,⊥A (2,2),将x =2,y =2代入反比例解析式得:2=2k ,即k =4, 则反比例解析式为y =4x; (2)过A 作AE ⊥x 轴,过B 作BD ⊥AE ,⊥⊥OAB =90°,⊥⊥OAE +⊥BAD =90°,⊥⊥AOE +⊥OAE =90°,⊥⊥BAD =⊥AOE ,在⊥AOE 和⊥BAD 中,°90AOE BAD AEO BDA AO BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩,⊥⊥AOE ⊥⊥BAD (AAS ),⊥AE =BD =n ,OE =AD =m ,⊥DE =AE -AD =n -m ,OE +BD =m +n ,则B (m +n ,n -m );(3)由A 与B 都在反比例图象上,得到mn =(m +n )(n -m ),整理得:n 2-m 2=mn ,即2()()10m m n n这里a =1,b =1,c =-1,⊥⊥=1+4=5,⊥m n = ⊥A (m ,n )在第一象限,⊥m >0,n >0, 则1+52mn . 【点睛】此题属于反比例函数综合题,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及一元二次方程的解法,熟练掌握反比例函数的性质是解本题的关键.7.(1)⊥OCD =45°.(2)m;(3)OA OB == 【分析】(1)求出点C ,点D 的坐标,证明OC =OD 即可解决问题;(2)作辅助线,证明⊥OMQ ⊥⊥ONP (SAS ),得OQ =OP ,⊥DOQ =⊥POC ,根据已知可得⊥DOQ =⊥POC =⊥QOH =⊥POH ,根据角平分线的性质得:MQ =QH =PH =PN =1,根据CD =DQ +PQ +PC ,列方程可得结论;(3)先根据四边形BAPQ为平行四边形,可知⊥OAB=45°,可得⊥AOB是等腰直角三角形,所以OA=OB,从而得M,即OA=OB AB=PQ列方程解出即可.【详解】解:(1)设直线PQ的解析式为y=kx+b,则有1 km bk b m+⎧⎨+⎩==,解得11 kb m-⎧⎨+⎩==,⊥y=-x+m+1,令x=0,得到y=m+1,⊥D(0,m+1),令y=0,得到x=m+1,⊥C(m+1,0),⊥OC=OD,⊥⊥COD=90°,⊥⊥OCD=45°.(2)如图2,过Q作QM⊥y轴于M,过P作PN⊥OC于N,过O作OH⊥CD于H,⊥P(m,1)和Q(1,m),⊥MQ=PN=1,OM=ON=m,⊥⊥OMQ=⊥ONP=90°,⊥⊥OMQ⊥⊥ONP(SAS),⊥OQ=OP,⊥DOQ=⊥POC,⊥⊥DOQ=⊥OCD-⊥POC,⊥OCD=45°,⊥⊥DOQ=⊥POC=⊥QOH=⊥POH=22.5°,⊥MQ=QH=PH=PN=1,⊥⊥OCD=⊥ODC=45°,⊥⊥DMQ和△CNP都是等腰直角三角形,⊥DQ=PC⊥OC=OD=m+1,⊥CD m+1),⊥CD=DQ+PQ+PC,(m+1)+2,⊥m;(3)如图3,⊥四边形BAPQ为平行四边形,⊥AB⊥PQ,AB=PQ,⊥⊥OAB=45°,⊥⊥AOB=90°,⊥OA=OB,⊥矩形OAMB是正方形,⊥点M恰好在函数y=mx(m为常数,m>1,x>0)的图象上,⊥M,即OA=OB⊥AB=PQ,解得:m=m=(舍),⊥OA OB===【点睛】本题考查反比例函数综合题、矩形的性质、待定系数法、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.8.(1)4;(2)y =(3)【分析】(1)根据OB 的长度,⊥OCB 的度数可得BC 和OA ,再根据折叠的性质可得OE ;(2)过E 点作EF ⊥OC 于F ,求出点E 的坐标,从而可得反比例函数解析式;(3)根据OC 的长得到点M 的横坐标,代入反比例函数解析式得到点M 的坐标,从而得到BM ,再利用三角形面积公式计算结果.【详解】解:(1)⊥四边形ABCD 是矩形,⊥⊥OCB =90°⊥OB =8,⊥COB =30°,⊥BC =OA =4,由折叠可知:OE =OA =4;(2)过E 点作EF ⊥OC 于F ,⊥OE =4,⊥BOC =30°,⊥EF =2,⊥OF⊥E (2),设经过点E 的反比例函数表达式为:k y x=,则k =⊥反比例函数的解析式为:y =(3)⊥点M 在反比例函数图像上,OC⊥将x =y =1,即M (1),CM =1,又⊥BC =4,⊥BM =4-1=3,⊥S △OBM =132⨯⨯ 【点睛】此题主要考查了用待定系数法求反比例函数的解析式,矩形的面积,本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.9.(1)⊥3y x=-(0x <);⊥点B 在图象L 上方,理由见解析;(2)43k -≤≤-. 【分析】(1)⊥将点A 坐标代入图象L 解析式中,解得,即可得出结论;⊥将x=-2代入图象L 解析式中,求出y ,再与2比较大小,即可得出结论;(2)求出图象L 过点A ,B 时的k 的值,再求出图象L 与线段AB 相切时的k 的值,即可得出结论.【详解】解:(1)⊥⊥L 过点A (-3,1),⊥313k =-⨯=-,⊥图象L 的解析式为3y x=-(0x <); ⊥点B 在图象L 上方,理由:由(1)知,图象L 的解析式为3y x=-, 当2x =-时,33222y =-=<-, ⊥点B 在图象L 上方;(2)当图象L 过点A 时,由(1)知,3k =-,当图象L 过点B 时,将点B (-2,2)代入图象L 解析式k y x=中,得224k =-⨯=-, 当线段AB 与图象L 只有一个交点时,设直线AB 的解析式为y mx n =+,将点A (-3,1),B (-2,2)代入y mx n =+中,3122m n m n -+=⎧⎨-+=⎩, ⊥14m n =⎧⎨=⎩, ⊥直线AB 的解析式为4y x =+,联立图象L 的解析式和直线AB 的解析式得,4k y x y x ⎧=⎪⎨⎪=+⎩, 化为关于x 的一元二次方程为240x x k +-=,⊥1640k =+=,⊥4k =-,即满足条件的k 的范围为:43k -≤≤-.【点睛】本题是反比例函数综合题,主要考查了待定系数法,找出图象L 与线段AB 有公共点的分界点是解本题的关键.10.(1)y =12x +52, y =﹣2x ;(2)S △AOB =154;(3)P (0,92). 【分析】(1)把点A 的坐标代入反比例函数解析式求出m 的值,然后再把点B 的坐标代入反比例函数求出n 的值,从而求出点B 的坐标,再把A 、B 的坐标代入一次函数表达式,利用待定系数法即可求出一次函数的解析式;(2)求得直线AB 与x 轴的交点,然后根据三角形的面积公式即可求解;(3)根据题意,P 点是直线BH 与y 轴的交点;【详解】(1)⊥点A(﹣1,2)在反比例函数图象上, ⊥21k -=2, 解得k 2=﹣2,⊥反比例函数的解析式是y =﹣2x, ⊥点B(﹣4,n)在反比例函数图象上,⊥n =21=42-- , ⊥点B 的坐标是(﹣4,12),⊥一次函数1y k x b =+的图象经过点A(﹣1,2)、点B(﹣4,12). ⊥112142k b k b -+=⎧⎪⎨-+=⎪⎩ 解得11252k b ⎧=⎪⎪⎨⎪=⎪⎩ . ⊥一次函数解析式是1522y x =+ ; (2)设直线AB 与x 轴的交点为C ,1522y x =+中,令y =0,则x =﹣5, ⊥直线与x 轴的交点C 为(﹣5,0),⊥S △AOB =S △AOC ﹣S △BOC 11115=525=2224⨯⨯-⨯⨯ ; (3)⊥点H(﹣12,h)也在双曲线上,⊥2=412h=--,⊥H(﹣12,4),⊥在y轴上存在一点P,使得|PB﹣PH|最大,⊥P点是直线BH与y轴的交点,设直线BH的解析式为y=kx+m,⊥142142k mk m⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得192km=⎧⎪⎨=⎪⎩,⊥直线BH的解析式为y=x+92,令x=0,则y=92,⊥P(0,92 ).【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积,会利用待定系数法求一次函数解析式;运用两点之间线段最短解决最短路径问题是解题的关键;11.(1)12yx=;(2)x<0或2<x<12;(3)E(0,6)或(0,8)【分析】(1)由直线y=﹣12x+7求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B的坐标,然后根据图象即可求得不等式mx<﹣12x+7的解集;(3)设E(0,n),求得点C的坐标,然后根据三角形面积公式得到S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得即可.【详解】解:(1)把x=2代入y=﹣12x+7得,y=6,⊥A(2,6),⊥反比例函数y=mx(m≠0)的图象经过A点,⊥m =2×6=12,⊥反比例函数的表达式为12y x=; (2)由12172y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,得26x y =⎧⎨=⎩或121x y =⎧⎨=⎩, ⊥B (12,1), 由图象可知,不等式m x <﹣12x +7的解集是:x <0或2<x <12; (3)设E (0,n ),⊥直线y =﹣12x +7与y 轴交于点C ,⊥C (0,7),⊥CE =|7﹣n |,⊥S △AEB =S △BCE ﹣S △ACE =12|7﹣n |×(12﹣2)=5,解得,n =6或n =8,⊥E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.12.(1)24y x =-,6y x =;(2)8AOB S =△;(3)存在,P点的坐标为或(-或(或(-.【分析】(1)把()3,2A 分别代入直线2y x b =-和反比例函数k y x =进行求解即可; (2)连接OA 、OB ,由246y x y x =-⎧⎪⎨=⎪⎩解得:1132x y =⎧⎨=⎩,2216x y =-⎧⎨=-⎩,进而可得()1,6B --,然后由一次函数可得2OC =,最后根据割补法可求解⊥AOB 的面积;(3)当以P 、M 、O 为顶点的三角形与COD △相似时,始终有90PMO COD ∠=∠=︒,由(2)可得OC=2,OD=4,设点6,P a a ⎛⎫ ⎪⎝⎭,则6,PM OM a a ==,12OC OD =,则可分⊥当OPM OCD ∠=∠时,⊥当OPM ODC ∠=∠时,然后根据相似三角形的性质进行求解即可.【详解】解:(1)把()3,2A 代入2y x b =-得:62b -=,解得:4b =,⊥一次函数的表达式为24y x =-,把()3,2A 代入k y x =得:23k =, 解得:6k =, ⊥反比例函数的表达式为6y x=; (2)连接OA 、OB ,如图所示:由246y x y x =-⎧⎪⎨=⎪⎩解得:1132x y =⎧⎨=⎩,2216x y =-⎧⎨=-⎩, ⊥()3,2A ,()1,6B --,在24y x =-上,当0y =时,240x -=,解得:2x =⊥()2,0C⊥2OC = ⊥1222OAC S OC =⨯=△,1662OBC S OC =⨯=△, ⊥8AOB OAC OBC S S S =+=△△△;(3)由题意可得如图所示:当以P 、M 、O 为顶点的三角形与COD △相似时,始终有90PMO COD ∠=∠=︒,由(2)可得OC=2,OD=4,设点6,P a a ⎛⎫ ⎪⎝⎭,则6,PM OM a a ==,12OC OD =, ⊥当OPM OCD ∠=∠时, ⊥12OC PM OD OM ==,即612a a =,解得:a =±⊥点(P 或(P -;⊥当OPM ODC ∠=∠时, ⊥12OC OM OD PM ==,即62a a =,解得:a =⊥点P 或(P -;综上所述:当以P 、M 、O 为顶点的三角形与COD △相似时,P 点的坐标为或(-或(或(-. 【点睛】本题主要考查反比例函数与几何综合及相似三角形的性质,熟练掌握反比例函数与几何综合及相似三角形的性质是解题的关键.13.(1)12m <;(2)12m =-;(3)点()1,2C '--在反比例2y x =图象上 【分析】(1)根据反比例函数图象在第一、三象限,列不等式即可;(2)根据平行四边形的性质求出BC 长,再求出点B 坐标代入解析式即可;(3)根据翻折求出C '坐标,代入解析式即可.【详解】解:(1)反比例函数12m y x-=(m 为常数)的图象在第一、三象限, ⊥120m ->, 解得12m <; (2)⊥ABCO 是平行四边形,⊥2CB OA ==,⊥点B 坐标为()1,2.把点()1,2代入12m y x-=得, 1221m -=, 解得12m =-.(3)点C 关于x 轴的对称点为()1,2C '--.由(2)知反比例函数的解析式2y x =, 把=1x -代入2221y x ===--, 故点()1,2C '--也在反比例2y x =图象上. 【点睛】本题考查了反比例函数的综合问题,和平行四边形 性质,解题关键是熟知反比例函数的性质和平行四边形的性质,树立数形结合思想,利用点的坐标解决问题.14.(1)一次函数的解析式为:y=x+1,反比例函数的解析式为:y =2x ;(2)x <0或x >1;(3)P 点坐标为(-3,-2)或(5,6)【分析】(1)由菱形的性质可知A 、D 关于x 轴对称,可求得A 点坐标,把A 点坐标分别代入两函数解析式可求得k 和m 值;(2)由(1)可知A 点坐标为(1,2),结合图象可知在A 点的下方时,反比例函数的值小于2,可求得x 的取值范围;(3)根据菱形的性质求得菱形面积,分点P 在x 轴下方和点P 在x 轴上方两种情况加以分析即可.【详解】解:(1)如图,连接AD ,交x 轴于点E ,⊥D (1,2),⊥OE=1,ED=2,⊥四边形AODC 是菱形,⊥AE=DE=2,EC=OE=1,⊥A (1,2),将A (1,2)代入直线y=mx+1可得m+1=2,解得m=1,⊥一次函数的解析式为:y=x+1,将A (1,2)代入反比例函数y =k x ,可求得k=2; ⊥反比例函数的解析式为:y =2x; (2)⊥当x=1时,反比例函数的值为2,⊥当反比例函数图象在A 点下方时,对应的函数值小于2,此时x 的取值范围为:x <0或x >1;(3)⊥OC=2OE=2,AD=2DE=4,⊥S 菱形OACD 142=⋅=OC AD ,S △OAP =12S 菱形OACD , ⊥S △OAP =2,直线y=x+1与x 轴交点M (-1,0)设P 点坐标为(x ,x+1),当点P 在x 轴下方时,⊥S △OAP =S △OAM +S △OMP =2, ⊥()111211222x ⨯⨯+⨯--⨯=, 解得x=-3,⊥P 点坐标为(-3,-2).当点P 在x 轴上方时,⊥S △OAP = S △OMP -S △OAM =2, ⊥()111112222x ⨯+⨯-⨯⨯=, 解得x=5,⊥P 点坐标为(5,6)..【点睛】本题考查了反比例函数和几何的综合应用,涉及知识点有待定系数法、菱形的性质、三角形的面积及数形结合思想等,熟练掌握相关知识是解题的关键.15.(1)2;(2)14n -;(3)4【分析】(1)根据点A 的坐标和点N 为AB 的中点得到点N 的坐标,可得n 值;(2)将点N 的横坐标代入反比例函数表达式,得到纵坐标,即BN 的长,再根据AB 得到AN ;(3)分别表示出AN 和AM 的长,表示出⊥AMN 的面积,令其为14,解方程即可得到结果. 【详解】解:(1)⊥A (4,1),AB⊥x 轴于点B ,交n y x=于点N , ⊥x A =x B =x N =4,AB=1,又⊥点N 为AB 中点,⊥BN=12AB=12,即y N =12, ⊥n=x N ×y N =4×12=2, 故n=2;(2)由(1)可知:x A =x B =x N =4, ⊥点N 在n y x =上, ⊥y N =4N n n x =, ⊥AN=AB -BN=14n -, 故线段AN 的长为14n -; (3)由(2)可知:AN=14n -, ⊥点A (4,1),AC⊥y 轴,交n y x=于点M , ⊥y A =y M =1,AC=x N =4, 则x M =M n y =n ,即CM=x M =n , ⊥AM=AC -CM=4-n , ⊥AC⊥y 轴,AB⊥x 轴, ⊥四边形OBAC 为矩形, ⊥⊥A=90°,⊥S △AMN =12AN AM ⨯⨯ =()11424n n ⎛⎫-⨯- ⎪⎝⎭=2128n n -+, 又⊥AMN 的面积等于14, ⊥211284n n -+=,解得:4n =又AN=14n ->0, ⊥n <4,⊥4n =故n 的值为4【点睛】本题考查了反比例函数综合,矩形的判定和性质,一元二次方程,解题的关键是利用反比例函数图像上的点坐标表示出相应线段的长度.16.(1)3m =,6n =,212y x=;(2)03x <≤或6x ≥;(3)点P 的坐标为()5,0. 【分析】(1)把点A 、B 的坐标代入反比例函数中,得到2n m =,由CD=3可知 ,3n m -=即可求出m 、n 的值;(2)根据图象可直接写出x 的取值范围;(3)作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP 的周长最小,求出坐标即可; 【详解】(1)⊥点()4A m ,,()2B n ,在反比例函数22k y x=的图象上, ⊥242k m n ==,即2n m =;⊥3DC =,⊥3n m -=,⊥3m =,6n =, ⊥点()34A ,,点()62B ,, ⊥23412k =⨯=,⊥反比例函数的解析式为212y x=; (2)⊥点()34A ,,点()62B ,, ⊥当21k k x b x+≤ 时:03x <≤或6x ≥; (3)如图,作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP 的周长最小; 设直线AF 的解析式为y kx a =+,3462k a k a +=⎧⎨+=-⎩ 解得210k a =-⎧⎨=⎩ ⊥直线AF 的解析式为210y x =-+,当0y =时,5x =,⊥点P 的坐标为()50,.【点睛】本题考查了反比例函数与一次函数的解析式以及求x 的取值范围,还有在反比例函数中出现的动点问题,属于中等难度.17.(1)1142y x =-+;(2)8;(3)存在,点P 的坐标为()42-,,()42-,,()84, 【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【详解】解:(1)将()2A m ,,()1B n ,两点代入反比例函数26y x = 得62m =,61n =,得3m =,6n =,所以()23A ,,()61B , 将()23A ,,()61B ,代入一次函数1y kx b =+ 得32k b =+,16k b =+,解得12k =-,4b = 即1142y x =-+ (2)设一次函数1142y x =-+与x 轴、y 轴分别交于D ,C 两点,再过A ,B 两点分别向y 轴、x 轴作垂线,垂足分别为E ,F 两点,如图1,当0x =时,111404422y x ;当0y =时,1042x =-+,8x = ⊥4OC =,8OD =⊥()23A ,,()61B ,⊥2AE =,1BF = ⊥11481622OCD S OC OD ∆=⨯⨯=⨯⨯= 1142422OAC S OC AE ∆=⨯⨯=⨯⨯= 1181422OBD S OD BF ∆=⨯⨯=⨯⨯= 16448OAB OCD OAC OBD S S S S ∆∆∆∆=--=--=⊥OAB ∆的面积为8(3)存在,如图2,当AB 和OB 为邻边时,点B (6,1)先向左平移6个单位再向下平移1个单位到点O (0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P (2-6,3-1),即P (-4,2);当OA 和OB 为邻边时,点O (0,0)先向右平移2个单位再向上平移3个单位到点A (2,3), 则点B 也先向右平移2个单位再向上平移3个单位到点P '(6+2,1+3),即P '(8,4);当AB 和OA 为邻边时,点A (2,3)先向右平移4个单位再向下平移2个单位到点B (6,1), 则点O 也先向右平移4个单位再向下平移2个单位到点P''(0+4,0-2),即P ''(4,-2);⊥点P 的坐标为(-4,2)或(4,-2)或(8,4).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积公式,平行四边形的性质,平移的性质,用分类讨论的思想解决问题是解本题的关键.18.(1)m=3,n=-1;(2)x>1或-3<x<0;(3)4【分析】(1)把A ,B 的坐标代入反比例函数的解析式,即可求解;(2)观察函数图象即可求解;(3)由⊥AOB 的面积S =S △AOC +S △BOC ,即可求解.【详解】解:(1)由题意,得m 31m n 3⎧=⎪⎪⎨⎪=⎪-⎩,解得:3m =,1n =- (2)由(1)可求得反比例函数解析式为:3y x=,一次函数解析式为:2y x =+,观察函数图象知,当1x >或30x -<<时,一次函数的值大于反比例函数的值.(3)设直线AB 交y 轴于C ,把0x =代入2y x =+,得:2y =,⊥OC=2,⊥⊥OAB 的面积AOC BOC 11S S 2132422∆∆=+=⨯⨯+⨯⨯=.【点睛】本题考查了用待定系数法求一次函数和反比例函数的解析式,三角形的面积,一次函数与反比例函数的交点问题,关键是掌握数形结合思想.19.(1)2,﹣1;(2)C (﹣2,﹣2);(3)D′(2--+【分析】(1)用待定系数法即可求解;(2)设点C (m ,﹣m ﹣4),则点D (m ,﹣12m),再根据△OCD 的面积=8,得出m 的值,即可求解; (3)直线AB 与x 轴负半轴的夹角为45°,设△OCD 沿射线AB 方向向左平移m 个单位,则向上平移m 个单位,则点O′(-m ,m ),将O′坐标代入y =﹣12x 得到m 的值,进而求解. 【详解】解:(1)将点B 的坐标代入y =﹣12x 得,b =﹣126-=2, 故点B 的坐标为(﹣6,2).将点B 的坐标代入一次函数表达式得,2=﹣6k ﹣4,解得k =﹣1,故答案为2,﹣1.(2)⊥点C 在直线AB 上,一次函数表达式为y =﹣x ﹣4,故设点C (m ,﹣m ﹣4),则点D (m ,﹣12m ), 则△CDO 的面积=12CD×(-m )=12×(﹣12m +m +4)(-m )=8, 解得12m m ==﹣2,故点C (﹣2,﹣2).(3)由AB 的函数表达式知,直线AB 与x 轴负半轴的夹角为45°,。
2021 年九年级数学中考必刷真题《第九专题: 解直角三角形应用》
2021 中考必刷真题《第九专题:解直角三角形应用》1.(2020.沈阳)如图,在矩形ABCD中,AB=3,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则DE的长为()42A B C D 3332.(2020.大连)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东600方向,且与他相距200m,则图书馆A到公路的距离AB为()2003A 100m B 100m m 21003mC D3.(2020.阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=200,两树间的坡面距离AB=5m,则这两棵树的水平距离约为______m(结果精确到0.1m,参考数据:sin200≈0.342 ,cos200≈0.940,tan200≈0..364)4.(2020.盘锦)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表。
请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度。
(结果精确到0.1米,参考数据:sin670≈0.92,cos670≈0.39,tan670≈2.36,sin220≈0.37,cos220≈0.93,tan220≈0.40)5.(2020.鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=600,∠ACB=150,AC=40cm,求支架BC的长。
(结果精确到1cm,参考数据:2 1.414,3 1.732,6 2.449)6.(2020.锦州)如图,某海岸边有B,C两码头,C码头位于B码头的正东方向,距离B码头40海里。
甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东300方向的C码头航行,当甲船到达距B码头30海里的E处时,乙船位于甲船北偏东600方向的D处,求此时乙船与C码头之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学专题训练(9)
一、选择题
1、下列计算中,正确的是…………………………………………………………………( ) A 、4
2
2
a a a =+ B 、()
53
2
a a = C 、632a a a =⋅ D 、a a a =÷23 (a ≠0)
2、有12只型号相同的杯子,其中一等品8只,二等品3只,三等品1只,从中任意抽取一只杯子,恰好是二等品的概率是……………………………………………………( )
A 、
121 B 、41 C 、43 D 、6
1 3、在四边形ABCD 中,向量AB 、BC 、CD 的和向量是……………………………( )
A 、AC
B 、DA
C 、B
D D 、AD
4、已知⊙O 的半径为1,P 是⊙O 外一点,PD 是⊙O 的一条切线,切点为D , ∠OPD =30°,则PD 的长为………………………………………………………………( ) A 、3 B 、
332 C 、33 D 、2
1
5、下列说法正确的是……………………………………………………………………( )
A 、对角线相等的四边形是平行四边形;
B 、对角线互相垂直的四边形是平行四边形;
C 、对角线互相平分的四边形是平行四边形;
D 、一组对边平行,另一组对边相等的四边形是平行四边形.
6、如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO , 点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧 交BC 于点D ,连接PD ,如果PD PO =,那么AP 的长是…( ) (A )5 (B )6
(C )7
(D )8
二、填空题
7、梯形ABCD 中,AD ∥BC ,E 、F 分别为AB 、CD 的中点,如果4=AD ,6=BC ,那么=EF . 8、在Rt △ABC 中,︒=∠90C ,6=AC ,8=BC ,
点G 为Rt △ABC 的重心,那么=CG . 9、某人沿坡度3:1=i 的山路的路面向上前进10100米后,他所在的位置比原来的位置升高____________米.
10、在Rt △ABC 中,︒=∠90C ,点D 在AC 上,BD 平分ABC ∠,将△BCD 沿着直线BD
翻折,点C 落在1C 处,如果5=AB ,4=AC ,那么1sin ADC ∠的值是 . 11、关于x 的一元二次方程042
=+-mx x 有两个相等的实数根,则m = .
12、请你写出一个二元一次方程,使它的一个解为⎩
⎨⎧==21
y x ,此方程是 .
13、用换元法解分式方程21
2222
2
=+++
+x x x x 时,若设y x x =+22
,则原方程可化为 .
14、二次函数12
-=x y 的图像向左平移3个单位,所得的二次函数解析式为 . 15、如图,AB ∥CD ,BE 平分∠ABC ,∠C =54°,则∠BEC = 度.
P
→ → →
→ →
→ →
(第15题)E D C B A E D C B A (第16题)
y
x O D C B
A F E D C
B A O
y x
D
C
B
A
16、如图,在△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD =3,BD =2,=∆∆ABC ADE S S :
.
17、在Rt ∆ABC 中,0
90C =∠,若cosA=
3
1
,那么sinA= . 18、已知矩形ABCD 的边长分别为1和2,以D 为圆心画圆,使A 、B 、C 三个顶点至少有
一个点在圆内,且至少有一个点在圆外,则⊙D 的半径r 的范围是 .
三19、如图,已知正方形ABCD 的两个顶点在抛物线c x y +=2
上,另两点C 、D 在x 轴
上,正方形ABCD 的面积等于4。
(1)求AB 的长度; (2)求抛物线的解析式.
20、如图,在电线杆CD 的C 处引拉线CE 和CF 固定电线杆,在离电线杆6米的B 处安置测角仪(点B 、E 、D 、F 在一直线上),在A 处测得电线杆C 处的仰角为30°,已知测角
仪的高AB 为1米,∠CED =60°. (1)求拉线CE 的长(保留根号);
(2)若∠CFD =α,求CF 的长(用α的三角比表示).
21、如图,双曲线x y 2-
=和x y 8-=在第二象限中的图像,A 点在x
y 8
-=的图像上,点A 的横坐标为m (m <0),AC ∥y 轴交x y 2-=图像于点C ,AB 、DC 均平行x 轴,分别交x
y 2
-=、
x
y 8-=的图像于点B 、D . (1)用m 表示A 、B 、C 、D 的坐标; (2)求证:梯形ABCD 的面积是定值; (3)若△ABC 与△ACD 相似,求m 的值.
22、某市推行农村合作医疗保险,村民只要每人每年交10元钱,就可以加入合作医疗保险,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力. 小明与同学随机调查了他们乡的一些村民,根据收集到的数据绘制了如下的统计图,根据图示信息,解答以下问题:
(1)本次调查了多少村民?
(2)被调查的村民中,有多少人参加合作医疗得到了返回款?
(3)该乡若有10000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.
23、某城市要在东西方向M 、N 两地之间修建一条道路.已知:如图, C 点周围180m 范围内为文物保护区,在MN 上点A 处测得C 在A 的北偏东︒60方向上,从A 向东走500m 到达B 处,测得C 在B 的北偏西︒45方向上.
(1)MN 是否穿过文物保护区?为什么?(参考数据: 732.13≈)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成
这项工程需要多少天?
24、操作:如图所示,在正方形ABCD 中,点P 是CD 边上一动点(与C 、D 点不重合),使三角尺的直角顶点与点P 重合,并且一条直角边始终经过点B ,另一条直角边与正方形的某一边所在直线交于一点E . 探究:(1)观察操作结果,哪一个三角形与△BPC 相似?并证明你的结论;(注:如果有多
种结果,请选择一种加以证明.)
(2)当点P 位于CD 的中点时,你找到的三角形与△BPC 的周长比是多少?
2.5%97.5%
合作医疗作医疗
24060
P
C
A
北
D C B A D
(备用图)
B C
A 25、如图,已知抛物线交x 轴于点A 、点
B ,交y 轴于点
C ,且点)0,6(A ,点)4,0(C ,OB AB 5 ,设点),(y x E 是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.
(1)求抛物线解析式及顶点坐标;
(2)求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3)当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形? (4)是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不
存在,请说明理由.
26、如图,在等腰梯形ABCD 中,AD ∥BC ,
(1)求梯形ABCD 的面积;
(2)设E 在AD 上,AE =2,F 为AB 上一个动点(不与A 、B 重合),过F 作FG ∥EC ,交BC 于G .
①设BF =x ,四边形EFGC 的面积等于y ,写出y 与x 之间的函数解析式,并求出这个函数的定义域.
②当△AEF 与△CDE 相似时,求四边形EFGC 的面积.。