牛顿第二定律的应用整体法与隔离法 2

合集下载

牛顿第二定律应用方法

牛顿第二定律应用方法
方法一: 方法一: 整体法和隔离法的应用 1、如图,光滑水平地面上有两个木块 、B,质量分 、如图,光滑水平地面上有两个木块A、 , 别为M和 ,在水平推力F作用下 作用下, 别为 和m,在水平推力 作用下,求AB间的相互作用 间的相互作用 力。 若地面不光滑呢? 若地面不光滑呢? A B N 的大小与 无关 的大小与µ无关 变形:、如图所示,置于水平面上的相同材料的m和 变形 、如图所示,置于水平面上的相同材料的 和M 用轻绳连接, 上施一水平力F(恒力 用轻绳连接 , 在 M上施一水平力 恒力 使两物体作 上施一水平力 恒力)使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A B ) (A)水平面光滑时,绳拉力等于 水平面光滑时, 水平面光滑时 绳拉力等于mF/(M+m); + ; (B)水平面不光滑时,绳拉力等于 F/(M+m); 水平面不光滑时, 水平面不光滑时 绳拉力等于m + ; (C)水平面不光滑时,绳拉力大于 水平面不光滑时, 水平面不光滑时 绳拉力大于mF/(M+m); + ; (D)水平面不光滑时,绳拉力小于 水平面不光滑时, 水平面不光滑时 绳拉力小于mF/(M+m)。 + 。 F m M
练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。

如果把其中某个物体隔离出来,该物体即为。

二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。

运用 列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。

已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用――― 连接体问题整体法和隔离法,临界问题学习要求:会解决两个物体具有相同加速度的动力学问题求解连接体问题时,只限于各物体加速度相同的情形一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法三、连接体题型:1【例1】A 、B ,今用水平力推【练1】如图所示,质量为M 的斜面面间无摩擦。

在水平向左的推力F 已知斜面的倾角为,物体B A. B. C. D.【练2】如图所示,质量为的物体连接的绳与竖直方向成角,则( A. 车厢的加速度为B. B. 绳对物体1的拉力为C. C. 底板对物体2的支持力为D. D. 物体2所受底板的摩擦力为 kg m B 6=N F A 6=θ()(,sin μθ+==g m M F g a θ)(,cos g m M F g a +==()(,tan μθ+==g m M F g a g m M F g a )(,cot +==μθ2m θθsin g θcos 1gm g m m )(12-θtan 2g m2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)不作要求同步练习P123 124 页3、临界问题 例2、作业本P66页例3、质量为0.2kg 的小球用细线吊在倾角为θ=060的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图4-70所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g =10 2/s m )(1) 斜面体以232/s m 的加速度向右加速运动;(2) 斜面体以432/s m ,的加速度向右加速运动;例4、如图所示,箱子的质量M =3.0 kg ,与水平地面间的动摩擦因数为μ=0.22。

在箱子底板上放一质量为ml =2 kg 的长方体铁块;在箱子顶板处系一细线,悬挂一个质量m2=2.0 kg的小球,箱子受到水平恒力F 的作用,稳定时悬线偏离竖直方向θ=030角,且此时铁块刚好相对箱子静止。

牛顿第二定律的应用-整体法与隔离法

牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。

牛顿第二定律专题(含经典例题)

牛顿第二定律专题(含经典例题)

牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。

整体法和隔离法在牛顿运动定律中的应用

整体法和隔离法在牛顿运动定律中的应用

隔离法和整体法在牛顿运动定律中的应用整体法与隔离法是在高中物理学习中常用到的基本方法之一,特别是在力学部分,巧妙地选择研究对象会使问题变得简单,明了。

整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。

方法选择:所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简化,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

有时在一个问题中需要整体法与隔离法交替使用。

一、在平衡状态下的应用当几个相互连系的物体都处于静止或匀速直线运动状态时,可以把这些物体视为一个整体,由于每一个独立的物体都处于平衡状态,所以整体也处于平衡状态。

即不管是独立的物体还是整体,受力都要满足平衡条件。

【例1】如图所示,放置在水平地面上的直角劈M上有一个质量为m的物体,若m在其上方匀速下滑,M仍保持静止,那么下列说法中正确的是:()A.M对地面的压力等于(M+m)gB.M对地面的压力大于(M+m)gC.地面对M没有摩擦力D.地面对M有向左的摩擦力〖解析〗M对地面的压力、地面对M的摩擦力,都是直角劈和物体m作为一个整体与外界的作用力,故用整体法来分析求解较为方便。

这一整体在竖直方向上受到向下的重力(M+m)g和向上的支持力F N,由平衡条件得F N =(M+m)g,做A正确,B错误。

这一整体在水平方向上平衡,因此水平方向合力为零,由此可推知地面对M没有摩擦力。

故C正确,D错误。

【例2】如图所示,用水平力F,将质量为m的三块砖压在竖直墙上,静止不动,A与F接触面光滑不受摩擦力,则下列叙述正确的是:()A.墙壁施给C的摩擦力为mg,方向竖直向上B.墙壁施给C的弹力为FC.A施给B的摩擦力大小为mg,方向竖直向下D.C施给B的摩擦力大小为2mg,方向竖直向上〖解析〗A、B、C均处于静止状态,将三者视为一个整体来研究,受力分析如图a所示,可知墙壁施给C的摩擦力为3mg,方向竖直向上,墙壁施给C的弹力为F。

牛二整体法与隔离法

牛二整体法与隔离法

要点二
解析
首先确定研究对象的运动状态和受力情况,物体做匀速圆周 运动,线速度为v,角速度为ω。然后隔离出研究对象,忽略 其他物体对它的影响,单独分析物体的运动状态和受力情况。 根据牛顿第二定律建立方程:F=m×v^2/r=mr×ω^2,其 中r为圆周运动的半径。最后求解得到物体受到的向心力 F=m×v^2/r=mr×ω^2。
牛二整体法与隔离法
目 录
• 牛二定律的概述 • 整体法 • 隔离法 • 整体法与隔离法的比较与选择
01
牛二定律的概述
定义
牛二定律,也称为牛顿第二运动定律,指的是物体受到的合外力与其加速度成正 比,与其质量成反比。数学公式表示为F=ma。
牛顿第二定律是经典力学中最重要的基本定律之一,揭示了力与运动的关系,是 解决动力学问题的关键。
04
整体法与隔离法的比较 与选择
适用场景比较
整体法适用于分析系统整体运动状态,确定整体受力情况,无需关注系统内部各部分之间的相互作用 力。
隔离法适用于分析系统内部某一物体或某一局部的运动状态和受力情况,需将该物体或局部从系统中 隔离出来分析。
优缺点比较
整体法优点
可以快速确定整体受力情况,无需逐一分析系统内部各部分之间的相 互作用力,简化计算过程。
整体法的应用条件
多个物体间的相对运动和受力关系较为简单,且可以忽略物体间的相互作用力。
多个物体组成的系统所受的外力可直接分析。
整体法的解题步骤
根据运动方程求解单个物 体的受力情况。
根据牛顿第二定律,列出 整体的运动方程。
确定需要分析的整体,明 确整体受到的外力。
01
03 02Βιβλιοθήκη 整体法的例题解析题目
隔离法的解题步骤

牛顿第二定律的应用专题

牛顿第二定律的应用专题
.现将木板沿水平
方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小
分别为a1、a2,重力加速度大小为g,则有(
)
专题——应用牛顿第二定律进行过程分析
【例3】如图,一个小球从轻弹簧正上方某处自由下落, 接触弹簧后将弹簧压缩(弹簧均为弹性形变),在小球 向下运动压缩弹簧的过程中,下列说法正确的是( CD )
5.3 牛顿第二定律的应用
——专题分析
专题——连接体
两个或两个以上的物体相连接组成的物体 系统, 称为连接体 。
B AF
整体法和隔离法
1.整体法的选取原则 若连接体内各物体具有相同的加速度,且不需要求
物体之间的作用力,可以把它们看成一个整体,分析 整体受到的合外力,应用牛顿第二定律求出加速度(或 其他未知量).
A、小球接触弹簧后立即做减速运动; B、小球所受合力一直增大 ; C、小球的加速度先减小后增大 ; D、小球所受弹力变大,且最终大于重力
小球先加速后减速; (先是加速度减小的加速后是加速度增大的减速)
相似模型——“蹦床”、“蹦极”……
t2
t1
某人身系弹性绳自高空P点自由下 落, 图中a点是弹性绳的原长位置, c是人所到达的最低点, b是人静止地悬吊着时的平衡位置,
2.隔离法的选取原则 若连接体内各物体的加速度不相同,或者要求出系
统内各物体之间的作用力时,就需要把物体从系统中 隔离出来,应用牛顿第二定律列方程求解.
3.整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且
要求出物体之间的作用力时,可以先用整体法 求出加速度,然后再用隔离法选取合适的研究 对象,应用牛顿第二定律求作用力.
即“先整体求加速度,后隔离求内力”.
【例1】 如图所示,光滑的水平面上有质量分别为m1、m2的 两物体静止靠在一起,现对m1施加一个大小为 F 方向水平向 右的推力作用。求此时物体m2受到物体 m1的作用力F1。

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。

牛顿第二定律讲解和例题解析

牛顿第二定律讲解和例题解析
综上所述,解决问题的关键是先根据题目中的已知条 件求加速度a,然后再去求所要求的物理量,加速度象纽 带一样将运动学与动力学连为一体.
例1:如图所示.地面上放m=40kg的木箱,用大小为 10N与水平方向夹角300的力推木箱,木箱恰好匀速运动, 若用此力与水平方向成300角斜向上拉木箱,30s可使木箱 前进多少米?(g取10m/s2)
0v2
s相

2a

032
0.9m
25
A从开始运动到相对静止经历的时间
t 0 v相 0.6s a相
在此时间内B的位移 s 1a t2 1.8m
2 B
B
A、B相对静止时的速度v=aBt==
随后A、B一起以a`=-μBg=-2m/s2作匀减速运动直至
停止,这段时间内的位移
0v2 0062
s`
0.09m
与传送带之间的动摩擦因数, AB长16米,求:以下两
种情况下物体从A到B所用的时间.
(1)传送带顺时针方向转动
A
(2)传送带逆时针方向转动
B 370
解:(1)传送带顺时针方向转动时受力如图示
:在斜面方向上有: mg sinθ-μmg cosθ= m a
N fA
则:a = gsinθ-μgcosθ= 2m/s2 B
②若v≥ v,A2 工2件aS由A到B,全程做匀加速运动,到
达B端的速度vB=
vA 22aS 23m/s
③若 vA2 >2avS>vA,工件由A到B,先做匀加速运动, 当速度增加到传送带速度v时,工件与传送带一起作匀速
运动速度相同,工件到达B端的速度vB=v.
④若v≤
v
2 A
,2a工S 件由A到B,全程做匀减速运动,到达

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法
审题 :本题中人与球加速度不同, 宜用隔离法。先研究谁?
画出球的受力图和加速度的方向,
T+mg=ma=mV2/L T=m(V2/L-g)
再研究人,画人的受力图,N+T'=Mg
N=Mg-m(v2/L-g)=(M+m)g-mv2/L
a mg
T
N T
Mg
习题三
• 右示图中水平面光滑,弹簧 倔强系数为K,弹簧振子的 振幅为A,振子的最大速度 为V,当木块M在最大位移 时把m无初速地放在M的上 面,则要保持M与m在一起 振动二者间的最大静摩擦力 至小要多大?
可见解题时合理选取坐标轴会给解题带来方便。
例2. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因ቤተ መጻሕፍቲ ባይዱ为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
解:画出M 和m 的受力图如图示: 由牛顿运动定律,
对M有 F - T - Mgsinθ-μMgcosθ= Ma (1)
f2 m θ
T
Mg
例3. 一质量为M、倾角为θ的楔形木块,静止在水平桌面上, 与桌面的动摩擦因素为μ,一物块质量为m,置于楔形木块的斜
面上,物块与斜面的接触是光滑的,为了保持物块相对斜面静
止,可用一水平力F推楔形木块,如图示,此水平力的大小等

(m+M)g(μ。+ tgθ)
解:对于物块,受力如图示:
思路点拨
盘静止时KL=(M+m)g 放手时先研究整体K(L+ Δ L) -(M+m)g= (M+m)a
再研究盘中物体m N-mg=ma N=mg(L+ Δ L)/L
习题一

牛顿运动定律应用—整体法和隔离法

牛顿运动定律应用—整体法和隔离法

m
θ
M
F ( M m)a
θ

m
F FN sin ma ② FN cos mg 0 ③
θ
mg
M F
联立①②③式解出使m相对M ⑴整体法和隔离法相结合. 相对滑动的最小推力 ⑵动态分析临界状态,从两个方 ( M m) mg tan 面理解临界状态.
F
M
P 附加题3:如图,一细线的一端固定于倾角为 450的光滑楔形滑块A的顶端P处, 细 线的另 一端拴以质量为m的小球, ⑴.当滑块至少以 a 多大加速度向左运动时,小球对滑块的压力 为零? ⑵.当滑块以加速度a=2g向左运动时, 线中张力多大? a0 解:⑴根据牛顿第二定律得 450
1、物体1、2放在光滑的水平面上,中间以轻质弹簧相连,如图所 示,对物体1、2分施以方向相反的水平力F1、F2,且F1>F2,则弹 簧秤的读数C [ ] A.一定为F1+F2 B.可能为F1+F2 C.一定小于F1,大于F2 D. 一定为F1-F2 用整体法可知加速度方向向左, 对1物体作为对象有弹力F小于F1, 对B物体作为对象有弹力F大于F2
F
再分析B的受力情况:
A B
FNB F FfB
FfB =μFNB=μm2g
FB合 =FAB-FfB=m2a
m2 F FAB =FfB+m2a m1 m2
Ff
FN
AB
G
B
GB
FAB
变式训练2:如图所示,在光滑的水平面上,有等质 量的五个物体,每个物体的质量为m.若用水平推力 F推1号物体,求: (1)它们的加速度是多少? (2)2、3号物体间的相互作用力为多少?
解:因各个物体的加速度相同,可以五个物体整体为研究 对象求出整体的加速度.再以3、4、5号物体为研究对象求 出2、3号物体间的相互作用力. 对整体:F=5ma 对3、4、5号物体:F23=3ma 得 a=F/5m; F1=3F/5

3-3_牛顿运动定律—连接体问题(整体隔离法)、临界

3-3_牛顿运动定律—连接体问题(整体隔离法)、临界

[变式训练] 1.如图所示,一个质量为 m = 0.2 kg的小球用细绳吊在倾
角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当
斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜 面对小球的弹力大小.
第三章 牛顿运动定律
第29页
金版教程 · 高三一轮总复习 · 新课标 · 物理
第三章 牛顿运动定律
第26页
金版教程 · 高三一轮总复习 · 新课标 · 物理
主干回顾固基础 典例突破知规律 特色培优增素养 高考模拟提能训 限时规范特训
1 2 由运动学公式 x= at 得从挡板开始运动到小球与挡板分 2 离所经历的时间为 t= 2mgsinθ-a . ka
(2)小球速度达最大时,其加速度为零,即 kx′=mgsinθ 即从挡板开始运动到小球的速度达最大时,小球的位移为 mgsinθ x′= k .
动: ①拉力水平,m1、m2在光滑的水平面上加速运动;
②拉力水平,m1、m2在粗糙的水平面上加速运动;
③拉力平行于倾角为θ的斜面,m1、m2在光滑的斜面上沿斜 面向上加速运动; ④拉力平行于倾角为θ的斜面,m1、m2在粗糙的斜面上沿斜 面向上加速运动.
用 Δl1 、 Δl2 、 Δl3 、 Δl4 依次表示弹簧在以上四种情况下的伸 长量,则下列选项正确的是( )
[针对训练] [2013·湖北重点中学联考 ]如图所示,在建筑工地,民工兄
弟用两手对称水平使力将两长方体水泥制品夹紧并以加速度 a竖
直向上匀加速搬起,其中A的质量为m,B的质量为3m,水平作 用力为 F , A 、 B 之间的动摩擦因数为 μ ,在此过程中, A 、 B 间 的摩擦力为( )
A.μF 3 C. m(g+a) 2

整体法、隔离法的应用

整体法、隔离法的应用

(一)整体法、隔离法的应用方法概述:1、当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程(若合力为零则列平衡方程)。

2、当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程(若合力为零则列平衡方程)。

许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。

1、如图所示,有半径均为r,重均为G的两个光滑小球,放在圆柱形圆筒内,圆筒的半径为R,且R<2r,求两球之间的压力及圆筒底部所受的压力。

2、如上图所示,平板重300N,滑轮重不计,要使整个装置静止,则P物重力的最小值是多少?3、如图右,一固定斜面上两个质量相同的小物块A和B紧挨着匀速下滑,A与B的接触面光滑。

已知A与斜面之间的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾角为α。

B与斜面之间的动摩擦因数是()A.23tanαB.23cotα C.tanα D.cotα4.如图所示,质量分别为m和2m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的μ倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力F A与F B之比为多少?5.如图所示,在水平桌面上有三个质量均为m的物体A、B、C叠放在一起,水平拉力F作用在物体B上,使三个物体一起向右运动,则:(1)当三个物体一起向右匀速运动时,A与B、B与c、C与桌面之间的摩擦力大小;(2)当三个物体一起向右以加速度a匀加速运动时,A与B、B与C、C与桌面之间的摩擦力大小。

6、如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。

当水平F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N1;当水平力F作用于B右端上时,两物体一起做加速度运动,其A、B间相互作用力大小为N2。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律的应用(一)——整体法与隔离体法 专题2.知道什么是内力和外力。

例1如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。

解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。

比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。

可得F m m m F BA BN +=例2如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。

用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。

当A 、B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。

这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2BA B A 3.3m/s =+==m m Fa a(2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2例3如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( .BC )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ例4.如图,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于(D )A .0B .k xC .(Mm)k xD .(mM m+)k xB例5如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?解(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F 应沿斜面向上,故人应加速下跑。

现分别对人和木板应用牛顿第二定律得:对木板:Mgsin θ=F 。

对人:mgsin θ+F =ma 人(a 人为人对斜面的加速度)。

解得:a 人=sin M mg mθ+,方向沿斜面向下。

(2)为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动。

现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a 木,则:对人:mgsin θ=F 。

对木板:Mgsin θ+F=Ma 木。

解得:a 木=sin M mg Mθ+,方向沿斜面向下。

即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动。

例6如图所示,底座A 上装有一根直立杆,其总质量为M ,杆上套有质量为m 的圆环B ,它与杆有摩擦。

当圆环从底端以某一速度v 向上飞起时,圆环的加速度大小为a ,底座A 不动,求圆环在升起和下落过程中,水平面对底座的支持力分别是多大?解:圆环上升时,两物体受力如右图所示,其中f 1为杆给环的摩擦力,f 2为环给杆的摩擦力。

对圆环:mg +f 1=ma ① 对底座:N 1+f 2-Mg =0② 由牛顿第三定律知:f 1=f 2③由①②③式可得:N 1=(M +m)g -ma 圆环下降时,两物体受力如右图所示对圆环:mg -f 1=ma ' ④ 对底座:Mg +f 2-N 2=0⑤ 由牛顿第三定律得:f 1=f 2⑥由④⑤⑥三式解得:N 2=(M -m)g +mafa· N 1 f 1Mga 'f N 2 · f 1 Mg1.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用 于B 上,三物体可一起匀速运动。

撤去力F 后,三物体仍 可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作 用力为f 2,则f 1和f 2的大小为( C ) A.f 1=f 2=0 B.f 1=0,f 2=FC.f 1=3F ,f 2=F 32D.f 1=F ,f 2=02、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于(B ) A.F m m m 211+ B.F m m m 212+ C.FD.F m m 213、如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为F m m m 212+。

4、一条不可伸长的轻绳跨过质量可忽略不计的光滑定滑轮, 绳的一端系一质量m =15kg 的重物,重物静止于地面上, 有一质量m '=10kg 的猴子,从绳子的另一端沿绳向上爬, 如图所示,在重物不离地面的条件下,猴子向上爬的最大加 速度 (g=10m/s 2)( B ) A .25m/s 2B .5m/s 2C .10m/s 2D .15m/s 25、如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量 为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( B )A.(M+m )gB.(M+m )g -maC.(M+m )g+maD.(M -m )g6、如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因 数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直a方向θ=30°角,则F 应为多少?(g =10m/s 2) 解:对小球由牛顿第二定律得:mgtg θ=ma ①对整体,由牛顿第二定律得:F -μ(M+m)g=(M+m)a ② 由①②代入数据得:F =48N7、如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得: mg -F f =ma①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图. 据物体平衡条件得: F N -F f ′-Mg =0②且F f =F f ′③由①②③式得F N =22mM +g 由牛顿第三定律知,木箱对地面的压力大小为 F N ′=F N =22mM +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式: (mg +Mg )-F N = ma +M ×0 故木箱所受支持力:F N =22mM +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =22mM +g .【提高训练】1、如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( A ) A.T a 增大 B.T b 增大 C.T a 变小 D.T b 不变2、(1999年广东)A 的质量m 1=4 m ,B 的质量m 2=m ,斜面固定在水平地面上。

开始时将B 按在地面上不动,然后放手,让A 沿斜面下滑而B 上升。

A 与斜面无摩擦,如图,设当A 沿斜面下滑s 距离后,细线突然断了。

求B 上升的最大高度H 。

答案:H=1.2 s3、如图所示,一根轻弹簧上端固定,下端挂一质量为m o 的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比自然长度伸长了L 。

今向下拉盘使弹簧再伸长△L 后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少?解:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了。

将盘与物体看作一个系统,静止时:kL =(m+m 0)g ……① 再伸长△L 后,刚松手时,有k(L+△L)-(m+m 0)g=(m+m 0)a ……② 由①②式得00()()k L L m m g La g m m L+∆-+∆==+刚松手时对物体F N -mg=ma则盘对物体的支持力F N =mg+ma=mg(1+LL∆)4、如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 上的最大拉力F A 与F B 之比为多少?.解:当力F 作用于A 上,且A 、B 刚好不发生相对滑动时,对B 由牛顿第二定律得:μmg=2ma ①对整体同理得:F A =(m+2m)a ② 由①②得32A mgF μ=当力F 作用于B 上,且A 、B 刚好不发生相对滑动时,对A 由牛顿第二定律得:μμmg =ma ′ ③ 对整体同理得F B =(m+2m)a ′④ 由③④得F B =3μmg所以:F A:F B=1:2。

相关文档
最新文档