山东省潍坊市2014届高三4月模拟考试(二模)数学理试题(扫描版)

合集下载

山东省潍坊市2014届高三4月模拟考试 理科数学 Word版含答案

山东省潍坊市2014届高三4月模拟考试 理科数学 Word版含答案

山东省潍坊市2014届高三4月模拟考试高三数学(理) 2014.4.26 本试卷共4页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题共50分)注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足 (1)i z i +⋅=,则z 的虚部为A . 2i -B . 12-C .2iD .122.设集合 {}{}|213,|lg(1)A x x B x y x =-≤==-,则 A B =A.(1,2)B.[1,2]C.(1,2]D.[1,2)3.下列结论正确的是A.若向量a ∥b ,则存在唯一的实数 λ使 a b λ=B.已知向量a ,b 为非零向量,则“a ,b 的夹角为钝角”的充要条件是“a ⋅b<0’’ c .“若 3πθ=,则 1cos 2θ=”的否命题为“若 3πθ≠,则 1cos 2θ≠” D .若命题 2:,10p x R x x ∃∈-+<,则 2:,10p x R x x ⌝∀∈-+>4.已知 21()sin(),'()42f x x x f x π=++为 ()f x 的导函数,则 '()y f x =的图象大致是5.已知 ,αβ表示平面,m ,n 表示直线, ,m βαβ⊥⊥,给出下列四个结论: ① ,n n αβ∀⊂⊥;② ,n m n β∀⊂⊥;③,//n m n α∀⊂;④ ,n m n α∃⊂⊥, 则上述结论中正确的个数为A .1B .2C .3D .46.已知函数 2()f x x x =+,执行右边的程序框图,若输出的结果是3132,则 判断框中的条件应是A. 30n ≤ B . 31n ≤C . 32n ≤D . 33n ≤ 7.已知双曲线 2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是1F 、2F 过 2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,若1M F N∆为正三角形,则该双曲线的离心率为 A .3 B .C .D .2+8.某几何体的三视图如图所示,则该几何体外接球的表面积为A .43π B . 323π C . 4π D . 16π 9.在区间[-3,3]上任取两数x ,y ,使 210x y --<成立的概率为A . 827B . 727C . 16D . 42710.已知定义在R 上的函数 ()y f x =对任意的x 满足 (1)()f x f x +=-,当-l ≤x<l时, 3()f x x =.函数 log ,0,()1,0a x x g x x x⎧>⎪=⎨-<⎪⎩若函数在 [)6,-+∞上有6个零点,则实数a的取值范围是A . 1(0,)(7,)7+∞ B. (]11,7,997⎡⎤⎢⎥⎣⎦C. (]1,1,1,99⎡⎫⎪⎢⎣⎭ D . [)11,7,997⎛⎤ ⎥⎝⎦第Ⅱ卷 (非选择题共1 00分)注意事项:将第Ⅱ卷答案用0. 5mm 的黑色签字笔答在答题卡的相应位置上,二、填空题:本大题共5小题,每小题5分,共25分.1 1.已知 12,e e 是夹角为 60的两个单位向量,若向量 1232a e e =+,则 a =________.12.现将如图所示的5个小正方形涂上红、黄两种颜色,其中3个涂红色,2个涂黄色,若恰有两个相邻的小正方形涂红色,则不同的涂法种数共有_________.(用数字作答)13.已知抛物线 2:2(0)C y px p =>上一点 (2,)(0)P m m >,若P 到焦点F 的距离为4,则以P 为圆心且与抛物线C 的准线相切的圆的标准方程为_________.14.曲线 sin y x =在点 (,),(,)2222A B ππππ-处的切线分别为 12,l l ,设 12,l l 及直线 x-2y+2=0围成的区域为D(包括边界).设点P(x ,y)是区域D 内任意一点,则x+2y 的最大值为________.15.如右图所示,位于东海某岛的雷达观测站A ,发现其北偏东 45,与观测站A 距离 B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北 (045)θθ<<的C 处,且4c o s 5θ=,已知A 、C 两处的距离为10海里,则该货船的船速为 海里/小时___________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数 ()sin()(0,0)4f x A x A πωω=+>>的振幅为2,其图象的相邻两个对称中心之间的距离为 3π. (I)若 26(),03125f a a ππ+=<<,求sina ; (Ⅱ)将函数 ()y f x =的图象向右平移 6π个单位得到 ()y g x =的图象,若函数 ()y g x k =-是在 110,36π⎡⎤⎢⎥⎣⎦上有零点,求实数 k 的取值范围. 17.(本小题满分1 2分)直三棱柱 111ABC A B C -中,,AB BC BC ⊥=,112,BB AC =与1AC 交于一点P ,延长 1B B 到D ,使得BD=AB ,连接DC ,DA ,得到如图所示几何体.(I)若AB=1,求证:BP ∥平面ACD,(Ⅱ)若直线 1CA 与平面 11BCC B 所成的角为 30,求二面角 1D AC C --的余弦值.18.(本小题满分12分)某超市制定“五一”期间促销方案,当天一次性购物消费额满1000元的顾客可参加“摸球抽奖赢代金券”活动,规则如下:①每位参与抽奖的顾客从一个装有2个红球和4个白球的箱子中逐次随机摸球,一次只摸出一个球;②若摸出白球,将其放回箱中,并再次摸球;若摸出红球则不放回,工作人员往箱中补放一白球后,再次摸球;③如果连续两次摸出白球或两个红球全被摸出,则停止摸球.停止摸球后根据摸出的红球个数领取代金券,代金券数额Y 与摸出的红球个数x 满足如下关系:Y=144+72x(单位:元).(I)求一位参与抽奖顾客恰好摸球三次即停止摸球的概率;(Ⅱ)求随机变量Y 的分布列与期望.19.(本小题满分12分)已知等差数列 {}135468,42,69n a a a a a a a ++=++=;等比数列 {}1,2n b b =, 2123log ()6bb b =.(I)求数列 {}n a 和数列 {}n b 的通项公式;(Ⅱ)设 n n n c a b =-,求数列{}nc 的前n 项和 n T .20.(本小题满分13分)如图,椭圆 2222:1(0)x y C a b a b+=>>的短轴长为2,点P 为上顶点,圆 222:O x y b +=将椭圆C 的长轴三等分,直线 4:(0)5l y mx m =-≠与椭圆C 交于A 、B 两点,PA 、PB 与圆O 交于M 、N 两点.(I)求椭圆C 的方程;(Ⅱ)求证△APB 为直角三角形;(Ⅲ)设直线MN 的斜率为n ,求证: m n为定值.21.(本小题满分14分)已知函数 2()ln (01)x f x a x x a a a =+->≠且. ( I)求函数 ()f x 的单调区间;(Ⅱ)a>l ,证明:当 (0,)x ∈+∞时, ()()f x f x >-; (Ⅲ)若对任意 1212,,x x x x ≠,且当 12()()f x f x =时,有 120x x +<,求a 的取值范围,。

潍坊市2015届高三4月第二次模拟考试各科(数学理)

潍坊市2015届高三4月第二次模拟考试各科(数学理)

潍坊高三数学(理工农医学)2015.04本试卷共5页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集R U =,已知集合}1|||{≤=x x A ,}1log |{2≤=x x B ,则UA B ⋂=A .]1,0(B .]1,1[-C .]2,1(D .]2,1[)1,( --∞ 2. 设i 是虚数单位,若复数)(310R a ia ∈--是纯虚数,则a 的值为 A .-3 B .-1 C .1 D .3 3. 已知命题44,0:≥+>∀x x x p ;命题212),,0(:00=+∞∈∃x x q ,则下列判断正确的是 A .p 是假命题B .q 是真命题C .)(q p ⌝∧是真命题D .q p ∧⌝)(是真命题4. 设n m ,是不同的直线,βα,是不同的平面,下列命题中正确的是A .若n m n m ⊥⊥,,//βα,则βα⊥;B .若n m n m //,,//βα⊥,则βα⊥;C .若n m n m ⊥⊥,,//βα,则βα//;D .若n m n m //,,//βα⊥,则βα//;5.若)2,0(πα∈,且103)22cos(cos 2=++απα,则=αtan A .21 B .31 C .41 D .516. 已知定义在R 上的函数)(x f y =满足)(2)2(x f x f =+,当]2,0[∈x 时,⎩⎨⎧∈+-∈=]2,1[,2)1.0[,)(2x x x x x x f ,则函数)(x f y =在]4,2[上的大致图像是7. 已知三棱锥S —ABC 的所有顶点都在球O 的球面上,底面△ABC 是边长为1的正三角形,棱SC 是球O 的直径且SC=2,则此三棱锥的体积为A .62B .63C .32D .22 8.某公司新招聘5名员工,分给下属的甲,乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员不能都分给同一个部门,则不同的分配方案和数是 A.6 B.12 C.24 D.369. 已知圆()()22:341C x y -+-=和两点()()(),0,,00A m B m m ->.若圆C 上存在P 点,使得90APB ∠=,则m 的最大值为 A.7 B.6 C.5 D.410. 已知函数()23420142015123420142015x x x x x f x x =+-+-+⋅⋅⋅-+,若函数()f x 的零点均在区间[](),,,a b a b a b Z <∈内,则b a -的最小值是A.1B.2C.3D.4第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.某校对高三年级1600名男女学生的视力状况进行调查,现用分 层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生 少10人,则该校高三年级的女生人数是 ;12. 当输入的实数]30,2[∈x 时,执行如图所示的程序框图,则输 出的x 不小于103的概率是 ;13. 已知G 为△ABC 的重心,令AB=a uu u r ,AC b =uuu r,过点G 的直线分别交AB 、AC 于P 、Q 两点,且AP ma =uu u r ,AQ nb =uuu r ,则nm 11+=__________.14. 抛物线)0(2:2>=p px y C 的焦点为F ,点O 是坐标原点,过点O 、F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为 ;15. 定义在()0,+∞上的函数()f x 满足:对()0,x ∀∈+∞,都有()()22f x f x =;当(]()1,22x f x x ∈=-时,,给出如下结论: ①对(),20xm Z f ∀∈=有;②函数()f x 的值域为[)0,+∞;③存在n Z ∈,使()219xf +=;④函数()f x 在区间(),a b 上单调递减的充分条件是“存在k Z ∈,使得()()1,2,2mkk a b -⊆.其中所有正确结论的序号是 。

山东省潍坊市2014届高三考点回扣即高考模拟训练(四)数学(理)试卷

山东省潍坊市2014届高三考点回扣即高考模拟训练(四)数学(理)试卷

第I 卷(选择题,共50分)一、选择题:本大题共10小题.每小题5分。

共50分.把正确答案涂在答题卡上.1.已知集合{}{}(){}*2,4124,,,,log x A B C x y x A y B y N ===∈∈∈,,,且,则C 元素个数是A.2B.3C.4D.5 2.已知()():230p x a x x p q -<4;-->⌝⌝,若是的充分不必要条件,则实数a 的取值范围A. 16a a <->或B. 16a a <-≥或C. 16a -≤≤D. 16a -<<3.已知向量()()cos ,2,sin ,1//tan 4a b a b πααα⎛⎫=-=-⎪⎝⎭,且,则等于A.3B. 3-C. 13D. 13- 4.执行右图的程序框图,任意输入一次()()0101x x y y ≤≤≤≤与,则能输出数对(),x y 的概率为 A. 14B.13 C. 23 D. 345.下列说法正确的个数是①“在ABC ∆中,若sin sin A B >>,则A B ”的逆命题是真命题;②“1m =-”是“直线()2110mx m y +-+=和直线320x my ++=垂直”的充要条件;③“三个数,,a b c 成等比数列”是“b =④命题“32,10x R x x ∀∈-+≤”的否定是“33000,10x R x x ∃∈-+>”A.1B.2C.3D.46.已知各项均不为零的数列{}n a ,定义向量()()*1,,,1,n n n n c a a b n n n N +==+∈,则下列命题中是真命题的是A.若对任意的*n N ∈,都有//n n c b 成立,则数列{}n a 是等差数列B.若对任意的*n N ∈,都有//n n c b 成立,则数列{}n a 是等差数列C.若对任意的*n N ∈,都有n n c b ⊥成立,则数列{}n a 是等差数列D.若对任意的*n N ∈,都有n n c b ⊥成立,则数列{}n a 是等比数列7.已知非零向量AB AC与满足102AB AC AB AC BC AB AC AB AC ⎛⎫ ⎪+⋅=⋅= ⎪⎝⎭,且,则ABC ∆为 A.等腰非等边三角形 B.等边三角形C.三边均不相等的三角形D.直角三角形 8.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为(),,0,1c a b c ∈⎡⎤⎣⎦,,已知他投篮一次得分的期望是2,则213a b+的最小值为 A. 323 B. 283 C. 143 D. 1639.设不等式组4,010x y x x y +≤⎧⎪-≥⎨⎪-≥⎩表示的平面区域为 D.若圆()()()222:110C x y r r +++=>经过区域D 上的点,则r的取值范围是A. ⎡⎣B.⎡⎣ C. (0, D. ( 10.设()f x 是定义在R 上的偶函数,对x R ∈,都有()()[]22,2,0f x f x x -=+∈-且当时,()112x f x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()()log 201a f x xa -+=>恰有3个不同的实数根,则a 的取值范围是A. ()1,2B. ()2,+∞C. (D. )2 第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上.11.复数2a i i+-在复平面内所对应的点在实轴上,那么实数a =___________.12.若()5224100125321x a a x a x a x a +=+++⋅⋅⋅+,则的值为____________.13.函数()tan 0y x y a ωω=>=与直线相交于A ,B 两点,且AB 最小值为π,则函数()cos f x x x ωω=-的单调增区间是___________.14.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A ,B 分别是12,C C 在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率是_________.15.关于函数()()21lg 0x f x x x+=≠,有下列命题: ①其图象关于y 轴对称;②当()0x f x >时,是增函数;当()0x f x <时,是减函数;③()f x 的最小值是lg 2;④()f x 在区间()()1,02,-+∞、上是增函数;⑤()f x 无最大值,也无最小值.其中所有正确结论的序号是_____________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分12分)已知锐角ABC ∆中内角A 、B 、C 的对边分别为2226cos ,sin 2sin sin a b c a b ab C C A B +==、、,且.(I )求角C 的值;(II )设函数()()sin cos 06f x x x πωωω⎛⎫=--> ⎪⎝⎭,且()f x 图象上相邻两最高点间的距离为π,求()f A 的取值范围.17.(本小题满分12分)李先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有12L L 、两条路线(如图),1L 路线上有123A A A 、、三个路口,各路口遇到红灯的概率均为12;2L 路线上有12B B 、两个路口,各路口遇到红灯的概率依次为3345,.(I )若走1L 路线,求最多遇到1次红灯的概率;(II )若走2L 路线,求遇到红灯次数的X 的数学期望;(III )按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.18.(本小题满分12分)如图,在底面是正方形的四棱锥P ABCD PA -⊥中,面ABCD ,BD 交AC 于点E ,F 是PC 中点,G 为AC 上一点.(I )求证:BD FG ⊥;(II )确定点G 在线段AC 上的位置,使FG//平面PBD ,并说明理由;(III )当二面角B PC D --的大小为23π时,求PC 与底面ABCD 所成角的正切值.19.(本小题满分12分)已知数列{}n a 是首项为111,44a q ==公比的等比数列,设()*1423log n n b a n N +=∈,数列{}n c 满足n n n c a b =⋅.(I )求数列{}n c 的前n 项和n S ;(II )若2114n c m m ≤+-对一切正整数n 恒成立,求实数m 的取值范围. 20.(本小题满分12分)以椭圆()2222:10x y C a b a b+=>>的中心O 为半径的圆称为该椭圆的“准圆”.设椭圆C 的左顶点为P ,左焦点为F ,上顶点为Q ,且满足2,OFQ PQ S OPQ S ∆∆==. (I )求椭圆C 及其“准圆”的方程;(II )若椭圆C 的“准圆”的一个弦ED (不与坐标轴垂直)与椭圆C 交于M 、N 两点,试证明:当0OM ON ⋅=时,试问弦ED 的长是否为定值,若是,求出该定值;若不是,请说明理由.21.(本小题满分12分)已知函数()()()211,ln .f x a x x g x x =-+-=(I )若()()()()1,0a F x g x f x ==-+∞求在,上的最大值; (II )证明:对任意的正整数n ,不等式()23412ln 149n n n ++++⋅⋅⋅+>+都成立; (III )是否存在实数()0a a >,使得方程()()()21141,g x f x a e x e ⎛⎫'=+-- ⎪⎝⎭在区间内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.。

山东省潍坊市2014届高三上学期期中考试理科数学Word版含答案

山东省潍坊市2014届高三上学期期中考试理科数学Word版含答案

山东省潍坊市2014届高三上学期期中考试理科数学Word版含答案高三数学试题(理科)注意事项:1.本试卷分4页,本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡及答题纸上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷写在答题纸对应区域内,严禁在试题卷或草纸上答题.5.考试结束后,将答题卡和答题纸一并交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一个符合题目要求的选项.)1.设x∈Z,集合A为偶数集,若命题p:x∈Z ,2x∈A,则pA.x∈Z ,2x A C.x∈Z ,2x∈AB.x Z ,2x∈A D.x∈Z ,2x A2.设集合A={1,2,3},B={4,5},C={x|x=b a,a A,b B},则C 中元素的个数是A.3B.4C.5D.63.已知幂函数y f(x)的图像过点(A.21,),则log2f(2)的值为22D.112B.-1C.-1 24.在△ABC中,内角A、B的对边分别是a、b,若A.等腰三角形C.等腰三角形或直角三角形|x|cosAb,则△ABC为cosBaB.直角三角形D.等腰直角三角形5.若当x∈R时,函数f(x) a(a 0且a 1)满足f(x)≤1,则函数y loga(x 1)的图像大致为6.已知110,给出下列四个结论:①a b ②a b ab ③|a| |b| ab④ab b2 其中正确结论的序号是A.①②B.②④C.②③D.③④7.等差数列{an}的前20项和为300,则a4+a6+a8+a13+a15+a17等于A.60B.80 C.90 D.1202x a,x 08.已知函数f(x) (a R),若函数f(x)在R上有两个零点,则a的取值2x 1,x 0范围是A.( , 1)B.( ,1]C.[ 1,0)*D.(0,1]9.已知数列{an}的前n项和为sn,且sn+an=2n(n∈N),则下列数列中一定是等比数列的是A.{an}B.{an-1}C.{an-2}D.{an+2}10.已知函数f(x) sin( x3)(0)的最小正周期为,将函数y f(x)的图像向5 5D.126右平移m(m0)个单位长度后,所得到的图像关于原点对称,则m的最小值为A.62B.3C.11.设函数f(x) x xsinx,对任意x1,x2 ( , ),若f(x1) f(x2),则下列式子成立的是A.x1 x222B.x1 x2 C.x1 |x2|22D.|x1| |x2|12.不等式2x axy y≤0对于任意x [1,2]及y [1,3]恒成立,则实数a的取值范围是A.a≤22B.a≥22C.a≥113D.a≥9 2二、填空题(本大题共4小题,每小题4分,共16分)13.213t2dt 1,则sin cos .421x15.已知一元二次不等式f(x) 0的解集为{x| x 2},则f(2) 0的解集为。

潍坊2014二模数学试题文科及理科

潍坊2014二模数学试题文科及理科

高三数学(文)2014.04本试卷共5页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的、号、考试科目填写在规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10小题。

每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()1i z i z +=,则的虚部为 A.2i - B.12- C.2i D.122.已知集合{}(){}2210,l 10,A x x B x ox A B g =-≤=-≤⋂=则 A.[]0,2 B.(]0,2 C.(]1,2D.()1,2 3.下列结论正确的是A.若向量a//b ,则存在唯一的实数a b λλ=使B.已知向量,a b 为非零向量,则“,a b 的夹角为钝角”的充要条件是“0a b •<”C.“若3πθ=,则1cos 2θ=”的否命题为“若132πθθ≠≠,则cos ” D.若命题22:,10:,10p x R x x p x R x x ∃∈-+<⌝∀∈-+>,则4.为了调查学生携带手机的情况,学校对高一、高二、高三三个年级的学生进行分层抽样调查.已知高一有学生1000人、高二有1200人;三个年级总共抽取了66人,其中高一抽取了20人,则高三年级的全部学生数为A.1000B.1100C.1200D.13004.已知()()()21sin ,42f x x x f x f x π⎛⎫'=++ ⎪⎝⎭为的导函数,则()'y f x =图象大致是6.已知,αβ表示平面,,m n 表示直线,,m βαβ⊥⊥,给出下列四个结论;①,n n αβ∀⊂⊥;②,n m n β∀⊂⊥;③,//n m n α∀⊂;④,n m n α∃⊂⊥. 则上述结论中正确的个数为A.1B.2C.3D.47.已知函数()2f x x x =+,执行右边的程序框图,若输出的结果是3132,则判断框中的条件应是A. 30n ≤B. 31n ≤C. 32n ≤D. 33n ≤ 8.已知双曲线()2222:10x y C a b a b-=>0,>的左、右焦点分别是12F F 、,过2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,若1MF ∆N 为正三角形,则该双曲线的离心率为A.21B.3C.13D.23+9.某几何体的三视图如图所示,则该几何体外接球的表面积为A.43π B.323π C.4π D.16π10.已知定义在R 上的函数()y f x =对任意的x 满足()()1,11f x f x x +=--≤<当时,()3f x x =.函数()1,0,1,0a og x x g x x x⎧>⎪=⎨-<⎪⎩,若函数()()()[)6h x f x g x =--+∞在,上有6个零点,则实数a 的取值围是A.()1077⎛⎫⋃+∞ ⎪⎝⎭,,B.(]117997⎡⎫⋃⎪⎢⎣⎭,,C.(]11199⎡⎫⋃⎪⎢⎣⎭,,D.[)117997⎛⎤⋃ ⎥⎝⎦,, 第II 卷(非选择题 共100分)注意事项:将第II 卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每小题5分,共25分.11.已知12,e e 是夹角为60的两个单位向量.若向量1232a e e =+,则a =________。

山东省潍坊市2014届高三上学期期中考试 理科数学 Word版含答案.pdf

山东省潍坊市2014届高三上学期期中考试 理科数学 Word版含答案.pdf

高三数学试题(理科) 注意事项: 1.本试卷分4页,本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟. 2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡及答题纸上. 3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上. 4.第Ⅱ卷写在答题纸对应区域内,严禁在试题卷或草纸上答题. 5.考试结束后,将答题卡和答题纸一并交回. 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一个符合题目要求的选项.) 1.设∈Z,集合A为偶数集,若命题:∈Z ,2∈A,则 A.∈Z ,2A B.Z ,2∈A C.∈Z ,2∈AD.∈Z ,2A 2. 设集合A={1,2,3},B={4,5},C={|=},则C中元素的个数是 A.3B.4C.5D. 6 3.已知幂函数的图像过点(,),则的值为 A.B.- C.-1D.1 4.在△ABC中,内角A、B的对边分别是、,若,则△ABC为 A.等腰三角形 B.直角三角形 C.等腰三角形或直角三角形D.等腰直角三角形 5.若当∈R时,函数且)满足≤1,则函数的图像大致为 6.已知,给出下列四个结论:① ② ③ ④ 其中正确结论的序号是 A.①②B.②④C.②③D.③④ 7.等差数列{}的前20项和为300,则+++++等于 A.60B.80 C.90 D.120 8.已知函数(),若函数在R上有两个零点,则的取值范围是 A.B. C.D. 9.已知数列{}的前项和为,且+=2(∈N*),则下列数列中一定是等比数列的是 A.{}B.{-1}C.{-2}D.{+2} 10.已知函数()的最小正周期为,将函数的图像向右平移(>0)个单位长度后,所得到的图像关于原点对称,则的最小值为 A.B.C. D. 11.设函数,对任意,若,则下列式子成立的是 A.B. C. D. 12.不等式≤0对于任意及恒成立,则实数的取值范围是 A.≤B.≥C.≥D.≥ 二、填空题(本大题共4小题,每小题4分,共16分) 13. . 14.若,则 . 15.已知一元二次不等式的解集为{,则的解集为 。

山东省潍坊市2014届高三考点回扣即高考模拟训练(四)数学(理)试题

山东省潍坊市2014届高三考点回扣即高考模拟训练(四)数学(理)试题

山东省潍坊市2014届高三考点回扣即高考模拟训练(四)数学(理)试题本试卷分第I 卷和第Ⅱ卷两部分,共6页,满分为150分,考试用时120分钟,考试结束后将答题卡交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

第I 卷(选择题,共50分)一、选择题:本大题共10小题.每小题5分。

共50分.把正确答案涂在答题卡上.1.已知集合{}{}(){}*2,4124,,,,logxA B C x y x A y B y N ===∈∈∈,,,且,则C 元素个数是A.2B.3C.4D.52.已知()():230p x a x x p q -<4;-->⌝⌝,若是的充分不必要条件,则实数a 的取值范围A. 16a a <->或B. 16a a <-≥或C. 16a -≤≤D. 16a -<<3.已知向量()()cos ,2,sin ,1//tan 4a b a b πααα⎛⎫=-=- ⎪⎝⎭,且,则等于A.3B. 3-C.13D. 13-4.执行右图的程序框图,任意输入一次()()0101x x y y ≤≤≤≤与,则能输出数对(),x y 的概率为A.14 B.13 C. 23D. 345.下列说法正确的个数是①“在ABC ∆中,若sin sin A B >>,则A B ”的逆命题是真命题;②“1m =-”是“直线()2110mx m y +-+=和直线320x my ++=垂直”的充要条件;③“三个数,,a b c成等比数列”是“b = ④命题“32,10x R x x ∀∈-+≤”的否定是“33000,10x R x x ∃∈-+>” A.1B.2C.3D.46.已知各项均不为零的数列{}n a ,定义向量()()*1,,,1,n n n n c a a b n n n N +==+∈,则下列命题中是真命题的是A.若对任意的*n N ∈,都有//n n c b 成立,则数列{}n a 是等差数列B.若对任意的*n N ∈,都有//n n c b 成立,则数列{}n a 是等差数列C.若对任意的*n N ∈,都有n n c b ⊥成立,则数列{}n a 是等差数列D.若对任意的*n N ∈,都有n n c b ⊥成立,则数列{}n a 是等比数列7.已知非零向量AB AC 与满足102AB AC AB AC BC AB AC AB AC ⎛⎫ ⎪+⋅=⋅= ⎪⎝⎭,且,则ABC ∆为A.等腰非等边三角形B.等边三角形C.三边均不相等的三角形D.直角三角形8.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为(),,0,1c a b c ∈⎡⎤⎣⎦,,已知他投篮一次得分的期望是2,则213a b+的最小值为 A.323B.283C.143D.1639.设不等式组4,010x y x x y +≤⎧⎪-≥⎨⎪-≥⎩表示的平面区域为 D.若圆()()()222:110C x y r r +++=>经过区域D上的点,则r 的取值范围是A. ⎡⎣B. ⎡⎣C. (0,D. (10.设()f x 是定义在R 上的偶函数,对x R ∈,都有()()[]22,2,0f x f x x -=+∈-且当时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是 A. ()1,2B. ()2,+∞C. (D.)第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上. 11.复数2a ii+-在复平面内所对应的点在实轴上,那么实数a =___________. 12.若()5224100125321x a a x a x a x a +=+++⋅⋅⋅+,则的值为____________.13.函数()tan 0y x y a ωω=>=与直线相交于A ,B 两点,且AB 最小值为π,则函数()cos f x x x ωω=-的单调增区间是___________.14.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A ,B 分别是12,C C 在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率是_________.15.关于函数()()21lg 0x f x x x+=≠,有下列命题:①其图象关于y 轴对称;②当()0x f x >时,是增函数;当()0x f x <时,是减函数; ③()f x 的最小值是lg 2;④()f x 在区间()()1,02,-+∞、上是增函数; ⑤()f x 无最大值,也无最小值.其中所有正确结论的序号是_____________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知锐角ABC ∆中内角A 、B 、C 的对边分别为2226cos ,sin 2sin sin a b c a b ab C C A B +==、、,且.(I )求角C 的值;(II )设函数()()sin cos 06f x x x πωωω⎛⎫=--> ⎪⎝⎭,且()f x 图象上相邻两最高点间的距离为π,求()f A 的取值范围.17.(本小题满分12分)李先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有12L L 、两条路线(如图),1L 路线上有123A A A 、、三个路口,各路口遇到红灯的概率均为12;2L 路线上有12B B 、两个路口,各路口遇到红灯的概率依次为3345,.(I )若走1L 路线,求最多遇到1次红灯的概率; (II )若走2L 路线,求遇到红灯次数的X 的数学期望;(III )按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.18.(本小题满分12分)如图,在底面是正方形的四棱锥P ABCD PA -⊥中,面ABCD ,BD 交AC 于点E ,F 是PC 中点,G 为AC 上一点. (I )求证:BD FG ⊥;(II )确定点G 在线段AC 上的位置,使FG//平面PBD ,并说明理由;(III )当二面角B PC D --的大小为23π时,求PC 与底面ABCD 所成角的正切值. 19.(本小题满分12分) 已知数列{}n a 是首项为111,44a q ==公比的等比数列,设()*1423log n n b a n N +=∈,数列{}n c 满足n n n c a b =⋅.(I )求数列{}n c 的前n 项和n S ; (II )若2114n c m m ≤+-对一切正整数n 恒成立,求实数m 的取值范围. 20.(本小题满分12分)以椭圆()2222:10x y C a b a b+=>>的中心O “准圆”.设椭圆C 的左顶点为P ,左焦点为F ,上顶点为Q ,且满足2,OFQ PQ S OPQ ∆∆==.(I )求椭圆C 及其“准圆”的方程;(II )若椭圆C 的“准圆”的一个弦ED (不与坐标轴垂直)与椭圆C 交于M 、N 两点,试证明:当0OM ON ⋅=时,试问弦ED 的长是否为定值,若是,求出该定值;若不是,请说明理由.21.(本小题满分12分)已知函数()()()211,ln .f x a x x g x x =-+-=(I )若()()()()1,0a F x g x f x ==-+∞求在,上的最大值; (II )证明:对任意的正整数n ,不等式()23412ln 149n n n++++⋅⋅⋅+>+都成立; (III )是否存在实数()0a a >,使得方程()()()21141,g x f x a e x e ⎛⎫'=+-- ⎪⎝⎭在区间内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.。

【2014潍坊二模】山东省潍坊市2014届高三4月模拟考试 理科4份(语数英理综)

【2014潍坊二模】山东省潍坊市2014届高三4月模拟考试 理科4份(语数英理综)

高三语文注意事项:1.本试题分为选择题和非选择题两部分,共8页。

时间150分钟,满分150分。

2.务必将自己的班级、姓名、座号、考号填涂在答题卡的相应位置。

第1卷(共3 6分)一、(15分,每小题3分)1.下列词语中加点的字,读音全都正确的一项是A.懵.懂měng 混.浊hùn 双曲.线qū削.足适履xuēB.卸载.zǎi 襁.褓qiǎng 压轴.戏zhòu 徇私.舞弊xùnC.症.结zhēng 电荷.hé潜.意识qián 叱.咤风云zhàD.尽.管jìn 强.迫qiǎng 冠.心病guān 龇牙.咧嘴zī2.下列各句中,没有错别字的一句是A.组织跳广场舞成了少数人牟利的手段,为争夺“客源”,她们竞相放大各自的音响音量,吸引人们参加自己的跳舞团队。

B.开出“一毛钱处方”的徐医生说:“根据病情开药,多开药不见得就能把病看好。

”小小处方,映射出了医者的赤诚之心。

C.自称“大师”的刘某伙同他人在养生会所内,利用艾灸故弄悬虚,迷惑顾客,谎称为病人“发功”治病而骗取钱财。

D.火车站周边大量制办、贩卖假证的小广告令人防不胜防。

脚下踩着“牛皮癣”,眼前晃着“小广告”,让人不胜其繁。

3.下列语句中,加点词语使用恰当的一项是A.《南方周末》是“跨地区监督”的典范,其舆论监督的触角伸向全国各地,这种模式已为国内一些新闻媒体所效尤..。

B.作为一名硕士村官,她最近在捉摸..如何在信息极其闭塞的村子里通过电子商务把农产品销售出去,增加农民的收入。

C.当看到留守儿童因不敢说话、孤独、交往能力低而卓尔不群....时,我知道,让孩子快乐成长已经成为一种责任。

D.他因一场大病感受到了身体健康的重要,随后跟随体校的老师练起了健美,从此一发..而不可收....,最终竟练成了健美冠军。

4.下列各句中,标点符号使用正确的一句是A.我们曾经传奇般地翻译、写作、生活。

虽然有些人已经死去了,但他们所经历的生活的幸福是永恒的。

2019届山东省潍坊市高三4月份第二次模拟考试数学(理)试卷及答案

2019届山东省潍坊市高三4月份第二次模拟考试数学(理)试卷及答案

2019届潍坊市高三4月份第二次模拟考试
数学(理)试卷2019.4
本试卷共6页.满分150分.
注意事项:
1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名、考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束,考生必须将试题卷和答题卡一并交回.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}23A x x =-≤≤,函数()()ln 1f x x =-的定义域为集合B ,则A B ⋂=
A .[-2,1]
B .[-2,1)
C .[1,3]
D .(1,3]
2.若复数12,z z 在复平面内的对应点关于虚轴对称,112
1z z i z =+=,则
A .i
B .i -
C .1
D .1- 3.若4tan 3α=,则cos 22πα⎛⎫+= ⎪⎝⎭ A .2425- B .725- C .725 D .2425
4.七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传
到了国外,至今英国剑桥
大学的图书馆里还
珍藏着一部《七巧新谱》.若用七巧板拼
成一只雄鸡,在雄鸡平面图形上随机取一
点,则恰好取自雄鸡鸡尾(阴影部分)的概率为。

山东省潍坊市高三数学3月模拟考试试题(潍坊市一模)理(

山东省潍坊市高三数学3月模拟考试试题(潍坊市一模)理(

山东省潍坊市2014届高三3月模拟考试数学(理科)试题第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若复数2满足z(1+i )=2i ,则在复平面内z 对应的点的坐标是( ) (A)(1,1) (B)(1,-l) (C)(-l ,1) (D)(-l ,-l)2.设全集U=R ,集合A={|21xx >},B={||2|3x x -≤},则U ()A B I ð等于( )(A)[-1,0) (B)(0,5] (C)[-1,0] (D)[0,5]3.已知命题p 、q ,“p ⌝为真”是“p q ∧为假”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( )(A) 22(2)(2)3x y -+±= (B) 22(2)(3)3x y -+=(C) 22(2)(2)4x y -+±= (D) 22(2)(3)4x y -+=【答案】D 【解析】试题分析:因为圆C 经过(1,0),(3,0)两点,所以圆心在直线2x =,又圆与y 轴相切,所以半径2r =,设圆心坐标为()2,b ,则()22213b -+=,23,3b b ==±,所以答案应选D.考点:圆的标准方程.5.运行如图所示的程序框图,则输出的结果S 为( ) (A) 1007 (B) 1008 (C) 2013 (D) 2014【答案】A6.函数||x y a =与sin y ax =(0a >且1a ≠)在同一直角坐标系下的图象可能是( )7.三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB= BC=1,则球O的表面积为( )3(B) 32π (C) 3π (D) 12π【答案】C 【解析】试题分析:因为AB BC ⊥,所以AC 是ABC ∆所在截面圆的直径, 又因为SA ⊥平面ABC ,所以SAC ∆所在的截面圆是球的大圆 所以SC 是球的一条直径由题设1SA AB BC ===,由勾股定理可求得:2,3AC SC ==所以球的半径3R =所以球的表面积为23432ππ⎛⨯= ⎝⎭所以应选C.考点:1、圆内接几何体的特征;2、球的表面积公式.8.设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( )(A) -1 (B) 0 (C) l (D) 256 【答案】B 【解析】 试题分析:()00(sin cos )cos sin |k x x dx x x ππ=-=--⎰Q=cos sin cos0sin02ππ--++=9.对任意实数a ,b 定义运算“⊗”:,1,, 1.b a b a b a a b -≥⎧⊗=⎨-<⎩设2()(1)(4)f x x x =-⊗+,若函数()y f x k=+的图象与x 轴恰有三个不同交点,则k 的取值范围是( )(A)(-2,1) (B)[0,1] (C)[-2,0) (D)[-2,1)考点:1、新定义;2、分段函数;3、数形结合的思想.10.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是( )(A) 13(B)232232第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知某几何体的三视图如图所示,则该几何体的体积为12.若x、y满足条件y2||11xy x≥-⎧⎨≤+⎩,则z=x+3y的最大值为【答案】11【解析】试题分析:不等式组在直角坐标平面内所对应的区域如下图阴影部分所示:13.若(0,)2πα∈,则22sin 2sin 4cos ααα+的最大值为 .【答案】12【解析】试题分析:()0,,tan 0,2παα⎛⎫∈∴∈+∞ ⎪⎝⎭Q 22222sin 22sin cos 2tan sin 4cos sin 4cos tan 4ααααααααα⋅∴==+++=21424tan 2tan tan tan αααα≤=+⨯当且仅当4tan tan αα=,即tan 2α=时,等号成立 所以,答案应填12考点:1、同角三角函数的基本关系;2、二倍角公式;3、基本不等式.14.如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为 .15.已知函数()y f x =为奇函数,且对定义域内的任意x 都有(1)(1)f x f x +=--.当(2,3)x ∈时,2()log (1)f x x =-给出以下4个结论:①函数()y f x =的图象关于点(k ,0)(k ∈Z)成中心对称; ②函数|()|y f x =是以2为周期的周期函数; ③当(1,0)x ∈-时,2()log (1)f x x =--; ④函数(||)y f x =在(k ,k+1)( k ∈Z)上单调递增. 其一中所有正确结论的序号为 【答案】①②③ 【解析】试题分析:由题设()y f x =为奇函数,其图象关于原点中心对称,又对定义域内的任意x 都有(1)(1)f x f x +=--,所以其图象还关于点()1,0,据此可判断函数()f x 为周期函数,最小正周期2T =,又当(2,3)x ∈时,2()log (1)f x x =-,因此可画出函数()f x 的图象大致如下图一所示,函数|()|y f x =的图象如下图二所示,函数(||)y f x =的图象如下图三所示,由图象可知①②正确,④不正确;另外,当()1,0x ∈-时,()22,3x -∈所以,()()()222log 21log 1f x x x -=--=- 又因为()f x 是以2这周期的奇函数 所以,()()()2f x f x f x -=-=- 所以,()()2log 1f x x -=-所以,()()()2log 1,1,0f x x x =--∈-,所以③也正确 故答案应填:①②③考点: 函数的图象与性质的综合应用三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分l2分) 已知函数()sin cos f x x x =+.(I)求函数()y f x =在[0,2]x π∈上的单调递增区间;(Ⅱ)在∆ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知m =(a ,b),n =(f (C),1)且m //n ,求B . 【答案】(I)0,4π⎡⎤⎢⎥⎣⎦,5,24ππ⎡⎤⎢⎥⎣⎦;(Ⅱ) 4B π=又[]0,2,x π∈Q()f x ∴在[]0,2π上的单调递增区间为0,4π⎡⎤⎢⎥⎣⎦,5,24ππ⎡⎤⎢⎥⎣⎦,………………………………6分17.(本小题满分12分)如图,在四棱锥E-ABCD 中, EA ⊥平面ABCD ,AB//CD ,AD=BC=12AB ,∠ABC=3π. (I)求证:∆BCE 为直角三角形;(II)若AE=AB ,求CE 与平面ADE 所成角的正弦值.【答案】(1)证明过程详见解析;(II) 21【解析】试题分析:(I)由于EA ⊥平面ABCD ,可证EA BC ⊥,欲证BCE ∆为直角三角形,只需证AC BC ⊥;在ABC ∆,根据现有条件,利用余弦定理不难证明.(II)由(I)知:,AC BC AE ⊥⊥平面ABCD ,以点C 为坐标原点,,,CA CB AE u u u r u u u r u u u r的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系C xyz -……………………………………………………5分 设BC a =,则2,3AE AB a AC a ===,如图2,在等腰梯形ABCD 中,过点C 作CG AB ⊥于G ,则1,22GB a CD AB GB a =∴=== 过点D 作DH BC ⊥于H ,由(I)知,60DCH ∠=o33,,,,02222a aa a DH CH D ⎛⎫∴==∴- ⎪ ⎪⎝⎭………………………………………………7分18.(本小题满分12分)某次数学测验共有l0道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对l道题得5分,不选或选错得0分.某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(I)求该考生本次测验选择题得50分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望.(Ⅱ)该考生所得分数30,35,40,45,50X =…………………………………………………………5分()22111301239P X ⎛⎫⎛⎫==⋅-= ⎪⎪⎝⎭⎝⎭……………………………………………………………………6分 ()222112212112135232333P X C C ⎛⎫⎛⎫⎛⎫==⋅+⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭………………………………………………7分()22222112212112111340232332336P X C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅+⋅⋅⋅⋅+⋅= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭…………………………8分 ()222112211112145232336P X C C ⎛⎫⎛⎫⎛⎫==⋅+⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭…………………………………………9分()22111502336P X ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭ 所以,该考生所得分数X 的分布列为X30 35 40 45 50P19 13 1336 16 136…………………………………………………………………………………………………………10分111311115303540455093366363EX ∴=⨯+⨯+⨯+⨯+⨯=……………………………………12分 考点:1、独立重复试验;2、离散型随机变量的分布列与数学期望.19.(本小题满分12分)已知数列{n a }的前n 项和21n n S a n =+-,数列{n b }满足113(1)nn n n b n a na ++⋅=+-,且13b =.(I)求n a ,n b ;(Ⅱ)设n T 为数列{n b }的前n 项和,求n T ,并求满足n T <7时n 的最大值.()()()114331232143,3n n n nn b n n n n n b +++∴⋅=++-+=+∴=当2n ≥时,1413n n n b --=,又13b =适合上式,1413n n n b --∴=……………………6分(Ⅱ)由(I)知1413n n n b --=,2213711454113333n n n n n T ----∴=+++++L …………①………………………………7分231137114541333333n n n n n T ---=+++++L …………②………………………………8分20.(本小题满分l3分)已知双曲线C :22221(0,0)x y a b a b-=>>的焦距为27θ,且3tan θ=.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E . ( I )求椭圆E 的方程;(Ⅱ)设点A 是椭圆E 的左顶点,P 、Q 为椭圆E 上异于点A 的两动点,若直线AP 、AQ 的斜率之积为14-,问直线PQ 是否恒过定点?若恒过定点,求出该点坐标;若不恒过定点,说明理由.【答案】( I ) 22143x y += ; (Ⅱ) 直线PQ 恒过定点()1,0. 【解析】试题分析:( I ) 由双曲线C :22221(0,0)x y a b a b-=>>的焦距为27,可得:7c =由3tan θ=可得:3b a =222a b c +=易求224,3a b ==,从而由题意可得椭圆E 的标准方程.(Ⅱ) 在( I )的条件下,当直线PQ 的斜率存在时,设直线PQ 的方程为y kx m =+ 由22143x y y kx m⎧+=⎪⎨⎪=+⎩,消去y 得()2223484120,k x kmx m +++-=:设()()1122,,,P x y Q x y 则21212228412,3434km m x x x x k k --+=⋅=++…………………………6分又()2,0A -,由题意知12121224AP AQ y y k k x x ⋅=⋅=-++则()()12122240,x x y y +++=且122x x ≠-…………………………………………7分21.(本小题满分14分) 已知函数3()f x x x x =-(I)求函数()y f x =的零点的个数;(Ⅱ)令2()ln ()g x x f x x=+,若函数()y g x =在(0,1e )内有极值,求实数a 的取值范围; (Ⅲ)在(Ⅱ)的条件下,对任意(1,),(0,1)t s ∈+∞∈,求证:1()()2.g t g s e e ->+-【答案】(I) 2 (Ⅱ) 12a e e >+- 【解析】试题分析:(I)首先确定函数的定义域,并利用导数研究函数3()f x x x x =--,结合函数的特殊值,由函数零点存在性定理可判定零点的个数.(Ⅱ) 首先确定函数()y g x =的定义域,化简其解析表达式,并求其导数,根据可导函数极值存在的条件将问题转化为()y g x = 的导函数在区间10,e ⎛⎫ ⎪⎝⎭内有零点,可利用一元二次方程的根的分布理论去解决.(Ⅲ)要证对任意(1,),(0,1)t s ∈+∞∈1()()2.g t g s e e->+-即证()y g x =在(1,)+∞上的最小值m 与()y g x =在(0,1)上的最小值M 之间满足关系12.m M e e->+-对此只要利用导数分别研究函数上述两个区间上的最值即可.试题解析:(I) ()00f =Q ,0x ∴=为()y f x =的一个零点…………………………………1分 当0x >时,()21,f x x x x ⎛=-- ⎪⎝⎭设()21x x x ϕ=-- ()()320,2x x x x ϕϕ'=+>∴在()0,+∞单调递增.……………………………………………………2分又()()110,2302ϕϕ=-<=->故()x ϕ在()1,2内有唯一零点. 因此()y f x =在[)0.+∞有且仅有2个零点.………………………………………………………………4分(Ⅲ)由 (Ⅱ)可知,当()21,x x ∈时,()0g x '<,()g x 单调递减,()2,x x ∈+∞时,()0g x '>,()g x 单调递增,故()y g x =在()1,+∞内的最小值为()2g x 即当()1,t ∈+∞时,()()2g t g x ≥………………………………………………………………10分 又当()10,x x ∈时,()0g x '>,()g x 单调递增,()1,1x x ∈时,()0g x '<,()g x 单调递减, 故函数()y g x =在()0,1内的最大值为()1g x 即对任意()0,1s ∈,()()1g s g x ≤………………………………………………………………11分。

山东省2014届高三4月模拟考试数学(理)试题含答案

山东省2014届高三4月模拟考试数学(理)试题含答案

理 科 数 学(根据2014年山东省最新考试说明命制)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米及以上黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持答题卡上面清洁,不折叠,不破损.第I 卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数1i z i=-(i 是虚数单位)的共轭复数z 在复平面内对应的点在 A.第一象限B.第二象限C.第三象限D.第四象限 2.设集合{}{}260,2x M x x x N y y M N =+-<==⋂=,则A. ()0,2B. [)0,2C. ()0,3D. [)0,33.已知某篮球运动员2013年度参加了25场比赛,我从中抽取5场,用茎叶图统计该运动员5场 中的得分如图1所示,则该样本的方差为A.25B.24C.18D.164.执行如图2所示的程序框图,输出的Z 值为A.3B.4C.5D.65.在△ABC 中,内角A ,B ,C 的对边分别为,,a b c 已知cos cos sin ,a B b A c C +=222b c a B +-==,则 A. 6π B. 3π C. 2π D. 23π 6.设命题:p 平面=l m l m αββ⋂⊥⊥平面,若,则;命题:q 函数cos 2y x π⎛⎫=-⎪⎝⎭的图象关于直线2x π=对称.则下列判断正确的是 A.p 为真B. q ⌝为假C. ∨p q 为假D. p q ∧为真 7.函数()cos x f x e x =的部分图象是8.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图3所示)的面积为8,则该三棱柱外接球的表面积为 A. 163π B. 283π C. 643π D. 24π9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,以12F F 为直径的圆与双曲线渐近线的一个交点为()4,3,则此双曲线的方程为 A. 22134x y -= B. 22143x y -= C. 221916x y -= D. 221169x y -= 10.已知函数()2,01,0kx x f x nx x +≤⎧=⎨>⎩()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是 A. 2k ≤- B. 21k -≤<-C. 10k -<<D. 2k ≤第II 卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分).11.二项式()62ax +的展开式的第二项的系数为12,则22a x dx -=⎰ . 12.若存在实数x 使13x a x -+-≤成立,则实数a 的取值范围是 .13.数列{}n a 的前n 项和为()11,1,21n n n S a a S n N *+==+∈,则n a = . 14.设变量x ,y 满足约束条件220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,若目标函数y z x =的最大值为a ,最小值为b ,则a —b 的值为 .15.矩形ABCD 中,若()()3,1,2,,AD AB AC k =-=- 则= .三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本题满分12分)如图4,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,32a ππ⎛⎫∈ ⎪⎝⎭.将角α的始边按逆时针方向旋转6π,交单位圆于点B ,记()()1122,,,A x y B x y.(1)若1214x x =求; (2)分别过A ,B 作x 轴的垂线,垂足依次为C 、D ,记.1122,B O D S A O C S S ∆∆=的面积为的面积为若S ,求角α的值.17.(本题满分12分)四棱锥P —ABCD 的底面是平行四边形,平面1ABCD PA=PB=AB=AD BAD=602PAB ︒⊥∠平面,,,E ,F 分别为AD ,PC 的中点.(1)求证:PBD EF ⊥平面;(2)求二面角D —PA —B 的余弦值.18.(本小题满分12分)已知在等比数列{}213121, 1.n a a a a a =+-=中,(1)若数列{}n b 满足()32123n n b b b b a n N n*+++⋅⋅⋅+=∈,求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n S .19.(本题满分13分)交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2畅通;2~4基本畅通;4~6轻度拥堵;6~8中度拥堵;8~10严重拥堵.晚高峰时段,从某市交通指挥中心随机选取了市区20个交通路段,依据其交通指数数据绘制的直方图如图所示.(1)这20个路段为中度拥堵的有多少个?(2)从这20个路段中随机抽出3个路段,用X 表示抽取的中度拥堵的路段的个数,求X 的分布列及期望.20.(本题满分13分)已知12,F F 分别为椭圆()2212210y x C a b a b+=>>:的上下焦点,其1F 是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15.3MF =(1)试求椭圆1C 的方程;(2)与圆()2211x y ++=相切的直线()():0l y k x t t =+≠交椭圆于A ,B 两点,若椭圆上一点P 满足,OA OB OP λλ+= 求实数的取值范围.21.(本题满分13分)已知函数()()(),.ln x g x f x g x ax x==- (1)求函数()g x 的单调区间;(2)若函数()f x 在()1+∞上是减函数,求实数a 的最小值;(3)若()()21212,,x x e e f x f x a '⎡⎤∃∈≤+⎣⎦,使成立,求实数a 的取值范围.。

山东省2014年高考仿真模拟冲刺卷数学理4 Word版含答案[ 高考]

山东省2014年高考仿真模拟冲刺卷数学理4 Word版含答案[ 高考]

绝密★启用前 试卷类型:A山东省2014年高考仿真模拟冲刺卷(四)理科数学满分150分 考试用时120分钟参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P kn kkn n =-=-第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若全集为实数集R ,集合A =12{|log (21)0},R x x C A ->则=( )A .1(,)2+∞B .(1,)+∞C .1[0,][1,)2+∞D .1(,][1,)2-∞+∞2.复数11i+在复平面上对应的点的坐标是( )A .),(11B .),(11-C .)(1,1--D .)(1,1- 3.设随机变量X ~N (3,1),若P (X >4)=p ,则P (2<X <4)=( )A .21+p B .1—p C .1—2p D .21—p4.设k R ∈,下列向量中,与向量Q=(1,-1)一定不平行的向量是( )A .b=(k ,k )B .c=(-k ,-k )C .d=(2k +1,2k +1)D .e=(2k 一l ,2k —1)5.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是 m 2 ( )A .4+B .4+C .4+D .4+正视图 侧视图 俯视图 6.设函数()3sin()(0,)22f x x ππωφωφ=+>-<<的图像关于直线23x π=对称,它的周期是π,则( )A .()f x 的图象过点1(0,)2B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上是减函数 C .()f x 的一个对称中心是5(,0)12πD .将()f x 的图象向右平移φ个单位得到函数3sin y x ω=的图象.7.双曲线22221(1,1)x y a b a b -=≥>的离心率为2,则2的最小值为( )ABC .2D .8.在A B C ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为( )A .等边三角形B .钝角三角形C .直角三角形D .等腰三角形但不是等边三角形9.已知圆222()()x a y b r -+-=的圆心为抛物线24y x =的焦点,且与直线3420x y ++=相切,则该圆的方程为 ( )A .2264(1)25x y -+=B .22(1)1x y -+= C .2264(1)25x y +-= D .22(1)1x y +-=10.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围为( )A .[1,0]-B .9(,2]4-- C .(,2]-∞- D .9(,)4-+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.若函数()f x =22(1)()xx ax b -++的图像关于直线2x =-对称,则()f x 的最大值是 . 12.设5.205.2)21(,5.2,2===c b a,则c b a ,,的大小关系是________.13.若点(cos ,sin )p αα在直线2y x =-上,则sin 22cos2αα+=___________.14.记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,若直线()1y a x =+与D 公共点,则a的取值范围是 .15.在实数集R 中定义一种运算“△”,且对任意,a b ∈R ,具有性质:①ab b a =;②0a a =;③ ()()()()a bc c a b a c b c c =+++,则函数1()||||f x x x =的最小值为 . 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知锐角ABC ∆中内角A 、B 、C 的对边分别为a 、b 、c ,226cos ab ab C +=,且2sin 2sin sin C A B =.(Ⅰ)求角C 的值; (Ⅱ)设函数()sin()cos (0)6f x x x πωωω=-->,()f x 且图象上相邻两最高点间的距离为π,求()f A 的取值范围.1 7 92 0 1 53 0第17题图某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ)根据茎叶图计算样本均值;(Ⅱ)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,CD AD ⊥,AB ∥CD ,221===CD AD AB ,点M 在线段EC 上. (Ⅰ)当点M 为EC 中点时,求证:BM ∥平面ADEF ; (Ⅱ)当平面BDM 与平面ABF 所成锐二面角的余弦值为66时,求三棱锥BDE M -的体积.已知:数列{}n a 的前n 项和为n S ,且满足n a S n n -=2,)(*N n ∈.(Ⅰ)求:1a ,2a 的值; (Ⅱ)求:数列{}n a 的通项公式;(Ⅲ)若数列{}n b 的前n 项和为n T ,且满足n n na b =)(*N n ∈,求数列{}n b 的前n 项和n T .已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C. (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.已知函数3f (x )aln x ax (a R )=--∈. (Ⅰ)若a=-1,求函数f (x )的单调区间;(Ⅱ)若函数y f (x )=的图象在点(2,f (2))处的切线的倾斜角为45o ,对于任意的t ∈[1,2],函数322mg(x )x x [f '(x )](f '(x )=++是f (x )的导函数)在区间(t ,3)上总不是单调函数,求m 的取值范围;(Ⅲ)求证:23412234*ln ln ln ln n ...(n ,n N )n n⨯⨯⨯⨯<≥∈。

2023-2024学年山东省潍坊市高三二模数学试题+答案解析(附后)

2023-2024学年山东省潍坊市高三二模数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,则下列Venn 2023-2024学年山东省潍坊市高三二模数学试题✽图中阴影部分可以表示集合的是( )A. B.C. D.2.在平面直角坐标系中,角的终边经过点,则( )A. B.C.D.3.已知函数,则( )A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数4.在中,D 在BC 上且,点E 是AD 的中点,记,,则( )A.B.C.D.5.已知事件A 、B 满足,,则( )A.B.C. 事件A ,B 相互独立D. 事件A ,B 互斥6.某公司为实现利润目标制定奖励制度,其中规定利润超过10万元且少于1000万元时,员工奖金总额单位:万元随利润单位:万元的增加而增加,且奖金总额不超过5万元,则y 关于x 的函数可以为参考数据:,( )A.B.C.D.7.如图,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.现制作一件三层六角宫灯模型,三层均为正六棱柱内部全空,其中模型上、下层的底面周长均为,高为现在其内部放入一个体积为的球形灯,且球形灯球心与各面的距离不少于则该模型的侧面积至少为( )A. B.C. D.8.已知双曲线的左,右焦点分别为,,O为坐标原点,过作C的一条渐近线的垂线,垂足为D,且,则C的离心率为( )A. B. 2 C. D. 3二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.在复数范围内关于x的实系数一元二次方程的两根为,,其中,则( )A. B. C. D.10.已知实数,则( )A. B.C. D.11.已知函数其中,,的部分图象如图所示,则( )A.B. 函数为偶函数C.D. 曲线在处的切线斜率为12.已知四棱锥,底面ABCD是正方形,平面ABCD,,点M在平面ABCD上,且,则( )A. 存在,使得直线PB与AM所成角为B. 不存在,使得平面平面PBMC. 当一定时,点P与点M轨迹上所有的点连线和平面ABCD围成的几何体的外接球的表面积为D. 若,以P为球心,PM为半径的球面与四棱锥各面的交线长为三、填空题:本题共4小题,每小题5分,共20分。

山东省潍坊市2014届高三4月模拟考试理科综合试题及答案

山东省潍坊市2014届高三4月模拟考试理科综合试题及答案

理科综合本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共12页,满分300分,考试用时150分钟。

考试结束后,将本试卷和答题卡一并交回。

答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡规定的地方。

第I卷(必做题,共107分)注意事项:1.每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改动,用橡皮擦干净以后,再涂写其他答案标号。

只答在试卷上不得分。

2.第1卷共20道小题,1-13题每小题5分,14-20题每小题6分,共107分。

以下数据可供答题时参考:相对原子质量:H1 C 12 N 14 0 1 6 Na 23 S 32 Cl 35.5 Ti 48 Fe 56 Cu 64 Zn65 Ba 137一、选择题(本题包括13道小题,每小题只有一个选项符合题意)1.细胞内某些生物膜上的蛋白质被糖基化形成糖蛋白,起到识别信息分子、保护自身免受破坏等作用,下列哪种细胞器膜上最可能存在较多的糖蛋白A.内质网B.溶酶体C.高尔基体D.线粒体2.血浆中的各类蛋白质分子统称为血浆蛋白,下列关于血浆蛋白的说法错误的是A.有的能维持血浆渗透压B.有的能催化肽聚糖的水解C.有的可以参与免疫调节D.有的可以引起肌肉细胞收缩3.下列关于呼吸作用中间产物丙酮酸的叙述,正确的是A. 丙酮酸氧化分解释放的能量少量储存在ATP中B.丙酮酸一酒精的阶段只能释放少量能量C.催化丙酮酸氧化分解的酶只分布在线粒体基质中D.丙酮酸彻底氧化分解的产物是CO2、水、ATP4.右图表示某肽链片段合成的过程,下列有关叙述正确的是A.①和②过程都需要能量和DNA聚合酶B.③过程的模板和场所含有不同的五碳糖C.图中DNA模板链上的G突变为C,蛋白质的结构不会改变D.若仅a链发生突变,A变为C,则该片段复制3次共需游离的腺嘌呤脱氧核苷酸18个5.酒精是生物学实验中常用的试剂,下列有关酒精及作用的叙述,不正确的是A. 观察生物组织细胞中的脂肪颗粒时需要用50%的酒精溶液洗去浮色B.观察植物根尖细胞有丝分裂时需要用盐酸和酒精的等体积混合液解离根尖C.观察DNA和RNA在细胞中的分布时需要用8%的酒精水解细胞D.可用70%的酒精保存从土壤中采集的小动物6.下列关于遗传变异与进化的分析中,正确的是A.染色体结构变异必然导致染色体上基因数目的变化B.一般来说,种群内频率高的基因所控制的性状更适应环境C.基因突变产生的有利变异决定了生物进化的方向D.金鱼能与野生鲫鱼杂交并产生可育后代,说明二者之间不存在生殖隔离7.下列说法正确的是A.淀粉和纤维素的最终水解产物都是葡萄糖,二者互为同分异构体B.高纯度的二氧化硅是制备光导纤维、太阳能电池板的主要材料C.石油的分馏、裂化、裂解都属于化学变化D.合金材料中可能含有非金属元素8.短周期元素R、T、Q、W、G在元素周期表中的相对位置如右图所示,其中Q是无机非金属材料的主角。

2014年山东省潍坊市高考数学二模试卷(理科)

2014年山东省潍坊市高考数学二模试卷(理科)

2014年山东省潍坊市高考数学二模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.若复数z满足(1+i)•z=i,则z的虚部为()A.-B.-C.D.【答案】D【解析】解:∵(1+i)•z=i,∴z===,∴z的虚部为,故选:D.由题意可得z=,再利用两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,计算求得结果.本题主要考查两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,属于基础题.2.设集合A={x||2x-1|≤3},B={x|y=lg(x-1)},则A∩B=()A.(1,2)B.[1,2]C.(1,2]D.[1,2)【答案】C【解析】解:由A中不等式得:-3≤2x-1≤3,解得:-1≤x≤2,即A=[-1,2],由B中y=lg(x-1),得到x-1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2].故选:C.求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.下列结论正确的是()A.若向量∥,则存在唯一的实数λ使=λB.已知向量,为非零向量,则“,的夹角为钝角”的充要条件是“•<0’’C.“若θ=,则cosθ=”的否命题为“若θ≠,则cosθ≠”D.若命题p:∃x∈R,x2-x+1<0,则¬p:∀x∈R,x2-x+1>0【答案】C【解析】解:若向量∥,≠,则存在唯一的实数λ使=λ,故A不正确;已知向量,为非零向量,则“,的夹角为钝角”的充要条件是“•<0,且向量,不共线”,故不正确;条件否定,结论否定,可知C正确;若命题p:∃x∈R,x2-x+1<0,则¬p:∀x∈R,x2-x+1≤0,故D不正确.故选:C.根据向量共线定理判断A,向量,为非零向量,则“,的夹角为钝角”的充要条件是“•<0,且向量,不共线”,可判断B,条件否定,结论否定,可判断C;命题p:∃x∈R,x2-x+1<0,则¬p:∀x∈R,x2-x+1≤0,可判断D.本题考查命题的真假判断与应用,考查学生分析解决问题的能力,知识综合性强.4.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A. B. C. D.【答案】A【解析】解:由f(x)=x2+sin=x2+cosx,∴f′(x)=x-sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=-cosx,当-<x<时,cosx>,∴f″(x)<0,故函数y=f′(x)在区间(-,)上单调递减,故排除C.故选:A.先化简f(x)=x2+sin=x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(-,)上单调递减,从而排除C,即可得出正确答案.本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.5.已知α,β表示平面,m,n表示直线,m⊥β,α⊥β,给出下列四个结论:①∀n⊂α,n⊥β;②∀n⊂β,m⊥n;③∀n⊂α,m∥n;④∃n⊂α,m⊥n,则上述结论中正确的个数为()A.1B.2C.3D.4【答案】B【解析】解:由α,β表示平面,m,n表示直线,m⊥β,α⊥β,知:①∀n⊂α,则n∥β或n⊂β或n与β相交,故①错误;②∀n⊂β,由直线与平面垂直的性质,知m⊥n,故②正确;③∀n⊂α,则m与n相交、平行或异面,故③错误;④由m⊥β,α⊥β知,在平面α中至少有一条直线与m垂直,∴∃n⊂α,m⊥n,故④正确.故选:B.利用空间中线线、线面、面面间的位置关系求解.本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.6.已知函数f(x)=x2+x,执行如图所示的程序框图,若输出的结果是,则判断框中的条件应是()A.n≤30B.n≤31C.n≤32D.n≤33【答案】B【解析】∴解:∵函数f(x)=x2+x,∴f(n)=n(n+1),由程序框图知:算法的功能是求S=++…+=1-的值,∵输出的结果是,∴跳出循环的n值为32,∴判断框内的条件应填:n<32或n≤31.故选:B.算法的功能是求S=++…+的值,根据输出的结果判断跳出循环的n值,从而确定判断框内应填的条件.本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.7.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别是F1、F2过F2垂直x轴的直线与双曲线C的两渐近线的交点分别是M、N,若△MF1N为正三角形,则该双曲线的离心率为()A. B. C. D.2+【答案】A【解析】解:双曲线C:-=1(a>0,b>0)的渐近线方程为bx±ay=0,x=c时,y=±,∵△MF1N为正三角形,∴2c=×,∴a=b,∴c=b,∴e==.故选:A.求出双曲线C的两渐近线方程,利用△MF1N为正三角形,建立三角形,即可求出该双曲线的离心率.本题考查双曲线的简单性质,考查学生的计算能力,比较基础.8.某几何体的三视图如图所示,则该几何体外接球的表面积为()A.πB.πC.4πD.16π【答案】D【解析】解:由三视图知:几何体为圆锥,圆锥的高为1,底面半径为,设外接球的半径为R,如图:则(R-1)2+3=R2⇒R=2.∴外接球的表面积S=4π×22=16π.故选:D.几何体为圆锥,根据三视图判断圆锥的高与底面半径,设外接球的半径为R,结合图形求得R,代入球的表面积公式计算.本题考查了由三视图求几何体的外接球的表面积,结合图形的求得外接球的半径是解答本题的关键.9.在区间[-3,3]上任取两数x,y,使x2-y-1<0成立的概率为()A. B. C. D.【答案】A【解析】解:由题意可得,区间[-3,3]上任取两数x,y,区域为边长为6的正方形,面积为36,x2-y-1<0的区域是图中阴影区域以外的部分,其面积S==,∴在区间[-3,3]上任取两数x,y,使x2-y-1<0成立的概率为=.故选:A.该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,属于中档题.10.已知定义在R上的函数y=f(x)对任意的x满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3.函数g(x)=,>,<若函数h(x)=f(x)-g(x)在[-6,+∞)上有6个零点,则实数a的取值范围是()A.(0,)∪(7,+∞)B.[,)∪(7,9]C.[,1)∪(1,9]D.(,]∪[7,9)【答案】B【解析】解:∵对任意的x满足f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为最小正周期的函数,画出函数f(x)、g(x)在[-6,+∞)的图象,由图象可知:在y轴的左侧有2个交点,只要在左侧有4个交点即可.则<即有>或<<<或<,故7<a≤9或≤a<.故选:B.f(x)=x3.函数g(x)=[-6,+∞)上有6个零点,即函数f(x)与g(x)的交点的个数,由函数图象的变换,分别做出y=f(x)与y=g(x)的图象,由此求得a的取值范围.本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数.二、填空题(本大题共5小题,共25.0分)11.已知,是夹角为60°的两个单位向量,若向量=3+2,则||= ______ .【答案】【解析】解:∵=1,=°=.∴=+4+12=9+4+12×=19.∴=故答案为:.利用数量积的运算和性质即可得出.本题考查了数量积的运算和性质,属于基础题.12.现将如图所示的5个小正方形涂上红、黄两种颜色,其中3个涂红色,2个涂黄色,若恰有两个相邻的小正方形涂红色,则不同的涂法种数共有______ .(用数字作答)【答案】6【解析】解:当涂红色两个相邻的小正方形在两端时是有=4,当涂红色两个相邻的小正方形在不在两端时是有=2,则不同的涂法种数共有4+2=6种.故答案为:6.根据涂红色两个相邻的小正方形的位置进行分类,利用分类计数原理即可解得.本题主要考查了分类计数原理,本题的关键是根据涂红色两个相邻的小正方形位置进行分类.13.已知抛物线C:y2=2px(p>0)上一点P(2,m)(m>0),若P到焦点F的距离为4,则以P为圆心且与抛物线C的准线相切的圆的标准方程为______ .【答案】(x-2)2+(y-4)2=16【解析】解:由题意结合抛物线的定义可得P到准线的距离为4,∴2-(-)=4,求得p=4,∴抛物线C:y2=8x.点P(2,m)代入抛物线C:y2=8x,结合m>0,可得m=4.再根据题意可得圆的半径为4,故所求的圆的标准方程为(x-2)2+(y-4)2=16,故答案为:(x-2)2+(y-4)2=16.根据题意可得2-(-)=4,求得p=4,可得抛物线C:y2=8x.把点P(2,m)代入抛物线的方程,求得m的值,可得圆心和半径,从而得到所求的圆的标准方程.本题主要考查抛物线的定义和标准方程的应用,求圆的标准方程的方法,求出m的值,是解题的关键,属于中档题.14.曲线y=xsinx在点A(,),B(-,))处的切线分别为l1,l2,设l1,l2及直线x-2y+2=0围成的区域为D(包括边界).设点P(x,y)是区域D内任意一点,则x+2y 的最大值为______ .【答案】6【解析】解:∵y=xsinx,∴y′=sinx+xcosx,x=,y′=1;x=-,y′=-1,∴l1:y-=x-,即y=x;l2:y-=-(x-),即y=-x,l1,l2及直线x-2y+2=0围成的区域为D(包括边界),如图所示,交点坐标分别为(0,0)、(2,2)、(-,),∴在(2,2)处,x+2y的最大值为6.故答案为:6.求出函数的切线方程,作出对应的平面区域,利用线性规划的知识进行求解即可得到结论.本题主要考查导数的几何意义的应用,以及线性规划的有关知识,利用数形结合是解决本题的关键.15.如图所示,位于东海某岛的雷达观测站A,发现其北偏东45°,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北θ(0°<θ<45°)的C处,且cosθ=,已知A、C两处的距离为10海里,则该货船的船速为______ 海里/小时.【答案】4【解析】解:∵cosθ=,∴sin=,由题意得∠BAC=45°-θ,即cos∠BAC=cos(45°-θ)=,∵AB=20,AC=10,∴由余弦定理得BC2=AB2+AC2-2AB•AC cos∠BAC,即BC2=(20)2+102-2×20×10×=800+100-560=340,即BC=,设船速为x,则=2,∴x=4(海里/小时),故答案为:4根据余弦定理求出BC的长度即可得到结论.本题主要考查解三角形的应用,根据条件求出cos∠BAC,以及利用余弦定理求出BC的长度是解决本题的关键.三、解答题(本大题共6小题,共75.0分)16.已知函数f(x)=A sin(ωx+)(A>0,ω>0)的振幅为2,其图象的相邻两个对称中心之间的距离为.(Ⅰ)若f(α+)=,0<α<π,求sinα;(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)-k是在[0,π]上有零点,求实数k的取值范围.【答案】解:(Ⅰ)依题意,A=2,T==,∴ω=3,∴f(x)=2sin(3x+)…2分又f(α+)=2sin[3(+)+]=2sin(2α+)=2cos2α=,∴cos2α=…4分∴sin2α==,又0<α<π,∴sinα=…6分(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)=2sin[3(x-)+]=2sin(3x-)的图象,…8分则函数y=g(x)-k=2sin(3x-)-k,∵x∈[0,π],∴3x-∈[-,],∴-≤2sin(3x-)≤2…11分∵函数y=g(x)-k在[0,π]上有零点,∴y=g(x)与y=k在[0,π]上有交点,∴实数k的取值范围是[-,2]…12分【解析】(Ⅰ)利用函数y=A sin(ωx+φ)的图象性质可求得A=2,T=,解得ω=3,于是可得函数y=f(x)的解析式,从而可由f(α+)=,0<α<π,求得sinα;(Ⅱ)利用函数y=A sin(ωx+φ)的图象变换,可求得g(x)=2sin(3x-),利用正弦函数的单调性与最值可求得x∈[0,π]时该函数的值域,利用y=g(x)与y=k在[0,π]上有交点,即可求得实数k的取值范围.本题考查函数y=A sin(ωx+φ)的图象性质与图象变换,考查正弦函数的单调性与最值,考查等价转化思想与运算求解能力,属于中档题.17.直三棱柱ABC-A1B1C1中,AB⊥BC,BC=,BB1=2,AC1与A1C交于一点P,延长B1B到D,使得BD=AB,连接DC,DA,得到如图所示几何体.(Ⅰ)若AB=1,求证:BP∥平面ACD,(Ⅱ)若直线CA1与平面BCC1B1所成的角为30°,求二面角D-AC-C1的余弦值.【答案】(Ⅰ)证明:取AC的中点E,连接PE,DE…1分则PE,∵BD=AB=1,BB1=2,∴BD=BB1=CC1,又∵BD∥CC1,∴BD CC1,∴PE BD,∴四边形DBPE为平行四边形,∴BP∥DE, (3)分∵BP⊄面ACD,DE⊂面ACD,…4分∴BP∥平面ACD,…5分(Ⅱ)解:由题意知,AB⊥BC,AB⊥BB1,∴AB⊥面BC1,∴A1B1⊥面BC1连接B1C,则∠A1CB1为直线CA1与平面BCC1B1所成的角,则∠A1CB1=30°,…6分在R t△A1B1C中,B1C=,tan A1CB1.∴A1B1=…7分以B为原点,分别以BC,BB1,AA1为x、y、z轴建立如图所示的空间直角坐标系,则A(0,0,),C(,0,0),D(0,-,0),∴=(,0,-),=(0,-,-),…8分设面ACD的法向量为=(x,y,z),则即,取z=1,则=(1,-1,1)…9分在平面ABC内取面AC1的一个法向量=(x,0,z),则=x-z=0,取x=1,则z=1,∴=(1,0,1)…10分∴cos<,>==,…11分由图知二面角D-AC-C1为钝角,二面角D-AC-C1的余弦值为-…12分【解析】(Ⅰ)取AC的中点E,连接PE,DE,证明四边形DBPE为平行四边形,从而BP∥平面ACD;(Ⅱ)轴建立空间直角坐标系,用向量法解决.空间直角坐标系本题考查线面平行,考查面面角,考查向量知识的运用,解题的关键是正确建立坐标系,属于中档题.18.某超市制定“五一”期间促销方案,当天一次性购物消费额满1000元的顾客可参加“摸球抽奖赢代金券”活动,规则如下:①每位参与抽奖的顾客从一个装有2个红球和4个白球的箱子中逐次随机摸球,一次只摸出一个球;②若摸出白球,将其放回箱中,并再次摸球;若摸出红球则不放回,工作人员往箱中补放一白球后,再次摸球;③如果连续两次摸出白球或两个红球全被摸出,则停止摸球.停止摸球后根据摸出的红球个数领取代金券,代金券数额Y与摸出的红球个数x满足如下关系:Y=144+72x(单位:元).(Ⅰ)求一位参与抽奖顾客恰好摸球三次即停止摸球的概率;(Ⅱ)求随机变量Y的分布列与期望.【答案】解:(Ⅰ)恰好摸球三次即停止摸球包含三种情况:①红白红;②白红红;③红白白,∴所求事件的概率为:p==.(Ⅱ)x的可能取值为0,1,2,对应随机变量Y的可能取值为144,216,288,则P(Y=144)=,P(Y=216)=,P(Y=288)=1-=,∴Y的分布列为:【解析】(Ⅰ)恰好摸球三次即停止摸球包含三种情况:①红白红;②白红红;③红白白,由此能求出一位参与抽奖顾客恰好摸球三次即停止摸球的概率.(Ⅱ)x的可能取值为0,1,2,对应随机变量Y的可能取值为144,216,288,分别求出相应的概率,由此能求出随机变量Y的分布列与期望.本题考查概率的求法,考查离散型随机变量的分布列和数期望的求法,解题时要认真审题,是中档题.19.已知等差数列{a n},a1+a3+a5=42,a4+a6+a8=69;等比数列{b n},b1=2,log2(b1b2b3)=6.(Ⅰ)求数列{a n}和数列{b n}的通项公式;(Ⅱ)设c n=a n-b n,求数列{|c n|}的前n项和T n.【答案】解:(Ⅰ)设等差数列{a n}的公差为d,∵a1+a3+a5=3a3=42,∴a3=14,a4+a6+a8=3a6=69,∴a6=23,∴d==3.a n=a3+(n-3)d=14+(n-3)•3=3n+5.设等比数列{b n}的公比为q,由log2(b1b2b3)=6,得b1b2b3=26,即,∴b2=4,则q==2,∴.(Ⅱ)c n=a n-b n=(3n+5)-2n,c n+1-c n=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n,当n=1时,c2-c1=1>0,c2>c1,当n≥2时,3-2n<0,c n+1<c n,又c1=6,c2=7,c3=6,c4=1,c5=-12,…∴{c n}的前4项为正,从第5项开始往后各项为负,设数列{c n}的前n项和为S n,S n=(a1-b1)+(a2-b2)+…+(a n-b n)=(a1+a2+…+a n)-(b1+b2+…+b n)=(2n+1-2),∴当n≤4时,T n=|c1|+|c2|+…+|c n|=c1+c2+…+c n=S n=+2;当n≥5时,T n=c1+c2+c3+c4-(c5+c6+…+c n)=S4-(S n-S4)=2S4-S n∴,,.【解析】(Ⅰ)设等差数列{a n}的公差为d,由等差数列的性质及已知可分别求得a3=14,a6=23,进而可求d,由通项公式可得a n;设等比数列{b n}的公比为q,由log2(b1b2b3)=6,得b1b2b3=26,由等比数列的性质可得b2=4,则q==2,由通项公式可得b n;(Ⅱ)易求c n=a n-b n=(3n+5)-2n,由c n+1-c n=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n 的符号可判断{c n}的前4项为正,从第5项开始往后各项为负,设数列{c n}的前n项和为S n,利用等差、等比数列的求和公式可求S n=(a1-b1)+(a2-b2)+…+(a n-b n)=(a1+a2+…+a n)-(b1+b2+…+b n),然后分n≤4,n≥5两种情况讨论可求T n.本题考查等差、等比数列的通项公式、求和公式,考查分类讨论思想,考查学生的运算求解能力,属中档题.20.如图,椭圆C:+=1(a>b>0)的短轴长为2,点P为上顶点,圆O:x2+y2=b2将椭圆C的长轴三等分,直线l:y=mx-(m≠0)与椭圆C交于A、B两点,PA、PB与圆O交于M、N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求证△APB为直角三角形;(Ⅲ)设直线MN的斜率为n,求证:为定值.【答案】(Ⅰ)解:∵椭圆C:+=1(a>b>0)的短轴长为2,∴2b=2,解得b=1,∵圆O将椭圆的长轴三等分,∴2b=,∴a=3b=3,∴椭圆C的方程为.(Ⅱ)证明:由,消去y得(1+9m2)x2-,设A(x1,y1),B(x2,y2),则,,又P(0,1),∴,,===(1+m2)•-==0∴PA⊥PB,∴△PAB为直角三角形.(Ⅲ)证明:由(Ⅱ)知PA⊥PB,由题意知PA,PB的斜率存在且不为0,设直线PA的斜率为k,k>0,则PA:y=kx+1,由,得或,∴,,又直线l过点(0,-),则m==,由,得,或,∴M(,),又∵PM⊥PN,∴MN为⊙O的直径,∴MN过原点,∴n=,又∵m≠0,∴k2-1≠0,∴n≠0,∴=,∴为定值.【解析】(Ⅰ)由椭圆C:+=1(a>b>0)的短轴长为2,解得b=1,由圆O将椭圆的长轴三等分,得a=3b=3,由此能求出椭圆C的方程.(Ⅱ)由,得(1+9m2)x2-,由此推导出,从而能证明△PAB为直角三角形.(Ⅲ)设直线PA的斜率为k,k>0,则PA:y=kx+1,由,得,,又直线l过点(0,-),则m=,由,得M(,),MN过原点,n=,由此能证明为定值.本题考查椭圆方程的求法,考查三角形为直角三角形的证明,考查两数比值为定值的证明,解题时要认真审题,注意函数与方程思想的合理运用.21.已知函数f(x)=a x+x2-xlna(a>0且a≠1).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)a>l,证明:当x∈(0,+∞)时,f(x)>f(-x);(Ⅲ)若对任意x1,x2,x1≠x2,且当f(x1)=f(x2)时,有x1+x2<0,求a的取值范围.【答案】解:(Ⅰ)f′(x)=a x•lna+2x-lna,令g(x)=f′(x),∴g′(x)=a x(lna)2+2>0,∴g(x)是(-∞,+∞)上的增函数,∵g(0)=0,∴x>0时,g(x)>g(0)=0,此时f′(x)>0,x<0时,g(x)<g(0)=0,此时f′(x)<0,∴f(x)在(0,+∞)单调递增,在(-∞,0)单调递减.(Ⅱ)设h(x)=f(x)-f(-x)=a x-a-x-2xlna,∴h′(x)=(a x+a-x)lna-2lna,∵a>1,故lna>0,∴h′(x)≥2-2lna=2lna-2lna=0,∴h(x)在(0,+∞)单调递增;∴h(x)>h(0)=0,即x∈(0,+∞)时,f(x)>f(-x).(Ⅲ)由于x1≠x2,且f(x1)=fx2),由(Ⅰ)知x1,x2异号,不妨设x1<0,x2>0,则x1,-x2∈(-∞,0),由(Ⅱ)知:当a>1时,f(x1)=f(x2)>f(-x2),∵x∈(-∞,0)时,f(x)单调递减,故x1<-x2,∴x1+x2<0,即a>1适合题意;当0<a<1时,lna<0,由(Ⅱ)h(x)=a x-a-x-2xlnah′(x)=(a x+a-x)lna-2lna≤2lna-2lna=0,∴h(x)在(0,+∞)单调递减,h(x)<h(0)=0,即f(x)<f(-x),故f(x1)=f(x2)<f(-x2),∵x∈(-∞,0)时,f(x)单调递减,x1>-x2,x1+x2>0,即0<a<1不合题意,综上:a>1.【解析】(Ⅰ)通过对函数求导确定单调区间,(Ⅱ)设出新函数,通过对新函数求导找到单调区间,确定最小值,从而问题得解,(Ⅲ)对a进行讨论,由前两问综合得出.本题考察了导数的综合应用,函数的单调性,分类讨论思想,是一道综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档