主传动系统设计 ppt课件
合集下载
第5章传动系统设计3178页PPT
i=10~80 ⑤摆线针轮减速系统,适用的速比范围 :
i=11~87
从缩短运动链的角度出发,采用摆线针轮减速系统最好,其次是两级行 星齿轮减速系统和齿轮-蜗杆减速系统。
4)传动系统应布置紧凑,有较小的外廓尺寸和重量。
有一些机械系统对尺寸和重量有较严格的要求。如汽车、拖拉机、工程 机械、飞机等移动式机械。当要求传动比较大时,选用可实现较大传动比的 行星齿轮传动、摆线针轮传动、谐波传动,它们与其它传动形式相比,可大 大减小传动系统的尺寸和重量。
5)当机械系统的载荷频繁变化,而且有较大过载时,传动系统中要设置过 载保护装置。
传动系统中的过载保护装置,可减小传动系统和执行系统中各构件的计 算载荷,使这些构件的尺寸和重量减小,提高可靠度。
6)对传动系统要有安全防护措施。 要有能保护传动系统各构件安全工作的措施,如汽车变速箱的操纵杆上 要设置联锁装置,不允许同时挂两个档的现象出现。在传动系统的适当部位, 要设保护操作者安全的装置,如转动零件上加防护罩。
2、调节动力机输出的速度、转矩或力,以满足执行机构的要求。
执行系统有时要求在不同的速度、转矩或力下工作,直接改变动力机的 速度、转矩或力不可能或不经济,就要用传动系统来实现这一要求。
3、分配动力机输出的运动和动力,以满足执行系统的要求。
有时要用一个动力机驱动若干个位置、运动形式或速度不相同的执行机 构,要靠传动系统把运动或动力分配到各执行机构。
传动系统是机械系统的重要组成部分,传动系统的优劣将直接影响 到机械系统的性能和经济性。有一些机器的动力机与执行机构直接联接, 如风扇、水泵等。但大多数机器,在动力机与执行机构间设有传动系统。
传动系统是由运动链及相应的联系装置组成的。前述起重机的传动系统 是由两级齿轮传动及联系装置—制动器、联轴器组成。
i=11~87
从缩短运动链的角度出发,采用摆线针轮减速系统最好,其次是两级行 星齿轮减速系统和齿轮-蜗杆减速系统。
4)传动系统应布置紧凑,有较小的外廓尺寸和重量。
有一些机械系统对尺寸和重量有较严格的要求。如汽车、拖拉机、工程 机械、飞机等移动式机械。当要求传动比较大时,选用可实现较大传动比的 行星齿轮传动、摆线针轮传动、谐波传动,它们与其它传动形式相比,可大 大减小传动系统的尺寸和重量。
5)当机械系统的载荷频繁变化,而且有较大过载时,传动系统中要设置过 载保护装置。
传动系统中的过载保护装置,可减小传动系统和执行系统中各构件的计 算载荷,使这些构件的尺寸和重量减小,提高可靠度。
6)对传动系统要有安全防护措施。 要有能保护传动系统各构件安全工作的措施,如汽车变速箱的操纵杆上 要设置联锁装置,不允许同时挂两个档的现象出现。在传动系统的适当部位, 要设保护操作者安全的装置,如转动零件上加防护罩。
2、调节动力机输出的速度、转矩或力,以满足执行机构的要求。
执行系统有时要求在不同的速度、转矩或力下工作,直接改变动力机的 速度、转矩或力不可能或不经济,就要用传动系统来实现这一要求。
3、分配动力机输出的运动和动力,以满足执行系统的要求。
有时要用一个动力机驱动若干个位置、运动形式或速度不相同的执行机 构,要靠传动系统把运动或动力分配到各执行机构。
传动系统是机械系统的重要组成部分,传动系统的优劣将直接影响 到机械系统的性能和经济性。有一些机器的动力机与执行机构直接联接, 如风扇、水泵等。但大多数机器,在动力机与执行机构间设有传动系统。
传动系统是由运动链及相应的联系装置组成的。前述起重机的传动系统 是由两级齿轮传动及联系装置—制动器、联轴器组成。
数控车床的主传动系统设计PPT
详细描述
在进行动态特性分析时,需要考虑主轴的转速、转矩和刚度等参数,以及传动系统的固有频率和阻尼比等特性。 通过分析这些参数,可以评估主传动系统在加工过程中的稳定性,预测可能出现的振动和噪声问题,并采取相应 的措施进行优化设计。
强度与刚度分析
总结词
强度与刚度分析是评估主传动系统在承受外力和变形时的性能表现,以确保系统的可靠性和稳定性。
总结词:传统设计
详细描述:该实例介绍了一种传统的数控车床主传动系统设计,主要采用齿轮传 动和链传动组合的方式,具有结构简单、可靠性高的优点,但效率较低,适用于 一般加工需求。
实例二:主传动系统的改进设计
总结词:优化设计
详细描述:该实例针对传统主传动系统的不足,进行了优化改进。采用新型轴承和材料,提高了传动效率和稳定性,减少了 维护成本,适用于高精度、高效率的加工需求。
设计目的和意义
设计目的
设计出高效、稳定、可靠的数控车床主传动系统,满足加工精度和效率的要求, 提高生产效率和产品质量。
意义
主传动系统设计的优劣直接影响到数控车床的性能和加工精度,进而影响到整个 机械制造行业的生产水平和产品质量。因此,对数控车床主传动系统进行合理设 计,对于提高机械制造行业的整体水平具有重要意义。
要点二
详细描述
在进行热特性分析时,需要考虑主轴的转速、切削力和材 料导热系数等参数。通过建立热传导模型,可以预测主传 动系统在不同工况下的温度变化和热变形情况。根据分析 结果,可以采取相应的散热措施和热补偿技术,提高系统 的热稳定性和加工精度。
06 主传动系统实例分析
实例一:某型号数控车床主传动系统设计
高耐磨材料
选用高耐磨材料,如陶瓷和硬质 合金,以提高主传动系统的使用 寿命和可靠性,减少维护成本。
在进行动态特性分析时,需要考虑主轴的转速、转矩和刚度等参数,以及传动系统的固有频率和阻尼比等特性。 通过分析这些参数,可以评估主传动系统在加工过程中的稳定性,预测可能出现的振动和噪声问题,并采取相应 的措施进行优化设计。
强度与刚度分析
总结词
强度与刚度分析是评估主传动系统在承受外力和变形时的性能表现,以确保系统的可靠性和稳定性。
总结词:传统设计
详细描述:该实例介绍了一种传统的数控车床主传动系统设计,主要采用齿轮传 动和链传动组合的方式,具有结构简单、可靠性高的优点,但效率较低,适用于 一般加工需求。
实例二:主传动系统的改进设计
总结词:优化设计
详细描述:该实例针对传统主传动系统的不足,进行了优化改进。采用新型轴承和材料,提高了传动效率和稳定性,减少了 维护成本,适用于高精度、高效率的加工需求。
设计目的和意义
设计目的
设计出高效、稳定、可靠的数控车床主传动系统,满足加工精度和效率的要求, 提高生产效率和产品质量。
意义
主传动系统设计的优劣直接影响到数控车床的性能和加工精度,进而影响到整个 机械制造行业的生产水平和产品质量。因此,对数控车床主传动系统进行合理设 计,对于提高机械制造行业的整体水平具有重要意义。
要点二
详细描述
在进行热特性分析时,需要考虑主轴的转速、切削力和材 料导热系数等参数。通过建立热传导模型,可以预测主传 动系统在不同工况下的温度变化和热变形情况。根据分析 结果,可以采取相应的散热措施和热补偿技术,提高系统 的热稳定性和加工精度。
06 主传动系统实例分析
实例一:某型号数控车床主传动系统设计
高耐磨材料
选用高耐磨材料,如陶瓷和硬质 合金,以提高主传动系统的使用 寿命和可靠性,减少维护成本。
第三章数控机床的主传动系统
要使润滑油突破这层旋转气流很不容易,采用突入滚 道式润滑方式则可以可靠地将油送人轴承滚道处。
第三章 数控机床的主传动系统
(3)突入滚道式润滑方式 如图3—10所示为适应该要求而设计的特殊轴承。 润滑油的进油口在内滚道附近,利用高速轴承的泵 效应,把润滑油吸人滚道。
若进油口较高,则泵效应差,当进油接近外滚道 时则成为排放口了,油液将不能进入轴承内部。
第三章 数控机床的主传动系统
3.冷却润滑技术的研究 过去,加工中心机床主轴轴承大都采用油脂润滑方 式,为了适应主轴转速向更高速化发展的需要,新 的冷却润滑方式相继开发出来,见表3—2。
第三章 数控机床的主传动系统
第一章 数控机床概述
(1)油气润滑方式 这种润滑方式不同于油雾方式, 油气润滑是用压缩空气把小油滴送进轴承空隙中, 油量大小可达最佳值,压缩空气有散热作用,润滑 油可回收,不污染周围空气。图3—8是油气润滑 原理图。
1.主轴部件常用滚动轴承的类型 图3—13a为锥孔双列圆柱滚子轴承,内圈 为1:12的锥孔,当内圈沿锥形轴颈轴向移 动时,内圈胀大以调整滚道的间隙。滚子数 目多,两列滚子交错排列,因而承载能力大, 刚性好,允许转速高。它的内、外圈均较薄, 因此,要求主轴颈与箱体孔均有较高的制造 精度,以免轴颈与箱体孔的形状误差使轴承 滚道发生畸变而影响主轴的旋转精度。该轴 承只能承受径向载荷。
第一章 数控机床概述
(2)热变形 电动机、主轴及传动件都是热源。低温升、小
的热变形是对主传动系统要求的重要指标。 (3)主轴的旋转精度和运动精度
主轴的旋转精度是指装配后,在无载荷、低速转 动条件下测量主轴前端和距离前端300mm处的径 向圆跳动和端面圆跳动值。主轴在工作速度旋转时 测量上述的两项精度称为运动精度。数控机床要求 有高的旋转精度和运动精度。
第三章 数控机床的主传动系统
(3)突入滚道式润滑方式 如图3—10所示为适应该要求而设计的特殊轴承。 润滑油的进油口在内滚道附近,利用高速轴承的泵 效应,把润滑油吸人滚道。
若进油口较高,则泵效应差,当进油接近外滚道 时则成为排放口了,油液将不能进入轴承内部。
第三章 数控机床的主传动系统
3.冷却润滑技术的研究 过去,加工中心机床主轴轴承大都采用油脂润滑方 式,为了适应主轴转速向更高速化发展的需要,新 的冷却润滑方式相继开发出来,见表3—2。
第三章 数控机床的主传动系统
第一章 数控机床概述
(1)油气润滑方式 这种润滑方式不同于油雾方式, 油气润滑是用压缩空气把小油滴送进轴承空隙中, 油量大小可达最佳值,压缩空气有散热作用,润滑 油可回收,不污染周围空气。图3—8是油气润滑 原理图。
1.主轴部件常用滚动轴承的类型 图3—13a为锥孔双列圆柱滚子轴承,内圈 为1:12的锥孔,当内圈沿锥形轴颈轴向移 动时,内圈胀大以调整滚道的间隙。滚子数 目多,两列滚子交错排列,因而承载能力大, 刚性好,允许转速高。它的内、外圈均较薄, 因此,要求主轴颈与箱体孔均有较高的制造 精度,以免轴颈与箱体孔的形状误差使轴承 滚道发生畸变而影响主轴的旋转精度。该轴 承只能承受径向载荷。
第一章 数控机床概述
(2)热变形 电动机、主轴及传动件都是热源。低温升、小
的热变形是对主传动系统要求的重要指标。 (3)主轴的旋转精度和运动精度
主轴的旋转精度是指装配后,在无载荷、低速转 动条件下测量主轴前端和距离前端300mm处的径 向圆跳动和端面圆跳动值。主轴在工作速度旋转时 测量上述的两项精度称为运动精度。数控机床要求 有高的旋转精度和运动精度。
汽车传动系PPT课件
40
CVT的工作原理
工作时通过主动轮与从 动轮的可动盘作轴向移 动来改变主动轮、从动 轮锥面与V型传动带啮合 的工作半径,从而改变 传动比。主动轮和从动 轮的工作半径可以通过 调节液压泵油缸压力改 变可动盘的轴向移动量 实现连续调节,从而实 现了无级变速。
41
变速器动画
变速器动画一 变速器动画二 变速器动画三 变速器动画四 同步器动画 操纵机构
56
2)对称式齿轮差速器
对称式齿轮差速器具有平均分配扭矩的特点。
57
个人观点供参考,欢迎讨论!
动力性能降低、前桥结构及工艺复杂、制造 成本高、维修保养困难等。
适用车型:轿车(含微型、经济型汽车)上比较盛行。
7
后置后驱 (RR = Rear-engine Rear-drive )
优势: 传动效率高、有利于车身内布置、车厢内 振动和噪声小、车厢内面积利用率大等。
弊端: 高速转向不稳定、水箱布置困难、发动机防 尘困难、远程操纵机构较复杂、维修保养困难等。
21
3、摩擦离合器
1)摩擦离合器的分类 2)摩擦离合器的组成 3)摩擦离合器的工作原理
22
1)摩擦离合器的分类
23
2)摩擦离合器的组成
24
3)摩擦离合器的工作原理
25
4、离合器操纵机构
机械式操纵机构 液压式操纵机构 助力式和气压式操纵机构
26
机械式操纵机构(杆系传动、绳索传动)
杆系传动机构 结构简单,工作可靠。但机械效率低, 质量大,布置比较困难。如EQ1090E汽车离合器。 绳索传动机构 可采用吊挂踏板,但寿命较短。如桑塔纳 轿车、捷达轿车。 。
52
3、主减速器(Final Drive)
(1)功能: 减速增扭,改变传动方向
CVT的工作原理
工作时通过主动轮与从 动轮的可动盘作轴向移 动来改变主动轮、从动 轮锥面与V型传动带啮合 的工作半径,从而改变 传动比。主动轮和从动 轮的工作半径可以通过 调节液压泵油缸压力改 变可动盘的轴向移动量 实现连续调节,从而实 现了无级变速。
41
变速器动画
变速器动画一 变速器动画二 变速器动画三 变速器动画四 同步器动画 操纵机构
56
2)对称式齿轮差速器
对称式齿轮差速器具有平均分配扭矩的特点。
57
个人观点供参考,欢迎讨论!
动力性能降低、前桥结构及工艺复杂、制造 成本高、维修保养困难等。
适用车型:轿车(含微型、经济型汽车)上比较盛行。
7
后置后驱 (RR = Rear-engine Rear-drive )
优势: 传动效率高、有利于车身内布置、车厢内 振动和噪声小、车厢内面积利用率大等。
弊端: 高速转向不稳定、水箱布置困难、发动机防 尘困难、远程操纵机构较复杂、维修保养困难等。
21
3、摩擦离合器
1)摩擦离合器的分类 2)摩擦离合器的组成 3)摩擦离合器的工作原理
22
1)摩擦离合器的分类
23
2)摩擦离合器的组成
24
3)摩擦离合器的工作原理
25
4、离合器操纵机构
机械式操纵机构 液压式操纵机构 助力式和气压式操纵机构
26
机械式操纵机构(杆系传动、绳索传动)
杆系传动机构 结构简单,工作可靠。但机械效率低, 质量大,布置比较困难。如EQ1090E汽车离合器。 绳索传动机构 可采用吊挂踏板,但寿命较短。如桑塔纳 轿车、捷达轿车。 。
52
3、主减速器(Final Drive)
(1)功能: 减速增扭,改变传动方向
铣床车床主传动系统图和转速图.pptx
24:48
1000
710
500
22:62 355
250
降速,向右下方倾斜三格;
180
125
ub2=42/42=1=1/ 0,
90
63
等速,连线水平。
45
31.5
❖ 轴Ⅲ~Ⅳ间 的变速组c 有两个传动副,
其传动比依此为: uc1=18/72=1/4= 1/ 4, 降速,向右下方倾斜四格; uc2=60/30=2/1= 2/1, 升速,向右上方倾斜两格。
n j n n j1
考虑刀具寿命,实际加工时用nj,则其相对转速损失 为n-nj 相对转速损失率为:
A nnj n
最大相对转速损失率为n趋近与nj+1时:
lim Amax
nn j
1
n j 1 nj
nj
1
nj nj n j
1 1 1
结论:最大相对转速损失率相等。
(2)主轴转速的合理排列 ❖ 转速范围内转速相对损失均匀; ❖ 使变速传动系统简化; ❖ 混合公比——转速使用的机会相差较 大
电机 Ⅰ a Ⅱ b Ⅲ c 60:30
36:36 42:42 30:42
24:48
22:62
Ⅳ
1440 r/min 1000 710 500 355 250 180 125 90
63
18:72
45
31.5
综上所述,转速图可以很清楚地表 电机
示:
Ⅰa ⅡbⅢc 60:30
1、主轴各级转速的传动路 线;
250
表示的转速之比是等比级数
180
125
的公比
90
注意:因为 nj+1/nj= ,故有
1000
710
500
22:62 355
250
降速,向右下方倾斜三格;
180
125
ub2=42/42=1=1/ 0,
90
63
等速,连线水平。
45
31.5
❖ 轴Ⅲ~Ⅳ间 的变速组c 有两个传动副,
其传动比依此为: uc1=18/72=1/4= 1/ 4, 降速,向右下方倾斜四格; uc2=60/30=2/1= 2/1, 升速,向右上方倾斜两格。
n j n n j1
考虑刀具寿命,实际加工时用nj,则其相对转速损失 为n-nj 相对转速损失率为:
A nnj n
最大相对转速损失率为n趋近与nj+1时:
lim Amax
nn j
1
n j 1 nj
nj
1
nj nj n j
1 1 1
结论:最大相对转速损失率相等。
(2)主轴转速的合理排列 ❖ 转速范围内转速相对损失均匀; ❖ 使变速传动系统简化; ❖ 混合公比——转速使用的机会相差较 大
电机 Ⅰ a Ⅱ b Ⅲ c 60:30
36:36 42:42 30:42
24:48
22:62
Ⅳ
1440 r/min 1000 710 500 355 250 180 125 90
63
18:72
45
31.5
综上所述,转速图可以很清楚地表 电机
示:
Ⅰa ⅡbⅢc 60:30
1、主轴各级转速的传动路 线;
250
表示的转速之比是等比级数
180
125
的公比
90
注意:因为 nj+1/nj= ,故有
数控机床传动系统设计PPT课件
第4章 数控机床主传动系统设计
4.1 概述
主传动系统是用来实现机床主运动的传动系统,它应具有一定 的转速(速度)和一定的变速范围,以便采用不同材料的刀具,加工 不同材料、不同尺寸、不同要求的工件,并能方便地实现运动的开 停、变速、换向和制动等。
数控机床主传动系统主要包括电动机、传动系统和主轴部件, 它与普通机床的主传动系统相比在结构上比较简单,这是因为变速 功能全部或大部分由主轴电动机的无级调速采承担,省去了复杂的 齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机 无极调速的范围。
五、齿轮齿数的确定
齿轮的齿数取决于传动比和径向尺寸要求。在同一变速组中, 若模数相同,且不采用变位齿轮时,则传动副的齿数和相同,若模 数不同,则齿数和S与模数m 成反比。即
S1 m 2 S2 m1
若z1、z2 分别为某传动副的主、被动轮齿数,
z1 z2 S
第4章 数控机床主传动系统设计
五、齿轮齿数的确定
第4章 数控机床主传动系统设计
一、数控机床主传动系统的特点
与普通机床比较,数控机床主传动系统具有下列特点: ➢ 转速高、功率大。 ➢ 变速范围宽,可实现无极调速。 ➢ 具有较高的精度和刚度,传动平稳。 ➢ 具有特有的刀具安装结构。
第4章 数控机床主传动系统设计
二、主传动系统的设计要求
定义:由主轴电机、传动元件和主轴构成的具有运动传动联系的系
第4章 数控机床主传动系统设计
二、变速规律
机床主轴12 级转速是由三个变速传动组(简称变速组或传动组) 串联实现的。这是主传动变速系统的基本形式,称为基型变速系统 ( 或常规变速系统) ,即以单速电动机驱动,由若干变速组串联, 使主轴得到既不重
复又排列均匀(指 单一公比)的等比 数列转速的变速 系统。
4.1 概述
主传动系统是用来实现机床主运动的传动系统,它应具有一定 的转速(速度)和一定的变速范围,以便采用不同材料的刀具,加工 不同材料、不同尺寸、不同要求的工件,并能方便地实现运动的开 停、变速、换向和制动等。
数控机床主传动系统主要包括电动机、传动系统和主轴部件, 它与普通机床的主传动系统相比在结构上比较简单,这是因为变速 功能全部或大部分由主轴电动机的无级调速采承担,省去了复杂的 齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机 无极调速的范围。
五、齿轮齿数的确定
齿轮的齿数取决于传动比和径向尺寸要求。在同一变速组中, 若模数相同,且不采用变位齿轮时,则传动副的齿数和相同,若模 数不同,则齿数和S与模数m 成反比。即
S1 m 2 S2 m1
若z1、z2 分别为某传动副的主、被动轮齿数,
z1 z2 S
第4章 数控机床主传动系统设计
五、齿轮齿数的确定
第4章 数控机床主传动系统设计
一、数控机床主传动系统的特点
与普通机床比较,数控机床主传动系统具有下列特点: ➢ 转速高、功率大。 ➢ 变速范围宽,可实现无极调速。 ➢ 具有较高的精度和刚度,传动平稳。 ➢ 具有特有的刀具安装结构。
第4章 数控机床主传动系统设计
二、主传动系统的设计要求
定义:由主轴电机、传动元件和主轴构成的具有运动传动联系的系
第4章 数控机床主传动系统设计
二、变速规律
机床主轴12 级转速是由三个变速传动组(简称变速组或传动组) 串联实现的。这是主传动变速系统的基本形式,称为基型变速系统 ( 或常规变速系统) ,即以单速电动机驱动,由若干变速组串联, 使主轴得到既不重
复又排列均匀(指 单一公比)的等比 数列转速的变速 系统。
第3章数控机床的主传动系统
第3章数控机床的主传动系统
THK6380加工中心主轴部件结构图
•拆•1234567891下..0拆将拆切拆抽.与分下主卸卸断下出主解液联主轴凸前机套主轴主压接轴向轮支床筒轴相轴缸座箱左,撑动、右连刀,螺盖移抽主力垫端的具及钉出出件电圈的气自相及凸主源、轴管动连联轮轴,碟向油•夹的接两拆拆簧定管紧油座边下位装管的卸主套置螺轴工前端艺盖、拆下主轴后端防护罩,
• 图3-41是CK7815型数控车床主轴部件结构图 • 拆卸及调整过程 • 拆卸与调整过程需要注意的事项
PPT文档演模板
第3章数控机床的主传动系统
•图3-41 CK7815型数控车床主轴部件结构图
•TIANJIN •中德培训中心
PPT文档演模板
第3章数控机床的主传动系统
•CK7815型数控车床主轴部件拆卸及调整过程
拨叉来完
成。图3-
3是三位
液压拨叉
的原理图。
•图3-3 三位液压拨叉工作原理图
•1、5-液压缸; 2-活塞杆; 3-拨叉; 4-套筒
。
PPT文档演模板
第3章数控机床的主传动系统
4.电磁离合器变速
电磁离合器是应用电磁效应接通或切断运动的元件, 由于它便于实现自动操作,并有现成的系列产品可供
选用,因而它已成为自动装置中常用的操纵元件。
图3-1 主轴功率转矩特性
2.分段无级变速 (1)带有变速齿轮的主传动(见图3-2a)。 (2)通过带传动的主传动(见图3-2b) 。 (3)用两个电动机分别驱动主轴 (见图3-2c) 。
PPT文档演模板
第3章数控机床的主传动系统
3.液压拨叉变速机构
带有齿轮
传动的主
传动系统
中,齿轮
的换挡主
第二章传动系统的传动简图-PPT课件
32
二、变速2
第二章 传动系统 西南交大机械系
33
三、各档速度计算和各档驱动力的计算 1、已知各档总传动比 i r 、发动机型号(Me、ne)、
轮胎型号,求各档理论运行速度U
Ur=nr×R×2π=R×ne×2π/i =0.377R×ne/i (Km/h)
r r
化简单位为:Ur=2π×10-3×R×ne × 60/ i
r
Ur—各档理论运行速度Km/h
R—驱动轮半径m
nr—对应档驱动轮转速r/min
2019/3/12 第二章 传动系统 西南交大机械系 34
2019/3/12
第二章 传动系统 西南交大机械系
35
第三节 计算载荷的确定
一、 根据发动机或液力变矩器的最大输出转矩Mmax确定
第二章 传动系统 西南交大机械系
29
4、电传动
• 发动机→发电机→电动机→减速器→驱动轮
优点
• 发动机与车轮之间没有刚性联系,便于总体布置及维修。 • 可实现无级变速 • 实现多轮驱动容易。 • 可采用电力制动,减少制动器的负荷,使其寿命增加。
• 容易实现自动化。
缺点
• 成本高;自重大
应用
• 大功率的自卸载重汽车、铲运机、矿用斗轮式装载机等
2019/3/12 第二章 传动系统 西南交大机械系 11
缺陷:
成本高、传动效率略低、增加了燃油消耗量;在行驶阻 力变化小而进行连续作业时,上述优点不显著
应用:
很广泛、图1-7、1-9、1-10、1-11等
2019/3/12
第二章 传动系统 西南交大机械系
12
17
18
22
23
第二章 传动系统 西南交大机械系
机械制造装备设计课程设计(18级)(PPT40页)
2、动力计算
根据给定的电动机功率,计算主轴及传动轴尺寸、齿轮、 皮带的根数及型号,确定轴承等。验算主轴或某一根传动轴 的刚度和轴承的承载能力。
3、结构设计
进行传动轴组件、变速机构、主轴组件等的布置和结构 设计。绘制机床主轴主变速箱装配图(包括展开图和一主要 剖视图)和一主要零件图。
机械制造装备设计课程设计--机床主传动系统设计
机械制造装备设计课程设计--机床主传动系统设计
5、零件的验算 ① 在零件尺寸和位置确定后,才可以知道它们的受力状态, 力的大小,作用点和方向,才可以对零件(如齿轮、轴、键、 轴承等)进行较为精确的验算。 ② 如发现不合理或不正确时,应重新修改结构,重新计 算,以达要求。 6、装配图上应标数据 ① 齿轮齿数及模数、带轮直径、电动机功率和转速、轴编号等, 并均与转速图一致; ② 决定配合性质的配合尺寸;
4、编写设计计算说明书 主要包括: 1)运动设计和动力计算的计算过程和分析; 2)结构设计说明(包括主要结构的分析以及其他需要说明 或论证的问题); 3)参考文献
机械制造装备设计课程设计--机床主传动系统设计
四、课程设计的步骤和注意事项
1、准备工作 2、运动设计
① 传动方案设计(集中传动或分离式传动); ② 结构式; ③ 绘制转速图; ④ 确定齿轮齿数; ⑤ 绘制传动系统图; ⑥ 带和带轮的设计计算;
机械制造装备设计课程设计--机床主传动系统设计
3、动力计算
① 传动件的计算转速(主轴、各传动轴、最小齿轮); ② 传动轴直径的估算和选用(一般情况下,应利用轴的扭转强度计算的方 法来估算出轴的最小直径,求得d值应加以圆整。如果是花键轴,则花键的 内径可比计算的d值减小7%,由此选用合适的花键); ③ 主轴的设计(前端、后端直径、内孔直径、支撑形式、悬伸量、支撑跨 距等); ④ 齿轮模数的估计(一般同一变速组中的齿轮取同一模数,一个主轴变速 箱中的齿轮采用1~2种模数。主轴变速箱的齿轮模数常取为2.5、3、 4mm)。
根据给定的电动机功率,计算主轴及传动轴尺寸、齿轮、 皮带的根数及型号,确定轴承等。验算主轴或某一根传动轴 的刚度和轴承的承载能力。
3、结构设计
进行传动轴组件、变速机构、主轴组件等的布置和结构 设计。绘制机床主轴主变速箱装配图(包括展开图和一主要 剖视图)和一主要零件图。
机械制造装备设计课程设计--机床主传动系统设计
机械制造装备设计课程设计--机床主传动系统设计
5、零件的验算 ① 在零件尺寸和位置确定后,才可以知道它们的受力状态, 力的大小,作用点和方向,才可以对零件(如齿轮、轴、键、 轴承等)进行较为精确的验算。 ② 如发现不合理或不正确时,应重新修改结构,重新计 算,以达要求。 6、装配图上应标数据 ① 齿轮齿数及模数、带轮直径、电动机功率和转速、轴编号等, 并均与转速图一致; ② 决定配合性质的配合尺寸;
4、编写设计计算说明书 主要包括: 1)运动设计和动力计算的计算过程和分析; 2)结构设计说明(包括主要结构的分析以及其他需要说明 或论证的问题); 3)参考文献
机械制造装备设计课程设计--机床主传动系统设计
四、课程设计的步骤和注意事项
1、准备工作 2、运动设计
① 传动方案设计(集中传动或分离式传动); ② 结构式; ③ 绘制转速图; ④ 确定齿轮齿数; ⑤ 绘制传动系统图; ⑥ 带和带轮的设计计算;
机械制造装备设计课程设计--机床主传动系统设计
3、动力计算
① 传动件的计算转速(主轴、各传动轴、最小齿轮); ② 传动轴直径的估算和选用(一般情况下,应利用轴的扭转强度计算的方 法来估算出轴的最小直径,求得d值应加以圆整。如果是花键轴,则花键的 内径可比计算的d值减小7%,由此选用合适的花键); ③ 主轴的设计(前端、后端直径、内孔直径、支撑形式、悬伸量、支撑跨 距等); ④ 齿轮模数的估计(一般同一变速组中的齿轮取同一模数,一个主轴变速 箱中的齿轮采用1~2种模数。主轴变速箱的齿轮模数常取为2.5、3、 4mm)。
机械装备技术电子课件第二章
总之,机床的传动系统通常是由几个变速组串联
所组成的,其中以基本组为基础,再通过第一、第
二、……扩大组将各轴的转速级数和变速范围逐步扩
大。通常,将这样的传动系统称为常规传动系统。
常规传动系统的特点:
1)单公比的连续等比数列; 2)单速电机为动力源; 3)采用滑移齿轮或齿轮离合器变速; 4)没有采用公用齿轮。
二、 主传动链转速图的拟定
• 1.极限传动比、极限变速范围原则
最小传动比的限制 最大传动比的限制 直齿轮, 直齿轮变速组的极限变速范围 r=8. 螺旋圆柱齿轮变速组的极限变速范围 r=10. e.g. ① 公比φ=1.41
e.g. ② 18=31×36×23, 公比φ=1.26,。
•
2.传动顺序及传动副数原则
主轴转速为连续等公比数列时(即无转速的重复或空 缺),主轴转速的变速级数等于各变速组传动副数
的乘积。即:
Z=pa×pb×pc×pd×……pm
例:主轴转速为连续等公比数列,主轴转速级数Z =12。 a、b、c三个变速组的传动副数: pa=3、pb=2、pc=2。
主轴转速级数:Z=pa×pb×pc=3×2×2=12
转速线 传动线
标中,并把有关
转速之间的传动
比也画出来的一
种线图。 ⑵ 组成
传动轴线
转速点
⑶ 基本概念
1)变速组的级比和级比指数 级比 x-变速组中两相邻传动比的比值; 级比指数 x-转速图上两相邻传动线相距的格数。 2)基本组和扩大组 基本组 — x=1的变速组。 扩大组 — x>1的变速组。 扩大顺序 — 变速组按 x 值 由小到大依次排列的顺 序。 3)变速组的变速范围 基本组:
结构式:8=22×21×24
第一扩 大 组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 1) 变速系统的变速级数是各变速组传动副数的乘积。 ▪ 2) 机床的总变速范围Rn是各变速组变速范围的乘积。 ▪ 3) 变速组的传动比之间关系
变速的基本规律是:变速系统是以基本组为基础,再通过扩大 组(可以有第一扩大组、第二扩大组……)把转速范围(级数)加 以扩大。若要求变速系统是一个连续的等比数列,则基本组的 级比等于,级比指数X。=1;扩大组的级比xj ,级比指数 xj应等于该扩大组前面的基本组传动副数和各扩大组传动副数 的乘积。
▪ 2)机床传递动力要求。机床的动力源和传动机构应能够输 出和传递足够的功率和转矩,并有较高的传动效率。
▪ 3)机床工作性能要求。机床的传动结构,特别是末端执行 件必须有足够的精度、刚度、抗振性能和较小的热变形。
▪ 4)产品设计经济性要求。应该合理地满足机床的自动化程 度和生产率的要求。
▪ 5)机床的操作和控制要灵活,安全可靠,噪声小,维修方 便。机床的制造要方便,成本要低。
ua3
24 48
1/
2
1/1.412
1/2
II轴-III轴:变速组b
ub1
42 42
1 1.410
0
ub2
22 62
1/
2.82
1/1.413
1/3
III轴-IV轴:变速组c
uc1
60 30
2
1.412
2
uc2
18 72
1/
4
1/1.414
1/4
IV轴转速: 322 12
转速图的基本规律
第三章
第四节 主传动系统设计
▪ 主传动系组成
主传动系一般由动力源(如电动机)、变速装置及执行 件(如主轴、刀架、工作台),以及开停、换向和制动 机构等组成。
▪ 动力源:给执行件提供动力,并使其得到一定的运动速度和方向; ▪ 变速装置:传递动力以及变换运动速度; ▪ 执行件:执行机床所需的运动,完成旋转或直线运动。
▪ 无级变速传动可以在一定的变速范围内连续改变转速,以便 得到最有利的切削速度;能在运转负载中变速,便于实现变 速自动化。无级变速传动可由机械摩擦无级变速器、液压无 级变速器和电气无级变速器实现。
3.4.2主传动系统分类与传动方式
(二)主传动系的传动方式:
1.集中传动方式
▪ 主传动系的全部传动和变速机 构集中装在同一个主轴箱内, 称为集中传动方式。
上斜是升速传动,从左向下斜是降速传动。
1.转速图
传动线
31.5-1400:12级 公比:
45 1.41 31.5
电-I轴
u 126 1/ 2 1/1.412 1/ 2 256
I轴-II轴:变速组a
ua1
36 36
1 1.41.411
1/1
▪ 通用机床中多数机床的主变速 传动系都采用这种方式。适用 于普通精度的大中型机床。
▪ 特点是结构紧凑,便于实现集 中操纵,安装调整方便。
▪ 缺点是运转的传动件在运转过 程中所产生的振动、热量,会 使主轴产生变形,使主轴回转 中心线偏离正确位置而直接影 响加工精度。
3.4.2主传动系统分类与传动方式
可以分为分级变速传动和无级变速传动。
3.4.2主传动系统分类与传动方式
▪ 分级变速传动在一定的变速范围内只能得到某些转速,变速 级数一般不超过20~30级。传动方式有滑移齿轮变速、交换 齿轮变速和离合器(如摩擦式、牙嵌式、齿轮式离合器)变速。 传递功率较大,变速范围广,传动比准确,工作可靠,广泛 应用于通用机床。缺点是有速度损失,不能在运转中进行变 速。
3.4.2主传动系统分类与传动方式
(一)主传动系分类 : ▪ (1)按驱动主传动的电动机类型
可分为交流电动机驱动和直流电动机驱动。交流电动机 驱动中又可分单速交流电动机或调速交流电动机驱动。调 速交流电动机驱动又有多速交流电动机和无级调速交流电 动机驱动。 ▪ (2)按传动装置类型
可分为机械传动装置、-液压传动装置、电气传动装置 以及它们的组合。 ▪ (3)按变速的连续性
(一)转速图与结构式
1.转速图—设计和分析主传动系统的工具
转速图的作用: (1)表示出传动轴的数目; (2)传动轴之间的传动关系; (3)主轴的各级转速值及其传动路线; (4)各传动轴的转速分级和转速值; (5)各传动副的传动比。
转速图由一组相互平行和垂直的格线组成。 ▪ 1)距离相等的竖直线代表传动系统的各轴。从左到右依次标注。 ▪ 2)距离相等的横直线与竖直线相交点,代表各级转速。 ▪ 3)坐标取对数坐标,在相交点直接写出转速的数值。 ▪ 4)相邻两轴之间相应转速的连线代表相应传动副的传动比,从左向
2.分离传动方式
▪ 主传动系中的大部分的传动和变速机 构装在远离主轴的单独变速箱中,然 后通过带传动将运动传到主轴箱的传 动方式,称为分离传动方式。
▪ 特点是变速箱各传动件所产生的振动 和热量不能直接传给或少传给主轴, 从而减少主轴的振动和热变形,有利 于提高机床的工作精度。
▪ 运动由皮带经齿轮离合器直接传动, 主轴传动链短,使主轴在高速运转时 比较平稳,空载损失小;当主轴需作 低速运转时,运动则由皮带轮经背轮 机构的两对降速齿轮传动后,转速显 著降低,达到扩大变速范围的目的。
3.4.3 分级变速主传动系统
分级变速主传动系设计的内容和步骤: 根据已确定的主变速传动系的运动参数,拟定结构式、转速图,合理分 配各变速组中的传动副的传动比,确定齿轮数和带轮直径等,绘制主变 速传动系图。
▪ (一)转速图与结构式 ▪ (二)各变速组的变速范围及极限传动比 ▪ (三)主传动系统设计的基本原则与方法 ▪ (四)主传动系统的几种特殊设计 ▪ (五)扩大传动系变速范围的方法 ▪ (六)齿轮齿数的确定 ▪ (七)计算转速 ▪ (八)变速箱内传动件的空间布置与计算
3.4 主传动系统设计
3.4.1 必须满足的设计基本要求 3.4.2 主传动系统分类与传动方式 3.4.3 分级变速主传动系统 3.4.4 无级变速主运动传动系统设计 3.4.5 数控机床主传动系统设计
3.4.1 须满足的设计基本要求
▪ 1)满足机床使用性能要求。机床的末端执行件(如主轴)应 有足够的转速范围和变速级数。
2.结构式—比较和分析不同传动方案
▪ 结构式简单、直观,能清楚地显示出变速传动系中主轴转速级 数Z、各变速组的传动顺序、传动副数(Pi)和各变速组的级 比指数Xi,一般表达式为
变速的基本规律是:变速系统是以基本组为基础,再通过扩大 组(可以有第一扩大组、第二扩大组……)把转速范围(级数)加 以扩大。若要求变速系统是一个连续的等比数列,则基本组的 级比等于,级比指数X。=1;扩大组的级比xj ,级比指数 xj应等于该扩大组前面的基本组传动副数和各扩大组传动副数 的乘积。
▪ 2)机床传递动力要求。机床的动力源和传动机构应能够输 出和传递足够的功率和转矩,并有较高的传动效率。
▪ 3)机床工作性能要求。机床的传动结构,特别是末端执行 件必须有足够的精度、刚度、抗振性能和较小的热变形。
▪ 4)产品设计经济性要求。应该合理地满足机床的自动化程 度和生产率的要求。
▪ 5)机床的操作和控制要灵活,安全可靠,噪声小,维修方 便。机床的制造要方便,成本要低。
ua3
24 48
1/
2
1/1.412
1/2
II轴-III轴:变速组b
ub1
42 42
1 1.410
0
ub2
22 62
1/
2.82
1/1.413
1/3
III轴-IV轴:变速组c
uc1
60 30
2
1.412
2
uc2
18 72
1/
4
1/1.414
1/4
IV轴转速: 322 12
转速图的基本规律
第三章
第四节 主传动系统设计
▪ 主传动系组成
主传动系一般由动力源(如电动机)、变速装置及执行 件(如主轴、刀架、工作台),以及开停、换向和制动 机构等组成。
▪ 动力源:给执行件提供动力,并使其得到一定的运动速度和方向; ▪ 变速装置:传递动力以及变换运动速度; ▪ 执行件:执行机床所需的运动,完成旋转或直线运动。
▪ 无级变速传动可以在一定的变速范围内连续改变转速,以便 得到最有利的切削速度;能在运转负载中变速,便于实现变 速自动化。无级变速传动可由机械摩擦无级变速器、液压无 级变速器和电气无级变速器实现。
3.4.2主传动系统分类与传动方式
(二)主传动系的传动方式:
1.集中传动方式
▪ 主传动系的全部传动和变速机 构集中装在同一个主轴箱内, 称为集中传动方式。
上斜是升速传动,从左向下斜是降速传动。
1.转速图
传动线
31.5-1400:12级 公比:
45 1.41 31.5
电-I轴
u 126 1/ 2 1/1.412 1/ 2 256
I轴-II轴:变速组a
ua1
36 36
1 1.41.411
1/1
▪ 通用机床中多数机床的主变速 传动系都采用这种方式。适用 于普通精度的大中型机床。
▪ 特点是结构紧凑,便于实现集 中操纵,安装调整方便。
▪ 缺点是运转的传动件在运转过 程中所产生的振动、热量,会 使主轴产生变形,使主轴回转 中心线偏离正确位置而直接影 响加工精度。
3.4.2主传动系统分类与传动方式
可以分为分级变速传动和无级变速传动。
3.4.2主传动系统分类与传动方式
▪ 分级变速传动在一定的变速范围内只能得到某些转速,变速 级数一般不超过20~30级。传动方式有滑移齿轮变速、交换 齿轮变速和离合器(如摩擦式、牙嵌式、齿轮式离合器)变速。 传递功率较大,变速范围广,传动比准确,工作可靠,广泛 应用于通用机床。缺点是有速度损失,不能在运转中进行变 速。
3.4.2主传动系统分类与传动方式
(一)主传动系分类 : ▪ (1)按驱动主传动的电动机类型
可分为交流电动机驱动和直流电动机驱动。交流电动机 驱动中又可分单速交流电动机或调速交流电动机驱动。调 速交流电动机驱动又有多速交流电动机和无级调速交流电 动机驱动。 ▪ (2)按传动装置类型
可分为机械传动装置、-液压传动装置、电气传动装置 以及它们的组合。 ▪ (3)按变速的连续性
(一)转速图与结构式
1.转速图—设计和分析主传动系统的工具
转速图的作用: (1)表示出传动轴的数目; (2)传动轴之间的传动关系; (3)主轴的各级转速值及其传动路线; (4)各传动轴的转速分级和转速值; (5)各传动副的传动比。
转速图由一组相互平行和垂直的格线组成。 ▪ 1)距离相等的竖直线代表传动系统的各轴。从左到右依次标注。 ▪ 2)距离相等的横直线与竖直线相交点,代表各级转速。 ▪ 3)坐标取对数坐标,在相交点直接写出转速的数值。 ▪ 4)相邻两轴之间相应转速的连线代表相应传动副的传动比,从左向
2.分离传动方式
▪ 主传动系中的大部分的传动和变速机 构装在远离主轴的单独变速箱中,然 后通过带传动将运动传到主轴箱的传 动方式,称为分离传动方式。
▪ 特点是变速箱各传动件所产生的振动 和热量不能直接传给或少传给主轴, 从而减少主轴的振动和热变形,有利 于提高机床的工作精度。
▪ 运动由皮带经齿轮离合器直接传动, 主轴传动链短,使主轴在高速运转时 比较平稳,空载损失小;当主轴需作 低速运转时,运动则由皮带轮经背轮 机构的两对降速齿轮传动后,转速显 著降低,达到扩大变速范围的目的。
3.4.3 分级变速主传动系统
分级变速主传动系设计的内容和步骤: 根据已确定的主变速传动系的运动参数,拟定结构式、转速图,合理分 配各变速组中的传动副的传动比,确定齿轮数和带轮直径等,绘制主变 速传动系图。
▪ (一)转速图与结构式 ▪ (二)各变速组的变速范围及极限传动比 ▪ (三)主传动系统设计的基本原则与方法 ▪ (四)主传动系统的几种特殊设计 ▪ (五)扩大传动系变速范围的方法 ▪ (六)齿轮齿数的确定 ▪ (七)计算转速 ▪ (八)变速箱内传动件的空间布置与计算
3.4 主传动系统设计
3.4.1 必须满足的设计基本要求 3.4.2 主传动系统分类与传动方式 3.4.3 分级变速主传动系统 3.4.4 无级变速主运动传动系统设计 3.4.5 数控机床主传动系统设计
3.4.1 须满足的设计基本要求
▪ 1)满足机床使用性能要求。机床的末端执行件(如主轴)应 有足够的转速范围和变速级数。
2.结构式—比较和分析不同传动方案
▪ 结构式简单、直观,能清楚地显示出变速传动系中主轴转速级 数Z、各变速组的传动顺序、传动副数(Pi)和各变速组的级 比指数Xi,一般表达式为