适用于联想记忆的几种神经网络
第8章 神经网络-Hopfield网络
![第8章 神经网络-Hopfield网络](https://img.taocdn.com/s3/m/c8fb84ba76c66137ee0619b8.png)
8.2.2 状态轨迹为极限环
如果在某些参数的情况下,状态N(t)的轨迹是一 个圆,或一个环,状态N(t)沿着环重复旋转,永不停 止,此时的输出A(t)也出现周期变化,即出现振荡, 如图8.4中C的轨迹即是极限环出现的情形。
对于DHNN,轨迹变化可能在两种状态下来回跳 动,其极限环为2。如果在r种状态下循环变化,称 其极限环为r。
对于CHNN,因为f(·)是连续的,因而,其轨迹 也是连续的,如图中B、C所示。
对于不同的连接权值wij和输入Pj(i, j=1, 2, … r), 反馈网络状态轨迹可能出现以下几种情况。
8.2.1 状态轨迹为稳定点
状态轨迹从系统在t0时状态的初值N(t0)开始,经 过一定的时间t(t>0)后,到达N(t0+t)。如果 N(t0+t+Δt)=N(t0+t),Δt>0,则状态N(t0+t)称为网络 的稳定点,或平衡点。
在人工神经网络中,由于输入、输出激活函数是 一个有界函数,虽然状态N(t)是发散的,但其输出A(t) 还是稳定的,而A(t)的稳定反过来又限制了状态的 发散。
一般非线性人工神经网络中发散现象是不会发生 的,除非神经元的输入输出激活函数是线性的。
目前的人工神经网络是利用第一种情况即稳定的专 门轨迹来解决某些问题的。
如果ai=f(ni)中的f(·)为一个连续单调上升的有界 函数,这类网络被称为连续型反馈网络。图8.3中所示 为一个具有饱和线性激活函数,它满足连续单调上升
的有界函数的条件,常作为连续型的激活函数。
图8.2 DHNN中的激活函数 图8.3 CHNN中的激活函数
8.2 状态轨迹
设状态矢量N=[n1, n2, …,nr],网络的输出矢量 为A=[a1,a2…,as]T ,
神经网络基础精选
![神经网络基础精选](https://img.taocdn.com/s3/m/80df879fd05abe23482fb4daa58da0116c171ff7.png)
第一讲 神经网络基础
突触:突触是神经元的树突末梢连接另一神经元的突触 后膜 (postsynaptic membrane)的部分。它是神经元之 间相联系并进行信息传送的结构,是神经元之间连接的 接口。两个神经元的细胞质并不直接连通,两者彼此联 系是通过突触这种结构接口的。
膜电位:神经元细胞膜内外之间存在电位差,称为膜电 位。膜外为正,膜内为负。膜电压接受神经其它神经元 的输入后,电位上升或下降。当传入冲动的时空整合结 果,使膜电位上升,而且当超过叫做动作电位的阈值时, 细胞进入兴奋状态,产生神经冲动,由轴突输出,这个 过程称为兴奋。
•9
第一讲 神经网络基础
2 突触传递信息动作原理
膜电位(mv)
兴奋期, 大于动作阈值
动 作
绝对不应期:不响应任何刺激 阈
值
相对不应期:很难相应
t (ms)
根据突触传递信息的动作过 -55
程可以分为两种类型:兴奋型 -70
12
3
和抑制型。神经冲动使得细胞 膜电压升高超过动作电压进入
1ms 1ms 3ms
•5
树突
细胞体
细胞核 轴突
轴突末梢
图1-1a 神经元的解剖
•6
图1-1b 神经元的解剖
•7
第一讲 神经网络基础
细胞体:细胞体是由很多分子形成的综合体,内部含有 一个细胞核、核糖体、原生质网状结构等,它是神经元 活动的能量供应地,在这里进行新陈代谢等各种生化过 程。包括细胞核,细胞膜和细胞质。
n
Ii W ijXj为 第 i个 神 经 元 的 净 输 入
j1
•12
第一讲 神经网络基础
四 人工神经元与生物神经元区别 (1)模型传递的是模拟信号,生物输入输出均
基于神经网络推理联想记忆模型设计优化
![基于神经网络推理联想记忆模型设计优化](https://img.taocdn.com/s3/m/bf1d7f7aef06eff9aef8941ea76e58fafbb04579.png)
基于神经网络推理联想记忆模型设计优化推理与记忆是人类高级认知功能的重要组成部分,对于机器智能来说也是一项重要的挑战。
神经网络在推理与记忆任务中具有巨大的潜力,并广泛应用于自然语言处理、计算机视觉以及智能问答等领域。
本文将探讨基于神经网络的推理联想记忆模型的设计优化。
推理联想记忆模型是一种基于人类记忆机制构建的神经网络模型,它可以实现从给定的部分信息中推理、联想并记忆相关的事实或知识。
该模型通常由两个重要组成部分构成,即推理网络和联想记忆网络。
在设计优化推理联想记忆模型时,我们首先需要考虑的是推理网络的结构和参数设置。
推理网络负责从给定的输入中推理出可能的答案或结论。
为了提升推理网络的表达能力,我们可以采用一些现有的神经网络结构,如卷积神经网络(CNN)、循环神经网络(RNN)或transformer网络等。
这些网络结构可以帮助模型学习到输入之间的关系和模式,提高推理的准确性和鲁棒性。
在推理网络中,需要注意的是选择合适的损失函数和优化算法。
损失函数的选择应该与任务的特点相匹配,如交叉熵损失函数可以用于分类任务,均方差损失函数可以用于回归任务。
优化算法可以采用常见的梯度下降法或其变种算法,如Adam、RMSProp等。
同时,为了防止过拟合,可以加入正则化项或采用早停策略。
第二个重要的组件是联想记忆网络,它负责联想并记忆与输入相关的额外信息或知识。
为了设计优化联想记忆网络,关键是在保证模型记忆能力的同时,提升模型的存取效率和记忆容量。
一种常见的方法是使用注意力机制,通过计算输入与记忆单元之间的注意力权重,选择与输入最相关的记忆进行联想。
此外,可以利用记忆增加技术,如记忆存储和检索的哈希化等方法来提高记忆容量和速度。
在训练推理联想记忆模型时,我们需要考虑样本的选择和训练策略。
为了模型能够更好地泛化到未见过的数据上,应该选择多样性和代表性的训练样本,并进行正确的数据增强和正负样本平衡处理。
在训练策略方面,可以采用深度强化学习方法,通过与环境的交互来优化模型参数,或者结合元学习等方法进行参数初始化和优化。
人工智能控制技术课件:神经网络控制
![人工智能控制技术课件:神经网络控制](https://img.taocdn.com/s3/m/8cb135b46394dd88d0d233d4b14e852458fb3993.png)
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之
,
,
⋯
,
)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2
W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统
第5章 Hopfield神经网络与联想记忆
![第5章 Hopfield神经网络与联想记忆](https://img.taocdn.com/s3/m/b97e0411c281e53a5802ff39.png)
第5章Hopfield神经网络与联想记忆前面介绍了前向网络及其学习算法,对于所介绍的前向网络,从学习的观点来看,它是一个强有力的学习系统,系统结构简单、易于编程;从系统的观点来看,它是一个静态非线性映射,通过简单非线性处理单元的复合映射可获得复杂系统的非线性处理能力;从计算的观点来看,它并不是一强有力系统,缺乏丰富的动力学行为。
反馈神经网络是一个反馈动力学系统,具有更强的计算能力。
1982年美国物理学家J. Hopfield提出的单层全互连含有对称突触连接的反馈网络是最典型的反馈网络模型。
Hopfield 用能量函数的思想形成了一种新的计算方法,阐明了神经网络与动力学的关系,并用非线性动力学的方法来研究这种神经网络的特性,建立了神经网络稳定性判据,并指出信息存储在网络中神经元之间的连接上,形成了所谓的Hopfield网络,称之为离散Hopfield网络。
而且Hopfield还将该反馈网络同统计物理中的Ising模型相类比,把磁旋的向上和向下方向看成神经元的激活和抑制两种状态,把磁旋的的相互作用看成神经元的突触权值。
这种类推为大量的物理学理论和许多的物理学家进入神经网络领域铺平了道路。
1984年,Hopfield设计与研制了Hopfield网络模型的电路,指出神经元可以用运算放大器来实现,所有神经元的连接可用电子线路来模拟,称之为连续Hopfield网络。
用该电路Hopfield成功的解决了旅行商(TSP)计算难题(优化问题)。
Hopfield网络是神经网络发展历史上的一个重要的里程碑。
把神经网络看作一种非线性的动力学系统,并特别注意其稳定性研究的学科,被称为神经动力学(Neurodynamics)。
Hopfield神经网络可看作一种非线性的动力学系统,所以为了方便介绍Hopfield神经网络,本章首先简单介绍神经动力学。
前面介绍的单层前向网络和多层前向网络,其思路均是先介绍网络模型再介绍相应的学习算法。
几类分布参数神经网络的稳定性及其同步
![几类分布参数神经网络的稳定性及其同步](https://img.taocdn.com/s3/m/ab0d806bcec789eb172ded630b1c59eef8c79a1f.png)
几类分布参数神经网络的稳定性及其同步几类分布参数神经网络的稳定性及其同步近年来,神经网络在人工智能领域取得了巨大的突破。
作为一种黑盒模型,神经网络通过模拟人类的神经元工作原理来实现各种智能化任务。
然而,随着神经网络的规模不断增大,研究者们开始关注神经网络的稳定性问题,特别是在分布参数神经网络中的同步问题。
本文将讨论几类分布参数神经网络的稳定性及其同步。
首先,我们介绍一类常见的分布参数神经网络模型——Hopfield网络。
Hopfield网络是一种经典的反馈神经网络模型,广泛应用于模式分类、优化问题和模型储存等领域。
它的神经元之间通过连接权值进行信息传递,并通过非线性函数进行处理。
Hopfield网络存在的一个问题是容易陷入局部极小点,导致模型的收敛性降低。
为了提高Hopfield网络的稳定性并实现全局最优解,研究者们提出了各种改进方法,如引入噪声、增加忘记因子等。
接下来,我们讨论另一类分布参数神经网络模型——双向联想记忆网络(Bidirectional Associative Memory,BAM)。
BAM网络是一种能够实现单向和双向关联记忆的神经网络模型。
它的输入和输出之间通过权重矩阵建立连接,并通过非线性函数进行处理。
BAM网络的稳定性问题主要体现在记忆容量和记忆鲁棒性方面。
为了提高BAM网络的稳定性,研究者们提出了一些改进方法,如增加重构误差阈值、引入自适应学习率等。
除了Hopfield网络和BAM网络,分布参数神经网络还包括了Kohonen自组织特征映射网络(Self-OrganizingFeature Map,SOFM)和玻尔兹曼机(Boltzmann Machine,BM)等模型。
SOFM网络能够自主学习输入数据的拓扑结构,并具有较强的鲁棒性。
然而,SOFM网络在大规模数据集上的稳定性问题仍然存在,需要进一步的改进方法。
BM网络是一种能够模拟统计学习和随机优化的神经网络模型,具有较强的非线性建模能力。
神经网络的发展与应用
![神经网络的发展与应用](https://img.taocdn.com/s3/m/b1a0bd2515791711cc7931b765ce0508763275b4.png)
神经网络的发展与应用人工神经网络,简称神经网络,是一种模拟人脑神经系统的计算模型,它通过模拟神经元之间的信息传递和计算过程,实现了信息处理和智能决策。
从20世纪50年代起,神经网络就开始吸引越来越多的研究者,至今已有数十年的发展历程。
本文将回顾神经网络的发展史,介绍其主要应用场景和未来趋势。
一、神经网络的发展历史题海战术是练好神经网络的关键。
在1960年代到1980年代,美国、英国、日本、德国等国家和地区的专家纷纷投身于神经网络的研究当中。
这一时期,神经网络的基本理论,包括前馈神经网络、反馈神经网络、Hopfield 网络、Boltzmann机等模型先后被提出。
其中,前馈神经网络主要用于解决分类、识别、回归等问题,反馈神经网络主要用于时序预测、神经信号处理、优化问题等;而Hopfield网络和Boltzmann机则用于解决优化问题和联想记忆问题。
然而,由于数据量小、计算能力有限、学习算法不稳定等因素的限制,神经网络的应用一度受到限制。
1990年代以后,随着计算机和网络技术的迅速发展,大数据时代的到来,神经网络得到了前所未有的发展机遇。
神经网络的各个领域都经历了飞跃式的发展,特别是深度学习的应用,更是引领了神经网络技术的潮流。
二、神经网络的应用场景神经网络已经成为人工智能、机器学习中最重要的技术手段之一,几乎涉及到所有方面的应用场景。
以下将介绍几个具有代表性的应用案例。
1. 图像识别在图像识别领域,卷积神经网络(CNN)是当今最流行的神经网络之一。
它可以对图像进行特征提取和识别,广泛应用于人脸识别、车辆识别、智能安防等领域。
例如,当今最先进的人脸识别技术,就是基于CNN网络实现的。
2. 语音识别语音识别是另一个广泛应用神经网络的领域。
深度循环神经网络(RNN)和长短时记忆网络(LSTM)都是可以处理语音信号序列的网络模型,它们的应用范围包括语音识别、文本转语音(ConvTTS)等,可以极大地提高语音识别的准确率和稳定性。
神经网络基本理论d
![神经网络基本理论d](https://img.taocdn.com/s3/m/af39083ff18583d049645938.png)
5
神经网络简介
3 复兴期(1982-1986) 1982年,物理学家Hoppield提出了Hoppield神经网络模型, 该模型通过引入能量函数,实现了问题优化求解,1984年 他用此模型成功地解决了旅行商路径优化问题(TSP)。 在1986年,在Rumelhart和McCelland等出版《Parallel Distributed Processing》一书,提出了一种著名的多层 神经网络模型,即BP网络。该网络是迄今为止应用最普遍 的神经网络。
反馈网络:从输出层到输入层有反馈, 每一个神经元同时接收外来输入和来自其 它神经元的反馈输入,其中包括神经元输 出信号引回自身输入的自环反馈。
混合型网络:前向网络的同一层神经 元之间有互联的网络。
23
神经网络的构成和分类
(2)从激发函数的类型上划分 高斯基函数神经网络、小波基函数神经网络、样条基函数神经网络等等 (3)从网络的学习方式上划分 ①有导师学习神经网络 为神经网络提供样本数据,对网络进行训练,使网络的输入输出关系逼 近样本数据的输入输出关系。 ②无导师学习神经网络 不为神经网络提供样本数据,学习过程中网络自动将输入数据的特征提 取出来。 (4)从学习算法上来划分: 基于BP算法的网络、基于Hebb算法的网络、基于竞争式学习算法的网络、 基于遗传算法的网络。
11
神经网络简介
神经元具有如下功能:
(1) 兴奋与抑制:如果传入神经元的冲动经整和后使细胞膜
电位升高,超过动作电位的阈值时即为兴奋状态,产生神 经冲动,由轴突经神经末梢传出。如果传入神经元的冲动 经整和后使细胞膜电位降低,低于动作电位的阈值时即为 抑制状态,不产生神经冲动。
(2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作
第五章霍普菲尔德(Hopfield)神经网络
![第五章霍普菲尔德(Hopfield)神经网络](https://img.taocdn.com/s3/m/f08b7ac26294dd88d0d26b87.png)
反馈网络(Recurrent Network),又称自联 想记忆网络,如下图所示:
x1
x2
x3
y1
y2
y3
图 3 离散 Hopfield 网络
考虑DHNN的节点状态,用yj(t)表示第j个神经元,即节点j在时 刻t的状态,则节点的下一个时刻t+1的状态可以求出如下:
1, u j (t) 0 y j (t 1) f[u j (t)] 0, u j (t) 0 u j (t) w i, j y i (t) x j θ j
在不考虑外部输入时,则有
j 1,2,..., n
n y j (t 1) f w i, j yi (t) θ j i 1
•通常网络从某一初始状态开始经过多次更新后才可 能达到某一稳态。使用异步状态更新策略有以下优点: (1)算法实现容易,每个神经元节点有自己的状态 更新时刻.不需要同步机制; (2)以串行方式更新网络的状态可以限制网络的输 出状态,避免不同稳态以等概率出现。 一旦给出HNN的权值和神经元的阈值,网络的状态转 移序列就确定了。
5.2 离散Hopfield网络
• Hopfield最早提出的网络是神经元的输出为 0-1二值的NN,所以,也称离散的HNN (简称为 DHNN).
–下面分别讨论DHNN的
• • • • 结构 动力学稳定性(网络收敛性) 联想存储中的应用 记忆容量问题
十几种著名的神经网络
![十几种著名的神经网络](https://img.taocdn.com/s3/m/5960474733687e21af45a935.png)
1977
解释概念形成,分类和知识处理(从资料中抽取知识)
只能作一次性决策,无重复性共振。
这是具有最小均方差的单层自联想网络。类似于双向联想记忆,可对片断输入补全。
Neocognition
(新认知机)
FukushimaK
福岛邦彦(日本广播协会)
1978—1984
手写字母识别
需要大量加工单元和联系。
是一多层结构化学符识别网络。是已开发的最复杂网络之一,对输入模式的大小、平移和旋转无关,能识别复杂字(如汉字)。
Self-Organizing feature map(自组织特征映射网络)
Tuevo Kohonen(芬兰Helsinki技术大学)
1980
语音识别,机器人控制,工业过程控制(特别是半导体生产中的扩散工艺过程),通信自适应器、图像压缩、雷达、专家系统等。
十几种著名的神经网络
名称
发明人或开发人
起止年代
主要应用领域
局限性
评述
Perceptron
(感知机)
Frank Rosenblatt
(康奈尔大学)
1957
文学识别(打字字母识别),声音识别,声纳信号识别以及学习记忆问题的研究。
不能识别复杂字形(如汉字),对字的大小,平移和歪斜敏感。
是一组可训练的线性分类的单层网络。这是最古老的网络,已制成硬件,这种最简单的感知机已很少用。
Adaline(Adaptive linear element)和Madaline(多适应线性单元)
Bernard Widrow
(斯坦福大学)
1960—1962
雷达天线控制、自适应均衡机回波抵消,雷达干扰的适应性消除,适应性调制解调,电话线中适应性补偿等方面。
神经网络-- Hopfield网络
![神经网络-- Hopfield网络](https://img.taocdn.com/s3/m/3b7df383cc22bcd126ff0ca6.png)
Hopfield 神经网络前馈(前向)网络和反馈网络是当前人工神经网络研究中最基本的两种网络模型。
1982年到1986年,美国物理学家Hopfield 陆续发表文章报导了对反馈神经网络理论与应用的研究成果,引起了人们广泛的兴趣,并且将这种单层反馈网络称为Hopfield 网络。
在单层全反馈网络中(基本Hopfield 网络中),节点之间相互连接,每个节点接收来自其它节点的输入,同时又输出给其它节点,每个神经元没有到自身的连接。
由于引入反馈,所以它是一个非线性动力学系统。
其结构如下所示:n1n32y y(a ) (b )图1 Hopfield 网络基本结构前馈网络大多表达的是输出与输入间的映射关系,一般不考虑输出与输入间在时间上的滞后效应;反馈网络需要考虑输出与输入间在时间上的延时,需要利用动态方程(差分方程或微分方程)描述神经元和系统的数学模型。
前馈网络的学习(训练)主要采用误差修正法,计算时间较长,收敛速度较慢;反馈网络(如Hopfield 网络)的学习主要采用Hebb 规则,收敛速度较快。
Hopfield 网络在应用上除可作为联想记忆与分类外,还可用于优化计算。
可以认为,Hopfield 网络的联想记忆和优化计算这两种功能是对偶的:当用于联想记忆时,通过样本模式的输入给定网络的稳定状态,经学习求得联接权值W ;当用于优化计算时,以目标函数和约束条件建立系统的能量函数来确定联接权值,当网络演变至稳定状态时即可得出优化计算问题的解。
Hopfield 网络神经元模型可以是离散变量,也可以连续取值。
一.离散Hopfield 网络 1.网络结构及性能描述:离散Hopfield 网络模型如图1所示。
设共有N 个神经元,ij 表示从神经元j 到神经元i 的联接权,j s 表示神经元j 的状态(取+1或-1),j v 表示神经元j 的净输入,有:⎪⎩⎪⎨⎧=+-⋅=∑=)](sgn[)1()()(1t v t s t s t v j j jNi i ji j θω,即:⎩⎨⎧<->+=+0)(,10)(,1)1(t v t v t s j j j (1) 或:⎪⎩⎪⎨⎧<-=>+=+0)(,10)(),(0)(,1)1(t v t v t s t v t s j j j j j当0)(=t v j 时可认为神经元的状态保持不变。
反馈神经网络原理
![反馈神经网络原理](https://img.taocdn.com/s3/m/ae3e0097a0116c175f0e48fb.png)
一、反馈神经网络原理1.简述反馈网络的特点是处理单元之间除前馈连接外还有反馈连接的情况。
同前向神经网络相比有更强的计算能力,其最突出的优点是具有很强的联想记忆和优化计算功能。
根据网络结构的特点,将它们分为两类:全反馈网络结构和部分反馈网络结构。
2.全反馈网络结构全反馈网络的突出代表就是由美国加州理工学院的J.Hopfield教授在1982 年提出的Hopfield 网络,一种单层反馈神经网络。
Hopfield网络也是一种循环的神经网络,从输出到输入有反馈连接。
Hopfield网络可以作为联想储存器,又称为联想记忆网络。
Hopfield 网络分为离散型和连续型两种网络模型。
2.1.离散型Hopfield 网络2.1.1.网络结构DHNN的特点是任一神经元的输出xi均通过链接权wij反馈至所有神经元xj 作为输入,目的是为了让输出能够受到所有神经元的输出的控制,从而使得各个神经元的输出相互制约。
每个神经元均设有一个阈值Tj,以反映对输入噪声的控制。
DHNN可简记为N=(W,T)。
输出神经元的取值为0/1或-1/1。
对于中间层,任意两个神经元间的连接权值为w ij, w ij=w ji,神经元的连接是对称的。
如果w ii=0,则称为无自反馈的Hopfield 网络,反之则称为有自反馈的Hopfield 网络。
利用阈值函数对计算结果二值化。
T时刻神经元的输入为:b i(t)为第i个神经元的阈值。
t + 1时刻的输出为2.1.2.网络的稳定性与吸引子(1)稳定性反馈网络是一种能够存储若干预先设置的稳定点的网络,作为非线性动力学系统,具有丰富的动态特性,如稳定性、有限环状态和混沌状态等;稳定性指的是经过有限次的递归后,状态不再发生改变;有限环状态指的是限幅的自持震荡;混沌状态指的是网络状态的轨迹在某个确定的范围内变迁,既不重复也不停止,状态变化无穷多个,轨迹也不发散到无穷远。
对于DHNN,由于网络状态是有限的,不可能出现混沌状态。
离散Hopfield神经网络及应用举例
![离散Hopfield神经网络及应用举例](https://img.taocdn.com/s3/m/6ae8bd56ad02de80d4d840ad.png)
w11
w13 w12
w21 w22
w23
w31 w32 w33
第0层
第1层 x1 x2 x3
y1
y2
y3
Hopfield神经网络有两种:离散Hopfield网络(DHNN)和连续 Hopfield网络(CHNN) 。 1.离散Hopfield网络(DHNN):神经元的输出只取1和0,分 别表示神经元处于激活和抑制状态。对于二值神经元,它的计 算公式如下
x2
x3
w21
w23
w12
w13
●Hopfield网络稳定的充分条件:权系数 矩阵W是对称矩阵,并且对角线元素为0。
●无自反馈的权系数对称Hopfield网络是 稳定的。
y1 y2 y3
应用举例(数字识别) 问题 设计一个Hopfield网络,使其具有联想 记忆功能,能正确识别阿拉伯数字,当 数字被噪声污染后仍可以正确地识别。
●1984年,Hopfield设计并研制了网
络模型的电路,并成功地解决了旅 行商(TSP)计算难题(快速寻优问题)。
●根据网络的输出是离散量或是连续
量,Hopfield网络也分为离散和连 续的两种。
Hopfield神经网络 Hopfield神经网络模型是一种 循环神经网络,从输出到输入 有反馈连接。在输入的激励下, 会产生不断的状态变化。 反馈网络有稳定的,也有不稳 定的,如何判别其稳定性也是 需要确定的。对于一个 Hopfield网络来说,关键是在 于确定它在稳定条件下的权系 数。 右图中,第0层是输入,不是 神经元;第二层是神经元。
设计思路 假设网络由0-9共10个稳态构成,每个 稳态由10*10的矩阵构成,该矩阵用于 模拟阿拉伯数字点阵。即将每个数字划 分成10*10方阵,有数字的部分用1表示, 空白处用-1表示。
神经网络三种模型综述(反馈,模糊和小脑)
![神经网络三种模型综述(反馈,模糊和小脑)](https://img.taocdn.com/s3/m/823d044ac850ad02de804199.png)
j=1,2,…,n
反馈神经网络
Hopfield网络
网络的稳定性
DHNN网实质上是一个离散的非线性动力学系统。网络从初态X(0)开始,若 能经有限次递归后,其状态不再发生变化,即X(t+1)=X(t),则称该网络是稳定 的。如果网络是稳定的,它可以从任一初态收敛到一个稳态: 如图a)所示 若网络是不稳定的,由于DHNN网每个节点的状态只有1和-1两种情况,网 络不可能出现无限发散的情况,而只可能出现限幅的自持振荡,这种网络称为 有限环网络,如图b)所示
式中净输入为
netj (wij xi ) T j
i 1
n
j=1,2,…,n
对于DHNN网,一般有wii=0 ,wij=wji
反馈网络稳定时每个神经元的状态都不再改变,此时 的稳定状态就是网络的输出,表示为: lim X(t)
t
反馈神经网络
Hopfield网络
网络的工作方式
网络的异步工作方式
反馈神经网络
随机神经网络
主要区别
–
在学习阶段,随机网络不像Hopfield那样基于某 种确定性算法调整权值,而是按某种概率分布进 行修改。 在运行阶段,随机网络不是按某种确定性的网络 方程进行状态演变,而是按某种概率分布决定其 状态的转移。
–
反馈神经网络
随机神经网络
模拟退火原理
模拟退火算法是随机网络中解决能量局部极小问题的一个有效方法,其基本 思想是模拟金属退火过程。 金属退火过程大致是,先将物体加热至高温,使其原子处于高速运动状态, 此时物体具有较高的内能;然后,缓慢降温,随着温度的下降,原子运动速 度减慢,内能下降;最后,整个物体达到内能最低的状态。模拟退火过程相 当于沿水平方向晃动托盘,温度高则意味着晃动的幅度大,小球肯定会从任 何低谷中跳出,而落入另一个低谷。
连续型Hopfield神经网络
![连续型Hopfield神经网络](https://img.taocdn.com/s3/m/7de808a0f46527d3240ce0dc.png)
精选课件
22
3.连续型Hopfield网络结构及特点
连续型Hopfield网 络结构如右图所示, 它是单层反馈非线 性网络,每一个节 点的输出均反馈至 节点的输入。
精选课件
23
Hopfield网络用模拟 电路实现的神经元节 点如右图。图中电阻 Rio和电容Ci并联,模 拟生物神经元的延时 特性,电阻 Rij(j=1,2,…,n)模拟 突触特征,偏置电流 Ii相当于阈值,运算 放大器模拟神经元的 非线性饱和特性。
将上式代入原式可得:
dE
dt j
CiddV it2 f 1Vi
由于Ci>0, f(U)单调递增,故f -1 (U)也单调递 增,可得:
dE 0 dt
当且仅当, dV i 0 时, dE 0
dt
dt
结论:网络是渐进稳定的,随着时间的推移,网 络的状态向E减小的方向运动,其稳定平衡状态 就是E的极小点。
1) 递归网络 此类网络中,多个神经元互连组织成一个互连神经网络。 有些神经网络输出被反馈至同层或前层神经元。因此, 信号能从正向和反向流通。Hopfield 网络、Elmman 网 络和Jordan 网络是递归网络中具有代表性的例子。递 归网络又叫反馈网络。
Hopfield神经网络
![Hopfield神经网络](https://img.taocdn.com/s3/m/99fe771d854769eae009581b6bd97f192279bf6e.png)
Hopfield神经⽹络神经⽹络分类多层神经⽹络:模式识别相互连接型⽹络:通过联想记忆去除数据中的噪声1982年提出的Hopfield神经⽹络是最典型的相互连结型⽹络。
联想记忆当输⼊模式为某种状态时,输出端要给出与之相应的输出模式。
如果输⼊模式与输出模式⼀致,称为⾃联想记忆,否则,称为异联想记忆。
Hopfield⽹络结构上,Hopfield神经⽹络是⼀种单层互相全连接的反馈型神经⽹络。
每个神经元既是输⼊也是输出,⽹络中的每⼀个神经元都将⾃⼰的输出通过连接权传送给所有其它神经元,同时⼜都接收所有其它神经元传递过来的信息。
即:⽹络中的神经元在t时刻的输出状态实际上间接地与⾃⼰t-1时刻的输出状态有关。
神经元之间互连接,所以得到的权重矩阵将是对称矩阵。
假设有n个单元组成的Hopfield神经⽹络,第i个单元在t时刻的输⼊记作ui(t),输出记作xi(t),连接权重为wij,阈值为bi(t),则t+1时刻i单元的输出xi(t+1)可表⽰为:在Hopfield神经⽹络中,每个时刻都只有⼀个随机选择的单元会发⽣状态变化。
由于神经元随机更新,所以称此模型为离散随机型。
对于⼀个由n个单元组成的⽹络,如果要完成全部单元的状态变化,⾄少需要n个时刻。
根据输⼊模式联想输出模式时,需要事先确定连接权重wij,⽽连接权重wij要对输⼊模式的训练样本进⾏训练后才能确定。
和多层神经⽹络⼀样,⼀次训练并不能确定连接权重,⽽是要不断重复这个过程,直到满⾜终⽌判断条件,⽽这个指标就是Hopfield神经⽹络的能量函数E。
当输⼊模式与输出模式⼀致时,能量函数E的结果是0。
根据前⾯定义的状态变化规则改变⽹络状态时,上式中定义的能量函数E总是⾮递增的,即随时间的不断增加⽽逐渐减⼩,直到⽹络达到稳定状态为⽌。
Hopfield⽹络的优点单元之间的连接权重对称 (wij = wji)每个单元没有到⾃⾝的连接 (wii = 0)单元的状态采⽤随机异步更新⽅式,每次只有⼀个单元改变状态n个⼆值单元做成的⼆值神经⽹络,每个单元的输出只能是0或1的两个值问题当需要记忆的模式之间较为相似,或者需要记忆的模式太多时,Hopfield神经⽹络就不能正确地辨别模式。
智能控制复习题
![智能控制复习题](https://img.taocdn.com/s3/m/bf2c1de4db38376baf1ffc4ffe4733687e21fc24.png)
智能控制复习第一章 选择题1. 智能控制的概念首次由着名学者 D 提出A 蔡自兴BCD 傅京孙2.经常作为智能控制典型研究对象的是 DA 智能决策系统B 智能故障诊断系统C 智能制造系统D 智能机器人3.解决自动控制面临问题的一条有效途径就是,把人工智能等技术用入自动控制系统中, 其核心是 BA 控制算法B 控制器智能化C 控制结构D 控制系统仿真4.智能自动化开发与应用应当面向 CA 生产系统B 管理系统C 复杂系统D 线性系统 5.不属于...智能控制是 DA 神经网络控制B 专家控制C 模糊控制D 确定性反馈控制6.以下不属于智能控制主要特点的是 DA 具有自适应能力B 具有自组织能力C 具有分层递阶组织结构D 具有反馈结构7.以下不属于智能控制的是 DA 神经网络控制B 专家控制C 模糊控制D 自校正调节器第二章 选择题1. 地质探矿专家系统常使用的知识表示方法为 DA 语义网络B 框架表示C 剧本表示D 产生式规则2.自然语言问答专家系统使用的知识表示方法为 BA 框架表示B 语义网络C 剧本表示D 产生式规则3. 专家系统中的自动推理是基于 C 的推理;A 直觉B 逻辑C 知识D 预测4.适合专家控制系统的是 DA 雷达故障诊断系统B 军事冲突预测系统C 聋哑人语言训练系统D 机车低恒速运行系统5.直接式专家控制通常由 B 组成A 控制规则集、知识库、推理机和传感器B 信息获取与处理、知识库、控制规则集和推理机C 信息获取与处理、知识库、推理机和传感器D 信息获取与处理、控制规则集、推理机和传感器6.专家控制可以称作基于 D 的控制;A 直觉B 逻辑C 预测D 知识7.直接式专家控制通常由 C 组成A 信息获取与处理、知识库、推理机构和传感器B 信息获取与处理、知识库、控制规则集和传感器C 信息获取与处理、知识库、推理机构和控制规则集D 信息获取与处理、控制规则集、推理机构和传感器8.专家系统的核心部分是 BA 人机接口、过程接口、推理机构B 知识库、数据库、推理机构C 人机接口、知识获取结构、推理机构 D知识库、数据库、人机接口9.以下不属于专家系统知识表示法的是 CA 彩色Petri网络B 语义知识表示C 样本分类D 产生式规则10.产生式系统的推理方式不包括 CA 正向推理B 反向推理C 简单推理D 双向推理11.肺病诊断专家系统使用的知识表示方法为 DA 语义网络B 产生式规则C 剧本表示D 框架表示12.以下不属于专家系统组成部分的是 AA 专家B 数据库C 知识库D 解释部分13.黑板专家控制系统的组成有 CA 黑板、数据库、调度器B 数据库、知识源、调度器C黑板、知识源、调度器 D 黑板、规则库、调度器14.建立专家系统,最艰难“瓶颈”的任务是 BA 知识表示B 知识获取C 知识应用D 知识推理15.在专家系统中, D 是专家系统与用户间的人-机接口A 知识库B 数据库C 推理机D 解释机构16.产生式系统包含的基本组成 AA 知识库、规则库和数据库B 规则库、模型库和控制器C 知识库、规则库和模型库D 规则库、数据库和控制器第三章模糊控制1. 某模糊控制器输出信息的解模糊判决公式为101niU i i nUii u u u u ,该解模糊方法为 DA 最大隶属度法B 取中位数法C 隶属度限幅元素平均法D 重心法2.在温度模糊控制系统中,二维模糊控制器的输入是 AA 温度的误差e 和温度误差变化量d eB 控制加热装置的电压的误差e 和电压误差变化量deC 控制加热装置的电压的误差e 和温度误差变化量d eD 控制加热装置的电压的误差e 和温度误差变化量de3.下列概念中不能用普通集合表示的是 DA 控制系统B 低于给定温度C 工程师D 压力不足4.以下应采用模糊集合描述的是 BA 高三男生B 年轻C 教师D 社会5.总结手动控制策略,得出一组由模糊条件语句构成的控制规则,据此可建立DA 输入变量赋值表B 输出变量赋值表C 模糊控制器查询表D 模糊控制规则表6.某模糊控制器的语言变量选为实际温度与给定温度之差即误差e 、误差变化率△e ;以及加热装置中可控硅导通角的变化量u ,故该模糊控制器为AA 双输入一单输出B 单输出一单输入C 双输入一双输出D 单输出一双输入 7.在论域U 中,模糊集合A 的支集只包含一个点u ,且A u =1,则A 称为 BA 截集B 模糊单点C 核D 支集8.在模糊控制中,隶属度 CA 不能是1或0B 根据对象的数学模型确定C 反映元素属于某模糊集合的程度D 只能取连续值9.模糊集合中,A u =对应的元素u 称为 AA 交叉点B 模糊单点C 核D 支集10.在模糊控制器的推理输出结果中,取其隶属度最大的元素作为精确值,去执行控制的方法称为 BA 重心法B 最大隶属度法C 系数加权平均法D 中位数法11.若模糊集合A 表示模糊概念“老”,其隶属度函数为A ,则模糊概念“略 微老”相当于A λμ,其中 λ为, CA 2B 4C 1/2D 1/412. 若对误差、误差变化率论域X 、Y 中元素的全部组合计算出相应的控制量变化ij u ,可写成矩阵ij n m u ,一般将此矩阵制成 CA 输入变量赋值表B 输出变量赋值表C 模糊控制器查询表D 模糊控制规则表13.在温度模糊控制系统中,二维模糊控制器的输出是 CA 温度的误差eB 温度误差变化量d eC 控制加热装置的电压UD 控制加热装置的电压的误差e 和温度误差变化量d e14.以下的集合运算性质中,模糊集合不满足的运算性质 DA 交换律B 结合律C 分配律D 互补律15. 以下属于模糊集合表示方法的是 BA 重心法B 扎德法C 系数加权平均法D 中位数法16.在选定模糊控制器的语言变量及各个变量所取的语言值后,可分别为各语言变量建立各自的 CA 控制规则表B 控制变量赋值表C 语言变量赋值表D 论域量化表17.模糊控制方法是基于 DA 模型控制B 递推的控制C 学习的控制D 专家知识和经验的控制18. 以下应采用模糊集合描述的是 BA 学生B 大苹果C 老师D 演员19.若模糊集合A 表示模糊概念“老”,其隶属度函数为A ,则模糊概念“极老”相当于A λμ,其中 λ为, DA 2B 4C 1/2D 1/420.某液位模糊控制系统的语言变量选为实际温度与给定温度之差即误差e 以及加热装置中可控硅导通角的变化量u ,但不考虑温度误差变化率△e ,该模糊控制器应为 BA 双输入一单输出B 单输入一单输出C 双输入一双输出D 单输入一双输出21.模糊隶属度函数曲线的形状可以为 CA 椭圆形B 平行四边形C 梯形D 圆形22.在选定模糊控制器的语言变量及各个变量所取的语言值后,可分别为各语言变量建立各自的 CA 控制规则表B 控制查询表C 语言变量赋值表D 基本论域量化表23.某模糊控制器的语言变量选为实际水位与给定水位之差即误差e ,以及调节阀门开度的变化量u ,故该模糊控制器为 B .A. 单输出—双输入 B .单输入—单输出C. 双输入—双输出D. 双输入—单输出24.某一隶属度函数曲线的形状可以选为 CA 椭圆形B 圆形C 三角形D 正方形25. 模糊控制器的术语“正中”,可用符合 D 表示A PB B NMC ZED PM26. 以下关于模糊关系的正确说法是 BA 模糊关系是普通关系的一个特例B 模糊关系描述元素之间的关联程度C 模糊关系中的元素都是整数D 模糊关系矩阵一定是方阵27.模糊控制以模糊集合为基础,最早提出模糊集合的学者是 AB MamdaniC TakagiD Sugeno28.在模糊控制器的推理输出结果中,取其隶属度函数曲线与横坐标围成面积的重心作为输出值,去执行控制的方法称为 AA 重心法B 最大隶属度法C 系数加权平均法D 中位数法 29.下列概念中不能..用普通集合表示的是 DA 控制系统B 压力不足C 机电工程师D 低于给定温度30.在模糊控制中,隶属度 CA 不能是1或0B 是根据对象的数学模型确定的C 反映元素属于某模糊集合的程度D 只能取连续值31.最适合作为语言变量的值是 AA 速度B 天气C 特别D 表演32.若模糊集合A 表示模糊概念“老”,其隶属度函数为A ,则模糊概念“非常老”相当于A λμ,其中 λ为,C A 2B 4C 1/2D 1/4第4 章 神经网络1. BP 网络使用的学习规则是 BA 相关规则B 纠错规则C 竞争规则D 模拟退火算法2.BP 神经网络所不具备的功能是 CA 自适应功能B 泛化功能C 优化功能D 非线性映射功能3. 由于各神经元之间的突触连接强度和极性有所不同并可进行调整,因此人脑才具有 A 的功能;A 学习和存储信息B 输入输出C 联想D 信息整合4. 采用单层拓扑结构的神经网络是 AA Hopfield 网络B 生物神经网络C BP 网络D 小脑模型网络5. 单层神经网络,有两个输入,两个输出,它们之间的连接权有 BA 6个B 4个C 2个D 8个6. 神经网络直接逆控制是一种 B 控制;A 反馈B 前馈C 串级D 混合7.误差反向传播算法属于 B 学习规则A 无导师B 有导师C 死记忆D 混合 8.以下不属于...人工神经网络主要特点的是 BA 便于用超大规模集成电路或光学集成电路系统实现B 网络中含有神经元C 信息分布在神经元的连接上D 可以逼近任意非线性系统9.最适宜用于联想记忆的神经网络 DA BP 神经网络B 感知器网络C 自适应线性神经网络D Hopfield 网络10.PID 神经网络控制中,控制器使用了 CA CMAC 神经网络B Hopfield 网络C PID 神经网络 D 感知器网络11.下面哪个方程最好描述了Hebb 学习规则 AA 两个神经元同时兴奋或同时抑制时,它们之间连接权的强度增强B 两个神经元同时兴奋或同时抑制时,它们之间连接权的强度减弱C 两个神经元,一个兴奋,另一个抑制,它们之间连接权的强度增强D 两个神经元,一个兴奋,另一个抑制,它们之间连接权的强度不变12.在神经网络内模控制结构中,神经网络辨识器用来获得 AA 被控对象的正模型B 被控刘象的逆模型C 线性滤波器D 控制器13.单层神经网络,有三个输入,三个输出,它们之间的连接权有 BA 6个B 9个C 16个D 25个 14.多层前向神经网络与单层感知器相比较,下面 C 不是..多层网络所特有的特点A 采用误差反向传播算法B 含有一层或多层的隐层神经元C 神经元的数目可达到很多D 隐层激活函数采用可微非线性函数15.单层感知器网络可以 BA 解决异或问题B 实现样本分类C 进行优化计算D 实现函数逼近16.能够用于无导师学习的神经网络模型是 AA Hopfield 网络B CMAC 神经网络C BP 神经网络D 自适应线性神经网络17.连续型Hopfield 网络 BA 是前馈神经网络B 是单层反馈型非线性神经网络C 具有函数逼近问题D 是多层反馈型非线性神经网络18.离散Hopfield 网络 CA 是多层反馈网络B 是多层反馈网络C 具有联想记忆功能D 具有函数逼近功能19.神经网络PID 控制是一种 BA 前馈控制B 反馈控制C 开环控制D 混合控制20.单层感知器网络可以 DA 解决异或问题B 实现函数逼近C 进行优化计算D 实现样本分类21.连续型Hopfield 网络的神经元转移函数采用 AA .对称型Sigmoid 函数B .对称型阶跃函数C .分段线性转移函数D .阈值型转移函数22.在间接神经网络模型参考自适应控制中, BA 需要一个神经网络控制器B 需要一个神经网络控制器及一个神经网络辨识器C 需要两个神经网络控制器及一个神经网络辨识器D 需要一个神经网络控制器及两个个神经网络辨识器23.生物神经元的突触连接相当于神经元之间的 DA 输入连接B 输出连接C 绝缘D 输入输出接口24. 在间接神经网络模型参考自适应控制结构中,神经网络辨识器用来获得 AA 被控对象的正模型B 被控刘象的逆模型C 线性滤波器D 控制器25.生物神经元的组成包括细胞体、轴突、树突和 CA 轴突末梢B 细胞核C 突触D 细胞膜26.以下不属于人工神经网络主要特点的是 BA 信息并行处理B 网络中含有神经元C 信息分布在神经元的连接上D 可以逼近任意非线性系统27.一般认为,人工神经网络最适用于 BA 线性系统B 非线性系统C 多输入多输出系统D 多变量系统28.在直接神经网络模型参考自适应控制中, AA 需要一个神经网络控制器B 需要一个神经网络控制器及一个神经网络辨识器C 需要两个神经网络控制器及一个神经网络辨识器D 需要一个神经网络控制器及两个个神经网络辨识器29.离散型Hopfield网络的神经元转移函数采用 D A.对称型Sigmoid函数 B.对称型阶跃函数C.分段线性转移函数 D.阈值型转移函数30.采用单层拓扑反馈结构的神经网络是 AA Hopfield网络B BP网络C PID神经网络D 小脑模型神经网络31.基于多层前向神经网络的PID控制系统结构有 D 内含神经网络的环节;A 一个B 四个C 三个D 两个32.最早提出人工神经网络模型的学者是 BA HebbB McCulloch和 PittsC RosenblattD Hopfield33.神经网络内模控制具有 CA 直接逆控制的优点和缺点B 直接逆控制的优点C 直接逆控制的优点,但无直接逆控制的缺点D 直接逆控制的缺点第5章遗传算法1.最早提出遗传算法概念的学者是 AD2.遗传算法的基本操作顺序是 CA 计算适配度、交叉、变异、选择 B计算适配度、交叉、选择、变异C计算适配度、选择、交叉、变异 D 计算适配度、选择、交叉、变异3.能够往种群中引入新的遗传信息是以下哪种遗传算法的操作 DA 交叉B 复制C 优选D 变异4.哪一种说法是对遗传算法中复制操作的描述 AA 个体串按照它们的适配值进行复制B 随机改变个体串的适配度函数值C 随机改变一些串中的一小部分D 为权值随机产生小的初始值5.遗传算法中,关于变异操作的最好叙述是 AA 随机改变一些“串”中的一小部分B 随机挑选新“串”组成下一代C 为权随机产生新的初始值D 从两个“串”中随机组合遗传信息6.哪种遗传算法的操作,能够从种群中淘汰适应度值小的个体 CA 交叉B 优选C 复制D 变异7.遗传算法将问题的求解表示成“染色体”,“染色体”实际上是 DA 基因B 适应度函数C 种群D 用编码表示的字符串8.哪种遗传算法的操作,可以从父代双亲中继承部分遗传信息,传给子代 AA 交叉B 变异C 复制D 共享9.下面哪种类型的学习能够用于移动机器人的路径规划 DA 多层前向神经网络B PID神经网络C 自适应线性神经网络D 遗传算法10.轮盘赌技术可用于 BA 选择最好的“染色体”B 随机选择“染色体”C 交叉所选择的“染色体”D 变异“染色体”的适应度11.遗传算法将问题的求解表示成“染色体”,“染色体”实际上是 CA 种群B 存在于细胞核中能被碱性染料染色的物质C 用编码表示的字符串D 各种数值12.在遗传算法中,复制操作可以通过 B 的方法来实现 A 解析B 随机C 交叉匹配D 变异判断题第一章绪论1.与传统控制相比较,智能控制方法可以较好地解决非线性系统的控制问题; √2.智能控制系统采用分层递阶的组织结构,其协调程度越高,所体现的智能也越高; √3.分层递阶智能控制按照自下而上精确程度渐减、智能程度渐增的原则进行功能分配; √4.智能系统是指具备一定智能行为的系统; √5.智能控制的不确定性的模型包括两类,一类是模型未知或知之甚少;另一类是模型的结构和参数可能在很大范围内变化; √第二章专家系统1.在专家系统中,数据库是领域知识的存储器,是系统的核心部分之一;√2.在设计专家系统时,知识工程师的任务是提供解决问题的知识和经验;×3.数据库和推理机是专家系统的核心部分;应为知识库×4.按照执行任务分类,专家系统有解释型、预测型、诊断型、调试型、维修型等多种类型; √5.专家系统实质上是一种数学计算系统; ×6.在设计专家系统时,知识工程师的任务是模仿人类专家,运用他们解决问题的知识和经验; √第三章模糊控制1.模糊控制只是在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,还需要建立数学模型; ×2.在模糊控制中,为把输入的确定量模糊化,需要建立模糊控制规则表; 应该是确定模糊集合×3.在模糊集合的向量表示法中,隶属度为0的项必须用0代替而不能舍弃;√4.从模糊控制查询表中得到控制量的相应元素后,乘以比例因子即为控制量的变化值; √5.与传统控制相比,智能模糊控制所建立的数学模型因具有灵活性和应变性,因而能胜任处理复杂任务及不确定性问题的要求; ×6.在模糊语言变量中,语义规则用于给出模糊集合的隶属函数; √7.模糊控制对被控对象参数的变化不敏感,可用它解决非线性、时变、时滞系统的控制; √8.普通关系是模糊关系的推广,它描述元素之间的关联程度; ×9.模糊控制就是不精确的控制; ×10.在模糊控制中,为把输入的确定量模糊化,需要建立语言变量赋值表;√11.模糊控制规则是将人工经验或操作策略总结而成的一组模糊条件语句√12.通常,模糊控制器的输入、输出语言变量分别取为控制系统的误差和误差变化率; ×13.模糊控制器的输入语言变量一般可取控制系统的误差及其变化率;√14.模糊控制只是在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,还需要建立数学模型; ×15.T-S模糊控制系统采用系统状态变化量或输入变量的函数作为IF-THEN模糊规则的后件,不可以描述被控对象的动态模型;×16.Mamdani型模糊控制器,通过模糊推理得到的结果是精确量; ×17.在模糊控制中,隶属度是根据对象的数学模型来确定的; ×18.模糊控制中,语言变量的值可用“负大、负小、零”等表示; √19.模糊控制在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,不需要建立数学模型; √第四章神经网络1.可以充分逼近任意复杂的非线性函数关系是神经网络的特点之一;√2.一般情况下,神经网络系统模型的并联结构可以保证系统辨识收敛;×3.反馈型神经网络中,每个神经元都能接收所有神经元输出的反馈信息;√4.运算效率高,收敛速度快是BP神经网络的主要特点之一; ×5. 神经元的各种不同数学模型的主要区别在于采用了不同的转移函数,从而使神经元具有不同的信息处理特性; √6.离散Hopfield网络的两种工作方式是同步和异步工作方式; √7.神经网络已在多种控制结构中得到应用,如PID控制、内模控制、直接逆控制等; √8.一般情况下,神经网络系统模型的串-并联型结构不利于保证系统辨识模型的稳定性; ×9.BP神经网络是一种多层全互连型结构的网络; ×10.离散型单层感知器的转移函数一般采用阈值符号函数; √ 11.Hopfield网络的吸引子是指网络的稳定状态; √12.两关节机械手的控制可应用小脑神经网络直接逆模型控制; √13.神经网络用于系统正模型辨识的结构只有串联结构一种; ×14.连续型Hopfield网络是多层前馈型神经网络,每一节点的输出均反馈至节点的输入; ×第五章遗传算法1.遗传算法的复制操作可以通过随机方法来实现,可使用计算机,也可使用轮盘赌的转盘; √2.在遗传算法中,初始种群的生成不能用随机的方法产生; ×3.遗传算法的复制操作有严格的程序,不能通过随机方法来实现;×4.遗传算法具有进化计算的所有特征,其主要用途是数值计算; ×5.遗传算法中,适配度大的个体有更多机会被复制到下一代; √ 6.在遗传算法中,初始种群的生成不能用随机的方法产生; ×名词解释第一章1. 智能控制有知识的“行为舵手”,它把知识和反馈结合起来,形成感知-交互集、以目标为导向的控制系统;第二章1. 专家系统一种包含知识和推理的人工智能的计算机程序系统,这些程序软件具有相当于某个专门领域专家的知识和经验水平,同时具有处理该领域问题的能力2. 语义网络通过概念及相互间语义关系,图解表示知识网络;3. 专家控制系统应用专家系统的概念、原理和技术,模拟人类专家的控制知识和经验而建造的控制系统;第三章1. 模糊控制模糊控制是把人类专家对特定的被控对象或过程的控制策略总结成一系列的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程;它无需建立系统模型,是解决不确定系统的一种有效途径;2. 模糊系统一种基于知识或基于规则的系统;它的核心就是有IF-THEN 规则形成的知识库;3. 模糊集合论域U 上的模糊集A 用一个在区间0,1上取值的隶属度函数Au 来表示;4. 隶属度某元素属于模糊集合A 的程度称为隶属度,用隶属度函数Ax 描述;隶属度函数的值是闭区间0,1上的一个数,表示元素x 属于模糊集合A 的程度;5. 模糊关系X 与Y 直积 (){},|, X Y x y x X y Y ⨯=∈∈中一个模糊子集R ,称为从X 到Y 的模糊关系;第四章1.神经网络神经元互连组成的网络,从微观结构和功能上对人脑抽象、简化,是模拟人类智能的一条重要途径,反映人脑功能的若干特征,如并行处理、学习联想、分类等;2.小脑模型神经网络由局部调整、相互覆盖接收域的神经元组成,模拟人的小脑学习结构;是一种基于表格查询式输入输出多维非线性映射能力;3. Hopfield 神经网络全连接型反馈动态神经网络,分为离散型和连续型两种,网络达到稳定状态时,其能量函数达到最小;第五章1.变异操作模拟生物在自然遗传环境下由于各种偶然因素引起的基因突变,它以很小的概率随机改变遗传基因表示染色体的符号串的某一位的值;2.适应度函数遗传算法中某个个体对环境的适应程度,适应值函数可由目标函数变换而成;3.遗传算法建立在自然选择和群体遗传学机理基础上的随机迭代和进化,具有广泛适用性的搜索方法;简答题第一章1.智能控制的主要功能特点是什么;1多层递阶的组织结构2多模态控制3自学习能力4自适应能力5自组织能力2.智能控制的研究对象具备哪些特点3.不确定性的模型;高度的非线性;复杂的任务要求;4.与传统控制相比,智能控制的主要特点是什么1处理复杂性、不确定性问题的能力;2描述系统的模型更为广泛;3具有学习、适应、组织的功能;4具有分层信息处理和决策机构;5控制其与对象、环境没有明显的分离;5.智能控制有哪些主要类型(1)模糊控制(2)神经网络控制(3)专家控制(4)分层递阶智能控制第二章1.专家系统中,知识表示方法有哪些常用形式2.3.;1.设max max max,则比例因子K u= u max/n2.设计一个模糊控制器必须要解决哪三个关键问题1 设计模糊控制器要解决的第一个问题是如何把确定量转换为对应的模糊量;2 根据操作者的控制经验制定模糊控制规则,并执行模糊逻辑推理,以得到一个输出模糊集合,这一步称为模糊控制规则形成和推理;3 需要为模糊输出量进行解模糊判决,实现控制;3.在模糊控制器的设计中,常用的模糊判决方法有哪些(1)最大隶属度法(2)加权平均法(3)重心法(4)取中位数法4.模糊控制中,描述语言变量常见的语言值有哪几种语言变量常见的语言值是负大NB、负中NM、负小NS、负零NO、正零PO、正小PS、正中PM、正大PB;。
人工神经网络
![人工神经网络](https://img.taocdn.com/s3/m/f4057dc6bb4cf7ec4afed03c.png)
生物神经元示意图
从神经元各组成部分的功能来看,信息的处理与 传递主要发生在突触附近。当神经元细胞体通 过轴突传到突触前膜的脉冲幅度达到一定强度, 即超过其阈值电位后,突触前膜将向突触间隙 释放神经传递的化学物质。 突触有两种:兴奋性突触和抑制性突触。前者产 生正突触后电位,后者产生负突触后电位。
感知器权值参数的设计目的,就是根据学习法 则设计一条W*P+b=0的轨迹,使其对输入矢 量能够达到期望位置的划分。
以输入矢量r=2为例,对于选定的权值w1、w2和b, 可以在以p1和p2分别作为横、纵坐标的输入平面内画出 W*P+b=w1 p1十w2 p2十b=0的轨迹,它是一条直线, 此直线上的及其线以上部分的所有p1、p2值均使w1 p1 十w2 p2十b>0,这些点若通过由w1、w2和b构成的感知 器则使其输出为1;该直线以下部分的点则使感知器的 输出为0。 所以当采用感知器对不同的输入矢量进行期望输出 为0或1的分类时,其问题可转化为:对于已知输入矢 量在输入空间形成的不同点的位置,设计感知器的权 值W和b,将由W*P+b=0的直线放置在适当的位置上 使输入矢量按期望输出值进行上下分类。
3.1.2 人脑神经网络系统
图3—2脑神经系统的主要组成部分
人脑神经网络信息处理的特点 1.分布存储与冗余性 2.并行处理 3.信息处理与存储合一 4.可塑性与自组织性 5.鲁棒性
人工神经网络
♦ 神经网络直观理解
神经网络是一个并行和分布式的信息 处理网络结构,它一般由许多个神经元 组成,每个神经元只有一个输出,它可 以连接到很多其他的神经元,每个神经 元输入有多个连接通道,每个连接通道 对应于一个连接权系数。
人工神经元模型 归纳一下生物神经元传递信息的过程: 生物神经元是一个多输入、单输出单元。 常用的人工神经元模型可用图模拟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用于联想记忆的几种神经网络
[摘要]神经网络通过模拟人的神经系统处理信息的原理,使机器具有类似信息处理的能力。
利用多元的Hopfield网络多吸引子和吸引城,可实现信息的联想记忆。
目前,适用于联想记忆的网络有3大类,基本的hopfield网络,加入混沌的联想记忆网络以及加入模糊的联想记忆网络,本文介绍了现有适用于联想记忆的几种神经网络的运行原理和联想记忆性能,以及其中的两大类联想记忆网络和对它们的改进,为人们研究神经网络提供了便利。
[关键词]联想记忆;神经网络;混沌
近年来神经网络受到了生物,物理,数学,电子工程等学科专家的广泛关注,神经网络正发展成一门交叉学科。
联想记忆是人脑的一种重要形式,研究联想记忆神经网络。
一方便可为进一步探索人脑的记忆奥秘提供启示。
另一方面也为神经网络模型在信息处理,模式识别等领域的研究打下基础。
所以,对联想记忆神经网路的研究具有很重要的意义和价值。
1基于外积法的学习算法
自从Hopfield提出以外积学习规则为基础的联想记忆网络之后,人们为了改善网络的联想性能,提高网络的记忆容量,减少伪模式数目,已提出了不少的改进措施,例如,投影法,正交化法,外积取等原则以及优化学习算法等等。
下面本文对此进行理论和实例用外积法确定权值的学习方法的在样本差异较大时具有较好的效果,经证明得出等式(1)的要求。
但是用外积法学习的网络虽然构造简单,但是存储器的冗余吸引子是一个很严重的问题。
2 混沌神经网络在联想记忆中的应用
本文提出了一种改进的由混沌神经元组成的人工神经网络模型,该模型从拓扑结构上看类似离散Hopfield神经网络,主旨是进一步研究类似离散Hopfield 神经网络的混沌神经元系统及其在信息处理中的应用,主要是在联想记忆中的应用。
2.1 Ishii混沌神经元网络
利用对称映象的全局耦合一维映象模型(s-GCM)定义如下
式(2)中的x:(n)表示第1个神经元在离散时间n(步数)时的状态值,每个神经元的动力学行为完全出反对称立方映象表示,它把(-1,1)区间映象于自身。
当a=3.4时该神经元处于混沌状态。
事实上,当a∈[3,4,4]时为混沌状态,a>2时。
f(x)在[-1,1]上有2个极值点,因而最多它有两个吸引子的周期轨道。
S-GCM 构造的联想记忆系统流程如下:
2.2 Inoue等的混沌神经网络模型
Inoue混沌神经元网络由若干个处理单元(神经元)组成,每个处理单元由两个彼此耦合的混沌振荡子组成。
耦合的混沌振荡子的同步和异步分别对应神经元的激活和抑制两个状态,虽然混沌是由简单的确定性规则产生的,但它包含规则性和不规则性两个方面。
耦合的混沌振荡于的同步来自规则性,而不规则性可产生随机耦合振荡子的运动方程由离散一维映象函数表示,为简化起见,两个混沌振荡子均采用logistic映象。
这里ε是同步的判别参数x(n)和y(n)是两个振荡子的状态变量,由前一迭代步时的混沌映象迭代结果和耦合系数ki(n)决定,当u(n)=1表明两个振荡子彼此完全同步,一旦同步出现。
即使耦合系数Di(n)变小时神经元也总是处于相同的状态。
各神经元彼此间通过耦合系数wii全互联起来神经元的状态通过连接煤介对耦合系数Di(n)产生影响。
对设有需存储的T个模式状态集合{x,n=1,…,T},xpi是第p存储模式的第i个分量,lnoue等提出的混沌神经计算机方法。
对存储T个模式的对称的自联想矩阵定义如下
其中,wii=O,网络的阶数对应于节点数,对N阶混沌神经元网络(w,θ)来说,w是nXn对称矩阵,其中wij为附加边i,j的权;θ是-n维向量,θi表示节点i 的阈值。
每个神经元由两个彼此耦合的混沌振荡子组成。
耦合振荡子的运动方程由离散的一维迭代映象表示,分别表示为f(x)(第一映象)和g(z)(第二映象)。
其相互耦合关系及迭代演化过程推导如下:
由此建立的层次分析模型后,我们就可以通过层次分析法来计算出同层次各
个指标对上层指标的重要程度的权重值,为我们后续的回归分析做准备。
这里Di(n)是第i个神经元在时间n时的两个振荡子之间的耦合系数xi(n)和y(n)分别
是第i个神经元在时间n时第一个振荡子和第二个振荡子的状态变量。
f(x),8(y)选混沌动力学基本的Logistic映射:
f(x)=ax(1-x),0<a≤4
B(y)=by(1-y),0<b≤4
ε是同步的临界参数,当ε=0且a=b时,Ui(n)=1(激活)表明两个振荡于完全同步。
一旦完全同步,即使Di(n)变得很小,神经元始终处于相同状态,所以选择a≠b以避免完全同步。
3.改进用于联想记忆的混沌神经元网络
在分析Ishii耦合混沌系统中,发现其主要问题是联想回忆速度较慢,而Inoue 混沌神经元计算机联想记忆成功率较低,因此融合了lshii耦合混沌系统中联想记忆方法和Inoue混沌神经元计算机方法,一方面对混沌神经元的离散一维映象采用反对称立方映象,另一方面对自联想矩阵定义进行改进,提出了一种新的自联想矩阵定义方法。
混沌神经元计算机系绕在拓扑结构上类似于离散Hopfield 神经网络,每个神经元仍然由两个彼此耦合的混沌振荡于组成。
耦合振荡子的运动方程由离散的一维迭代映象表示,分别表示为f(x)(第映象)和g(x)(第二映象),其相互耦合关系及迭代演化过程同Inoue的公式(8)、(9)。
这里DI(n)是第i个神经元在时间n时的两个振荡子之间的耦合系数xi。
(n)和y1(n)分别是第,个神经元在时间n时第一个振荡子和第二个振荡子的状态变量。
神经元在时间n时刻的状态表示为u(n),定义同公式(5)和(6)。
各神经元彼此间通过耦合系数wij全互联起来。
wij和Di(n)的关系在联想记忆神经元网络系统中具有重要的作用,其相互关系可以表示如下:
4,结论
稳定性是神经网络记忆能力的重要因素。
目前可用于联想记忆的网络大多都是对Hopfield网络结构的改进,包括用于双向联想记忆的BAM网络。
加入混沌虽然可以在一定程度上减少冗余吸引子的个数,提高了神经网络的联想成功率和回忆速度,但容易产生反模式问题。