专家系统

合集下载

专家系统

专家系统

它是一种具有智能的程序系统。能运用专家知 识和经验进行推理的启发式程序系统。 它必须包含有大量专家水平的领域知识,并能 在运行过程中不断地对这些知识进行更新。 它能应用人工智能技术模拟人类专家求解问题 的推理过程,解决那些本来应该由领域专家才 能解决的复杂问题。
专家系统的一般特点
• 专家系统的特点:
根 据 任 务 要 求 , 计 算 出满 足 设 计 问 题 约 束 的 目 标配 置。 按 给 定 目 标 拟 定 总 体 规划 、 行 动 计 划 、 运 筹 优 化等 。 根 据 具 体 情 况 , 控 制 整个 系 统 的 行 为 , 适 用 于 对各 种 大 型 设 备 及 系 统 进 行控 制。 根 据 监 测 到 的 现 象 与 正常 情 况 相 比 , 及 时 作 出 相应 的分析和处理。 的分析和处理 。 对 发 生 故 障 的 系 统 、 对象 或 设 备 进 行 处 理 , 制 定纠 错 方 案 , 并 实 施 方 案 ,使 其恢复正常。 其恢复正常 。 根 据 相 应 的 标 准 检 测 被测 试 对 象 存 在 的 错 误 , 并能 从 多 种 纠 错 方 案 中 选 出适 用 于 当 前 情 况 的 最 佳方 排除错误。 案 , 排除错误 。
专家系统的结构
• 专家系统的结构是指专家系统各组成部分 的构造方法和组织形式。 用户 接口 事实规则
解释器 计划 知识库 执行器
议程 中间解 黑板
调度器 协调器
理 想 专 家 系 统 结 构 图
专家系统的主要组成部分
1. 知识库(Knowledge Base) 知识库用于存储某领域专家系统的专门知识,包括事实、 可行操作与规则。 2. 综合数据库(global database) 综合数据库又称全局数据库或总数据库,它用于储存领域 或问题的初始数据和推理过程中得到的中间数据(信息), 即被处理对象的一些当前事实。 3. 推理机(reasoning machine) 用于记忆所采用的规则和控制策略的程序,使整个专家系 统能够以逻辑方式协调的工作。推理机能够根据知识进行 推理和导出结论,而不是简单搜索现成的答案。

专家系统实例

专家系统实例

专家系统实例
专家系统是一种基于知识推理的智能信息系统,用于解决特定领域的问题。

它们利用专家知识和推理规则,通过询问用户的问题来识别问题的本质,然后提供相应的解决方案。

以下是一些专家系统实例: 1. 动物识别专家系统:该实例是一个基于人工智能技术的专家系统,用于识别动物物种。

它利用了计算机视觉和自然语言处理技术,通过询问用户有关动物的特征和属性来识别动物。

2. 医学诊断专家系统:该实例是一个用于医学诊断的专家系统,它利用医学知识和推理规则,通过对用户提供的症状和疾病特征进行分析,从而作出准确的医学诊断。

3. 工业控制专家系统:该实例是一个用于工业控制的专家系统,它利用控制理论和推理技术,通过对用户提供的控制命令进行分析和优化,以实现更高效、更安全的工业控制。

4. 农业施肥专家系统:该实例是一个用于农业施肥的专家系统,它利用植物营养知识和推理规则,通过对用户提供的肥料信息和植物需求进行分析,从而提供最佳的施肥方案。

这些专家系统实例展示了人工智能技术在各个领域的应用,可以帮助用户解决各种复杂问题。

人工智能的专家系统与规则推理

人工智能的专家系统与规则推理

人工智能的专家系统与规则推理专家系统与规则推理是人工智能领域中的两个重要概念,它们在解决复杂问题、进行推理和决策过程中发挥着重要作用。

本文将深入探讨专家系统和规则推理的定义、原理、应用以及未来发展方向。

一、专家系统的概念和原理专家系统是通过模拟人类专家的知识和经验,以解决特定问题为目标的计算机程序。

它由知识库、推理机和用户界面三个主要组成部分构成。

知识库包含了专家知识的各种表达形式,这些知识可以是规则、事实、概念、关系等。

推理机是专家系统的核心,其作用在于根据知识库中的规则和事实,进行推理和判断,并提供解决问题的答案。

用户界面则是用户与专家系统进行交互的桥梁,使用户能够输入问题并接收系统的回答。

专家系统的原理基于规则推理,即依据一系列前提条件推导出结论的思维过程。

规则推理是基于规则库中的规则进行的,规则库是知识库的一个重要组成部分。

规则库中的规则通常采用条件-结论形式来表示,它由一个前提和一个结论组成。

前提是一个或多个条件,表示问题的特征或状态;结论是根据前提条件推导出来的结论或行动。

推理机会根据用户提供的前提条件,在规则库中寻找匹配的规则,并根据规则中的结论向用户提供答案或行动建议。

二、专家系统的应用领域专家系统的应用领域非常广泛,涵盖了医疗、金融、工业、农业等多个领域。

以下是几个典型的应用案例。

1. 医疗诊断:专家系统可以根据患者提供的症状和疾病数据库,通过规则推理的方式诊断患者疾病,给出相应的治疗建议。

2. 金融风险评估:专家系统可以根据海量的金融数据和分析模型,通过规则推理的方式评估客户的信用风险,为银行提供贷款决策的建议。

3. 工业故障诊断:专家系统可以根据设备传感器数据和故障数据库,通过规则推理的方式判断设备是否存在故障,并提供相应的维修建议。

4. 农业植物识别:专家系统可以根据植物图像和植物数据库,通过规则推理的方式识别出植物的种类以及相应的养护方法。

三、规则推理的概念和原理规则推理是基于规则库中的规则进行的推理过程,它是专家系统中的核心方法之一。

认识专家系统 课件 2023—2024学年教科版高中信息技术选修5

认识专家系统   课件  2023—2024学年教科版高中信息技术选修5
收集知识和经验
从外部获取相关的专业知识和经验,并对这些知识进行整理、归纳 和验证等操作。
设计知识库和推理机
根据收集到的知识和经验,设计出合适的知识库和推理机,并确定 它们之间的交互方式和工作流程。
专家系统的构建方法和步骤
• 开发用户接口和解释子系统:设计出用户友好的用户接口和解释子系统,以便用户能够方便地使用专家系统和 理解推理过程及结果。
专家系统的应用范围和优势
• 专家系统的应用范围非常广泛,包括医疗、金融、交通、安全等领域。在医疗方面,专家系统可以用于疾病诊 断和治疗方案的制定。
• 在金融方面,专家系统可以用于投资决策和风险评估。 • 在交通方面,专家系统可以用于交通规划和交通控制等。 • 专家系统的优势在于其能够利用已有的专家知识和经验,提高工作效率和准确性,同时也可以减少人为错误和
专家系统的工作原理是
用户通过用户接口向推理机提出问题,推理机根据知识库中的知识和推理规则进行推理,推导出问题的答案,并 通过用户接口将答案返回给用户。在推理过程中,解释子系统会对推理过程和结果进行解释和说明,以便用户更 好地理解和信任专家系统的结论。
专家系统的构建方法和步骤
确定应用领域和目标
明确专家系统的应用领域和目标,以便后续的设计和开发工作能 够更加有针对性地进行。
专家系统也存在一定的局限性, 例如知识获取的难度和成本较高 ,知识库的更新和维护需要不断 投入人力物力等。此外,由于专 家系统的推理过程往往依赖于规 则和数据,因此对于复杂的问题 和不确定性较高的领域,专家系 统的表现可能不如人类专家。
02
专家系统的定义和特点
专家系统的定义
专家系统的定义(续)
用户接口使非专业用户能够与专家系统进行交互,无需了解其内部工作原理。知识获取子 系统负责将人类专家的知识和经验转化为计算机可处理的形式,并存储在知识库中。

专家系统发展综述

专家系统发展综述

专家系统发展综述专家系统是领域的一个重要分支,自20世纪60年代初以来,已经经历了数十年的发展。

本文将对专家系统的发展历程、基本概念、应用领域以及未来趋势进行综述。

一、专家系统的发展历程专家系统的发展可以追溯到1965年,当时美国科学家Feigenbaum提出了基于规则的专家系统概念。

随后,在1970年,Feigenbaum和Stuart Russell合著的《专家系统》一书出版,标志着专家系统的正式诞生。

在此之后,专家系统经历了快速发展和广泛应用,逐渐成为了人工智能领域的重要支柱。

二、专家系统的基本概念专家系统是一种智能计算机程序,它利用计算机技术和人工智能理论,模拟人类专家解决问题的思维过程,为用户提供专业领域的咨询和服务。

通常情况下,专家系统包括知识库和推理机两个核心组成部分,其中知识库用于存储领域专业知识,推理机则用于根据已有知识进行推理和解决问题。

三、专家系统的应用领域1、医疗领域:医生专家系统可以帮助医生进行疾病诊断和治疗方案制定。

例如,基于医学知识的智能问诊系统,可以根据患者症状和病史,进行初步诊断和用药建议。

2、金融领域:金融专家系统可以帮助银行、证券公司等金融机构进行投资决策、风险管理等方面的工作。

例如,基于金融市场数据的智能投顾系统,可以根据市场行情和投资者风险偏好,制定个性化的投资策略。

3、交通领域:交通管理专家系统可以帮助交通管理部门进行交通流量规划和调度指挥。

例如,基于路网信息的智能交通管理系统,可以根据实时交通信息进行路况预测和交通调度。

4、教育领域:教育专家系统可以帮助教师进行教学辅助和学生学习辅导。

例如,基于学科知识的智能教育辅导系统,可以根据学生的学习需求和学科水平,提供个性化的学习资源和教学方案。

四、专家系统的未来趋势1、知识库的构建与更新:随着知识爆炸的时代到来,专家系统的知识库需要不断更新和优化,以适应领域发展的需要。

因此,如何高效地进行知识获取、整理、表达和更新将成为未来研究的重要方向。

专家系统简介

专家系统简介

专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。

这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即专家系统 = 知识库 + 推理机它把知识从系统中与其他部分分离开来。

专家系统强调的是知识而不是方法。

很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-Based Systems)。

一般说来,一个专家系统应该具备以下三个要素:(1)具备某个应用领域的专家级知识;(2)能模拟专家的思维;(3)能达到专家级的解题水平。

专家系统与传统的计算机程序的主要区别如表7.1所示。

表7.1 专家系统与传统的计算机程序的主要区别列项传统的计算机程序专家系统适用范围无限制封闭世界假设建造一个专家系统的过程可以称为“知识工程”,它是把软件工程的思想应用于设计基于知识的系统。

知识工程包括下面几个方面:(1)从专家那里获取系统所用的知识(即知识获取)(2)选择合适的知识表示形式(即知识表示)(3)进行软件设计(4)以合适的计算机编程语言实现。

专家系统的发展史1965年斯坦福大学的费根鲍姆(E.A. Feigenbaum)和化学家勒德贝格(J. Lederberg)合作研制DENDRAL 系统,使得人工智能的研究以推理算法为主转变为以知识为主。

20世纪70年代,专家系统的观点逐渐被人们接受,许多专家系统相继研发成功,其中较具代表性的有医药专家系统MYCIN、探矿专家系统PROSPECTOR等。

20世纪80年代,专家系统的开发趋于商品化,创造了巨大的经济效益。

1977年美国斯坦福大学计算机科学家费根鲍姆 (E.A.Feigenballm)在第五届国际人工智能联合会议上提出知识工程的新概念。

人工智能的专家系统技术

人工智能的专家系统技术

人工智能的专家系统技术导言:人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人一样智能地执行任务的学科。

专家系统是其中一种应用广泛的人工智能技术,它模仿人类专家的知识和推理能力,通过计算机实现对复杂问题的解决和决策。

一、专家系统的概述专家系统是一种基于知识的计算机系统,能够模拟人类专家的决策过程,对特定领域的问题进行分析和解决。

它主要由知识库、推理机和用户界面组成。

专家系统的知识库是存储各种领域专家知识的地方,包括事实、规则、经验、案例等。

知识库使用特定的语言表示和存储知识,使得专家系统能够在特定领域中模拟专家的决策过程。

推理机是专家系统的核心,它通过使用专家系统的知识库和推理规则对问题进行推理和决策。

推理机根据用户输入的问题和已有的知识,进行搜索和匹配,产生一系列推理结果。

推理机还可以根据问题的特点,使用不同的推理方式,如正向推理、反向推理、混合推理等。

用户界面是专家系统与用户之间的桥梁,用户通过界面与专家系统交互,输入问题和获取答案。

用户界面可以是命令行界面、图形界面或自然语言界面等,使得用户能够方便地使用专家系统。

二、专家系统的组成1. 知识获取知识获取是专家系统开发的第一步,它通过采访领域专家、查阅文献、观察现场等方式,收集专家知识并转化为计算机可识别的形式。

知识获取的关键是提取和表示知识,需要选择适当的表示方法和知识表示语言。

2. 知识表示知识表示是将采集到的知识以适当的形式表示和存储,使得计算机可以理解和使用这些知识。

常用的知识表示方法有规则表示、语义网络表示、框架表示等。

规则表示是最常用的方法,将知识表示为一系列条件-动作规则,通过匹配规则,实现对问题的推理和决策。

3. 知识推理知识推理是专家系统的核心功能,它利用知识库和推理规则对问题进行推理和决策。

专家系统的推理机通常采用基于规则的推理方法,通过匹配规则和问题,产生推理结果。

推理过程可以是正向推理、反向推理或混合推理,根据问题的特点,选择合适的推理方式。

专家系统概述

专家系统概述
– 建立知识编辑器,把领域知识“传授”给专家 系统,建立知识库。
– 系统自身具有学习能力,能从系统运行中总结 出新知识,使知识库越来越丰富,完善。
➢ 具有灵活性
– 知识库—推理机分离。
2.专家系统的基本特征
➢ 具有透明性
– 透明性:是指系统自身及其行为能被用户所理 解。
– 解释机构:向用户解释它的行为动机及得出某 些答案的推理过程。
➢ 常规程序是精确的;专家系统不精确、模糊的。 ➢ 专家系统具有解释机构; 常规程序没有。 ➢ 常规程序与专家系统具有不同的体系结构。
4. 专家系统的分类
• 按专家系统的特性及处理问题的类型分类。
(1)解释型:从所得到的有关数据,经过分析、推理, 从而给出相应解释的一类专家系统。
• 特点:必须能处理不完全,甚至受到干扰的信息, 并能对所得到的数据给出一致且正确的解释。
1. 什么是专家系统
• 它是一个智能程序系统; • 它具有相关领域内大量的专家知识; • 它能应用人工智能技术模拟人类专家求解问题的
思维水平。 • 专家系统是一种具有大量专门知识与经验的智能 程序系统,它能运用领域专家多年积累的经验和 专门知识,模拟领域专家的思维过程,解决该领 域中需要专家才能解决的复杂问题。
– 详细设计要求完成的工作
• 进行模块化设计 • 模块间的界面要清晰,便于通信 • 便于实现
8. 专家系统的开发过程
• 知识获取
– 与领域专家交谈,抽取所需知识,掌握专家处 理问题的方法、思路
– 查阅有关文献、获得有关概念的描述、参数 – 对获得的知识进行分析、比较、归纳、整理、
找出知识的内在联系、规律 – 对所得知识进行检查 – 对确定下来的知识用总体设计时确定的知识表

第8讲 专家系统

第8讲 专家系统

第8章 专家系统8.1 专家系统的概念8.1.1 什么是专家系统专家系统(Expert system)是一个智能计算 机软件系统。

人类专家的特点具有丰富的专业知识和实践经验。

具有独特的分析问题和解决问题的方法和策略。

专家系统应具备的要素应用于某专门领域 拥有专家级知识; 能模拟专家的思维; 能达到专家级水平。

8.1 专家系统的概念专家系统的特点专家系统善于解决不确定性的、非结构化的、没有算法解 或虽有算法解但实现困难的问题。

如:医疗诊断、地质勘 探、天气预报、管理决策等。

专家系统是基于知识的智能问题求解系统。

不同于常规程 序基于固定算法。

专家系统=知识+推理,常规程序=数据 结构+算法。

从系统结构看,专家系统的知识与推理是分离的,因而系 统具有很好的灵活性和可扩充性。

专家系统具有“自学习”能力,能不断地对自己的知识进行 总结、扩充和完善。

具有解释功能。

在运行过程中能回答用户的提问,并具有 透明性,能以用户所能理解的方式解释得到结论的推理过 程。

专家系统不像人类专家那样容易疲劳、遗忘和受环境影 响。

它的工作状态始终是稳定如一的。

而且能够突破人类 专家的时间和空间限制,永久保存,任意复制,在不同地 区和部门使用。

8.1 专家系统的概念专家系统的实用范围用专家系统来提高工作效率 人类专家的知识很快就要失传,必须通过专家系统 来收集、保存和应用 人类专家太少,必须建造专家系统来使专家们的知 识同时应用于不同的地点。

一些危险的工作环境需要专家系统来代替人类专 家。

8.1 专家系统的概念8.1.2 专家系统的类型1。

按用途分类解释型。

根据所得到的有关数据、经过分析、推理,从而 给出解释的一类专家系统。

诊断型。

根据输入信息推出相应对象存在的故障、找出产 生故障的原因并给出排除故障方案的一类专家系统。

如医 疗诊断、机器故障诊断、产品质量鉴定等专家系统。

预测型。

根据相关对象的过去及当前状况来推测未来情况 的一类专家系统。

人工智能课件之专家系统

人工智能课件之专家系统
8.4 专家系统实例
8.4.1 PROSPECTOR的功能与结构 PROSPECTOR的研究目的是:勘探矿产资源,扩
大技术培训及集中多个专家的知识来解决给定的资源 问题。PROSPECTOR系统给地质勘探人员提供下列几 种帮助:
不确定性的、非结构化的、没有算法解或虽有算法解 但在现有的机器上无法实施的困难问题。
(2)从处理问题的方法看,专家系统则是靠知识和 推理来解决问题(不像传统软件系统使用固定的算法 来解决问题),所以,专家系统是基于知识的智能问 题求解系统。
第8章 专家系统
(3)从系统的结构来看,专家系统则强调知识与推 理的分离,因而系统具有很好的灵活性和可扩充性。
第8章 专家系统
推 理机
解释 模块
知识 库
动态 数据库
知识库管理系统 自学习模块
图8―2 专家系统的理想结构
第8章 专家系统
8.2.2 实际结构 上面介绍的专家系统结构,是专家系统的概念模
型,或者说是只强调知识和推理这一主要特征的专家 系统结构。但专家系统终究仍是一种计算机应用系统。 所以,它与其它应用系统一样是解决实际问题的。而 实际问题往往是错综复杂的,比如,可能需要多次推 理或多路推理或多层推理才能解决,而知识库也可能 是多块或多层的。
福大学的费根鲍姆教授于1965年开发的。 2.发展 与 DENDRAL 系 统 同 时 开 发 的 , 还 有 数 学 专 家 系 统
MACSYMA。它是一个大型的人机交互式系统。 3.趋势 进入20世纪90年代,模糊技术、神经网络和面向对
象等新技术迅速崛起,为专家系统注入了新的活力。
第8章 专家系统
第8章 专家系统
6.按规模分类 按规模分类,可分为大型协同式专家系统和微专 家系统。 7.按结构分类 按结构分类可分为集中式和分布式,单机型和网 络型(即网上专家系统)。

选择题 专家系统的结构

选择题 专家系统的结构

选择题专家系统的结构
专家系统的基本结构通常包括以下几个部分:
1. 用户界面:用户界面是专家系统中最重要的部分,它以可读的形式获取用户的查询,并将其传递给推理引擎。

之后,它会向用户显示结果。

换句话说,它是一个帮助用户与专家系统进行通信的界面。

2. 推理机:推理机是专家系统的大脑,包含解决特定问题的规则。

当试图回答用户的查询时,它会选择要应用的事实和规则,为知识库中的信息提供推理,有助于解决问题,并制定结论。

3. 知识库:知识库是事实的储存库,是专家系统质量的关键所在。

它包含问题求解所需要的领域知识,包括基本事实、规则和其他有关信息。

知识的表示形式可以是多种多样的,包括框架、规则、语义网络等等。

此外,还有一些其他组成部分,如解释器、综合数据库和知识获取等。

以上信息仅供参考,如需获取更多详细信息,建议查阅专家系统相关的书籍和文献。

专家系统名词解释

专家系统名词解释

名词解释专家系统
专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。

就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。

扩展资料:
专家系统适合于完成那些没有公认的理论和方法、数据不精确或信息不完整、人类专家短缺或专门知识十分昂贵的诊断、解释、监控、预测、规划和设计等任务。

一般专家系统执行的求解任务是知识密集型的。

专家系统能为它的用户带来明显的经济效益。

用比较经济的方法执行任务而不需要有经验的专家,可以极大地减少劳务开支和培养费用。

由于软件易于复制,所以专家系统能够广泛传播专家知识和经验,推广应用数量有限的和昂贵的专业人员及其知识。

— 1 —。

专 家 系 统名词解释

专 家 系 统名词解释

专家系统名词解释
专家系统是一种人工智能系统,旨在模拟人类专家在特定领域
的知识和推理能力。

这种系统利用专家的知识来解决复杂的问题,
通常通过规则、推理和逻辑推断来进行决策和问题求解。

专家系统
通常包括知识库、推理引擎和用户接口三个主要部分。

知识库存储
了领域专家的知识和经验,推理引擎利用这些知识进行推理和决策,用户接口则使用户能够与系统进行交互并得到解决方案。

专家系统
被广泛应用于医疗诊断、工程设计、金融分析、客户服务等领域,
以辅助人类专家进行决策和问题解决。

专家系统的发展使得人们能
够利用计算机技术来处理复杂的知识和问题,为各种领域的专业人
士提供了强大的工具和支持。

随着人工智能技术的不断发展,专家
系统也在不断演进和完善,成为了现代智能化应用中的重要组成部分。

专家系统

专家系统

图6 反向推理原理图
3.正反向混合推理 基本思想: 先根据原始数据通过正向推理帮助推理提出假 设,再用反向推理进一步寻找支持假设的证据,反 复这个过程。根据问题已有数据进行推理,但不期 望这种推理能达到总目标;而同时从目标出发进行 反向推理,也不期望该推理一直进行到每个子目标 能被上下文匹配或否定,而是期望两种推理在某些 子目标处接合起来。 集中了正向和反向推理的优点,但其控制策略 较前两者复杂。适用于数据充分、解空间不大的精 确推理。
图5 正向推理原理图
2.反向推理 先提出假设,然后由此出发,进一步寻找支持假设的证据,即所谓目 标驱动方式,当证据与用户提出 的原始信息匹配时,推理成功。 推理过程: 由用户或系统首先提出一批假设,然后系统逐一验证这些假设的真假 性。 适用于结论单一或直接提出结论要求证实的系统,并且初始数据 (事实)量很大的场合。
决策型
控制型 调试型
通常完成实时控制任务 制定并实施纠正某类故障的规划,亦称为排错型或维 修型
YES/MVS TIMM/TUNER
3. 专家系统的工作原理
用户 领域专家(DE) 知识工程师(KE) 人 机 接 口
推理机
解释机
解释机制
知识获取机制
性能系统
综合数据 库
知识库
图2 专家系统的一般结构
一个完整的专家系统通常由6个部分组成: 1.知识库 存放系统求解问题所需要的知识 2.推理机 负责使用知识库中的知识去解决实际问题 3.综合数据库 用于存放系统运行中所需要和产生的所有信息,包括问题的描述、 中间结果,解题过程的记录等信息。在专家系统中,数据的表示与组 织应做到与知识的表示组织相容。 4.知识 获取机制 负责管理知识库中的知识,包括根据需要修改、删除或添加知识及由此 引起怕一切必要的改动,维持知识库的一致性、完整等方面,是系统灵活 性的主要部件。 5.解析机制 负责回答用户提出的各种问题,包括系统与系统运行有关的问题和 与系统运行无关的关于系统自身的一些问题,是实现透明性的主要部件。 6.人机接口 把用户输入的信息转换成系统的内部表示形式,然后把这些内部表示 交给相应的部件去处理。系统输出的内部信息也由人机接口转换成用户 易于理解的外部表示显示给用户。

第六章-专家系统PPT课件

第六章-专家系统PPT课件

10/28/2024
13
6.1.2 专家系统的类型
(1) 解释专家系统 ……
作为解释专家系统的例子有语音理解、图象分 析、系统监视、化学结构分析和信号解释等。 例如,卫星图象(云图等)分析、集成电路分析、 DENDRAL化学结构分析、ELAS石油测井数据分 析、染色体分类、PROSPECTOR地质勘探数据解 释和丘陵找水等实用系统。
的MACSYMA符号积分与定理证明系统,我国一些大学开发 的计算机程序设计语言和物理智能计算机辅助教学系统以 及聋哑人语言训练专家系统等。
10/28/2024
24
6.1.2 专家系统的类型
(10) 修理专家系统 修理专家系统的任务是对发生故障的对象(系
统或设备)进行处理,使其恢复正常工作。修理专 家系统具有诊断、调试、计划和执行等功能。美 国贝尔实验室的ACI电话和有线电视维护修理系统 是修理专家系统的一个应用实例。
预测专家系统的例子有气象预报、军事预测、人口预 测、交通预测、经济预测和谷物产量预测等。例如,恶劣 气候(包括暴雨、飓风、冰雹等)预报、战场前景预测和农 作物病虫害预报等专家系统
10/28/2024
15
6.1.2 专家系统的类型
(3) 诊断专家系统 诊断专家系统的任务是根据观察到的情况(数据)来推
问题求解过程就是一个推理过程,所以专家系统 必须有推理机构。
ES的核心是知识库和推理机。
10/28/2024
4
6.1.1 专家系统的特点—特点
(3) 具有启发性 ES除要利用大量专业知识外,还必须利用经
验的判断知识来对求解问题作出多个假设。 依据某些条件选定一个假设,使推理继续
进行。
10/28/2024
(3) 诊断专家系统 ……

第七章专家系统

第七章专家系统
9
2 ES系统的组成 • 知识库——ES系统最重要的部分,存储求解问题所需的以一定
符号结构表示的专门知识。 • 推理机——具有进行推理的能力
• 根据输入的问题以及描述问题求解初始状态的数据,取 用知识库中的知识作推理,并输出最终解答;
• 可请求用户输入推理必需的数据并应用户要求解释推理 结果和推理过程。
8
专家系统与传统程序的区别
4)传统程序一般不具有解释功能,而专家系统
一般具有解释机构,可对自己的行为作出解释。
5)传统程序因为是根据算法来求解问题的,所 以每次都能产生正确的答案,而专家系统则像人 类专家那样工作,通常产生正确的答案。但是有 时也会产生错误的答案,这也是专家系统存在的 问题之一。 6)从系统的体系结构来看,传统持续与专家系 统具有不同的结构。
* 提供现成的实现ES系统的骨架, * 提供知识获取的辅助设施和知识编辑器, * 易于使用——只要按骨架规定的表示方式编写专门知识,就 可形成应用领域的ES系统, * 仅有较窄的应用范围——对任务的特征有严格的要求.
20
• 表示语言: OPS5 * 提供面向知识处理的高级编程语言, * 知识工程师可以通过编程语言来实现特别的控制结构(建立在通
•这些知*识人决工定知了识ES获系取统是的一体个系十结分构困,难并而可又指耗导时以的系过统程化—和—结缺构乏化有的效的手段去 方式获取系详统细化的和推结理构知化识地。描述问题求解的组织和推理控制。
16
•自动方式——实现知识获取自动化的一个努力方向
* 以智能编辑器取代知识工程师,通过可视化交互式知识获取界面,按预 先制定的问题求解模型,指导领域专家自行抽取和输入知识进专家系统。
(5) 专家系统能汇集多领域专家的知识和经 验以及他们协作解决重大问题的能力,它 拥有更渊博的知识、更丰富的经验和更强 的工作能力。

生活中常见的专家系统的例子

生活中常见的专家系统的例子

生活中常见的专家系统的例子生活中常见的专家系统的例子有很多,下面列举了10个例子:1. 医疗诊断专家系统医疗诊断专家系统是一种利用人工智能技术实现的系统,能够根据患者的症状和病史等信息,进行疾病的诊断和治疗建议。

该系统基于大量的医学知识和专家经验,通过推理和推断来帮助医生进行准确的诊断和治疗。

2. 金融风险评估专家系统金融风险评估专家系统是一种用于评估金融机构风险的系统,能够根据各种因素(如市场波动、财务状况等)进行风险评估和预测。

该系统通过分析数据和规则,提供风险评估报告和决策建议,帮助金融机构做出合理的风险管理决策。

3. 智能家居控制专家系统智能家居控制专家系统是一种用于控制家居设备的系统,能够根据用户的需求和环境条件,智能地控制灯光、温度、安防等设备。

该系统通过学习用户的习惯和喜好,自动调节设备,提供舒适和便捷的居住体验。

4. 智能交通管理专家系统智能交通管理专家系统是一种用于优化交通流量和减少交通拥堵的系统,能够根据实时交通数据和交通规则,进行交通信号控制和路线规划。

该系统通过智能算法和优化模型,提供最优的交通管理方案,改善交通状况,提高路网通行效率。

5. 客户关系管理专家系统客户关系管理专家系统是一种用于管理和分析客户信息的系统,能够根据客户的需求和行为,进行个性化的营销和服务。

该系统通过分析客户数据和行为模式,提供定制化的产品推荐和沟通策略,增强客户满意度和忠诚度。

6. 环境监测与预警专家系统环境监测与预警专家系统是一种用于监测和预测环境变化的系统,能够根据各种环境指标和模型,进行环境污染和自然灾害的监测与预警。

该系统通过大数据分析和模型模拟,提供准确的环境预警和应急响应,保护环境和人民的生命财产安全。

7. 农业决策支持专家系统农业决策支持专家系统是一种用于农业生产和管理的系统,能够根据农业数据和农业知识,进行种植、养殖和农业管理的决策支持。

该系统通过分析土壤、气候、作物等信息,提供种植技术、病虫害防治等方面的建议,提高农业生产效益和农民收入。

什么是专家系统?

什么是专家系统?
family(swan),
voice(muffled_musical_whistle).
bird(trumpeter_swan) :-
family(swan),
voice(loud_trumpeting).
为了能够让这些规则能够分辨不同的鸟类,我们必须储存关于某种鸟的特定的信息。例如,如果我们加入下面两个事实的话:
family(goose),
season(winter),
country(united_states),
head(black),
cheek(white).
bird(canada_goose):-
family(goose),
season(summer),
country(canada),
什么是专家系统?
>专家系统是人工智能最重要的应用之一,它的目的是让电脑在某种程度上帮助或者替代某个领域的专家解决问题。例如医疗诊断系统、投资风险分析系统、家居设计系统等等。
Domain Expert就是某个领域的专家,他提供原始的知识。Knowledge Engineer是把专家的知识翻译成电脑所能够识别的知识的工程师。某领域的专家把他所知道的知识告诉knowlegde engineer以后,由knowlegde engineer对这些知识进行处理,最后做成知识库knowledge base。System Engineer是设计专家系统的程序员,他的主要任务是编写专家系统的推理机构inferface engine,和用户界面user interface。用户使用用户界面和专家系统打交道,他和专家系统之间的交流的一些信息由工作空间working storage储存。推理机构根据用户信息和知识库中的信息为用户提供服务。

专家系统

专家系统
专家系统是比较复杂的程序系统,一般需要几 个人年的开发时间才能成为真正实用的系统。因此, 通常采用渐进式的开发策略,先建立一个专家系统 的原型,对系统采用的各种技术进行试验,在取得 经验的基础上逐步实现实用的专家系统。
三、构造
2、开发过程 (1)需求分析和可行性分析
需要考虑以下的需求:专家系统的目标,专家 系统的功能、性能的要求,领域专家求解问题的模 式等情况,用户的情况,硬件、软件环境,系统的 开发时间、进度要求等。 完成了需求分析,就可以进行系统开发的可行 性分析,并形成相应的书面文件(开发任务书,系 统规格说明书)。
(2)获取完备的知识
完备的知识是指数量上满足求解问题的需要, 质量上保证知识的一致性和完整性。
三、构造
1、构造原则 (3)知识库和推理机分离
不仅有利于对知识库的维护和管理,而且可以 把推理机设计得更灵活。
(4)选择、设计合适的知识表示模式
根据不同领域的特点,设计知识表示模式,使 之将领域知识充分的表达出来。
三、构造
2、开发过程 (9)系统维护
用户对系统试运行,如果用户发现新的问题或 提出新的要求,就需要对系统进行维护工作。
三、构造
3、评价
专家系统的评价贯穿于构造专家系统的整个过程, 可从以下几个方面对专家系统进行评价。 (1)知识的完备性
可从三个方面进行考察:①完备的知识;②知识系统的知识和 领域专家的知识的一致性;③知识的完整性。
知识库及其管理系统
二、基本结构
人机接口
一般用户,领域专家,知识工程师 和专 家系统的交互界面。
知识获取机构
把知识输入到知识库中,并维持知识的完 整性和一致性。
推理机
专家系统的核心部分。
二、基本结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


6.传统程序与专家系统具有不同的系统结构。

谢!
专家系统

自1968年研制成功第一个专家系统DENDRAL 以来,专家系统技术发展迅速,已经应用到数学、 物理、化学、医学、地质、气象、农业、法律、 教育、交通运输、机械、艺术以及计算机科学本 身,甚至渗透到政治,经济,军事等重大决策部 门,产生了巨大的社会效益和经济效益,成为人 工智能的重要分支。

二、专家系统的概念

Ⅰ.专家系统的定义
专家系统是基于知识的系统,用于在特定的领域中运用领域专家多年 积累的经验和专业知识,求解需要专家才能解决的困难问题。专家系统作 为一种计算机系统,继承了计算机快速、准确的特点,在某些方面比人类 专家更可靠、更灵活,可以不受时间、地域及人为因素的影响。所以专家 系统的专业水平能够达到甚至超过人类的水平。

3.数据库
数据库主要用于存放初始事实、问题描述及系统运行过程中得到的中 间结果、最终结果等信息。

4.知识获取机构
知识获取是建造和设计专家系统的关键,也是目前建造专 家系统的
“瓶颈”。知识获取的基本任务是为专家系统获取知识,建立起健全、
完善、有效的知识库,以满足求解领域问题的能力。

5.人机接口
人机接口是专家系统与领域专家、知识工程师、一般用户之间进行交 互的界面,用于完成输入输出工作。

6.解释机构
解释机构回答用户提出的问题,解释系统的推理过程。
四、专家系统与传统程序的区别

1.从编程思想来看
传统程序 = 数据结构 +算法 专家系统 = 知识 + 推隐含于程序中,而专家系统则将知识与运 用知识的过程即推理机分离;




解释机构
知识获取机构
数据库
推理机
知识库

1.知识库
知识库用来存放领域专家提供的专门知识。知识库中的知识来源于知 识获取机构,同时它又为推理机提供求解问题所需的知识。

2.推理机
推理机的功能是模拟领域专家的思维过程,控制并且执行对问题的求 解。它能根据已知事实,利用知识库中的知识,按一定的推理方法和控制 策略进行推理,直到得出相应的结论为止。推理机的性能与构造一般与知 识的表示方法有关,与知识内容无关,这有利于保证推理机与知识库的独 立性,提高专家系统的灵活性。
3.从处理对象来看 传统程序面向数值计算和数据处理,专家系统面向符号处理。 传统程序处理的数据是精确的,专家系统处理的数据和知识大多是不精 确的、模糊的。

4.传统程序一般不具备解释功能,专家系统具有解释机构,能解释自己的行 为。 5.求解方式不同
传统程序根据算法求解问题,每次都能产生正确答案,专家系统像人类专家一 样思考,一般能产生正确答案,有时会产生错误答案。但是专家系统有能力从错误 中吸取教训,改进对某一问题的求解能力。
专家系统是一种智能的计算机程序,它运用知识和推理来解决只有专 家才能解决的复杂问题。
——费根鲍姆

Ⅱ.专家系统的特点

1.具有专家水平的专业知识 2.能进行有效的推理
3.具有启发性
4.具有灵活性 5.具有透明性 6.具有交互性
三、专家系统的工作原理
用 户 领域专家 知识工程师
一、专家系统的产生和发展

第一阶段:

1.斯坦福大学费根鲍姆等人于1968年研制成功的分析化合物分子结构的 专家系统——DENDRAL系统。 2.MIT于1971年开发成功并投入应用的MYCSYMA系统(用LISP语言实现), 能对特定领域的数学问题进行有效处理。

第一阶段的特点:
高度专业化,专业问题求解能力强,但结构,功能不够完整,移植性差, 缺乏解释功能。

第二阶段

1. MYCIN系统是斯坦福大学研制的用于细菌感染性疾病的诊断和治疗的 专家系统,能成功地对细菌性疾病作出专家水平的诊断和治疗。第一个 结构较完整,功能较全面的专家系统。第一次使用知识库的概念,引入 了可信度的方法进行不精确推理,能够给出推理过程的解释,用英语与 用户进行交互。 2. PROSPECTOR系统是斯坦福研究所开发的一个探矿专家系统,它首次 实地分析华盛顿某山区一带的地质资料,发现了一个钼矿,成为第一个 取得显著经济效益的专家系统。 3. CASNET是由拉特格尔大学开发用于青光眼诊断与治疗的专家系统。 4. AM系统是由斯坦福大学于1981年研制成功的专家系统。它能模拟人 类进行概括、抽象和归纳推理,发现某些数论的概念和定理。



第二阶段的特点:
1.单学科专业型专家系统 2.系统结构完整,功能较全面,移植性好。 3.具有推理解释功能,透明性好。 4.采用启发式推理,不精确推理。 5.用产生式规则、框架、语义网络表达知识。 6.用限定性英语进行人机交互。

20世纪80年代以来,专家心系统的研制和开发明显地趋向商业化,直 接服务于生产企业,产生了明显的经济效益。例如DEC公司与卡耐基梅隆大 学合作开发的专家系统XCON,用于为VAX计算机系统制定硬件配置方案, 节约资金近1亿美元。另一个重要发展是出现专家系统开发工具,从而简化 了专家系统的构造。如骨架系统EMYCIN\KAS\EXPERT,通用知识工程语言 OPS5、RLL,模块式专家系统工具AGE等。 专家系统是人工智能的重要分支,它可以以定性方式辅助决策。决策支 持系统是以组合模型形成方案定量分析的方式辅助决策。把专家系统和决策 支持系统两者结合起来辅助决策的效果将会大大改善。这种专家系统和决策 支持系统结合形成的系统是智能决策支持系统的初型。
相关文档
最新文档