三相交流异步电动机变频调速的实现及应用
变频调速三相异步电动机的设计
变频调速三相异步电动机的设计本文将探讨变频调速技术在三相异步电动机设计中的应用。
本文将简要介绍变频调速技术的原理和发展概况;将详细阐述三相异步电动机的基本工作原理和设计步骤;将讨论变频调速技术在三相异步电动机设计中的应用及其优势。
变频调速技术是一种基于电力电子技术与微控制技术的调节电动机转速的方法。
它通过对电源频率的改变,实现对电动机的平滑调速。
变频调速技术具有高效、节能、精准控制等优点,已成为现代工业领域中广泛应用的调速技术之一。
近年来,随着电力电子器件的不断更新和微控制技术的进步,变频调速技术的性能和可靠性得到了极大的提高。
三相异步电动机是一种应用广泛的电动机类型,它利用电磁感应原理将电能转化为机械能。
三相异步电动机由定子和转子两部分组成,定子绕组接通电源后,产生旋转磁场,转子绕组在旋转磁场的作用下产生感应电流,进而产生电磁转矩,使电动机旋转。
三相异步电动机的设计核心是电磁场的分析和计算,以及转子结构和参数的优化。
三相异步电动机的设计步骤主要包括以下几个方面:(1)明确设计需求:根据实际应用场景,明确电动机的功率、转速、尺寸和温升等参数需求。
(2)选定电动机结构型式:根据应用场景的要求,选择电动机的结构型式,如封闭式、开启式、防护式等。
(3)确定电磁负荷:根据电动机的设计需求,计算电磁负荷,包括每相绕组的匝数、线径、磁路尺寸等。
(4)计算气隙磁通密度:通过电磁负荷的计算结果,计算气隙磁通密度,以确定电动机的电磁性能。
(5)优化转子结构和参数:根据气隙磁通密度计算结果,优化转子结构和参数,以获得更好的电磁性能和机械性能。
(6)设计定子铁心:根据电磁负荷和气隙磁通密度的计算结果,设计定子铁心,包括铁心尺寸、槽形和材料等。
(7)选择冷却方式:根据电动机的设计需求和结构型式,选择合适的冷却方式,如自然冷却、强迫通风冷却等。
变频调速技术在三相异步电动机设计中的应用及其优势变频调速技术在三相异步电动机设计中的应用,主要是通过在电源侧施加变频电压,达到调节电动机转速的目的。
三相异步电动机的三种调速方法
三相异步电动机的三种调速方法三相异步电动机是工业生产中常用的一种电动机,其具有结构简单、可靠性高、维护方便等优点,因此被广泛应用于各种机械设备中。
在实际应用中,为了满足不同的工作要求,需要对三相异步电动机进行调速。
本文将介绍三相异步电动机的三种调速方法。
一、电压调制调速法电压调制调速法是一种常用的三相异步电动机调速方法。
该方法通过改变电动机的供电电压来实现调速。
具体来说,当需要降低电动机的转速时,可以降低电动机的供电电压,从而降低电动机的转速。
反之,当需要提高电动机的转速时,可以提高电动机的供电电压,从而提高电动机的转速。
电压调制调速法的优点是调速范围广,调速精度高,且不会对电动机的机械结构产生影响。
但是,该方法需要使用特殊的电压调制器,成本较高,且在低速运行时容易出现电动机振动和噪音等问题。
二、变频调速法变频调速法是一种基于电子技术的三相异步电动机调速方法。
该方法通过改变电动机的供电频率来实现调速。
具体来说,当需要降低电动机的转速时,可以降低电动机的供电频率,从而降低电动机的转速。
反之,当需要提高电动机的转速时,可以提高电动机的供电频率,从而提高电动机的转速。
变频调速法的优点是调速范围广,调速精度高,且在低速运行时不会出现电动机振动和噪音等问题。
同时,该方法还可以实现电动机的软启动和停机,延长电动机的使用寿命。
但是,该方法需要使用特殊的变频器,成本较高。
三、转子电阻调速法转子电阻调速法是一种基于电动机本身结构的三相异步电动机调速方法。
该方法通过改变电动机转子电阻来实现调速。
具体来说,当需要降低电动机的转速时,可以增加电动机转子电阻,从而降低电动机的转速。
反之,当需要提高电动机的转速时,可以减小电动机转子电阻,从而提高电动机的转速。
转子电阻调速法的优点是成本低,调速范围广,且不需要使用特殊的调速器。
但是,该方法会对电动机的机械结构产生影响,同时在低速运行时容易出现电动机振动和噪音等问题。
三相异步电动机的调速方法有电压调制调速法、变频调速法和转子电阻调速法。
基于PLC实现三相异步电动机变频调速
基于PLC实现三相异步电动机变频调速控制学院:专业:学号:姓名:基于PLC实现三相异步电动机变频调速一、实验名称:基于PLC实现三相异步电动机变频调速二、实验目的:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。
2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。
3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。
4. 培养动手能力,增强对可编程控制器运用的能力。
5. 培养分析,查找故障的能力。
6. 增加对可编程控制器外围电路的认识。
三、实验器件:220V PLC实验台一套、380V变频器实验台一套、三相电动机一台(=1400r/min,p=2)、光电编码器一个(864p/r)、万用表一个、导线若干。
四、实验原理:通过光电编码器将电动机的转速采集出来并送入PLC中,通过实验程序将采集到的信息与设定值进行比较,当频率满足设定值时用PLC控制变频器(变频器工作在端子调速模式下),电动机停止加速,保持匀速5S,5S后PLC控制变频器加速端子继续加速。
频率上限为45Hz,此后电机开始减速,当到达设定的频率时,PLC控制变频器停止加速,保持匀速5S,5S后PLC控制变频器减速端子继续减速;反转类同于正转过程。
实验速度曲线如下图:五、实验原理图及接线图: 1.实验原理图: 光电编码器:光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器, 光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90º的两路脉冲信号。
三相异步电动机的调速
m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)
实验二 三相交流异步电动机变频调速实验
实验二三相交流异步电动机变频调速实验一、实验目的1.学习和掌握变频器的操作及控制方法;2.深入了解三相异步电动机变频调速性能;3.进一步学习PLC控制系统硬件电路设计和程序设计、调试。
二、实验原理1.三相交流异步电动机变频调速原理通过改变三相异步电动机定子绕组电压的频率,可以改变转子的旋转速度,当改变频率的同时改变电压的大小,使电压与频率的比值等于常数,则可保证电动机的输出转矩不变。
变频器就是专用于三相异步电动机调频调速的控制装置。
它的输入为单相交流电压(控制750W及以下的小功率电动机)或三相交流电压(控制750W以上的大功率电动机),而输出为幅值和频率均可调的三相交流电压供给三相异步电动机。
变频器的生产厂家很多,产品也很多,但基本原理相同。
本实验中采用的是松下小型变频器VFO 200W,有如下几种操作模式。
(1)运行/停止、正转/反转的操作模式:对于电动机的启动/停止以及正反转的控制有外部操作和面板操作两种模式,通过专用参数的设定来实现。
面板操作模式:通过变频器自带面板上的操作键实现运行/停止、正转/反转控制;外部操作模式:通过接在变频器专用输入端开关信号的接通、断开实现运行/停止、正转/反转。
(2)频率设定模式:频率的设定分为面板设定、外部设定两种,通过专用参数的设定来实现。
面板设定模式是根据面板上的电位器或专用键来设定频率的大小。
外部设定模式可以通过变频器上专用输入端上的电位器、电压信号、电流信号、开关编码信号以及PWM信号来实现频率的设定。
2.实验电路图本次实验的主要内容为“外部控制和外部电位器频率设定”。
实验电路图如图17.1所示。
图17.1 三相交流异步电动机变频调速实验电路图由图17.1可知,运行时,PLC程序要使Y4为1,停止时要使Y4为0,频率大小通过改变1、2、3端连接的电位器位置来调节。
3.电路接线表本实验的电路接线表如下表17.1(注:图17.1中方框内的接线已经在内部接好,不需再接线)表17.1 三相交流异步电动机变频调速实验电路接线图三、实验步骤1.按表17.1接线(为了安全起见,接线时请务必断开QF4);2.征得老师同意后,合上断路器QF2和QF4,接通操作面板上的电源开关;3.运行PC机上的PLC工具软件FXGP_WIN-C,输入课前编好的PLC程序(或直接打开已经编制好的,路径为:HJD-DJ1 \程序\实验17\变频调速.PMW),确认程序无误后,将其写入到PLC并运行。
三相的异步电动机变频调速系统设计的及仿真
三相的异步电动机变频调速系统设计的及仿真引言:在现代工业生产中,电动机作为一种重要的动力设备,广泛应用于各种机器和设备中。
为了满足不同工艺和运行要求,需要调节电动机的运行速度。
传统的方法是通过改变电源的频率来达到调速的目的。
然而,这种方法存在一定的局限性,无法实现精确的调速效果。
因此,引入变频调速系统成为了提高电机调速性能的有效手段。
本文将对三相异步电动机变频调速系统的设计及仿真进行详细介绍。
一、系统设计:1.变频器设计:变频器是变频调速系统的核心部分,用于将输入电源的频率和电压变换成适合电动机工作的频率和电压。
变频器由整流器、滤波器和逆变器组成。
整流器将输入的交流电变换成直流电,滤波器用于平滑输出电压,逆变器将直流电转换成可控的交流电输出。
变频器还包括控制模块,用于实现调速功能。
2.控制系统设计:控制系统包括速度传感器、PID控制器和功率放大器。
速度传感器用于实时测量电机转速,PID控制器根据设定转速和实际转速之间的差异,调节变频器的输出频率和电压,以实现电机的准确调速。
二、系统仿真:为了验证设计的可行性和调速性能,可以使用MATLAB/Simulink进行系统仿真。
具体的仿真流程如下:1. 搭建电机模型:根据电机的参数和等效电路,搭建电机的MATLAB/Simulink模型,包括电机的输入端口、输出端口和机械负载。
2. 设计控制系统:在Simulink中添加速度传感器、PID控制器和功率放大器,并与电机模型连接起来。
3.设定仿真参数:设置电机的参数、控制系统的参数和仿真时间等参数。
4.进行仿真实验:根据实际需求,设置不同的转速设定值,观察电机的响应情况,如稳态误差和调速时间等。
5.优化系统性能:根据仿真结果,调整参数和控制策略,优化系统的调速性能,如减小稳态误差和调速时间。
三、结论:三相异步电动机变频调速系统是一种能够实现精确调速的调速方案。
通过合理设计和仿真验证,可以得到一个性能稳定、调速精度高的变频调速系统。
三相异步电机交流变频调速系统设计实验
三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。
4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。
图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。
2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。
n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。
这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。
由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。
由通入的三相交变电流来保证。
2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。
因此,转子的转速n 必须低于定子磁场的转速0n 。
两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。
由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。
三项异步电动机变频调速控制及其节能改造
三项异步电动机变频调速控制及其节能改造本文主要从三项异步电动机概述、三相笼型转子异步电动机的传统起动方式、三相异步电动机调速策略探讨、电动机节能注意事项等方面进行了阐述。
标签:三相异步电动机;调速;节能一、前言三项异步电动机在我国电网中应用非常广泛,技术也相对成熟,但是如何使其变频调速进行控制以及节能问题,都是需要进一步探讨与总结的重点问题。
二、三项异步电动机概述全国年总发电量的一半以上,耗能非常之高。
因此,加强和提高三相异步电动机的节能控制对我国电能的节约将会起到巨大的作用。
当电流在满负荷的情况下时,三相异步电动机的功效一般比较的高,可以达到85%左右。
但是,如果电流的负荷量下降的话,三相异步电动机的功效就会明显的降低。
因此,总的来说,三相异步电动机的功效还是比较低的。
如果我们通过对三相异步电动机节能控制,我们就会在这方面有所提高,从而提升电动机的运行效率,将会产生巨大的经济效益。
进行三相异步电动机的节能控制主要是从两方面的工作着手,首先就是要提升三相异步电动机的制造技术,而这方面如今已经取得了巨大的发展,另外一方面就是要做好电动机的运行控制技术,这才是我们进行电动机节能控制技术的关键。
三相异步电动机的功效是指三相异步电动机的输出功效同输入功效的比例,因此供电机的一部分电能是用来使电动机驱动的,即输入的功效,而另外一部分电能就会发生在三相异步电动机的自身损耗上,这就是我们所说的输出功效。
三相异步电动机的电能损耗主要是指电动机的铁和铜,而电动机的铜耗则是在电流通过电动机的铜线绕组时而产生的,相比之下,电动机的铁耗则是指电动机在运转的过程中,其定子和转子铁芯中产生的电流而发生的损耗,这主要是与电压有关。
电动机的损耗除了这两部分损耗外,还存在其他的损耗,但是这些损耗都比较小,可以忽略。
而三相异步电动机的节能原理就是在电压的负荷下降的时候,可以通过适当降低电源的电压的方法,从而减少电动机中铁耗,当电压下降的时候,相应的电流也会随之下降,这样也就降低了电动机中的铜耗,只有这样电动机的功效才会得到提高。
PLC在三相交流异步电动机变频调速中的应用
择” 参数p r 7 9 = 2 , 启动信号和运 行频率都 由外部给定, 设定运 行频率 的“ 输入 电压 ” 参 数p r 7 3 = l , 即Dco一 1 O 入。 然后, 可将 P L C的 开关 量 输 出接 到变 频
器的正转启动( S T F ) 和反转启动( s 1 R) 端子上, 将P L C的模拟量输出接到变
本控制系统用P L C实现 电机转速 的测量和控制,通过变频器来改变三 相异步 电动机 的转速。若通过上位机利用监控组态软件可 以实现 与P L C的 通信和监控 , 从而构成一个 结构合理、 功能丰富的电机控制系统。在这个系 统的基础上 , 若改变测量环节和相应的控制策略, 可以实现诸如变频供水、 通风机的控 制等许多 以三相交流异步电动机调速为基础的应用系统。■
3结 语
1 . 2 P L C与变 频 器 的 连接
变频器在外部端子操作方式下, 通过变频器的接线端子, 可 以实现对变 频器的正/ 反转控制 、 多段转速 选择及频率给定等功能, 其中运 行频率的给 定可 以通 过电压、 电流或外接 电位器 的方式调节。 P L C与变频器连接时,首先通过变频器的操作面板 设定变频器的工作 参数 , 对于本 系统 使用的三菱F R— E 5 4 O 一1 . 5 K 变频 器, 应设定“ 操 作模 式选
图3主程序框 图
图4中断程序框 图
图 2 输 入 接 口 电路
模拟量输出模块E M2 3 2 的输出电压为一1 o  ̄ +1 O v, 1 2 位分辨率 。P L C 过控制运算后 ,得到的控制信号需要转换成P L C的D/ A 模块所规定 的数据 格式 , 通过E M2 3 2 输 出给变频器的频率 设定端, 改变 变频器的输出频率, 从 而实现对电机转速的控制 。
实验五 三相异步电机变频调速系统实验
实验五 三相异步电机变频调速系统实验一、实验目的(1)掌握SPWM 的调速基本原理和实现方法。
(2)掌握马鞍波变频的调速基本原理和实现方法。
(3)掌握SVPWM 的调速基本原理和实现方法。
二、实验原理异步电机转速基本公式为:60(1)f n s p =- 其中n 为电机转速,f 为电源频率,p 为电机极对数,s 为电机的转差率。
当转差率固定在最佳值时,改变f 即可改变转速n 。
为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。
这就是所谓的VVVF (变压变频)控制。
工频50Hz 的交流电源经整流后可以得到一个直流电压源。
对直流电压进行PWM 逆变控制,使变频器输出PWM 波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。
因此,这个PWM 的调制方法是其中的关键技术。
目前常用的变频器调制方法有SPWM ,马鞍波PWM ,和空间电压矢量PWM 等方式。
(1)SPWM 变频调速方式:正弦波脉宽调制法(SPWM )是最常用的一种调制方法,SPWM 信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。
当改变正弦参考信号的频率时,输出电压的频率即随之改变。
在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF (变压变频)控制。
SPWM 调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。
在实际运用中对于三相逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。
如图4-1所示。
图5-1 正弦波脉宽调制法(2)马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。
三相异步电动机的调速方法及特点
三相异步电动机的调速方法及特点介绍三相异步电动机的七种调速方式及其特点,指明其适用的场合、情况。
三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
一、分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
不改变同步转速的调速方法有:1)绕线式电动机的转子串电阻调速2)斩波调速3)串级调速以及应用电磁转差离合器4)液力偶合器5)油膜离合器等调速。
不改变同步转速的调速方法在生产机械中广泛使用。
2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
特点为:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
三相异步电动机双速可逆变频调速PLC控制
三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
三相异步电动机的变频调速
三相异步电动机的变频调速改变三相异步电动机电源频率fi,可以改变旋转磁通势的同步转速,从而达到调速的目的。
如果电源频率连续可调,可以平滑调节电动机的转速。
额定频率称为基频,变频调速时可以从基频向上调,也可以从基频向下调,下面分别进行分析。
忽略定子漏阻抗压降,三相异步电动机每相电压U¡≈E¡=4.44fW1kw1Фm(2.63)如果保持电源电压为额定值,降低电源频率,则随着fi的下降,气隙每极磁通Φ增加。
电动机磁路本来就刚进入饱和状态,Φ增加,磁路过饱和,励磁电流会急剧增加,电机的功率因数下降,负载能力减小,甚至导致无法正常运行。
因此,降低电源频率时,必须同时降低电源电压。
降低电源电压U有两种控制方法。
1.保持E/f=常数降低电源频率f1的同时,保持E/f=常数,则Φ=常数,是恒磁通控制方式。
当改变频率f时,若保持E:/f=常数,最大转矩Tm一常数,与频率无关,并且最大转矩对应的转速落降相等,也就是不同频率的各条机械特性曲线是近似平行的,机械特性的硬度相同。
这种调速方法与他励直流电机降低电源电压调速相似,机械特性较硬,在一定的静差率要求下,调速范围宽,而且稳定性好。
由于频率可以连续调节,因此变频调速为无级调速,平滑性好。
另外,电动机在正常负载运行时,转差率s较小,因此转差功率P,较小,效率较高。
2.保持U/fi=常数当降低电源频率f时,保持U/fx=常数,则气隙每极磁通Φ≈常数。
U、/f、=常数时的机械特性不如保持E/fi=常数时的机械特性,特别是当低频低速时,机械特性变坏了。
升高频率向上调速时,升高电源电压是不允许的,只能保持电压UN 不变,频率越高,磁通Φ越低,因此是一种弱磁升速的方法,类似他励直流电机弱磁调速。
三相交流异步电动机调速方法
三相交流异步电动机调速方法一、调频调速法调频调速法是通过改变电源的频率来改变电动机的转速。
传统的调频调速法使用直流电源的伺服电动机,通过改变直流电压的大小来改变电动机的转速。
而对于异步电动机,调频调速法使用的是变频器。
变频器是一种能够改变交流电频率的装置,可以将常规的50Hz或60Hz的交流电源转换为可变频率的交流电源。
当将变频器与异步电动机配对使用时,可以通过改变输出频率来改变电动机的转速。
调频调速法的原理是:变频器将电网电源的交流电压转换为直流电压,并经过变频器内部的变换电路转换为可控的交流电源输出,通过调整变频器的输出频率,可以改变电动机的转速。
调频调速法的优点是:调速范围广,可靠性高。
通过调整变频器的输出频率,可以使电动机在范围内任意转速。
同时,调频调速法可以保持电动机的高效率,提高能源利用效率。
二、电压调制调速法电压调制调速法是通过改变电源的电压来改变电动机的转速。
这种调速方法在控制电动机转速时需要改变电源电压的大小,以达到改变电动机转速的目的。
电压调制调速法的原理是:在控制电动机转速时,通过改变供电电压的大小,从而改变电机的转速。
在供电电压改变的同时,也要保持电动机的机械可靠性和高效率。
电压调制调速法的优点是:控制简单,实时性好。
通过改变供电电压,可以快速实现电动机的转速调节,同时也不会对电动机的机械可靠性和高效率造成影响。
三、频率调制调速法频率调制调速法是通过改变电源的频率来改变电动机的转速。
与调频调速法类似,频率调制调速法使用的是变频器。
频率调制调速法的原理是:通过调整变频器的输出频率,改变电动机的转速。
在频率调制调速法中,可以通过输入指定的频率值,使电动机按照指定的频率运行。
频率调制调速法的优点是:控制精确,稳定性好。
可以通过输入指定的频率值,实现电动机的精确调节,同时也保持电动机的稳定性。
四、极数切换调速法极数切换调速法是通过改变电动机的外部电路来改变电动机的转速。
这种调速方法是通过改变电动机的极数来改变电动机的转速。
三相异步电动机变频调速
.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。
根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。
所以调节三相异步电动机的转速有三种方案。
异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。
改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。
如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。
如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。
因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。
.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。
这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。
三相异步电机变频调速的工作原理
三相异步电机变频调速的工作原理1.基本原理:三相异步电机是通过电磁感应的原理产生转动力的,其转速与供电频率成正比。
变频调速就是通过改变电机的供电频率,来改变电机的转速。
2.变频器:变频调速系统的核心是变频器,也称为交流变频调速器。
它由整流器、滤波器、逆变器、控制电路等组成。
变频器可以将输入的固定频率、固定电压的交流电能转换成可变频率、可调电压的交流电能。
3.电压变频调速:在电压变频调速中,变频器通过提供可调的电压来改变电机的供电电压,进而控制电机的转速。
变频器会根据控制信号,调整输出电压的频率和幅值,使得电机的转速与所需的转速匹配。
4.频率变频调速:在频率变频调速中,变频器通过改变电机的供电频率来控制电机的转速。
变频器会通过改变输入电压的频率,改变电机的额定转速。
例如,如果输入电压的频率为50Hz,变频器将其转换为30Hz,电机的转速将降低为原来的60%。
5.闭环控制系统:为了实现精确的调速,变频调速系统通常采用闭环控制方法。
这种方法通过在电机轴上安装编码器等位置传感器,将电机的实际转速反馈给控制系统。
控制系统会根据设定的转速和实际转速之间的误差,调整变频器的输出,使得实际转速接近设定转速。
6.调速特性:三相异步电机变频调速具有良好的调速特性。
在负载变化较小的情况下,调速范围广,调速精度高。
同时,变频调速系统还具有起动电流小、起动冲击小、能耗低等特点。
总结起来,三相异步电机变频调速是通过改变电机的供电频率来调节电机的转速的方法。
其核心是变频器,通过调整电压或频率来控制电机的供电,同时采用闭环控制系统实现精确的调速。
该方法具有调速范围广、调速精度高等特点,广泛应用于工业生产和交通运输等领域。
列举三相异步电动机的调速方法
列举三相异步电动机的调速方法
三相异步电动机是一种常用的电动机类型,广泛应用于工业领域。
为了满足不同工况的需求,有多种调速方法可以用于控制三相异步电动机的转速。
1. 变频调速方法:变频调速是目前应用最广泛的一种调速方法。
通过改变电源供电频率,可以改变电动机的转速。
这种方法可以实现连续调速,并且具有调速范围广、稳定性好等优点。
变频调速还可以根据不同的负载要求进行自动调节,提高电动机的效率。
2. 极数调速方法:三相异步电动机的极数与转速成反比关系。
通过改变电动机的极数,可以实现转速的调节。
这种方法适用于需要频繁调速的工况,但调速范围相对较小。
3. 转子电阻调速方法:在三相异步电动机的转子电路中串联一个可调电阻,通过改变电阻的值来改变电动机的转速。
这种方法适用于负载波动较大的情况,可以在负载变化时实现转速的调节。
除了以上列举的调速方法外,还有许多其他调速方法,如励磁调速、矢量调速等。
不同的调速方法适用于不同的工况,选择合适的调速方法可以提高电动机的工作效率和使用寿命。
同时,随着科技的不断进步,新的调速方法也在不断涌现,为电动机的调速提供更多选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告课题名称三相交流异步电动机变频调速的实现及应用姓名学号系专业年级电气自动化指导教师职称年月日目录摘要第一章绪论1.1背景1.2课程目的1.3课程意义1.4课程主要工作第二章相关技术与理论2.1.电动机的基本结构2.1.1 定子部分2.1.2 转子部分2.1.3 电动机的其他附件2.2 电动机分类2.3三相异步电动机的工作原理2.4变频器的结构2.5变频器的工作原理第三章变频器差率调速3.1三相异步电动机的调速方法3.3.1绕线式电动机转子串电阻调速方法3.3.2 液力耦合器调速方法3.3.3变极对数调速方法3.3.4串级调速方法3.3.5电磁转差离合器调速方法3.2 用什么控制系统3.3工作过程3.4注意事项第四章结束语谢辞参考文献摘要随着工业的不断发展,三相异步电动机的需求会越来越大,三相异步电动机的应用越来越广泛,三相异步电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。
而三相异步电动机主要应用于工业生产的自动化操作中是三相异步电动机的主要应用之一,因此本课程设计课题将主要以在工业中三相交流异步电动机调频变速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。
关键词:三相交流异步电动机变频器ABSTRACTWith our industrial development, with a three wire asynchronous motor requirements will, with a three wire asynchronous motor is finding wider and wider application, with a three wire asynchronous motor of the operating system is a very large and complex systems, it only for modern industry, the family life and office automation and a number of applications to provide basic operating platform, and can provide multiple applications, the people's quality of life have a large margin,From human labor models of motors. and with a three wire asynchronous mainly applied to industrial production of automation is with a three wire asynchronous operation of the motor of the main application and this curriculum design issues will be mainly in industry with a three wire exchange to start async motor of the application may be made to various technical and implementation of solutions for the design direction and offer a theoretical basis for industrial production and practice of instruction.key word three-phase ac asynchronous motor frequency converters第一章绪论1.1背景电动机是把电能转换成机械能的设备。
在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,电动机被广泛地应用着。
随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。
此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。
按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。
笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。
绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。
调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。
1.2课程目的笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。
正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。
1.3课程意义这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力。
1.4课程内容在这次课程设计中,我们的主要工作在于1. 电机的结构与工作原理2. 变频器的结构与原理3. 变频器的调速方法及工作过程4. 使用电动机中的注意事项及故障处理第二章相关技术与理论2.1电动机的基本结构(如图)2.1.1定子部分1、定子铁心作用:电机磁路的一部分,并在其上放置定子绕组。
定子铁心槽型有以下几种:半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。
一般用于小型低压电机中。
半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。
所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。
开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。
2、定子绕组作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。
构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。
定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。
(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。
(2)相间绝缘:各相定子绕组间的绝缘。
(3)匝间绝缘:每相定子绕组各线匝间的绝缘。
3、机座作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。
构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。
封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。
2.1.2 转子部分1、三相异步电动机的转子铁心:作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。
构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。
通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。
一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。
2、三相异步电动机的转子绕组作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而电动机旋转。
构造:分为鼠笼式转子和绕线式转子。
(1)鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的环组成。
若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。
小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。
(2)绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。
2.1.3 电动机其他附件其他部分包括端盖、风扇等。
端盖除了起防护作用外,在端盖上还装有轴承,用以支撑转子轴。
风扇则用来通风冷却电动机。
三相异步电动机的定子与转子之间的空气隙,一般仅为0.2mm~1.5mm。
气隙太大,电动机运行时的功率因数降低;气隙太小,使装配困难,运行不可靠,高次谐波磁场增强,从而使附加损耗增加以及使启动性能变差2.2电动机的分类三相异步电动一般为系列产品,其系列、品种、规格繁多,因而分类也较繁多。
1按电动机尺寸大小分类大型电动机:定子铁心外径D>1000mm或机座中心高H>630mm。
中型电动机:D=500~1000mm或H=355~630mm。
大型电动机:D=120~500mm或H=80~315mm。
2 按电动机外壳防护结构分类3 按电动机冷方式分类电动机按冷却方式可分为自冷式、自扇冷式、他扇冷式等。
可参见国家标准GB/T1993-93《旋转电机冷却方式》。
4 按电动机的安装形式分类IMB3:卧式,机座带底脚,端盖上无凸缘。
IMB5:卧式,机座不带底脚,端盖上有凸缘。
IMB35:卧式,机座带底脚,端盖上有凸缘。
5 按电动机运行工作制分类S1;连续工作制S2:短时工作制S3~S8:周期性工作制6按转子结构形式分类三相笼型异步电动机三相绕线型异步电动机2.3电动机的工作原理电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。
当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。
电动势的方向由右手定则来确定。
因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。
在电动势的作用下,闭合的导条中就产生电流。
该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力F,电磁力的方向可用左手定则确定。
由电磁力进而产生电磁转矩,转子就转动起来。
2.4 变频器结构原理图2.5变频器结构与工作原理介绍变频器主要由模块,CPU控制板,电源驱动板组成,见上图.L1为进线电抗器,一般需外接,L2为直流电抗器,大部份变频器需要外接,象施耐德,丹佛斯变频器都内置了直流电抗器。
PM1为整流模块,PM2为逆变模块,一般小功率变频器是将整流和逆变整合在一起,大功率变频器整流和逆变都是分开的,功率越大电流越大,因为单一的整流和逆变的电流有限,所以整流和逆变可以并联使用。
PM3是制动晶体,1 5KW以下的变频器都内置制动晶体,外接一个制动电阻就能做能耗制动。
C1,C2是滤波电容,变频器功率越大,电容的容量就越大,滤波电容的耐压一般是450V,因为380V级的变频器整流滤流后的电压是600V,所以可以将两个耐压为450V的滤波电容串联使用,总的耐压就可以达到900V。