开关电源初级侧部分(上)
开关电源拓扑结构概述(降压,升压,反激、正激)
开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
初级开关电源UNO-PS 1AC 24DC 60W说明书
1描述初级开关电源UNO-PS/1AC/24DC/ 60W© PHOENIX CONTACT 数据表UNO POWER电源设备由于具备最高的能效性而在世界范围内引人关注。
低空载损耗和高能效节约了能源。
由于其具备高功率密度,因此UNO POWER电源设备是理想的解决方案,尤其在较为紧凑的控制箱中。
特性–因其具备85 V AC ... 264 V AC的输入电压范围而能够在全球范围内使用–通过稳定的24 V DC电源实现了最大的系统可用性–整个电源系列采用优化设计,空载损耗低,所以电源的转化效率非常高–极其紧凑:该薄型电源可提供60 W的电力,而其宽度仅有35 mm请确保始终使用最新文档。
可从 /products, 下载文档。
105547_zh_022014-07-012目录1描述 (1)2目录 (2)3订单数据 (3)4技术数据 (4)5使用目的 (7)6结构 (7)6.1 设备元件 (7)6.2 结构图 (7)7组装 (8)7.1 打开包装 (8)7.2 安装电源设备 (8)7.3 安装在DIN导轨上 (10)7.4 正常安装位置 (10)8安装电源设备 (11)8.1 安全规范和安装注意事项 (11)8.2 电源连接 (11)8.3 设备连接 (12)8.4 连接电缆 (12)9电源设备的运行状况 (13)9.1 正常运行 (13)9.2 过载响应 (13)9.3 环境温度 > 55°C时的状况 (13)9.4 在其它位置进行安装时的状况 (14)10电源设备的操作 (17)10.1 监控功能 (17)10.2 对电源设备进行并联操作 (18)10.3 电源设备的串行操作 (19)11拆卸 (19)11.1 拆卸电源设备 (19)11.2 废料处理注意事项 (19)描述型号订货号件/包装初级开关UNO电源,用于导轨安装,输入:单相,输出:24 V DC/60 W UNO-PS/1AC/24DC/ 60W290299213订单数据附件型号订货号件/包装冗余模块,5 V ... 24 V DC、2 x 10 A、1 x 20 A。
开关电源知识学习
27
2.3交调测试
指标定义:在相应的输入电压范围内(取范围下限、额定电压、范围上限三点),对 各路输出分别为小载或满载条.3.3.3变压器耦合型开关电源
原理框图
19
1.3.3.3变压器耦合型开关电源
V为开关调整管,T是脉冲变压器(又称储能变压器),由于工作频率较高, 故采用铁氧体材料的铁心,同名端如图中所标;VD为脉冲整流二极管; C是滤波电容器,也有储能作用;RL为电源的负载。正脉冲作用到开关 管V的基极使其饱和导通(Uce=0),则脉冲变压器初级线圈L1上产生 的感应电压UL1为上正下负,当开关断开时,初级线圈L1上的电压为上负 下正。
或
11
1.3.3.1串联式开关电源的工作原理
• 下图是串联式开关电源输出电压的波形,由图中看出,
控制开关K输出电压Uo是一个脉冲调制方波,脉冲幅度 Up等于输入电压Ui,脉冲宽度等于控制开关K的接通时 间Ton,由此可求得串联式开关电源输出电压Uo的平均 值Ua为:
12
1.3.3.1串联式开关电源特点
应该是一个固定的值, 但是很多时候它是通过交流电压整流、滤波后得 来的,由于滤波不彻底,就会有剩余的交流成分,即使采用电池供电也会 因负载的波动而产生波纹。事实上,即便是最好的基准电压源器件,其输 出电压也是有波纹的。 纹波电压通常用有效值或峰值表示
尖脉冲 指电压或者电流的短暂突变,开关电源中的高速开关电路会产生
当并联式开关电源的负载R很大或开路时,输出脉冲 电压的幅度将非常高。因此,并联式开关电源经常用于高 压脉冲发生电路。
开关电源说明书
1、开关电源的功能组成:(1)开关管的驱动电路(UC3844及其外围电路)(2)反馈电路(TL431和光耦PC817)(3)反激式变压器设计2、设计目标●输入:DC 200~500V。
●电源输出:+24V、50mA 供电给继电器15V、450mA 运放、传感器加7805+8V、1A CPU/DSP、逻辑电路(作反馈)25V、150mA 六路驱动20V 50mA 3844供电(开关电源自启动电源) 共计11路输出3、各功能部分原理(1)驱动电路部分驱动芯片使用UC3844或UC3845,引脚功能如下:引脚1、2是运算放大器输入端。
此设计中,光耦的输出直接接UC3844的误差放大器的脚1,而反向输入端脚2直接接地。
输出电压反馈直接联接到脚1,而不是脚2,略过了UC3844的内部误差放大器,这使得电源的动态响应更快。
引脚3是限流保护引脚。
当引脚电压超过1V时,PWM输出立即被封锁。
此处设置变压器原边流不得超过1.5A(变压器峰值电流为1.6A),由R=U/I得,R187=0.7欧。
另外在引脚3加470pf电容滤波。
R4、C5构成低通滤波器,将采到的电流信号滤波后供给3脚,提供电流反馈。
引脚4振荡频率设定端。
开关管的工作频率为40KHz.由于UC3844内部有个分频器,所以驱动MOSFET功率开关管的方波频率为芯片内部振荡频率的一半,则引脚4应设置为80KHz(UC3844最大振荡频率可为1MHz),根据计算估计公式f=1.7/RC,取R=91K,C=150PF(频率不一定设的很准,可以改变电阻值测定)。
引脚5为模拟地,引脚8是基准电压5V输出端。
引脚7是电源供电端,需15-20V。
引脚6是PWM输出端。
经一个限流电阻(100欧/0.25W)限流后驱动功IGBT,为保护功率IGBT,在脚6并联一支15V的稳压二极管。
(2)自启动电路开关电源只有交流侧供电,必须能够实现自动启动。
本设计的自启动电路如下图框内所示,基本原理是:启动过程,供电电压310V通过RR3、RR4给C125充电,当电压值达到15伏,驱动芯片UC3844开始工作,开关管正常驱动,直到变压器输出侧34输出电压稳定在20伏,整个电路系统工作,电源实现了自启动。
SFB初级开关电源
统可用性。采用 SFB 技术 ( 选择性熔断技术 ),可在 12ms – 内发出 6 倍于额定电流的电流 ,从而可靠、快速地触发标准 断路器。电源选择性地断开故障电源通道,从而将故障限制 –
在一定范围内,而重要的系统部分仍可继续运行。通过对输 –
出电压和电流的持续监视,可提供全面的诊断功能。预防性
功能监视将使关键的操作模式可视化,并在发生故障前将其速跳闸,使用动态功率储备 SFB 技术 具有静态 POWER BOOST 功率储备,可以可靠地启动 苛刻负载 预防性功能监控 可在全球各地使用 满载情况下的电网缓冲时间长, MTBF 高 (> 500,000 小 时),具有高度的操作安全水平 即使发生永久性缺相故障,也能完美工作 借助集成的空气放电器,实现了高达 6 kV 的抗浪涌电压 强度
高信号电压24dc电流20ma短路电阻状态显示boost指示灯变黄通用数据绝缘电压输入输出kvac典型试验kvac例行试验绝缘电压输入pe35kvac典型试验kvac例行试验绝缘电压输出pe500dc例行试验防护等级ip20防护级别i带pe连接mtbf500000h符合iec61709sn29500机箱类型钢板镀锌外壳材料钢板镀锌尺寸深交付状态40mm130mm125mm尺寸深旋转90122mm130mm43mm重量07kg环境条件环境温度工作25c60c开始降容环境温度储藏运输40c85c允许的最大相对湿度工作9525c无冷凝振动工作15hz振幅25mm符合iec600682615hz150hz23g90分钟震动30g各方向符合iec60068227污染程度符合en50178气候等级3k3符合en60721quintps3ac24dc103130zh01phoenixcontact标准机械的电气设备en60204浪涌电压类别iii电源单元的安全变压器iec61558217电子安全信息技术设备iec60950vde0805selv用于电力装置的电气设备en50178vde0160pelvselviec60950selv和en60204pelv安全隔离dinvde0100410dinvde01061010防止电击din57100410电击保护电气设备安全隔离的基本要求dinvde0106101主电源谐波电流的限制en6100032设备安全gs经过安全测试电网变化欠压semif470706证书cb计划认证ul认证ullistedul508ulculrecognizedul60950三线pe星形网络ulcullistedul1604class符合emc指令2004108ec和低压指令200695ec噪音屏蔽性能符合en6100062静电放电en6100042外壳级别kv接触放电空气放电15kv空气放电备注标准高频电磁场en6100043外壳级别频率范围80mhz1000mhz20ghz10场强备注标准瞬间毛刺en6100044输入非对称
电脑开关电源原理及电路图
电脑开关电源原理及电路图2.1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。
图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
2.2、高压尖峰吸收电路D18、R004和C01组成高压尖峰吸收电路。
当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。
2.3、辅助电源电路整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。
Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。
【很完整】牛人教你开关电源各功能部分原理分析、计算与选型
【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。
开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。
下⾯将以反激电源为例进⾏讲解。
1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。
基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。
根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。
根据控制⽅式可分为PFM 和PWM 型反激电源。
根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。
我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。
1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。
此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。
此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。
2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。
提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。
开关电源的结构和基本原理模板
3 90 6 S MD
?
D29
R114
1 .5K 1 20 6 F R1 04
C19 C18
2 2u ,50 V 2 2u ,50 V
0 .1u ,2 50 vA C
C4
C9 3 .3u 1 00 V
L8 5 *2 0
MYV1 0 72 71 0 72 71 MYV2
C3A
R1
1
C7
1 02 25 0V ac
Q5
R166
1 0 1 /8 W
R167
R121 1 0 0 80 5
1 00 1/8W
CAP
C 3 .3 VS
F R1 05
D2
1 5V 1 W
R115
1 K 1 2 06
D31
1 N4 14 8
2 ,12 0 6
1
8
F SD 5L01 6 5
C12
R42
2
7
D32
1 00 12 06
1 0u F/5 0V
输出电压的稳定则是依赖对脉冲宽度的改变来实现, 这就叫做脉宽调制PWM。
开关电源工作流程
当市电进入电源后,先经过扼流线圈和电容滤波去除 高频杂波和干扰信号,然后经过整流和滤波得到高压直流 电。
接着通过开关电路把直流电转为高频脉动直流电,再 送高频开关变压器降压。
然后滤除高频交流部分,这样最后输出供电脑使用相 对纯净的低压直流电。
有源PFC
输入电压可以从90V到270V; 高于0.99的线路功率因数,并具有低损耗和高可靠等优 点; 有源PFC电路可用作辅助电源,而不再需要辅助电源变 压器; 输出不随输入电压波动变化,因此可获得高度稳定的 输出电压; 有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工 频2倍)的正弦波,因此采用有源PFC的电源不需要采 用很大容量的滤波电容。
初级开关电源MINI 24VDC 1A 说明书
45 x 99 x 114.5 mm 约0.25kg约0.4kg约0.4kg
67.5 x 99 x 114.5 mm
100-240 V AC 85-264 V AC / 90-350 V DC 45-65 Hz / 0 Hz
1.3A/在230VAC时约0.8A
)>20ms(在120VAC时)/>100ms(在230VAC时) <1s
缓冲时间(典型值)>30ms(在120VAC时)/>140ms(在230VAC时) 电源起动时间
输入端保险丝内置2AT 输出参数 额定输出电压 UN/ 误差 输出电压调节范围 额定输出电流 IN ( 最高60 °C) / 带功率裕度 IBoost 可并联连接用于冗余和增加输出功率
最大功率损耗(空载/额定负载)/效率(典型值) 残波/额定负载时的峰值开关电压(20MHZ)
UL/C-UL条例UL508 UL/C-UL认证UL60950
NEC等级2(MINI24VDC/100W ) 符合 EN 61 000-3-2 c,符合EMC准则89/336/EEC
158 Phoenix Contact
114.5
114.5
114.5
99 99 99
45
67.5
67.5
MINI 24 V DC/2 A
信号 DC OK ( 有源: Uout > 0.9 x UN = 高信号 ) LED (Uout < 0.9 x UN = LED闪烁 ) 尺寸/重量 尺寸 W x H x D 重量约0.17kg
100-240 V AC 85-264 V AC / 90-350 V DC 45-65 Hz / 0 Hz
初级开关电源,超薄设计
开关电源试题
开关整流器的基本原理1、功率变换器的作用是(将高压直流电压转换为频率大于20KHZ的高频脉冲电压)。
2、整流滤波器电路的作用是(将高频的脉冲电压转换为稳定的直流输出电压)。
3、开关电源控制器的作用是将输出(直流电压)取样,来控制功率开关器件的驱动脉冲的(宽度),从而调整(开通时间)以使输出电压可调且稳定。
4、开关整流器的特点有(重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构)。
5、采用高频技术,去掉了(工频变压器),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(1/10),重量已接近(1/10)。
6、相控整流器的功率随可控硅(导通角)的变化而变化,一般在全导通时,可接近(0.7)以上,而小负载时,仅为0.3左右,经过校正的开关电源功率因数一般在(0.93),以上,并且基本不受()变化的影响。
7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(60db),而开关电源在无风扇的情况下,可闻噪声仅为(45db)左右。
8、开关电源采用的功率器件一般(88%)较小,带功率因数补偿的开关电源其整流器效率可达(91%)以上,较好的可做到()以上。
9、目前开关整流器的分类主要有两种,一类是采用(硬开关技术)设计的整流器,一般称之为(SMR),二是采用(软开关技术)设计的整流器,主要指(谐振型)开关整流器。
10、谐振型技术主要是使各开关器件实现(零电压)或(零电流)导通或截止,从而减少开关损耗,提高开关频率。
11、按有源开关的过零开关方式分类,将谐振型开关技术分为(零电流开关型)—ZCS、(零电压开关型)—ZVS两大类。
12、单端正激变换电路广泛应用于(大功率)变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。
13、单端反激变换电路一般用在(小功率)输出的场合。
14、全桥式功率变换电路主要应用于(大功率)变换电路中。
15、半桥式功率变换电路得到了较广泛的应用,特别是在(高电压输入)和(大功率输出)的场合,其应用越来越普遍。
SFB初级开关电源
初级开关电源采用 SFB 技术,3AC,输出电流为 5A
接口
数据表 103130_zh_01
© PHOENIX CONTACT 2010-09-15
1 说明
特性
QUINT POWER 电源 — 采用 SFB 技术,确保最高水平的系 –
统可用性。
–
新型 QUINT POWER 紧凑型通用电源可以确保最高水平的系
统可用性。采用 SFB 技术 ( 选择性熔断技术 ),可在 12ms – 内发出 6 倍于额定电流的电流 ,从而可靠、快速地触发标准 断路器。电源选择性地断开故障电源通道,从而将故障限制 –
在一定范围内,而重要的系统部分仍可继续运行。通过对输 –
出电压和电流的持续监视,可提供全面的诊断功能。预防性
功能监视将使关键的操作模式可视化,并在发生故障前将其 –
主侧防护 ..................................................................................................................................................................11 必备的备用熔断器 (设备和线路保护)....................................................................................................................11
15 功能 ........................................................................................................................................... 14
(完整版)开关电源的基本原理与分类方法
开关电源的基本原理与分类方法开关电源是指调整功率管以开关方式进行工作的稳压电源。
缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。
目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模块化方向发展。
开关电源现在在社会上应用越来越广泛,需求也越来越大。
电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的能量,使得系统或者机器能够正常地工作。
电源的好坏直接影响了系统能否正常工作。
随着电源的应用和需求越来越广泛,人们对于电源的要求也越来越高。
人们对电源的效率、体积、重量、稳定性和可靠性等方面都有了更高的要求。
开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效率低、又笨又重的线性电源。
现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。
而现代电力电子技术的发展,特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。
人们对于转换效率的不断要求也促使开关电源的开发技术将越来越高。
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等部分构成。
开关带能源的工作原理:首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
常见的开关电源的分类方法有下列几种:1.按激励方式的不同可以划分为他激式和自激式。
反激开关电源各部分单元详细介绍-----次级侧部分(下)
•
•
反馈补偿回路
• C8、C4、R19组成了431所需的回收回路补偿, 以便稳定控制回路。 • 稳定的反馈环路对开关电源来说是非常重要的, 如果没有足够的相位裕度和幅值裕度,电源的动 态性能就会很差或者出现输出振荡。 • TL431 是开关电源次级反馈最常用的基准和误差 放大器件,其供电方式不同对它的传递函数有很 大的影响,很多分析资料常常忽略这一点。 • 关于补偿回路会作为一节课单独讲解。
最后总结
• 反激电源是生活中用到最多的电源,作为 电子工程师来说熟悉和了解反激电源的组 成结构和设计是非常必要的。 • 反激电源的设计难点在于变压器及反馈补 偿环路。 • 反馈补偿环路的牵扯的内容太复杂,下次 课针对此部分会和大家做详细的探讨。
本节课就讲到这里!
吸收回路
• 二、吸收电阻R的影响 • 1、吸收电阻的阻值对吸收效果干系重大,影响明显。 • 2、吸收电阻的阻值对吸收功率影响不大,即:吸收 功率主要由吸收电容决定。 • 3、当吸收电容确定后,一个适中的吸收电阻才能达 到最好的吸收效果。 • 4、当吸收电容确定后,最好的吸收效果发生在发生 最大吸收功率处。换言之,哪个电阻发热最厉害就最 合适。 • 5、当吸收电容确定后,吸收程度对效率的影响可以 忽略。
限流电路
• 比较器的输出为低电平后,光耦和 431的节点电压会经过二极管导通 到地,从而改变光耦发光管的回路 电流,光耦光电管根据电流的大小 反馈信息到PWM芯片,PWM芯片 通过反馈信息调节占空比,降低输 出电压来维持输出电流的大小,以 此起到限流的目的。由于占空比调 节的宽度有限,过低的电压超出了 变压器正常工作的频点,实际应用 中会出现变压器啸叫的情况,此状 况可以调节补偿环路及变压器参数 可以解决。
优点 成本低,外围元件少,低耗能,可设置多 组输出。 缺点 输出纹波比较大。 弥补缺陷的方法 输出加低内阻滤波电容或加LC噪声滤波器 可以改善
开关电源基础知识
•开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有.开关电源的工作原理是:1。
交流电源输入经整流滤波成直流;2。
通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3。
开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的.交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源ATX电源的主要组成部分EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。
一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。
二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路.保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减少电源对内部元件的电流冲击.桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。
开关电源(SMPS)的拓扑结构(第一部分)
前馈控制
在降压转换器中,输入电压变化在电压输出端产生的影 响通常可通过输入电压前馈控制降到最低。与模拟控制 方式相比,使用具有输入电压检测功能的数字信号控制 器能轻易实现前馈控制。在前馈控制方法中,数字信号 控制器一旦检测到输入电压的变化,在输入变化对输出 参数造成实际影响之前就将开始采取自适应措施进行相 应的处理。
AN1114
开关电源 (SMPS)的拓扑结构 (第一部分)
作者: Mohammad Kamil Microchip Technology Inc.
简介
工业驱动向更小、更轻和更高效的电子设备的发展趋势 促 进 了 开 关 电 源 (Switch Mode Power Supply, SMPS)的发展。通常可采用几种不同的拓扑结构实现 SMPS。
DS01114A_CN 第 2 页
2008 Microchip Technology Inc.
图 2:
(A)
降压转换器 IIN
Q1 VIN
D1
L
+ IL -
IOUT VOUT
AN1114
(B) Q1GATE
t
(C)
VL
VIN - VOUT
t
-VOUT
(VIN - VOUT)/L
(D)
IIN
t
-VOUT/L IL2
输入和输出电容的设计取决于每一个转换器的开关频率 乘以并联转换器的个数。从输出电容的角度来看纹波电 流减少 “n”倍。与图 2 (D)中所示的单一转换器相 比,多相同步降压转换器汲取的输入电流是连续的且纹 波较少,如图 3 (E)所示。因此,对于多相同步降压 转换器来说,较小的输入电容能满足设计要求。
开关电源的结构和基本原理
电路构造
抗干扰电路(EMI) 整流滤波电路 开关电路 PFC电路 保护电路
PFC电路
PFC(Power Factor Correction)即“功率因数校正”,主要用来表 征电子产品对电能旳利用效率。功率因数越高,阐明电能旳利用 效率越高。经过CCC认证旳电脑电源,都必须增长PFC电路。
PC电源采用老式旳桥式整流、电容滤波电路会使AC输入电流产生 严重旳波形畸变,向电网注入大量旳高次谐波,所以网侧旳功率 因数不高,仅有0.6左右,并对电网和其他电气设备造成严重谐波 污染与干扰。
开关电路——关键部分
关键元件:PS-ON、精密稳压电路 、 PWM 控制芯片、推动管(由两个 三极管构成)、驱动变压器、主开关变压器
原理:由推动管和PWM (Pulse Width Modulation)控制芯片构成振荡 电路,产生高频脉冲
待机时,主板启闭控制电路旳电子开关断开, PWM 控制芯片封锁调制 脉宽输出,使T2推动变压器,T1主电源开关变压器停振,停止提供输出 电压。
EMI电路
整流滤波电路
高压整流滤波电路由一种全桥(由四个二极管构成) 和两个高压电解电容构成。把220V交流市电转换成 300V直流电。
低压整流滤波电路由二极管和电解电容构成(12V使用 快恢复管,5V和3.3V使用肖特基管 ),如图。
辅助电源电路
关键元件:辅助电源开关管、辅助电源变压器、三端稳压器 300V直流电经过辅助电源开关管成为脉冲电流,经过辅助电源变压器输出 二组交流电压,一路经整流 、三端稳压器稳压,输出+5VSB,加到主板上 作为待机电压;另一路经整流滤波,输出辅助+12V电源,供给PWM等芯 片工作。
输入电压能够从90V到270V; 高于0.99旳线路功率因数,并具有低损耗和高可靠等优 点; 有源PFC电路可用作辅助电源,而不再需要辅助电源变 压器; 输出不随输入电压波动变化,所以可取得高度稳定旳 输出电压; 有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工 频2倍)旳正弦波,所以采用有源PFC旳电源不需要采 用很大容量旳滤波电容。
24V20A半桥式开关电源设计计算
24V20A半桥式开关电源设计计算变压器T2和滤波电感T1的参数是输出电压Vout为24V,电流Iout为20A,Pout为480W。
根据公式Rt=6.8K,Ct=1NF,震荡频率F=Rt*Ct=147KHZ。
输出频率为震荡频率的一半,即73.5KHZ,周期为13.61uS。
初级圈数为Np,次级圈数为Nm。
AC输入电压为220V±15%,即在200V-400V之间(算上50V纹波)。
每个开关管的最大占空比为0.4,一个周期内两个开关管的最大占空比之和为0.8.T2不开气隙,L1要开气隙。
首先,计算初级和充电部分线圈匝数(初级有一个线圈,次级和充电部分都有两个线圈)。
选用EER42/15磁芯架构,PC40材质,100度时饱和磁通密度Bsat为3900*10^(-4)T,剩余磁通Bres为0.095T。
为保证磁芯工作在磁滞回线的线性部分,取Bmax为2250*10^(-4)T=0.195T。
磁芯截面积Ae为1.94cm2,则单端磁通Δb为0.1T=1000G,半桥电源的磁通范围在第一和第三象限,则ΔB=2*Δb=0.2T=2000G。
若最低输入电压Vin min为100V,则最大导通时间Ton(max)=5.44uS。
初级线圈数Np=99.以上是变压器和电感部分的参数和计算。
每个开关管最大导通时间为0.8T/2=0.4T。
由于初级线圈为一个线圈,因此初级电流脉冲等效的平顶脉冲峰值为Ipft=Vin_min*Np/(Vd*0.4T)。
代入数值得到Ipft=2.47A。
根据次级线圈为两个线圈,其中一个线圈对应着Q1导通进行半波整流输出,另一个线圈对应着Q2导通进行半波整流输出,可得到次级电流脉冲等效的平顶脉冲峰值为XXX)。
代入数值得到Icft=1.14A。
根据充电电压为28.1V,充电线圈为1圈,可得到充电电流脉冲等效的平顶脉冲峰值为Ichft=Vcharge/(Ncharge*0.4T)。
开关电源维修图解及原理图解大字版(电脑电源)
电脑开关电源维修图解一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。
相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。
计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
首先,我们要知道计算机开关电源的工作原理。
电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。
此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。
接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。
其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。
在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。
通过对多台电源的维修,总结出了对付电源常见故障的方法。
一、在断电情况下,“望、闻、问、切”由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。
因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。
首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研发中心彭磊(上)开关电源的拓扑结构分类•10W以内常用RCC(自激振荡)拓扑方式•10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)•100W-300W 正激、双管反激、准谐振•300W-500W 准谐振、双管正激、半桥等•500W-2000W 双管正激、半桥、全桥•2000W以上全桥反激开关电源特点•在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。
优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。
(输出加低内阻滤波电容或加LC噪声滤波器可以改善)•今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
隔离开关电源框架结构图EMI整流滤波变压器次级整流滤波开关器件PWM 控制IC隔离器件采样反馈输出高压区域低压区域电源电路原理图初级侧部分第一个安规元件—保险管•作用:安全防护。
在电源出现异常时,为了保护核心器件不受到损坏。
•技术参数:额定电压V、额定电流I、熔断时间I^2RT。
•分类:快断、慢断、常规保险管的计算方法•0.6为不带功率因数校正的功率因数估值•Po输出功率•η 效率(设计的评估值)•Vinmin 最小的输入电压•2为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。
•0.98 PF值相关知识关于功率因数•大部分用电设备中,其工作电压直接取自交流电网。
所以电网中会有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用过程中会使电网产生谐波电压和电流。
没有采取功率因数校正技术的AC-DC整流电路,输入电流波形呈尖脉冲状。
交流网侧功率因数只有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。
采用功率因数校正技术,功率因数值为0.999时,THD约为3%。
为了防止电网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。
•功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源功率因数校正。
无源功率因数校正利用线性电感器和电容器组成滤波器来提高功率因数、降低谐波分量。
这种方法简单、经济,在小功率中可以取得好的效果。
但是,在较大功率的供电电源中,大量的能量必须被这种滤波器储存和管理,因此需要大电感器和电容器,这样体积和重量就比较大也不太经济,而且功率因数的提高和谐波的抑制也不能达到理想的效果。
有源功率因数校正是使用所谓的有源电流控制功率因数的校正方法,可以迫使输入电流跟随供电的正弦电压变化。
这种功率因数校正有体积小、重量轻、功率因数可接近1等优点。
NTC的作用•NTC是以氧化锰等为主要原料制造的精细半导体电子陶瓷元件。
电阻值随温度的变化呈现非线性变化,电阻值随温度升高而降低。
利用这一特性,在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的浪涌电流。
当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。
NTC的选择公式对上面的公式解释如下:1. Rt 是热敏电阻在T1温度下的阻值;2. Rn是热敏电阻在Tn常温下的标称阻值;3. B是材质参数;(常用范围2000K~6000K)4. exp是以自然数e 为底的指数(e =2.71828 );5. 这里T1和Tn指的是K度即开尔文温度,K度=273.15(绝对温度)+摄氏度;压敏电阻的作用•压敏电阻是一种限压型保护器件。
利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
•主要作用:过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等。
•主要参数有:压敏电压、通流容量、结电容、响应时间等。
•压敏电阻的响应时间为ns级,比空气放电管快,比TVS管(瞬间抑制二极管)稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。
•压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。
压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。
• a 为电路电压波动系数,一般取值1.2.•Vrms 为交流输入电压有效值。
• b 为压敏电阻误差,一般取值0.85.• C 为元件的老化系数,一般取值0.9.•√2 为交流状态下要考虑峰峰值。
•V1mA 为压敏电阻电压实际取值近似值•通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。
•结合前面所述,来看一下本电路中压敏电阻的型号所对应的相关参数。
EMI电路•X电容,共模电感(也叫共模扼流圈),Y电容•根据IEC 60384-14,安规电容器分为X电容及Y电容:• 1. X电容是指跨与L-N之间的电容器,• 2. Y电容是指跨与L-G/N-G之间的电容器.•X电容多选用耐纹波电流比较大的聚脂薄膜类电容。
这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。
•X电容容值选取是uF级,此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。
安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。
•作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。
X电容一般都标有安全认证标志和耐压AC250V 或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的的普通电容来代用。
•X电容主要用来抑制差模干扰•安全等级峰值脉冲电压等级(IEC664)•X1 >2.5kV ≤4.0kV Ⅲ•X2 ≤2.5kV Ⅱ•X3 ≤1.2kV ——•X电容没有具体的计算公式,前期选择都是依据经验值,后期在实际测试中,根据测试结果做适当的调整。
•经验:若电路采用两级EMI,则前级选择0.47uF,后级采用0.1uF电容。
若为单级EMI,则选择0.47uF电容。
(电容的容量大小跟电源功率没有直接关系)•交流电源输入分为3个端子:火线(L)/零线(N)/地线(G)。
在火线和地线之间以及在零线和地线之间并接的电容, 这两个Y电容连接的位置比较关键,必须需要符合相关安全标准, 以防引起电子设备漏电或机壳带电,容易危及人身安全及生命。
它们都属于安全电容,从而要求电容值不能偏大,而耐压必须较高。
•Y电容主要用于抑制共模干扰•Y电容的存在使得开关电源有一项漏电流的电性指标。
•工作在亚热带的机器,要求对地漏电电流不能超过0.7mA;工作在温带机器,要求对地漏电电流不能超过0.35mA。
因此,Y电容的总容量一般都不能超过4700PF(472)。
Y电容的作用及取值经验Y电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:• 1. Y1耐高压大于8 kV,属于双重绝缘或加强绝缘|额定电压范围≥ 250V• 2. Y2耐高压大于5 kV,属于基本绝缘或附加绝缘|额定电压范围≥150V ≤250V• 3. Y3耐高压≥2.5K V ≤5KV属于基本绝缘或附加绝缘|额定电压范围≥150V ≤250V• 4. Y4耐高压大于2.5 kV属于基本绝缘或附加绝缘|额定电压范围<150V•GJB151中规定Y电容的容量应不大于0.1uF。
Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义。
共模电感的作用•共模电感上,A和B就是共模电感线圈。
这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制方向向反)。
这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,抑制高速信号线产生的电磁波向外辐射发射,达到滤波的目的。
•第一步:确定客户的规格要求,EMI允许级别•第二步:电感值的确定•第三步:core(磁芯)材质及规格确定•第四步:绕组匝数及线径的确定•第五步:打样•第六步:测试•EMI等級: Fcc Class B•已知条件:C2=C7=3300pF•EMI测试频率:传导150KHz~30MHz。
•EMC测试频率: 30MHz~3GHz。
•实际的滤波器无法达到理想滤波器那样陡峭的阻抗曲线,通常可将截止频率设定在50KHz左右。
在此,假设Fo=50KHz。
则•以上,得出的是理论要求的电感值,若想获得更低的截止频率,则可进一步加大电感量,截止频率一般不低于10KHz。
理论上电感量越高对EMI抑制效果越好,但过高的电感将使截止频率将的更低,而实际的滤波器只能做到一定的带宽,也就使高频杂讯的抑制效果变差(一般开关电源的杂讯成分约为5~10MHz之间)。
另外,感量越高,则绕线匝数越多,就要求磁芯的ui值越高,如此将造成低频阻抗增加。
此外,匝数的增加使分布电容也随之增大,使高频电流全部经过匝间电容流通,造成电感发热。
过高的ui值使磁芯极易饱和,同时在生产上,制作比较困难,成本较高。
•从前述设计要求中可知,共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。
•因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。
共模电感常用磁芯的μi约在2000~10000之间。
•在本电路中,我们选用的磁芯型号为•TDK UU9.8•磁芯材质PC40•μi值2300•AL值500nH/N^2•J为无强制散热情况下每平方毫米所通过的电流值,若有强制散热可选择6A。
•Iin_avg输入电流平均值•2为常数整流桥(桥堆)的计算整流桥的耐压选择整流桥的耐电流选择5为输入电流有效值的倍数,经验值。
所选整流桥的正向管压降所选整流桥的功率损耗计算BUCK电容容值的计算高压启动与RCD箝位电路•红线圈起的电阻为I C的高压启动电阻,电阻阻值的选择由IC特性决定。