2018高考数学全国1卷1(理科数学)
2018年高考理科数学全国(Ⅰ)卷第16题几种解题思路-精选教育文档
2018年高考理科数学全国([)卷第16题几种解题思路问题(2018年高考理科数学全国(I)卷第16题)巳知函数f(x)=2sinx+sin2x,则f(x)的最小值是.解法赏析思路If(x)=2sinx+sin2x,由周期函数不妨设xeO,2n,f7x=2cosx+2cos2x=2(2cos2x+cosxT)=2(2cosx~l) (cosx+1).所以,fx在0,n3,5n3,2n上递增,在n3,5n3上递减.所以f(x)min=min(f(0),f(5n3)}=minO,-332=-332,当x=2kn-n3,ke[WTHZ]Z[WTBX]时取等号.思路2f(x)=2sinx+2sinxcosx=2sinxl+cosxN-21-cos2x?l+cosx2=-23l+cosx33-3cosx,-233l+cosx+3-3cosx443-23644=-332,所以f(x)min=-332.取等号条件同思路1.思路3f(x)=2sinx+2sinxcosx=2sinxl+cosx=8sinx2cos3x2.令t=sinx2cos3x2t2=13X3sin2x2?cos2x2?cos2x2?cos2x2W133sin2x2+cos2x2+c os2x2+cos2x244=13344,所以te-3316,3316,f(x)min=-332,取等号条件同思路1.或者f2(x)=4(1-cosx)(1+cosx)3=[SX (]4[]3[SX)] (3-cosx)(1+cosx)(1+cosx)(1+cosx)W[SX(]4[]3[SX)][JB((][SX(]3-3cosx+l+cosx+l+cosx+l+cosx口4[SX)][JB))]4=[SX(]27[]4[SX)],当且仅当3-3cosx=l+cosx,即cosx=[SX(]1[]2[SX)]时,取等号.有f(x)min=-[SX(]3[KF(]3[KF)][]2[SX)].思路4f(x)=8sinx2cos3x2=8sinx2cos3x2sin2x2+cos2x22=8tanx2tan4x2+2 tan2x2+l令t=tanx2,所以fx=ft=8tt2+12.f't=-83t4+2t2-lt2+14,ft在-SymboleB,-33,33,+SymboleB上?f减,在-33,33上递增.又tf+SymboleB时,ft-*0,所以f(x)min=f(t)min=f(-33)=-332.取等号条件同思路1.[HT][HJ][FL)][JZ(][HT2Y3]2018年高考数学浙江卷第21题引发的探究[HT][HT5K]浙江省宁波市第四中学315016[HT5H]魏定波[JZ)][HT][FL(K2][STFZ]1试题呈现[TP魏定波-l.tif,Y][TS(][JZ]S1[TS)]如图1,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x±存在不同的两点A,B满足PA,PB的中点均在C上.(I)设AB中点为M,证明:PM垂直于y轴;(II)若P是半椭圆x2+y24=l(x解法2设直线AB 的方程x=ty+m,由x=ty+m,y2=4x,得,y2~4ty-4m=0,因为yl+y2=2y0,yly2=8x0-y20,所以t=12y0,m=y204-2x0, |AB|=(l+t2)(y2-yl)2=(l+t2)(8y20~32x0),d=|x0-ty0~m|l+t2,所以SAPAB=12|AB|?d=324(y20-4x0)y20-4x0,以下同解法1.[STFZ]3性质再探将上述试题作进一步探究:(1)已知抛物线C:y2=4x的内接梯形ABCD,其中AB〃CD.①则该梯形的两腰所在直线的交点、对角线交点及上下底的中点都在垂直y轴的直线1上(如图3);②若直线1与抛物线C交于R,则过R点抛物线的切线与直线AB平行;[TP魏定波-3.tif,Y][TS(][JZ]图3[TS)]③若直线AB、AC、BD的斜率存在,则lkAC+lkBD=2kAB;④若直线AB的斜率不存在,则kAC+kBD=O;⑤若直线AC的斜率不存在,则kAB=2kBD;证明①的证明与试题(I)证明相仿,不再阐述.②当直线AB斜率不存在时,点R即为原点0,结论成立;当直线AB斜率存在时,对于y2=4x两边对x求导,得2y?y'=4,则k=y‘=2yR=2yM=kAB,即过R点抛物线的切线与直线AB平行.③1kAC+1kBD=xC-xAyC-yA+xB-xDyB-yD=yC+yA4+yB+yD4=yB+yA4+yC+yD4=yM+yN2=2?yM2=2kAB;下面证明⑤,对于④的证明同理可得.因为直线AC的斜率不存在,所以xC=xA,yC+yA=0,又yC+yD=yA+yB.则yD-yB=2yA,所以kAB=yB-yAxB-xA=4yB+yA=2X4yB+yD=2kBD.(2)已知抛物线C:y2=4x的内接梯形ABCD,其中AB//CD,过点P作抛物线的两切线PE和PF(其中切点为E、F),?t直线EF与AB平行,且直线EF经过Q点(如图4).[TP魏定波-4.tif,Y][TS(][JZ]图4[TS)]证明由P(xO,yO)向抛物线C:y2=4x作切线PE、PF,容易得到切点弦EF所在的直线方程为:2x-y0y+2x0=0,对比直线AB的方程4x-2y0y+yAyB=0,可得,EF〃AB.由2x-y0y+2x0=0得线段EF的中点Q'(y202~x0,yO),又直线AC的方程为4x-(yA+yC)y+yAyC=O,要证明Q',Q重合,只须等式(yA+yC)yO-yAyC=4(y202~x0)成立.由于直线BC过点P,所以(yB+yC)y0-yByC=4x0,上述二个等式相加,其右边等于4(y202-x0)+4x0=2y20,其左边等于(yB+yC)yO~yByC+(yA+yC)yO~yAyC=(yB+yA+2yC)y0~ (yB+yA)yC=(2yO+2yC)y0~2y0yC=(2yO+2yC)y0-2y0yC=2y20.故(yA+yC)yO-yAyC=4(y202~x0)成立,即直线EF经过Q点.进一步,当D、C分别趋向于A、B时,直线AD的方程由4x-(yA+yC)y+yAyC=O,变为4x~2yAy+yA2=0,即为2x~yAy+2xA=0,此为过点A的抛物线切线方程,APAB转化为著名的“阿基米德三角形”.[HT][HJ][FD][JZ(][HT2HJ2018年全国I卷理第19题的探究[HT][HT5K]江西省吉水中学331600EHT5H]孙春生[JZ)][HT][FL(K2]2018年高考全国I卷理科第19题设椭圆C:x22+y2=l的右焦点为F,过F的直线1与C交于A、B两点,点M的坐标为(2,0).(1)当1与x轴垂直时,求直线AM的方程;(2)设0为坐标原点,证明:ZOMA=ZOMB.本题围绕直线与椭圆的位置关系这一重点内容,加强了对解析几何基本概念、基本思想方法和关键能力的考查,着重考查了直线方程的求法,椭圆的简单几何性质、直线与椭圆的位置关系及直线的斜率等多个知识点.简洁明了的题意背后是命题人的匠心独运,笔者利用几何画板对本题作了较系统的探究,现结合2018年高考I卷文科第20题,一并阐述如下.解(1)略;(2)证明:当直线1与x轴重合时,ZOMA=ZOMB=O,符合题意;当直线1与x轴不重合时,设1的方程为:x=ty+c,由x=ty+l,x22+y2=l,得:(t2+2)y2+2ty~l=0,由于点F在曲线内,故方程存在两个根.设方程的两个根分别为yl,y2,则yl+y2=-2tt2+2,yly2=Tt2+2,要使ZOMA=ZOMB相等,则问题转化为证明直线MA与MB 的斜率互为相反数,设直线MA与直线MB的斜率分别为kMA,kMB,则kMA+kMB=ylxl-2+y2x2-2=yltyl-l+y2ty2-l=2tyly2-(yl+y2)(tyl-1)(ty2~l),将yl+y2,yly2的表达式分别代入,可得kMA+kMB=21y1y2-(yl+y2)(tyl~l)(ty2~l)=~2tt2+2~ -2tt2+2(tyl-1)(ty2-l)=0故此时ZOMA=ZOMB,综上所述,Z0MA=Z0MB.解题后进行探究:题中的点M有什么特殊性吗?由椭圆的简单几何性质,通过计算知M是椭圆准线与x轴的交点,将探究拓展成…般情形的猜想得到命题:命题1设椭圆C:x2a2+y2b2=l(a>b>0)的右焦点为F,过F的直线1与C交于A、B两点,点M的坐标为(a2c,0),0为坐标原点,则Z0MA=Z0N!B.证明当直线1与x轴重合时,Z0NfA=Z0MB=0,符合题意;当直线1与x轴不重合时,设1的方程为:x=ty+c,由x=ty+c,x2a2+y2b2=l,得:(b2t2+a2)y2+2tcb2y-b4=0,由于点F在曲线内,故方程存在两个根yl,y2,且yl+y2=~2tcb2b2t2+a2,y1y2=~b4b2t2+a2,设直线MA与直线MB的斜率分别为kMA,kMB,则kMA+kMB=y1xl~a2c+y2x2~a2c=cy1ctyI~b2+cy2cty2-b2=2c2tyly2-b2c(yl+y2)(ctyl~b2)(cty2~b2)将yl+y2,yly2的表达式分别代入,可得kMA+kMB=2c2tyly2~b2c(yl+y2)(ctyl~b2)(cty2~b2)=0.因此,对椭圆一般情况问题成立.将椭圆推广到双曲线,易证以下推广命题:推广1设双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C的右支同时交于A、B两点,点M的坐标为(a2c,0),0为坐标原点,则Z0MA=Z0MB.进一步探究,当过F的直线1与C的左、右支分别交于一点时,情形如何?从几何作图来看,猜想有Z0MA+Z0MB=180°.证明当直线1与x轴重合时,Z0MA+Z0MB=180°,符合题恩;当直线1与X轴不重合时,设1的方程为:x=ty+c,由x=ty+c,x2a2-y2b2=l,得:(b2t2-a2)y2+2tcb2y+b4=0,设方程的两个根为yl,y2,则yl+y2=-2tcb2b2t2-a2,yly2=b4b2t2~a2,设直线MA与MB的斜率分别为kMA,kMB,则kMA+kMB=y1x1-a2c+y2x2~a2c=cylctyl+b2+cy2cty2+b2=2c2tyly2+b2c(yl+y2)(ctyl-b2)(cty2-b2)=0因此直线MA与MB倾斜角互补,即Z0MA+Z0MB=180°成立.推广2设双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C的左右支分别交于A、B两点,点M的坐标为(a2c,0),0为坐标原点,则Z0MA+Z0MB=180o.椭圆中这一性质对于双曲线有类似的推广命题,对于抛物线也不难证得有相关结论:推广3设抛物线C:y2=2px的焦点为F,过F的直线与C交于A、B两点,点M(-p2,0),0?樽?标原点,则Z0MA=Z0MB.这一结论与2018年全国I卷文科第20题极为相似:(2018年高考I卷文科第20题)已知抛物线C:y2=2x,点A(2,0),B(-2,0),过A的直线1与C交于M,N两点,证明ZABM=ZABN.比照推广3与高考文科题20,易猜想在抛物线中,只需要满足x轴上的两点A,B对称地分布在原点两侧,命题成立.探究设A(a,0),B(-a,0)(a>0,aG[WTHZ]R[WTBX]),过A作直线1交抛物线C:y2=2px于M,N两点,则ZABM=ZABN.证明设1的方程为:x=ty+a,由x=ty+a,y2=2px,得:y2~2pty-2pa=0,设方程的两个根为yl,y2,则yl+y2=2pt,yly2=-2pa,由直线MA与直线MB的斜率之和为:kMA+kMB=ylxl+a+y2x2+a=yItyl+2a+y2ty2+2a=2tyly2+2a(yl+y 2)(tyl+2a)(ty2+2a)=0,因此猜想成立,故综合以上探究有以下命题:命题2设抛物线C:y2=2px,点A(a,0),点B(-a,0)(a>0,ae[WTHZ]R[WTBX]),过点A的直线1与C交于M,N两点,则ZABM=ZABN.进一步探究,可得以上命题的逆命题仍成立,故有以下推广命题:推论1己知椭圆C:x2a2+y2b2=l(a>b>0)的右焦点为F,过F的直线1与C交于A、B两点,0为坐标原点,则存在唯一—点M(a2c,0),使ZOMA=ZOMB.推论2己知双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C同时交于右支A、B两点,则存在唯一一点M(a2c,0),使Z0MA=Z0MB.推论3已知双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C交于左右两支分别为A、B两点,0为坐标原点,则存在唯一一点M(a2c,0),使Z0MA+Z0MB=180°.推论4已知抛物线C:y2=2px,点A(a,0)(a>0,ae[WTHZ]R[WTBX]),过A的直线1与C交于M,N两点,则存在唯一一点B(-a,0),使ZMBA=ZNBA.一个看似平淡无奇的高考题,其产生的依据却是一些通用的性质作背景,若我们在解决数学问题后,能根据题中条件与结论之间蕴含的内在联系,在题后多反思,并由特殊推广到一般情形,则我们更能把握问题的实质,更能统领问题的全局.孙春生(1971—),男,江西吉水人.研究方向:高中数学教材教法,高考命题方向探究,高中数学解题方法探讨,经典题型母题研究.主要成绩:江西省骨干教师,吉水县名师,一直从事高中数学教学,兼任学校数学教研组长,指导学生在高考与奥赛中取得优异成绩,在《数学通报》、《数学教学》、《中学数学杂志》等省级以上刊物发表文章百余篇,撰写教辅书多部.[HT][HJ][FD][JZ(][HT2XBS]巧用结论妙解试题[ZW(*]基金项目:四川省〃西部卓越中学数学教师协同培养计划”项目(ZY16001).[ZW)][HT1.] [HT4F]一一以2018年圆锥曲线试题为例[HT][HT5K]四川省内江师范学院数学与信息科学学院641100EHT5H]余小芬彭玉灵[JZ)][HT][FL(K2]教材中结论主要以公式、定理、法则的形式直接呈现.事实上,教材中间接隐含了一些结论(这里称为“二手”结论)需要开发.“二手”结论往往是高考命题的重要取材、是解答高考试题的重要工具.本文以“二手结论”在2018年圆锥曲线试题中的应用举例说明.结论1双曲线焦点到渐近线的距离为b,其中b为虚半轴长.证明不妨设双曲线x2a2-y2b2=l(a>0,b>0),右焦点F(c,0),1:y=bax为双曲线的一条渐近线,即bx~ay=0.故F到1的距离d=bcb2+a2=bcc=b.例1(2018年高考全国III卷文科第10题)已知双曲线C:x2a2-y2b2=l(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为().A.2B.2C.322D.22解不妨设c=4,故点(4,0)为双曲线右焦点.由结论1,(4,0)到C的渐近线的距离为b.由e=2=ca,得a=22,所以b=c2~a2=22.故选D.评注本题通过特殊法假设c=4,巧妙将问题转化为双曲线焦点到渐近线的距离,从而利用结论快速求解,避免了繁琐计算,节约了求解时间.例2(2018年高考天津卷理科第7题)已知双曲线x2a2-y2b2=l(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点,设A、B到双曲线同一条渐近线的距离分别为dl和d2,且dl+d2=6,则双曲线的方程为()・A.x24-y212=lB.x212-y24=lC.x23-y29=lD.x29-y23=l图1解如图1,设右焦点为P,作AC±1(1为渐近线)于C,BD_L1于D,PM_L1于比易知PM为梯形ABDC的中位线,所以dl+d2=AC+BD=2PM=6,PM=3.又由结论1,b=PM=3.再由e=ca=2,c2=a2+b2,解得a2=3,故双曲线方程为x23-y29=l.评注本题结合梯形中位线性质,将dl+d2转化为焦点到准线的距离,进而利用结论1求解问题.例3(2018年高考全I卷理科第11题)已知双曲线C:x23-y2=l,0为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若AOMN为直角三角形,则MN=()・A. 32B.3C.23D.4图2解如图2,双曲线渐近线方程为疔±33x,故tanZM0F=33,所以ZM0F=30°,ZM0N=60°.故RtAOMN中,不妨设NOMN=90°(Z0NKf=90°同理可得),即FM±OM,故由结论1,FM=b.又OF=c,故M0=a=3.因此在RtAOMN中,MN=M0?tan60°=3M0=3.评注本题关键是通过渐近线方程求得RtAOMN中ZM0N=60o,以此确定AOMN中直角位置,从而利用结论1求得AOMN中一直角边,进而根据正切函数求得边长.例4(2018年高考全国III卷理科第11题)设Fl,F2是双曲线C:x2a2-y2b2=l(a>0,b>0)的左,右焦点,0是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若PF1=6OP,则C的离心率为()・A. 5B.2C.3D.2图3解如图3,过F1作渐近线1的垂线,垂足为P,.由结论1,F2P=F1P'=b.在RtAP0F2中,0P=0F22-PF22=c2-b2=a.同理, OP'=a.由巳知,PFl=60P=6a.又在RtAPP7Fl 中,PF1=F1P'2+PP'2=b2+4a2.故6a=b2+4a2,解得b2a2=2.故e=l+b2a2=3.评注在RtAP0F2中,利用结论1易求OP长,进而结合PF1=6OP求得PF1长.事实上,本题可在左PF1F2中利用余弦定理建立a,b的关系式,但计算较为复杂.因此,通过利用双曲线的对称性,在RtAPP7Fl中求得PF1的长,再利用等量替换求得a,b比例关系,减少了运算量,节约了求解时间.结论2巳知Fl,F2分别为椭圆x2a2+y2b2=l(a>b>0)的左、右焦点,P是C上的一点,若PF11PF2,且ZPF2F1=0,则离心率e=lsin0+cos0.证明在RtAPFlF2中,FlF2=2c,故PF2=FlF2?cos0=2ccos0,PFl=2csin0.所以PFl+PF2=2c(sin0+cos0)=2a,因此离心率e=ca=lsin0+cos0.例5(2018年高考全国II卷文科第11题)已知Fl,F2是椭圆C的两个焦点,P是C上的一点,若PF1J_PF2,且ZPF2F1=6O°,则C的离心率为().A.1-32B.2-3C.3-12D.3-1解由题意,利用结论2,e=lsin60°+cos60°=3~1.例6(2018年高考北京卷理科第14题)已知椭圆M:x2a2+y2b2=l(a>b>0),双曲线N:x2m2-y2n2=l,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为,双曲线N的离心率为.图4解如图4,不妨设椭圆M的左,右焦点分别为Fl,F2.由题意,ABF1CDF2为正六边形.连接AF1,易知ZF1AF2=9O°,且ZF1F2A=6O°.故由结论2,椭圆离心率e=lsin60°+cos60°=3-1.连接AO,易知ZA0F2=60°,即双曲线渐近线斜率nm=tan60°=3,故双曲线N的离心率e=l+n2m2=2.评注根据正六边形几何性质,不难得到题中焦点△F1AF2满足结论2的条件,故利用公式直接求解椭圆离心率;再由渐近线倾斜角表示斜率,从而获得in,n比例关系,再利用双曲线离心率公式求得答案.图5结论3若AB是过抛物线y2=2px(p>0)的焦点的弦,则以AB为直径的圆与抛物线的准线相切,且切点M与焦点F的连线垂直于弦AB.证明如图5,过点A,B分别向抛物线的准线1作垂线,垂足分别为Al,B1.过AB中点N向1作垂线,垂足为M.设以AB 为直径的圆的半径为r,因为2r=AB=AF+BF=AAl+BBl=2MN,故MN=r.因此,以AB为直径的圆与1相切.下面再证MF±AB.(1)当AB与x轴垂直时,结论显然成立;(2)当AB不与x轴垂直时,设M(-p2,t),又F(p2,0),故kMF=t-p.X kAB=yA-yBxA-xB=yA-yBy2A2p-y2B2p=2pyA+yB=2p2yN=pt,故kMF?kAB=T,即MF±AB.例7(2018年高考全国HI卷理科第16题)已知点M-1,1和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若ZAMB=90°,则k=[CD#4].解由题意,抛物线C的焦点为F(1,0),准线方程为:x=-1.即M(-1,1)恰在准线上,且满足ZAMB=90°,故由结论3,有MFXAB,所以kMF?kAB=-l.又kMF=0Tl-(-1)=-12,故kAB=2.评注由抛物线方程易知M在抛物线准线上,且ZAMB=90°,即M位于以AB为直径的圆上,且M恰为该圆与准线相切的切点,故由结论3,利用两直线垂直的斜率关系,快速求得直线AB的斜率.由此可见,利用结论求解避免了联立直线与曲线方程求解的繁琐.结论4设点P(x0,y0)是椭圆x2a2+y2b2=l(a>b>0)上的一点,Fl(-c,0),F2(c,0)分别为椭圆的左右焦点,则PFl=a+exO,PF2=a-exO,其中e为椭圆离心率.证明PF12=(xO+c)2+y20=(x20+2cx0+c2)+b2-b2a2x20=(I~b2a2)x20+2cx0+c2+b2=c2a2x20+2cx0+a2=(caxO+a)2,所以PFl=caxO+a=exO+a,又PFl+PF2=2a,所以PF2=a~exO.例8(2018年高考全国III卷文科第20题)已知斜率为k的直线1与椭圆C:x24+y23=l交于A,B两点.线段AB的中点为Ml,mm>0.(I)略;(II)F为C的右焦点,P为C上一点,且FP+FA+FB=[STHZ]O.证明:2FP=FA+FB.解由题意,a=2,b=3,所以c=l,故右焦点为F(1,0),离心率c=12.设A(xl,yl),B(x2,y2),P(x3,y3),故FP+FA+FB=(x3-l,y3)+(xl~l,yl)+(x2~l,y2)=(xl+x2+x3~3,yl+y2+y3).由FP+FA+FB=[STHZ]0,得xl+x2+x3=3.又线段AB的中点为Ml,m,所以xl+x2=2,x3=l.又由结论4,FA=a-exl=2-12x1,FB=a-ex2=2-12x2,FP=a-ex3=2-12x3=32.所以FA+FB=4-12(xl+x2)=3,故FA+FB=2FP,即2FP=FA+FB.口注解决本题的关键是利用结论4表示出FA,FB,FP,再结合条件:FP+FA+FB=[STHZ]0及M为线段AB中点,通过向量加法的坐标运算及中点坐标公式求得xl,x2,x3的关系,从而证得结论.由此可见,“二手结论”在解决高考试题中发挥着重要作用,利用“二手结论”解题也体现了近年高考“多考点想,少考点算”的基本命题理念.特别指出,上文的结论1一4并非“繁难偏怪”,而是完全依据教材中圆锥曲线的重要概念、性质以及领悟教材例题、习题设计意图,通过适当变式、拓展而来.这正如教育家叶圣陶先生所说:“教材无非是个例子,它只能作为教课的依据.要教得好,使学生受益,还要靠教师善于运用.”因此,基于《普通高中数学课程标准(2017年版)》、《普通高等学校招生全国统一考试大纲》,结合高考命题实际,对教材中的某些内容进行删减、拓展、补充、改进、增补、变式、整合等.通过二次开发,将学习形态的数学转化为应试形态的数学、将教材结构转化为应试结构,不仅可以弥补、完善数学知识结构,也能促进学生对知识灵活、综合的应用,拓宽学生数学思维的广度和深度,激发他们进一步学习的潜能.。
2018新课标全国1卷(理数)
2018新课标全国1卷(理数)2018年全国统一髙考数学试卷(理科)(新课标I)一、选择题:本题共12小题,每小题5分,共60分。
1.(5 分)(2018・新课标I )设z=lzL+2i,贝!]|z|=()1+iA.0B.丄C. ID. V222.(5 分)(2018* 新课标I )已知集合A={X|X2-X-2>0},则C R A二()A. {x| - l<x<2}B. {x| - 1W X W2} C ・{x | x < - 1} U {x|x>2} D. {x|xW - 1} U {x|xM2}3.(5分)(2018-新课标I )某地区经过一年的新农村建设, 农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例则下面结论中不正确的是A.新农村建设后, 种植收入减少其他收入增加了一倍以上养殖收入增加了一倍养殖收入与第三产业收入的总和超过了 经济收入的一半4. (5分)(2018-新课标I )记&为等差数列{a n }的前n 项和.若 3S 3=S 2+S 4, ai=2,则直二( )A. - 12B. - 10C. 10D. 125. (5 分)(2018*新课标 I )设函数 f(x)=x 3+(a - l)x 2+ax •若 f (x )为奇函数,则曲线y 二f (x )在点(0, 0)处的切线方程为() A. y= - 2x B ・ y=-xC ・ y=2x D. y=x6. (5分)(2018*新课标I )在AABC 中,AD 为BC 边上的 中线,E 为AD 的中点,则酣( )A. |AB -护B. 1AB -网C.押+护D.存S+評7. (5分)(2018*新课标I )某圆柱的高为2,底面周长为 16,其三视图如图.圆柱表面上的点M 在正视图上的对应 点为A,圆柱表面上的点N 在左视图上的对应点为B,则在 此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )B .C . 新农村建设后, 新农村建设后, 新农村建设后,A. 2佰B・ 2V5 C. 3D. 28.(5分)(2018*新课标I )设抛物线C: y2=4x的焦点为F, 过点(・2, 0)且斜率为寻的直线与C交于M, N两点,则而•乔()第4 页(共35 页)A. 5B. 6C. 7D. 89.(5分)(2018?新课标I)已知函数f (x)心,glnj,(x)=f (x)+x+a .若g (x)存在2个零点,则a的取值范围是(A. [ - 1, 0)B. [0 , +s)C. [ - 1, +s)D. [1 ,+s)10.(5分)(2018?新课标I)如图来自古希腊数学家希波克拉底所研究的几何图形•此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC直角边AB, AC △ ABC 勺三边所围成的区域记为I,黑色部分记为:n, 其余部分记为皿•在整个图形中随机取一点,此点取自I,n,m的概率分别记为》, p2,卩3,贝廿()A. P1 = P2B. P1 = P3C. p2=p3D. P1 = P2 + P31 211.(5分)(2018?新课标I)已知双曲线C: - y2=1, O 为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M N.若△ OMN为直角三角形,则|MN|=()A. ]B. 3C. 2 匚D. 412.(5分)(2018?新课标I)已知正方体的棱长为1,每条棱所在直线与平面a所成的角都相等,则a截此正方体所得截面面积的最大值为()A 「B •厂C 「D.- 二、填空题:本题共4小题,每小题5分,共20分。
2018年高考真题理科数学(全国乙卷) 含解析
说明:非官方版正式答案,答案和解析有可能存在少量错误,仅供参考使用。
2018年新课标I 高考数学(理科)答案与解析1. {}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭. 故332AB x x ⎧⎫=<<⎨⎬⎩⎭.故选D .2. 由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi + 故选B .3. 由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==-∴100109098a a d =+=. 故选C .4. 如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟 根据几何概型,所求概率10101402P +==. 故选B .5. 222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距 ∴焦距2224c m =⋅=,解得1m = ∴13n -<< 故选A .6. 原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯ 故选A .7. ()22288 2.80f e =->->,排除A()22288 2.71f e =-<-<,排除B0x >时,()22x f x x e =-()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-=因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C故选D .8. 对A : 由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误对B : 由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误对C : 要比较log b a c 和log a b c ,只需比较ln ln a c b 和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a,只需ln b b 和ln a a构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确 对D : 要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>⇔>,D 错误故选C .9.输出32x =,6y =,满足4y x = 故选C .10. 以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,题目条件翻译如图:设(0A x,2p D ⎛- ⎝,点(0A x 在抛物线22ypx =上,∴082px =……①点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②点(0A x 在圆222x y r +=上,∴2208x r +=……③ 联立①②③解得:4p =,焦点到准线的距离为4p =.故选B .11. 如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥ 同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111BC BD CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .F12. 由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩ 则21k ω=+,其中k ∈Z()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减故选B .13. 由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.14. 设展开式的第1k +项为1k T +,{}0,1,2,3,4,5k ∈∴()5552155C 2C 2k kkkkkk T x x---+==.当532k -=时,4k =,即454543255C 210T x x --== 故答案为10.15.由于{}n a 是等比数列,设11n n a a q -=,其中1a 是首项,q 是公比.∴2131132411101055a a a a q a a a q a q ⎧+=+=⎧⎪⇔⎨⎨+=+=⎪⎩⎩,解得:1812a q =⎧⎪⎨=⎪⎩. 故412n n a -⎛⎫= ⎪⎝⎭,∴()()()()21174932 (472)22412111...222n n n n n a a a ⎡⎤⎛⎫-+-++----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫⋅⋅⋅=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭当3n =或4时,21749224n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦取到最小值6-,此时2174922412n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎪⎝⎭取到最大值62.所以12...n a a a ⋅⋅⋅的最大值为64.16. 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为 **1.50.51500.3905360000x y x y x y x y x N y N⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩≤≤≤≥≥ 目标函数2100900z x y =+作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0)在(60,100)处取得最大值,210060900100216000z =⨯+⨯=17.⑴ ()2cos cos cos C a B b A c +=由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=∵πA B C ++=,()0πA B C ∈、、, ∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C = ∵()0πC ∈, ∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅221722a b ab =+-⋅()237a b ab +-=1sin 2S ab C =⋅∴6ab = ∴()2187a b +-=5a b +=∴ABC △周长为5a b c ++=18.⑴ ∵ABEF 为正方形∴AF EF ⊥ ∵90AFD ∠=︒ ∴AF DF ⊥ ∵=DFEF F∴AF ⊥面EFDCAF ⊥面ABEF∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒∵AB EF ∥AB ⊄平面EFDC EF ⊂平面EFDC∴AB ∥平面ABCDAB ⊂平面ABCD∵面ABCD 面EFDC CD = ∴AB CD ∥ ∴CD EF ∥∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,,()02202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,()020EB a =,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,()200AB a =-,, 设面BEC 法向量为()m x y z =,,. 00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩11101x y z ===-,()301m =-,,设面ABC 法向量为()222n x y z =,, =00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即222220220a x ay ax ⎧-=⎪⎨⎪=⎩ 22204x y z ===,()034n =,设二面角E BC A --的大小为θ. cos 3m n m nθ⋅===+⋅ ∴二面角E BC A --的余弦值为19.⑴ 每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B == 设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯= ()()()44220.20.20.04P x P A P B ===⨯=⑵ 要令()0.5P x n ≤≥,0.040.160.240.5++<,0.040.160.240.240.5+++≥ 则n 的最小值为19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯= 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯= 所以应选用19n =BE AC ∥,则C EBD =∠∠,由,AC AD D C ==则∠∠,EBD D ∴=∠∠,则EB ED = 4AE EB AE ED AD ∴+=+==所以E 的轨迹为一个椭圆,方程为22143x y +=,(0y ≠);⑵ 221:143x y C +=;设:1l x my =+,因为PQ l ⊥,设():1PQ y m x =--,联立1l C 与椭圆 221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=;()2212134m m +=+;圆心A 到PQ 距离d ==所以||PQ =,()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+21.⑴ 由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+① 若0a =,那么()()0202x f x x e x =⇔-=⇔=,()f x 只有唯一的零点2x =,不合题意;② 若0a >,那么20x x e a e +>>,所以当1x >时,()'0f x >,()f x 单调递增 当1x <时,()'0f x <,()f x 单调递减 即:故()f x 在()1,+∞上至多一个零点,在(),1-∞上至多一个零点 由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点. 而当1x <时,x e e <,210x -<-<,故()()()()()()()222212111x f x x e a x e x a x a x e x e =-+->-+-=-+--则()0f x =的两根11t =,21t =+, 12t t <,因为0a >,故当1x t <或2x t >时,()()2110a x e x e -+-->因此,当1x <且1x t <时,()0f x >又()10f e =-<,根据零点存在性定理,()f x 在(),1-∞有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.③ 若02ea -<<,则()ln 2ln 1a e -<=,当()ln 2x a <-时,()1ln 210x a -<--<,()ln 2220a x e a e a -+<+=,即()()()'120x f x x e a =-+>,()f x 单调递增; 当()ln 21a x -<<时,10x -<,()ln 2220a x e a ea -+>+=,即()()()'120x f x x e a =-+<,()f x 单调递减;当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()'0f x >,()f x 单调递增.即:而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当1x ≤时,()f x 在()ln 2x a =-处取到最大值()ln 2f a -⎡⎤⎣⎦,那么()()l n 20fx f a -<⎡⎤⎣⎦≤恒成立,即()0f x =无解 而当1x >时,()f x 单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.④ 若2ea =-,那么()ln 21a -=当()1ln 2x a <=-时,10x -<,()ln 2220a x e a ea -+<+=,即()'0f x >,()f x 单调递增当()1ln 2x a >=-时,10x ->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增又()f x 在1x =处有意义,故()f x 在R 上单调递增,此时至多一个零点,不合题意.⑤ 若2ea <-,则()ln 21a ->当1x <时,10x -<,()ln 212220a x e a e a ea -+<+<+=,即()'0f x >,()f x 单调递增当()1ln 2x a <<-时,10x ->,()ln 2220a x e a ea -+<+=,即()'0f x <,()f x 单调递减当()ln 2x a >-时,()1ln 210x a ->-->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增 即:故当()ln 2x a -≤时,()f x 在1x =处取到最大值()1f e =-,那么()0f x e -<≤恒成立,即()0f x =无解当()ln 2x a >-时,()f x 单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.综上所述,当且仅当0a >时符合题意,即a 的取值范围为()0,+∞.⑵ 由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211x x x e x e a x x ---==--设()()()221xx e g x x -=-,则()()12g x g x = 那么()()()2321'1x x g x e x -+=-,当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增. 设0m >,构造代数式:()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111mm h m e m -=++,0m >则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=.因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x <<令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔-> 整理得:122x x +<.22.⑴ 设圆的半径为r ,作OK AB ⊥于K∵120OA OB AOB =∠=︒,∴30sin302OAOK AB A OK OA r ⊥∠=︒=⋅︒==,, ∴AB 与O ⊙相切 ⑵ 方法一:假设CD 与AB 不平行CD 与AB 交于F2FK FC FD =⋅① ∵A B C D 、、、四点共圆∴()()FC FD FA FB FK AK FK BK ⋅=⋅=-+ ∵AK BK =∴()()22FC FD FK AK FK AK FK AK ⋅=-+=-② 由①②可知矛盾 ∴AB CD ∥方法二:因为,,,A B C D 四点共圆,不妨设圆心为T ,因为,OA OB TA TB ==,所以,O T 为AB 的中垂线上,同理,OC OD TC TD ==,所以OT CD 为的中垂线,所以AB CD ∥.23.⑴ cos 1sin x a ty a t =⎧⎨=+⎩(t 均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==, ∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+= 即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -= ∴1a =24.⑴ 如图所示:⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()1f x >当1x -≤,41x ->,解得5x >或3x <1x -∴≤当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x <<当32x ≥,41x ->,解得5x >或3x <332x <∴≤或5x > 综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考数学一卷
2018年全国高考数学一卷2018年全国高考数学一卷一、选择题(共40分)1. 选择题的出题范围主要涵盖了数学的基础知识和基本运算能力。
题目形式主要包括填空题、选择题和判断题。
二、填空题(共20分)1. 填空题是要求考生根据题目给出的条件或问题,在题目的空白处填写出正确的答案,答案形式可以是数字、字母、符号或者词语。
三、解答题(共120分)1. 解答题是考察考生的解题方法和推理能力的一种题型,要求考生用正确的数学方法进行推理,解答出题目中所给出的问题。
(1)证明题:要求考生用推理和证明的方法来完成题目中的论证,证明的形式可以是直接证明、间接证明或者反证法等。
(2)计算题:要求考生运用所学的数学知识和方法,完成具体的计算问题。
题目形式主要包括有理数的四则运算、代数式的计算、函数的计算与应用等。
(3)应用题:要求考生综合运用所学的数学知识和方法,对实际问题进行分析和解答。
题目形式涵盖了几何问题、概率问题、统计问题等。
四、评分细则1. 针对选择题、填空题和判断题,采用加权得分的方式进行评分。
一般来说,每道题的分值都是相等的,考生的答案要完全符合题目的要求才能得到满分。
2. 针对解答题,评分一般按照不同的题型和解题方法进行评分。
有些题目可能存在多个推理路径和解题思路,评分时会对考生的答案进行综合评估,给予相应的分数。
五、注意事项1. 在答题时,要认真审题,理解题目的意思和要求,确定解题的思路和步骤,严格控制答题的时间。
2. 解答题要注重清晰和规范,符号使用要正确,并且表达要准确、简洁明了。
注重解题的合理性和推理过程的严密性。
3. 打算查漏补缺,在考试结束前,要及时检查答题卡上的填涂情况,确保答案的准确无误。
以上是2018年全国高考数学一卷的考试要点和注意事项,请考生们认真备考,祝你们取得优异的成绩!。
2018年安徽高考理科数学试题及答案
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B.C.1D. 2、已知集合A={x|x 2-x-2>0},则 A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=( ) A.- B. - C. + D. +7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2B. 2C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则 ·=( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
2018年全国高考数学卷(含文理科)
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( ) A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣7.函数422y x x =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为三棱锥D ABC -体积的最大值为( )A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP ,则C 的离心率为( )AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________.15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。
2018年高考数学全国卷试题答案解析(6套)
中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则
2018年全国一卷理科数学
2018年全国一卷理科数学引言2018年全国一卷理科数学试卷是中国高考数学科目的一部分,对考生的数学能力进行考察。
本文将围绕这套试卷展开分析,从试卷结构、题型分布、题目难度以及解题思路等方面进行细致的讨论。
试卷结构2018年全国一卷理科数学试卷共分为两大部分,即必考题与选择题。
其中必考题分为填空题和解答题两个部分。
选择题则通常采用单选、多选和判断等题型。
题型分布根据对2018年全国一卷理科数学试卷的统计,选择题占试卷总分的60%,而必考题则占总分的40%。
其中,填空题占必考题的60%,解答题则占必考题的40%。
题目难度对于一个试卷来说,题目的难度是一个关键因素。
根据对试卷的解析和考生的反馈,2018年全国一卷理科数学试卷整体难度适中,但也存在一些难度较高的题目。
必考题中的难度在必考题部分,填空题通常涉及基础概念与计算,题目难度适中。
而解答题的难度相对较高,需要考生运用数学知识进行推导和证明。
选择题中的难度选择题中,单选题和多选题大多采用选择填空的形式,难度适中。
而判断题则涉及到考生对概念的理解和判断,需要较高的准确性。
解题思路对于2018年全国一卷理科数学试卷的解题思路,我们将以填空题和解答题为例进行讨论。
填空题解题思路填空题通常考察基本概念和计算能力。
解这类题目时,考生需要注意审题,将问题转化为数学式子或表达式,并运用相应的计算方法进行计算。
解答题解题思路解答题对考生的综合运用能力有着较高的要求。
在解这类题目时,考生需要确定解题思路,合理运用已学知识进行推导和证明。
总结2018年全国一卷理科数学试卷在结构、题型分布、题目难度以及解题思路方面都具备一定的特点。
通过对这些方面进行详细分析,考生可以更好地了解试卷,并辅助自己进行备考和复习。
希望本文对广大考生有所帮助。
注:以上内容为虚构文本,仅用于演示如何生成指定主题的文档。
真实内容请参考相关资料。
2018年河北省高考数学试卷(理科)(全国新课标Ⅰ)
2018年河北省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=1−i1+i+2i,则|z|=()A.0B.12C.1D.√22.已知集合A={x|x2−x−2>0},则∁R A=()A.{x|−1<x<2}B.{x|−1≤x≤2}C.{x|x<−1}∪{x|x>2}D.{x|x≤−1}∪{x|x≥2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.−12B.−10C.10D.125.设函数f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0, 0)处的切线方程为()A.y=−2xB.y=−xC.y=2xD.y=x6.在△ABC中,AD为BC边上的中线,E为AD的中点,则EB→=()A.3 4AB→−14AC→B.14AB→−34AC→C.3 4AB→+14AC→D.14AB→+34AC7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.28.设抛物线C:y 2=4x 的焦点为F ,过点(−2, 0)且斜率为23的直线与C 交于M ,N 两点,则FM →⋅FN →=( ) A.5 B.6C.7D.89.已知函数f(x)={e x ,x ≤0lnx,x >0,g(x)=f(x)+x +a .若g(x)存在2个零点,则a 的取值范围是( ) A.[−1, 0) B.[0, +∞) C.[−1, +∞) D.[1, +∞)10.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则( )A.p 1=p 2B.p 1=p 3C.p 2=p 3D.p 1=p 2+p 311.已知双曲线C:x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN|=( ) A.32B.3C.2√3D.412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.3√34B.2√33C.3√24D.√32二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考数学卷1试题及答案
2018年全国高考理科数学卷Ⅰ试题及答案文3、理3.(2018年全国高考卷Ⅰ理科第3题)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( )(A )新农村建设后,种植收入减少(B )新农村建设后,其他收入增加了一倍以上 (C )新农村建设后,养殖收入增加了一倍(D )新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 答案:A .命题意图:本题主要考查有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.解题思路:首先设出新农村建设前的经济收入为100,根据题意,得到新农村建设后的经济收入为200,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.养殖 种植 第三产业 其它 总收入新农村建设前3060 6 4 100 新农村建设后 60 74 56 10 200故选A .解法二:设建设前经济收入为a ,建设后经济收入为a 2.A 项,种植收入0%14%602%37>=-⨯a a a ,故建设后,种植收入增加,故A 项错误.B 项,建设后,其他收入为a a %102%5=⨯,建设前,其他收入为a %4,故25.2%4%10>=÷a a ,故B 项正确.C 项,建设后,养殖收入为a a %602%30=⨯,建设前,养殖收入为a %30,故2%30%60=÷a a ,故C 项正确.D 项,建设后,养殖收入与第三产业收入总和为a a 2%582%)28%30(⨯=⨯+,经济收入为a 2,故%50%582)2%58(>=÷⨯a a ,故D 项正确.故选A .理10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则( )A .21p p =B .31p p =C .32p p =D .321p p p += 答案:A .命题意图:本题主要考查几何概型.解题思路:如图:设BC=2r 1,AB=2r 2,AC=2r 3,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到答案.解:如图:设12r BC =,22r AB =,32r AC =,∴21r =22r +23r ,∴SⅠ=⨯21324r r =322r r ,S Ⅲ=⨯2121r π-322r r ,S Ⅱ=⨯2123r π+⨯2122r π-S Ⅲ=⨯2123r π+⨯2122r π-⨯2121r π+322r r =322r r ,∴S Ⅰ=S Ⅱ,∴1P =2P ,故选A .文19.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:(1)在答题卡上作出使用了节水龙头天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于335.0m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表).答案:(1)直方图见解析;(2)48.0;(3).命题意图:本题主要考查以下几点:(1)频率分布直方图的绘制;(2)利用频率分布直方图计算变量落在相应区间上的概率;(3)利用频率分布直方图求平均数;(4);(5).解题思路:(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于35.0的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水多少3m ,从而求得结果.解: (1)(2)由题可知用水量在[0.3,0.4]的频数为10,所以可估计在[0.3,0.35)的频数为5,故用水量小于30.35m 的频数为1513524+++=,其概率为240.4850P ==. (3)该家庭未使用节水龙头50天日用水量的平均数为.该家庭使用了节水龙头后50天日用水量的平均数为.估计使用节水龙头后,一年可节省水.小结:在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.理20.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p ;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 命题意图:本题主要考查以下几点:(1)概率的求法及应用;(2)离散型随机变量的数学期望的求法;(3)二项分布;(4)函数与方程思想.解:(1)由题可知221820()(1)f p C p p =-(01p <<).∴)]1()1(18)1(2[)(17218220-⨯-+-='p p p p C p f )101()1(217220p p p C --=,∴当1(0,)10p ∈时,()0f p '>,即()f p 在1(0,)10上递增;当1(,1)10p ∈时,()0f p '<,即()f p 在1(,1)10上递减.∴()f p 在点110p =处取得最大值,即0110p =.(2)(i )设余下产品中不合格品数量为Y ,则4025X Y =+,由题可知1(180,)10YB ,∴11801810EY np ==⨯=.∴(4025)4025402518490EX E Y EY =+=+=+⨯=(元). (ii )由(i )可知一箱产品若全部检验只需花费400元,若余下的不检验则要490元,所以应该对余下的产品作检验.。
2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)
2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试
(全国I 卷理科数学)
一、选择题:本体共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。
1.设i i Z +-=11+i 2,则Z =( )
A .0
B .21
C .1
D .2
2.已知集合A ={x |x 2-x -2<0,则∁R A =(
) A .{x |-1<x <2} B .{x |-1≤x ≤2}
C .{x |x <-1}∪{x |x>2}
D .{x |x ≤-1}∪{x |x ≥2}
3.某地区经过一年得新农村建设,农村得经济收入增加了一倍,实现翻番,为更好地了解该地区农村得经济收入变化情况,统计了该地区新农村建设前后农村得经济收入构成比例,得到如下饼图:
则下面结论中不正确得就是( )
A .新农村建设后,种植收入减少
B .新农村建设后,其她收入增加了一倍以上
C .新农村建设后,养殖收入增加了一倍
D .新农村建设后,养殖收入与第三产业收入得总与超过了经济收入得一半
4.记n S 为等差数列{a n }得前n 项与4233S S S +=,若,21=a ,则=5a ( )
A .-12
B .-10
C .10
D .12 5.设函数()()ax x a x x f +-+=231,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处得切线方
程为( )
A .y = -2x
B .y = -x
C .y = 2x
D .y = x
6.在△ABC 中,AD 为BC 边上得中线,E 为AD 得中点,则→
EB =( )
A .43A
B -41A
C B .41AB -43AC
C .43AB +41AC
D .41AB +4
3AC 7.某圆柱得高为2,底面周长为16,其三视图如下图,圆柱表面上得点M 在正视图上得对应点为A ,圆柱表面上得点N 在左视图上得对应点为B ,则此圆柱侧面上,从M 到N 得路径中,最短路径得长度为( )
A .172
B .52
C .3
D .2
8.设抛物线C :y 2=4x 得焦点为F ,过点(-2,0)且斜率为3
2得直线与C 交于M ,N 两点,则=•→
→FN FM ( )
A .5
B .6
C .7
D .8
9.已知函数()=x f ⎩⎨⎧≤.
0,ln ,0, x x x e x ,()()a x x f x g ++=,若()x g 存在2个零点,则a 得取值范
围就是( )
A .[-1,0)
B .[0,+∞)
C .[-1,+∞)
D .[1,+∞)
10.下图来自古希腊数学家波克拉底研究得几何图形,此图由三个半圆构成,三个半圆得直径分别为直角三角形ABC 得斜边BC ,直角边AB ,AC ,△ABC 得三边所围成得区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自I ,Ⅱ,Ⅲ得概率分别记为321,,P P P ,则( )
A .1P =2P
B .1P =3P
C .2P =3P
D .1P =2P +3P
11.已知双曲线C :13
22
=-y x ,O 为坐标原点,F 为C 得右焦点,过F 得直线与C 得两条渐近线得焦点分别为M ,N ,若△OMN 为直角三角形,则|MN |=( )
A .23
B .3
C .32
D .2
3 12.已知正方体得棱长为1,每条棱所在直线与平面α所成得角都相等,则α截此正方体所得截面面积得最大值为( )
A .343
B .332
C .243
D .2
3 二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件⎪⎩
⎪⎨⎧≤≥+-≤--.0,01,022y y x y x ,则y x Z 23+=得最大值为______________、
14.记n S 为数列{a n }得前n 项与,若12+=n n a S ,则n S =__________、
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同得选法共有_______种。
(用数字填写答案)
16.已知函数()x x x f 2sin sin 2+=,则()x f 得最小值就是_________、
三、解答题:共70分,解答应写出文字说明,证明过程或验算步骤。
第17-21题为必考题,每个试题考生都必须作答。
第22,23题为选考题,考生根据要求作答。
(一)必考题:40分、
17.(12分)
在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5、
(1)求cos ∠ADB ;
(2)若DC =22,求BC 、
18.(12分)
如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 得中点,以DF 为折痕把△DFC 折起,使点C 到达点P 得位置,且PF ⊥BF 、
(1)证明:平面PEF ⊥平面ABFD 、
(2)求DP 与平面ABFD 所成角得正弦值、
19.(12分)
设椭圆C :12
22
=+y x 得右焦点为F ,过F 得直线l 与C 交于A ,B 两点,点M 得坐标为(2,0)、 (1)当l 与x 轴垂直时,求直线AM 得方程;
(2)设O 为坐标原点,证明:∠OMA =∠OMB 、
20.(12分)
某工厂得某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品做检验,如检验出不合格品,则更换为合格品。
检验时,先从这箱产品中任取20件作检查,再根据检验结果决定就是否对余下得所有产品作检验,设每件产品为不合格品得概率都为p (0<p <1),且各件产品就是否为不合格品相互独立、
(1)记20件产品中恰有2件不合格品得概率为()p f ,求()p f 得最大值0p 、
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定得0p 作为P 得值,已知每件产品得检验费为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元得赔偿费用。
(I )若不对该箱余下得产品作检验,这一箱产品得检验费用与赔偿费用得与记为X ,求EX ; (II )以检验费用与赔偿费用与得期望值为决策依据,就是否该对这箱余下得所有产品作检验?
21.(12分)
已知函数().ln 1x a x x
x f +-= (1)讨论()x f 得单调性;
(2)若()x f 存在两个极值点21,x x ,证明:()()2
121x x x f x f --<a -2、 (二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做得第一题计分。
22.(选修4-4:坐标系与参数方程)(10分)
在直角坐标系xOy 中,曲线1C 得方程为y =k |x |+2,以坐标原点为极点,x 轴正半轴为极轴建立坐标系,曲线2C 得极坐标方程为.03cos 22=-+θρρ
(1)求2C 得直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 得方程、
23.(选修4-5:不等式选讲)(10分)
已知()=x f |x +1|+|ax -1|、
(1)当a =1时,求不等式()x f >1得解集;
(2)当()1,0∈x 时不等式()x f >x 成立,求a 得取值范围、。