精密加工技术的发展现状与趋势

合集下载

2024年加工市场发展现状

2024年加工市场发展现状

2024年加工市场发展现状引言随着经济全球化的推进和市场竞争的加剧,加工市场在全球范围内逐渐发展壮大。

加工行业从最初的劳动密集型加工方式向技术密集型和服务价值高的加工方式转变,不仅带来了经济效益的提升,也为国家和企业带来了诸多机遇和挑战。

本文将对加工市场的发展现状进行详细分析和探讨。

1. 加工市场规模与产业结构当前加工市场规模持续扩大,产业结构逐渐优化。

随着科技进步和技术创新的推动,加工产业的规模不断增加。

根据统计数据显示,近年来全球加工市场的年均增长率达到了X%。

同时,加工市场的产业结构也在不断调整和优化,逐渐向高附加值、高技术含量的领域发展,如精密加工、智能制造等。

2. 加工市场的发展趋势2.1 技术创新推动加工市场转型升级随着科技创新的加速发展,加工市场也在不断地进行技术创新和转型升级。

一方面,新技术的应用使加工过程更加高效、精确和智能化,进一步提升了加工质量和产品性能。

另一方面,传统制造业与互联网、大数据等新兴产业的深度融合,为加工企业带来了更多的机遇和挑战。

2.2 加工市场国际化趋势明显随着全球经济的紧密联系和贸易自由化的推进,加工市场国际化发展趋势明显。

越来越多的国际企业进入加工市场,与本地企业展开合作或竞争。

同时,中国等新兴经济体也成为全球加工市场的重要参与者之一,其市场份额逐渐增加。

国际合作与竞争不仅加快了加工市场的发展速度,也为加工企业提供了更多的发展空间和机遇。

2.3 加工市场绿色化发展成为趋势随着环境保护意识的提高,加工市场绿色化发展成为行业的共识。

加工过程中产生的废气、废水和废固体等环境问题日益凸显,已成为制约加工行业可持续发展的重要因素。

因此,加工企业应积极采取环保措施,推动加工过程的绿色化,不仅符合社会期待,也有利于提升企业形象和竞争力。

3. 加工市场的发展挑战3.1 国内外竞争加剧随着加工市场的不断壮大,国内外竞争也日益加剧。

在国内,加工市场竞争激烈,加工企业之间的价格战和技术竞争越来越激烈。

航空精密制造技术的发展现状和趋势

航空精密制造技术的发展现状和趋势

航空精密制造技术的发展现状和趋势航空精密制造技术是指针对航空制造中的精细化、高精度化制造和数字化制造需求而发展起来的一项技术,是航空工业和军工领域的重要技术支撑。

随着科技的不断发展和应用需求的不断增加,航空精密制造技术也在不断地发展和演进,向着高精度、高可靠性、高智能化等方向展开。

一、航空精密制造技术的现状1、精密加工技术的发展精密加工技术是航空制造中最基础的一环,它的发展程度直接影响到整个制造过程的质量和效率。

目前,国内外的航空精密加工技术已经达到了比较成熟的阶段,各种加工设备和工艺越来越多地应用于各个领域中。

2、数字化制造技术的应用数字化制造技术是指以数字化的形式对制造加工设计、加工计划和加工执行进行管理和控制的技术。

随着计算机技术和信息技术的不断进步,数字化制造技术在航空领域中的应用越来越广泛,成为实现高效、精准、数字化的航空精密制造的关键技术之一。

3、新材料和新工艺的出现新材料技术和新工艺技术也日益成为航空制造领域中的重要技术支撑。

以超轻复合材料为例,相较于传统的金属材料,具有更高的强度、更轻的重量和更好的韧性,可以极大地提高航空器的性能和效率。

二、航空精密制造技术的趋势1、精密度要求越来越高随着科技的不断进步和航空制造领域中的需求不断增加,航空精密制造技术的精度要求也越来越高。

比如,飞机上的各个零部件需要满足微米级别的高精度和高可靠性要求,同时为了降低成本和提高效率,对制造过程中的各个环节的控制和协调都要达到极致。

2、智能化制造将逐渐普及随着人工智能技术和机器学习技术的不断发展和应用,智能化制造成为趋势。

相较于传统制造工艺,智能制造可以更好地实现人机协同,提高生产效率和质量,减少人为误差和浪费,同时也可以不断改善制造环境,提高制造过程的安全性和稳定性。

3、多元化发展方向另外,航空精密制造技术的发展还将趋向多元化。

制造过程中所需的一系列关键技术将会更加完善,应用范围将会更加广泛,包括柔性制造技术、材料表面技术、激光加工技术、精密制造机器人技术等等。

精密加工制造技术的研究与发展

精密加工制造技术的研究与发展

精密加工制造技术的研究与发展摘要:在现代工业制造中,精密加工制造技术是不可或缺的重要组成部分,涉及到诸如航空、航天、汽车、半导体等高科技领域,是现代工业制造的核心技术之一。

本文将从精密加工制造的定义入手,探讨其发展历程、选型原则、现状与趋势,并指出未来的确切发展方向。

一、精密加工制造技术的定义精密加工制造技术是指通过机械加工以及其他相关的技术手段,将材料的形状、尺寸和表面质量等方面达到高精度、高表面质量的制造技术。

其具有工业制造和制造技术的核心地位,也是工业制造中不可或缺的组成部分。

精密加工制造技术已经涉及到诸如航空、航天、汽车、半导体等高科技领域,在现代制造业中已经成为了重要的核心技术。

二、精密加工制造技术的发展历程自20世纪50年代起,精密加工制造技术便开始在各个行业领域中得到广泛的应用。

最初,精密加工制造技术主要是通过手工操作来完成的,对于材料的尺寸和表面质量控制的精确度较低。

随着科技水平的提高和机械设备的不断更新,精密加工制造技术也得到了快速的发展与改进。

各种精密加工制造的新技术和新工艺也越来越多地应用于工业制造中。

在当今的制造业中,我们已经可以看到高端机床,多轴机、数控加工设备、激光加工设备、电解加工设备等等,这些设备都是以精密加工制造技术为核心而诞生的。

三、精密加工制造技术的选型原则正确的加工选型是精密加工制造技术的成功应用的前提。

选择适合本次精密加工的机床、设备和工具材料等,是非常关键的。

一般来说,精密加工制造会依据材料的种类、制造工艺的要求来选择该精密加工技术的方法。

为了确保质量和生产效率,还需要在加工选型的过程中,充分考虑材料的硬度、表面欠损、精度要求以及加工工艺的适应性和经济性,并且需要定期地维护设备的表面质量,进行磨损情况的监测和判断,保证设备的加工质量。

四、精密加工制造技术的现状与趋势当今的精密加工制造技术已经非常成熟,其应用范围覆盖了汽车、航空、航天、半导体等多个领域。

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。

a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1µ;m,最好可到Ra0.025µ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025µ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

精密制造业的现状及发展趋势

精密制造业的现状及发展趋势

精密制造业的现状及发展趋势随着科技的不断进步和人民生活水平的提升,精密制造业得到了越来越多的关注和重视。

它是现代工业的重要组成部分,是当前国民经济发展的核心领域之一。

同时也是推动经济转型升级、实现高质量发展的重要支撑和保障。

然而,精密制造业发展面临着许多挑战和机遇。

本文将介绍其现状与趋势。

一、现状精密制造业是指应用高新技术、高精密加工的制造业,以提高产品的精度、品质和竞争力。

目前,我国精密制造业已经形成了比较完善的产业体系和成熟的产业链。

尤其是在高端装备制造、汽车制造、电子信息和生物医药等领域,我国的精密制造业水平已经达到了国际先进水平。

然而,精密制造业的现状还存在一些问题:一是基础设施和技术创新能力还不足,落后的生产方式和科技水平制约了产业发展;二是产业结构比较单一,对高端制造业和服务业的需求还不足;三是市场细分化程度不够,产业集中度不高,企业竞争压力较大。

二、发展趋势1. 聚焦高端装备制造制造业是国家经济的重要支撑,高端装备制造是制造业的核心和重点。

在高端装备制造领域,我国已逐渐成为全球的制造业强国之一。

未来,我国在这方面的投入和发展将继续加大,发展高端装备制造业已成为生产力和技术进步的关键。

2. 升级转型发展随着大数据、云计算、人工智能等科技的发展,未来制造业发展将越来越依赖于数字化和智能化。

制造企业需要在传统制造领域实现智能制造,同时进行电气化、自动化、信息化、网络化等方面的全面升级。

这样可以实现制造更加高效、灵活、智能。

3. 推动绿色制造制造业生产会伴随着不可避免的资源消耗和环境污染。

为了减少制造业的环境负担,未来精密制造业需要大力推进绿色制造,积极开展节能减排工作,推广清洁能源和环保型工艺、材料和产品等环保技术。

4. 加强环节协作生产制造目标的实现需要各个环节之间的密切配合与协同。

未来,我国精密制造业需要加强和完善协作机制,实现上下游产业链的紧密连接和无缝衔接。

同时,要加强各级政府之间的协调,为制造业的发展提供积极的政策支持。

超精密加工技术在未来机械领域的发展前景概述

超精密加工技术在未来机械领域的发展前景概述

超精密加工技术在未来机械领域的发展前景概述超精密加工技术在未来机械领域的发展前景[前言]近二十年以来机械制造业正以迅猛的发展步伐向精密加工、超精密加工发展,在未来的发展过程中精密加工、超精密加工将成为在国际竞争、市场竞争中取胜的关键技术。

现代制造业之所发要致力于提高加工精度,其主要原因在于提高产品的性能和质量,提高其质量的稳定性和性能的可靠性,促进产品的小型化、功能性强,零件互换性好,产品的装配、调试生产率高,并促进制造装配自动化。

随着制造业的发展,现在的精密机械加工正在从微米、亚微米级工艺发展,在今后的加工中,普通机械加工、精密加工与超精密加工精度可分别达到1μm、0.01μm、0.001μm(即1nm),而且超精密加工正在向原子级加工精度逼进(0.1nm)。

随着极限加工精度的不断提高,为科学技术的发展和进步创造了条件,也为机械冷加工提供了良好的物质手段。

关键词超精密加工发展趋势发展策略后续研发一、引言我们一提到超精密这个词语,就觉得它比较神秘,但跟任何其他复杂的高新技术一样,经过一段时间的熟悉、适应,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是如此。

实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。

超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。

二、正文超精密加工当前是指被加工零件的尺寸和形状精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,目前正在向纳米级加工技术发展。

超精密加工技术在国际上处于领先地位的国家是美国、英国和日本。

美国是开展超精密加工技术研究最早的国家,也是迄今处于领先地位的国家。

英国的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,是当今世界上精密工程的研究中心之一。

精密加工行业报告

精密加工行业报告

精密加工行业报告精密加工是一种高精度的机械加工技术,它在各种行业中都有着广泛的应用。

随着科技的不断发展和进步,精密加工行业也在不断壮大和壮大。

本报告将对精密加工行业的发展现状、市场需求、技术趋势等方面进行分析和展望。

一、精密加工行业的发展现状。

随着科技的不断进步和发展,精密加工行业也在不断壮大。

目前,全球精密加工行业的市场规模已经达到了数千亿美元。

在中国,精密加工行业也在快速发展,成为了国民经济中不可或缺的一部分。

从国内外市场来看,精密加工行业的需求量也在不断增加,市场潜力巨大。

二、精密加工行业的市场需求。

精密加工行业的市场需求主要来自于汽车、航空航天、电子、医疗器械、光学仪器等行业。

随着这些行业的不断发展,对精密加工零部件的需求也在不断增加。

特别是在汽车和航空航天行业,对零部件的精度和质量要求非常高,这就对精密加工行业提出了更高的要求。

三、精密加工行业的技术趋势。

随着科技的不断进步,精密加工行业的技术也在不断更新和改进。

目前,数控机床、激光加工、电火花加工、超声波加工等先进技术已经在精密加工行业中得到了广泛应用。

这些先进技术不仅提高了加工效率,还提高了加工精度,降低了成本,提高了产品质量。

四、精密加工行业的发展趋势。

未来,精密加工行业将会朝着智能化、自动化、数字化的方向发展。

随着人工智能、大数据、云计算等技术的不断发展,精密加工行业将会迎来新的发展机遇。

同时,随着全球制造业的转移和升级,精密加工行业也将会面临更大的市场机遇和挑战。

总之,精密加工行业是一个充满活力和发展潜力的行业。

随着科技的不断发展和进步,精密加工行业也将迎来新的发展机遇。

我们相信,在政府的政策支持和企业的不懈努力下,精密加工行业一定会迎来更加美好的未来。

激光精密加工设备的发展趋势与前景分析

激光精密加工设备的发展趋势与前景分析

激光精密加工设备的发展趋势与前景分析激光精密加工设备在过去几十年中取得了巨大的发展,并逐渐成为许多工业领域的重要工具。

激光技术因其高精度、高效率和无接触加工的特点,广泛应用于汽车制造、电子制造、航空航天等领域。

随着科技的不断进步和市场需求的变化,激光精密加工设备的发展趋势逐渐显现,同时也带来了前景的展望。

首先,激光精密加工设备的发展趋势之一是技术不断创新与突破。

随着人们对产品精度和质量要求的提高,对激光精细加工设备的要求也越来越高。

因此,各大激光设备制造商纷纷加大研发力度,推出更加先进、高效、多功能的设备。

例如,激光加工设备的功率、加工速度、稳定性等方面都得到了显著提升。

光纤激光器的出现使得设备更加紧凑、节能,并且具有更长寿命。

此外,激光加工设备还引入了自动化、智能化技术,减少了人工操作的错误率,提高了生产效率。

其次,激光精密加工设备的应用领域将进一步拓展。

目前,激光技术已广泛应用于金属材料的切割、焊接和打孔等加工过程。

然而,随着新材料的出现和应用的广泛,激光精密加工设备也将扩大其应用领域。

例如,激光技术可用于陶瓷、塑料和复合材料等非金属材料的加工,进一步满足不同行业对加工的需求。

另外,激光精密加工设备还可以应用于微纳加工领域,如微机械制造、微电子器件制造和生物医学领域等。

这些新的应用领域将为激光精密加工设备带来更多的商机和前景。

第三,激光精密加工设备的发展趋势之一是国际市场的扩大。

当前,激光精密加工设备已成为国际市场上的热门产品。

中国作为激光设备生产大国,其制造技术和生产能力在国际市场中占有重要位置。

根据统计数据,中国激光设备制造业的市场份额在不断扩大,出口量也不断增加。

在中国制造业转型升级的背景下,激光精密加工设备的需求将继续增长。

此外,随着一带一路政策的推动,激光设备的国际市场将进一步扩大。

中国激光设备制造商有机会与国际品牌竞争,提高自身的研发实力和技术水平。

第四,激光精密加工设备的前景也受到环保意识的影响。

超精密加工技术的发展与应用

超精密加工技术的发展与应用

超精密加工技术的发展与应用随着科技的不断进步,越来越多的精密加工技术被研发出来,其中超精密加工技术就是其中之一。

它是一种高精度、高效率、高质量的加工技术,已经被广泛应用于制造业、电子类、生物医药等领域。

本文将详细介绍超精密加工技术的发展与应用。

一、发展历史超精密加工技术起源于1960年代,当时主要是应用于光学元件的制造。

随着计算机技术的发展以及加工设备的不断改进,超精密加工技术也得到了迅速发展。

在1970年代初期,开发出了“单点钻磨”工艺。

1980年代的日本、美国等国家开始发展大型超精密车削和磨削加工技术,使得超精密加工技术不断地向更高精度和更微小的加工方向扩展。

1990年代初期,精密切割加工技术也被广泛应用。

现在,超精密加工技术已经扩展到了非常小的尺寸和微弱的信号等方面,例如半导体微电子学、纳米技术和激光微加工技术等。

二、超精密加工技术的分类超精密加工技术主要包括以下几个方面:1. 单点钻磨加工技术:它是超精密加工技术的早期研究领域,是一种利用单晶金刚石工具进行金属材料的磨削加工,以达到高精度、高质量的目的。

2. 超精密车削和磨削加工技术:它是大型载具和航空航天工业中的重要加工领域之一。

其加工精度可以达到亚微米级别。

3. 切割加工技术:它是一种低成本、高产量、高精度的超精密加工技术,例如线切割、等离子切割、激光切割等。

4. 电解加工技术:它采用电化学溶解的原理,可以加工金属和非金属材料,具有处理复杂形状、非常薄和非常脆的材料的优势。

三、超精密加工技术的应用超精密加工技术已经被广泛应用于以下领域:1. 光学和光电子学领域:用于制造精密光学元件,例如照相机镜头、透镜、天文望远镜等。

在光电子学领域,它还用于制造控制光电器件、激光微加工和激光雕刻等。

2. 航空航天工业:用于制造发动机的精密零部件、航空结构件、导向和控制元件等。

此外,它还广泛应用于卫星制造、航天器自动交会与对接、卫星制导与控制等。

3. 生物医学领域:用于制造人造人体植入物、医疗器械、医疗器材零部件等。

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识一、引言精密加工技术是一种高精度、高效率的制造方法,广泛应用于电子、航空航天、医疗器械等领域。

而超精密加工技术则是在精密加工技术的基础上进一步提高了加工的精度和表面质量。

本文将对精密和超精密加工技术进行深入的探讨和分析。

二、精密加工技术的概念和应用精密加工技术是一种通过在加工过程中控制和调整各种工艺参数,使加工零件达到高精度要求的加工方法。

它主要包括数控加工、激光加工、电火花加工等多种技术手段。

精密加工技术在电子领域的应用尤为广泛,如半导体芯片加工、PCB板制造等。

三、精密加工技术的特点和优势1. 高精度:精密加工技术可以实现亚微米甚至纳米级别的加工精度,满足对零件精度要求极高的应用领域。

2. 高效率:精密加工技术采用自动化控制和高速切削等方法,加工效率高,能够大大提高生产效率和产品质量。

3. 灵活性:精密加工技术具有灵活性强的特点,可以根据不同产品的要求进行个性化加工,满足市场需求的多样化。

四、超精密加工技术的概念和原理超精密加工技术是在精密加工技术的基础上,通过进一步提高加工设备的精度和加工工艺的控制精度,实现更高精度加工的一种技术手段。

超精密加工技术主要包括超精密车削、超精密磨削、超精密拓扑等方法。

五、超精密加工技术的应用领域超精密加工技术在光学仪器、航空航天、精密仪器等领域具有广泛的应用。

例如,在光学仪器领域,超精密加工技术可以用于制造高精度的光学元件,提高光学系统的分辨率和成像质量。

六、精密和超精密加工技术的发展趋势随着科技的进步和工业制造的需求,精密和超精密加工技术也在不断发展和创新。

未来的发展趋势主要包括以下几个方面:1. 加工精度的提高:随着需求的增加,对加工精度的要求也越来越高,未来的精密和超精密加工技术将进一步提高加工的精度和表面质量。

2. 加工效率的提高:随着自动化技术和智能化技术的发展,精密和超精密加工技术将更加高效,加工速度更快,生产效率更高。

精密和超精密加工技术的新进展

精密和超精密加工技术的新进展

精密和超精密加工技术的新进展精密和超精密加工技术是指不断追求更高精度、更细粒度、更小误差和更高效率的加工方法和技术。

这些技术广泛应用于航空航天、医疗器械、微电子、光学仪器等领域,对于产品的性能和质量有着至关重要的影响。

近年来,精密和超精密加工技术取得了许多突破性进展,本文将就此展开讨论。

精密加工技术是在传统机械加工的基础上发展起来的,通过精细的切削、研磨和抛光等手段,实现高精度、高光洁度的加工目标。

近年来,精密加工技术的发展取得了长足的进步,主要表现在以下几个方面:新型加工设备的研发和应用不断取得突破。

例如,五轴联动数控机床、激光加工机、电子束加工机等新型设备的出现,使得复杂零件的精密加工变得更加高效和准确。

新型加工材料的应用也取得了重要进展。

例如,工程塑料、陶瓷、复合材料等高性能非金属材料的广泛应用,使得精密加工的领域得以进一步拓展。

精密加工技术的智能化和自动化水平不断提升。

智能化加工设备能够实现自适应加工、无人值守加工等功能,提高加工效率和质量稳定性。

超精密加工技术是指比精密加工技术更为精细、精确的加工方法和技术。

随着科技的不断进步,超精密加工技术的应用越来越广泛,主要包括以下几个方面:超精密加工技术广泛应用于微电子领域。

微电子产业对于芯片的精度和光洁度要求极高,超精密加工技术能够实现高精度、高效率的微米级加工,对于提升微电子产业的发展水平和竞争力具有重要意义。

超精密加工技术在光学仪器领域也有着广泛的应用。

光学仪器对于透镜、反射镜等光学元件的精度和表面质量要求极高,超精密加工技术能够实现高精度、高稳定性的光学元件加工,对于提高光学仪器的性能和精度具有重要作用。

再次,超精密加工技术在航空航天领域也有着重要的应用。

航空航天领域对于零件的精度和可靠性要求极为严格,超精密加工技术能够实现高精度、高稳定性的零件加工,对于提升航空航天领域的产品质量和性能具有重要意义。

近年来,精密和超精密加工技术的研究和应用不断取得新的进展,在新型加工设备、新型加工材料和智能化加工等方面都取得了重要突破。

精密和超精密加工现状与发展趋势.doc

精密和超精密加工现状与发展趋势.doc

精密和超精密加工现状与发展趋势核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT电子信息高技术领域和军用、民用工业有广泛应用。

同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。

一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。

a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

超精密加工技术的发展现状

超精密加工技术的发展现状

超精密加工技术的发展现状自从中国将“装备制造业”列为国家发展战略后,中国的装备制造业取得了突飞猛进的发展,很多大型装备的制造能力都已经跃居世界先进水平,甚至成为世界的顶级水平,但中国制造业总体还是落后的,其落后就在于精密制造的落后。

超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。

现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。

由宏观制造进入微观制造是未来制造业发展趋势之一,当前超精密加工已进入纳米尺度,纳米制造是超精密加工前沿的课题。

世界发达国家均予以高度重视。

超精密加工的发展阶段目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗糙度、表面完整性(无或极少的表面损伤,包括微裂纹等缺陷、残余应力、组织变化)为目标。

超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。

一直以来,国内外学者围绕这些内容展开了系统的研究。

超精密加工的发展经历了如下三个阶段。

1)20世纪50年代至80年代,美国率先发展了以单点金刚石切削为代表的超精密加工技术,用于航天、国防、天文等领域激光核聚变反射镜、球面、非球面大型零件的加工。

2)20世纪80年代至90年代,进入民间工业的应用初期。

美国的摩尔公司、普瑞泰克公司,日本的东芝和日立,以及欧洲的克兰菲尔德等公司在政府的支持下,将超精密加工设备的商品化,开始用于民用精密光学镜头的制造。

单超精密加工设备依然稀少而昂贵,主要以专用机的形式订制。

在这一时期还出现了可加工硬质金属和硬脆材料的超精密金刚石磨削技术及磨床,但其加工效率无法和金刚石车床相比。

3)20世纪90年代后,民用超精密加工技术逐渐成熟。

国外超精密加工技术的现状和发展趋势

国外超精密加工技术的现状和发展趋势

国外超精密加工技术的现状和发展趋势1. 引言在当今世界,超精密加工技术已经成为了制造业的重要组成部分。

随着科技的不断发展,国外的超精密加工技术也取得了长足的进步。

本文将从多个角度对国外超精密加工技术的现状和发展趋势进行评估和探讨。

2. 现状分析超精密加工技术是指在微米或纳米级别进行加工的技术,其精度和表面质量要求非常高。

当前,国外一些先进制造业发达国家,如日本、德国和美国等,都在超精密加工技术领域具有举足轻重的地位。

这些国家的企业和研究机构不断推动着超精密加工技术的发展,不断推陈出新,取得了许多创新成果。

3. 技术发展趋势未来,国外超精密加工技术将朝着更高精度、更复杂形状、更多材料的加工方向发展。

随着人工智能、大数据和物联网等新一代信息技术的不断涌现,超精密加工技术将更加智能化、数字化和柔性化。

新型材料、纳米技术的应用,也将极大地拓展超精密加工技术的应用范围。

4. 我的观点我认为,国外超精密加工技术的快速发展将为全球制造业带来深远影响。

随着超精密加工技术在航空航天、医疗器械、电子器件等领域的广泛应用,将极大地推动相关产业的发展。

超精密加工技术的不断突破也将为人类社会带来更多便利和可能性。

5. 总结国外超精密加工技术的现状和发展趋势令人振奋。

技术不断创新,应用领域不断拓展,为制造业注入了新的活力。

我对超精密加工技术的未来充满信心,相信它将在全球范围内发挥越来越重要的作用。

通过本文的介绍和分析,相信您已经对国外超精密加工技术的现状和发展趋势有了更深入的了解。

希望本文能够为您带来一些启发和思考,并对您在相关领域的学习和工作有所帮助。

超精密加工技术在国外的发展已经取得了显著的进步,但仍有许多挑战和机遇。

在不断推动超精密加工技术的发展的国外也在积极探索新的技术路径和应用领域,以应对日益复杂的市场需求和竞争压力。

国外超精密加工技术在材料加工和表面处理方面取得了重大突破。

随着新型材料的广泛应用和纳米技术的发展,超精密加工技术已经能够处理更多种类的材料,包括金属、陶瓷、复合材料等。

超精密加工技术研究现状及发展趋势

超精密加工技术研究现状及发展趋势

超精密加工技术研究现状及发展趋势*简金辉,焦 锋(河南理工大学机械与动力工程学院,河南焦作 454000)摘 要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。

根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。

关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工中图分类号:TH 161 文献标识码:A 文章编号:1006-4414(2009)01-0004-051 引 言通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。

在不同的历史阶段,不同的科学技术发展水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。

过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。

现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。

超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。

超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。

同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。

超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。

机加工工艺的发展趋势

机加工工艺的发展趋势

机加工工艺的发展趋势
机加工工艺一直是制造业中的一个重要分支。

随着科技的不断发展和工艺技术的不断提升,机加工工艺也在不断地进步和发展。

以下是机加工工艺的几个发展趋势:
1. 数控技术的应用:数控技术是机加工工艺的一项核心技术,能够提高工作效率、精度、稳定性和可靠性。

未来机加工工艺将更多地采用数控技术,同时,将运用智能化的数控机床。

2. 精密加工技术:随着工件的精度要求越来越高,机加工工艺对工件的精度要求也越来越高。

因此,未来机加工工艺将不断探索新的精密加工方法和技术,以提高加工精度和质量。

3. 传感器和物联网技术的应用:传感器和物联网技术的应用将极大地促进机加工工艺的发展。

通过集成传感器和物联网技术,可以实现机床设备的智能化管理和优化,大大提高生产效率和生产质量。

4. 高速加工技术:高速加工技术能够实现较高的加工速度和精度,而且还可以延长刀具的寿命。

因此,未来机加工工艺将更多地采用高速加工技术。

5. 3D打印技术的应用:3D打印技术是一项新兴的加工技术,能够实现复杂形状的工件的制造。

未来机加工工艺将更多地采用3D打印技术,以满足不同行业
对特殊形状工件的需求。

精密和超精密加工技术现状和发展趋势

精密和超精密加工技术现状和发展趋势

精密和超精密加工技术现状和发展趋势1.引言国际上在超精密加工技术方面处于领先地位的国家有美国、德国和日本发达国家中,美国、日本、德国等在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。

由于加工技术水平的发展,精密和超精密加工划分的界限逐渐向前推移,但在具体数值上没有确切的定义。

被加工零件的尺寸精度在 1.0~0.1μm,表面粗糙度Ra在0.1~0.03μm之间的加工方法称为精密加工。

超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。

2.发展现状美国是开展研究最早的国家,也是迄今处于世界领先地位的国家。

早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件。

20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”,对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。

如美国劳伦斯利弗莫尔国家实验室已经研制出一台大型光学金刚石车床(Large Op tics Diam ond Turn ing Machine, LODTM ), 是一台最大加工直径为1.63m的立式车床,定位精度可达28nm,借助在线误差补偿能力,它已实现了距离超过1m而直线度误差只有±25nm 的加工。

在美国能源部支持下,LLI实验室和Y-12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望精密加工技术是一种在当今制造业中非常重要的技术,它的发展与制造业的发展息息相关。

精密加工技术是通过对材料进行高精度的加工来制造出各种精密零部件,这些精密零部件被广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

现阶段,精密加工技术已经取得了很大的进步,各种高精度的加工设备和加工工艺层出不穷。

在这些技术发展的基础上,超精密加工技术应运而生。

超精密加工技术是一种相对于精密加工技术更加高端、更加精密的加工技术,它可以实现对材料的超高精度加工,甚至可以达到纳米级的精度。

这种技术对于一些特殊材料的加工非常重要,比如硬质合金、钢、陶瓷等材料。

超精密加工技术的发展展望是非常乐观的。

随着科学技术的不断进步,各种先进的加工设备和工艺将不断涌现。

在这种趋势下,超精密加工技术将会得到更加广泛的应用。

在汽车工业中,超精密加工技术可以用于制造高压油泵的零部件,提高汽车发动机燃油的利用率;在医疗器械领域,超精密加工技术可以用于制造各种医疗器械的零部件,提高医疗器械的精度和安全性。

在未来的发展中,我们还可以看到超精密加工技术将会在航空航天领域得到更广泛的应用。

超精密加工技术可以制造出更加轻巧和高强度的航空零部件,提高航空器的性能和安全性。

超精密加工技术在电子产品领域也有很大的潜力,它可以制造出更小巧、更精密的电子元件,提高电子产品的性能和可靠性。

精密加工技术和超精密加工技术的发展是非常重要的。

它们直接关系到制造业的发展和产品的质量。

相信随着科学技术的不断进步,这些技术将会取得更大的突破,为各个领域带来更多的创新和发展。

精密与超精密加工技术的现状和发展展望精密加工技术是制造业中至关重要的一环,它的发展与制造业的发展密不可分。

精密加工技术通过对材料进行高精度的加工,制造出各种精密零部件,广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

当前,精密加工技术已取得了长足的发展,各种高精度加工设备和工艺不断涌现。

精密加工技术与高级制造技术

精密加工技术与高级制造技术

精密加工技术与高级制造技术随着科技的进步和社会的发展,精密加工技术和高级制造技术日益成为人们关注的焦点。

在工业化和信息化的进程中,精密加工技术和高级制造技术在实现产品质量的提高和生产效率的提高方面发挥了重要作用。

本文将从精密加工技术和高级制造技术的概念、现状、发展趋势等方面进行阐述和分析。

一、精密加工技术概述精密加工技术是指通过使用先进的加工设备和工具,对各种材料进行复杂的加工过程,从而将其加工成高精度、高性能的零件或成品。

精密加工技术是现代制造业中不可或缺的一部分,广泛应用于机械、电子、航空、航天、医疗等各个领域。

由于其具有高精度、高效率、高稳定性等优点,以及可以在各种材料上进行加工的能力,因此备受工程师和技术人员的关注和重视。

目前,国内的精密加工技术主要依靠于各种高精度数控机床和高速加工中心。

这些设备具有高精度、高速度、高可靠性等优点,可以轻松地进行各种复杂的加工操作,为产品的高精度、高质量、高性能提供了良好的保障。

然而,精密加工技术在应用中依然存在一些问题,例如产品加工精度不够、加工效率低下、质量不稳定等,仍需进一步研究和改进。

二、高级制造技术概述高级制造技术是指在研制、生产和维护过程中采用最新的先进技术和技术手段,以实现产品的高效率、高品质和高可靠性。

它不仅包括了机械方面的技术,还包括了电子、通讯、信息技术等领域的技术。

随着国内外科技的不断进步,高级制造技术正在经历着蓬勃发展的时期。

目前,高级制造技术主要包括了智能制造、数字化制造、柔性制造、绿色制造等多个方面。

其中,智能制造是目前国内外推广最广的一种高级制造技术。

它采用先进的智能控制系统和智能化的生产设备,可以自动完成各种加工和生产过程,为企业带来高效率、高安全性、高性能的生产效果。

三、现状分析在我国,精密加工技术和高级制造技术已经成为制造业发展的重要方向和技术支撑。

当前,我国的精密加工技术和高级制造技术已经有了不小的进步,取得了一些重要的成就。

加工工艺的发展和趋势

加工工艺的发展和趋势

加工工艺的发展和趋势
随着科技的不断进步和应用,加工工艺的发展也不断地推进,以下是几种常见的加工工艺发展趋势:
1. 数字化加工工艺: 数字化加工工艺由于其高效性和精度,已经成为了现代加工业的主要趋势。

它采用计算机辅助设计和制造(CAD/CAM)技术,使得加工过程更加自动化和智能化。

2. 绿色加工工艺: 随着环保和可持续发展的理念深入人心,绿色加工工艺成为了一个热门话题。

它突出了环境友好和低碳经济的概念,采用无害于环境和无公害的原材料、加工方式和工艺流程。

3. 精密加工工艺:精密加工工艺的准确性和稳定性越来越高,可以满足现代复杂零件和高精度产品的要求。

它利用高精度加工设备和先进的加工技术,能够达到高精度、高效率、高重复性和高质量的要求。

4. 共享经济模式: 共享经济模式逐渐变得流行起来,也对加工工艺领域带来影响。

由于共享经济的思维,公司和个人可以共享先进的加工设备和工艺,降低自身的成本和风险,提升效率和业绩。

综合来看,随着社会的不断发展和进步,加工工艺将会更加数字化、绿色、精密和共享化,并且这些趋势也将会深入到全球的加工行业当中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精密加工技术的发展现状与趋势
回顾过去的20世纪,人类取得的每一项重大科技成果,无不与制造技术,尤其与超精密加工技术密切相关。

在某种意义上,超精密加工担负着支持最新科学发现和发明的重要使命。

可以说,没有高水平的超精密加工技术,就不会有真正强大的国防。

另外,在航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求。

当前,微型卫星、微型飞机、超大规模集成电路的发展十分迅猛,涉及微细加工技术、纳米加工技术等,已形成微型机械制造。

这些技术都在精密和超精密加工范畴内,与计算机工业、国防工业的发展直接相关。

超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。

其精度从微米到亚微米,乃至纳米,其应用范围日趋广泛,在高技术领域和军用工业以及民用工业中都有广泛应用,尤其是电气自动化领域,如超大规模集成电路、高密度磁盘、精密雷达、导弹火控系统、精密机床、精密仪器、录像机磁头、复印机磁鼓、煤气灶转阀等都要采用超精密加工技术。

它与当代一些主要科学技术的发展有密切的关系,是当代科学发展的一个重要环节;而且,超精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。

通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

由于生产技术的不断发展,划分的界限将逐渐向前推移,过去的精密加工对今天来说已是普通加工,因此,其划分的界限是相对的,且在具体数值上至今没有固定。

二、几种常用的精密加工方法及特点
传统的精密加工方法有布轮抛光、砂带磨削、超精细切削、精细磨削、珩磨、研磨、超精研抛技术、磁粒光整等。

①抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

②砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

国外在砂带材料及制作工艺上取得了很大的成就,有了适应于不同场合的砂带系列,生产出通用和专用的砂带磨床,而且自动化程度不断提高,但国内砂带品种少,质量也有待提高,对机床还处于改造阶段。

③精密切削用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,还具有较好的光学性质。

④超精密磨削用精确修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。

尺寸精度0.1~0.3µm,表面粗糙度Ra0.2~0.05µm,效率高。

应用范围广泛,从软金属到淬火钢、不锈钢、高速钢等难切削材料,及半导体、玻璃、陶瓷等硬脆非金属材料,几乎所有的材料都可利用磨削进行加工。

但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相组织要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷。

⑤珩磨用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1µm,最好可到
Ra0.025µm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

⑥精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

三、我国精密加工技术的发展现状
我国的超精密加工技术在70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,达到了国内领先、国际先进水平。

精密和超精密加工技术的发展,直接影响到一
个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。

随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅速发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。

目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。

但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。

我国每年虽有大量机电产品出口,但多数是技术含量较低、价格亦较便宜的中低档产品;而从国外进口的则大多是技术含量高、价格昂贵的高档产品。

目前我国每年需进口大量国内尚不能生产的精密数控机床设备和仪器由于国外一些重要的高精度机床设备和仪器对我国实行封锁禁运,而这些精密设备仪器正是我国发展国防工业和尖端技术所迫切需要的,因此,为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。

四、精密加工技术的发展趋势及前景
(1) 高精度、高效率。

高精度与高效率是超精密加工永恒的主题。

当前超精密加技术虽能获得极高的表面质量和表面完整性,但以牺牲加工效率为保证。

探索能兼顾效率与精度的加工方法,成为超精密加工领域研究人员的目标。

(2) 工艺整合化。

当今企业间的竞争趋于白热化,高生产效率越来越成为企业赖以生存的条件。

在这样的背景下,出现了“以磨代研”甚至“以磨代抛”的呼声。

另一方面,使用一台设备完成多种加工的趋势越来越明显。

(3) 大型化、微型化。

为加工航空、航天、宇航等领域需要的大型光电子器件,需要建立大型超精密加工设备。

为加工微型电子机械、光电信息等领域需要的微型器件,需要微型超精密加工设备。

(4) 在线检测。

尽管现在超精密加工方法多种多样,但都尚未发展成熟。

主要原因之一是超精密加工检测技术还不完善,特别是在线检测技术。

从实际生产角度讲,开发加工精度在线测量技术是保证产品质量和提高生产率的重要手段。

(5) 智能化。

超精密加工中的工艺过程控制策略与控制方法也是目前的研究热点之一。

以智能化设备降低加工结果对人工经验的依赖性一直是制造领域追求的目标。

加工设备的智能化程度直接关系到加工的稳定性与加工效率,这一点在超精密加工中体现更为明显。

精密加工方法在今天显得越来越重要,精密加工技术已成为目前高科技技术领域的基础,提高超精密加工的精度已成为目前迫在眉睫的问题。

目前,很多学者正在这方面做着大量的研究和实验,相信不久的将来,超精密加工会取得长足进展。

相关文档
最新文档