2017年山东高考理科综合真题及答案
2017年高考山东卷理数试题解析(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B );如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B I =(A )(1,2) (B )(1,2] (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<I I ,选D.【考点】 1.集合的运算;2.函数的定义域;3.简单不等式的解法【点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解.(2)已知a ∈R ,i 是虚数单位.若4z a z z =⋅=,则a =(A )1或-1 (B(C )(D【答案】A【解析】由4z a z z =⋅=得234a +=,所以1a =±,故选A. 【考点】1.复数的概念;2.复数的运算【点睛】复数i(,)a b a b +∈R 的共轭复数是i(,)a b a b -∈R ,据此结合已知条件,求得a 的值. (3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A )∧p q (B )⌝∧p q (C )⌝∧p q (D )⌝⌝∧p q 【答案】B【解析】由011x x >⇒+>,所以ln(1)0x +>恒成立,故p 为真命题; 令1a =,2b =-,验证可知,命题q 为假.故选A. 【考点】常用逻辑用语【点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非真值表,进一步作出判断.(4)已知x,y 满足约束条件3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则z=x+2y 的最大值是(A )0 (B )2 (C )5 (D )6 【答案】C【解析】约束条件3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩表示的可行域如图中阴影部分所示,目标函数z=x+2y ,即122z y x =-+,平移直线122z y x =-+,可知当直线122zy x =-+经过直线350x y ++=与3x =-的交点(3,4)-时,2z x y =+取得最大值,为max 3245z =-+⨯=,选C.【考点】简单的线性规划【点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225ii x==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 【答案】C【解析】由已知得22.5,160,x y ==则$160422.570,a=-⨯=当24x =时,ˆ42470y =⨯+166=,选C.【考点】线性相关与线性回归方程的求解与应用【点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r 的公式求出r ,然后根据r 的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.(6)执行两次下图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0 【答案】D【解析】第一次7x =,227<,3b =,237>,1a =;第二次9x =,229<,3b =,239=,0a =,故选D. 【考点】程序框图【点睛】识别程序框图和完善程序框图是高考的重点和热点.解决这类问题:首先,要明确程序框图中的顺序结构、条件结构和循环结构;第二,要理解程序框图解决的实际问题;第三,按照题目的要求完成解答.对程序框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景. (7)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴<+>=12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B. 【考点】1.指数函数与对数函数的性质;2.基本不等式【点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.(8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.学/科网则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】12542C C 5989=⨯ .故选C.【考点】古典概型【点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题. (9)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是(A )2a b = (B )2b a = (C )2A B = (D )2B A = 【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A. 【考点】1.三角函数的和差角公式;2.正弦定理【点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m的取值范围是(A )(])0,1⎡+∞⎣U (B )(][)0,13,+∞U(C )()⎡+∞⎣U (D )([)3,+∞U【答案】B【解析】 若m =,则)[]21,0,1y x =-∈的值域为[]0,1;[]0,1y x =∈的值域为+,所以两个函数的图象无交点,故排除C 、D ;若3m =,则()1,4是两个函数的公共点.故选B.【考点】函数的图象、函数与方程及函数性质的综合应用 【点睛】已知函数有零点求参数的取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围; (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = .【答案】4【解析】()13n x +的展开式的通项公式为1C (3)C 3r r r r r r n n T x x +==⋅,令2r =,得22C 354n ⋅=,解得4n =.【考点】二项式定理【点睛】根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.(12)已知12,e e 12-e 与12λ+e e 的夹角为60︒,则实数λ的值是 .【答案】3【解析】)()221212112122-⋅+=⋅-⋅-=λλλe e e e e e e e ,122-===e ,12+===λe e所以22321cos601λλλ-=⨯+⨯=+o ,解得:3λ=. 【考点】1.平面向量的数量积;2.平面向量的夹角;3.单位向量 【点睛】1.平面向量a 与b 的数量积为||||cos θ⋅=a b a b ,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒.2.由向量的数量积的性质有||=⋅a a a ,cos ||||θ⋅=a ba b ,0⋅=⇔⊥a b a b ,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.3.本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立关于λ的方程求解. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .【答案】π22+【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+.【考点】1.三视图;2.几何体的体积【点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.(14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】22y x =±【解析】||||4222A B A B p p pAF BF y y y y p +=+++=⨯⇒+=. 又22222222221202x y a y pb y a b a bx py⎧+=⎪⇒-+=⎨⎪=⎩,所以222A B pb y y p a +==a ⇒=,所以双曲线的渐近线方程为y x =. 【考点】1.双曲线的几何性质;2.抛物线的定义及其几何性质【点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都与椭圆的有关问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.2.凡涉及抛物线上的点到焦点的距离,一般运用定义转化为到准线的距离处理.(15)若函数e ()xf x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -= ②()3x f x -=③()3f x x = ④()22f x x =+【答案】①④【解析】①e e ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2xf x -=具有M 性质; ②e e ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质;③3e ()e xxf x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)xxxg x x x x x '=⋅+⋅=+,∴当3x >-时,()0g x '>,当3x <-时,()0g x '<,∴3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故()3f x x =不具有M 性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,∴2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有M 性质.【考点】1.新定义问题;2.利用导数研究函数的单调性 【点睛】1.本题考查新定义问题,属于创新题,符合新高考的动向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤: (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f (x )在(a ,b )上的单调性,求参数范围的问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设函数ππ()sin()sin()62f x x x ωω=-+-,其中03ω<<.已知π()06f =. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数()y g x =的图象,求()g x 在π3π[,]44-上的最小值.【答案】(Ⅰ)2ω=.(Ⅱ)最小值为32-.【解析】(1)因为()sin sin 62f x x x ωωππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,所以()1cos cos 2f x x x x ωωω=--3cos 2x x ωω=-1sin 2x x ωω⎫==⎪⎪⎭sin 3x ωπ⎫-⎪⎭.由题设知06f π⎛⎫= ⎪⎝⎭,所以63k ωππ-=π,k ∈Z . 故62k ω=+,k ∈Z ,又03ω<<,所以2ω=.(2)由(1)得()23f x x π⎛⎫=- ⎪⎝⎭所以()4312g x x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭.因为3,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以2,1233x πππ⎡⎤-∈-⎢⎥⎣⎦,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-.【考点】1.两角和与差的三角函数;2.三角函数图象的变换与性质【点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽略设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等. (17)(本小题满分12分)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是»DF的中点. (Ⅰ)设P 是»CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =时,求二面角E AG C --的大小.【答案】(Ⅰ)30CBP ∠=︒.(Ⅱ)60︒. 【解析】(Ⅰ)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,AB AP A =I ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BE BP ⊥,又120EBC ∠=︒, 因此30CBP ∠=︒ (Ⅱ)解法一:取»EC的中点H ,连接EH ,GH ,CH . 因为120EBC ∠=︒, 所以四边形BEHC 为菱形,所以223213AE GE AC GC ===+取AG 中点M ,连接EM ,CM ,EC . 则EM AG ⊥,CM AG ⊥, 所以EMC ∠为所求二面角的平面角.又1AM =,所以13123EM CM ==-=在BEC △中,由于120EBC ∠=︒,由余弦定理得22222222cos12012EC =+-⨯⨯⨯︒=, 所以23EC =,因此EMC △为等边三角形, 故所求的角为60︒. 解法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A (2,0,0)E ,3,3)G ,(3,0)C -,故(2,0,3)AE =-u u u r ,3,0)AG =u u u r,(2,0,3)CG =u u u r,设111(,,)x y z =m 是平面AEG 的一个法向量.由00AE AG ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 可得1111230,30,x z x -=⎧⎪⎨+=⎪⎩ 取12z =,可得平面AEG 的一个法向量(3,3,2)m . 设222(,,)x y z =n 是平面ACG 的一个法向量.由00n AG n CG ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r 可得222230,230,x x z ⎧=⎪⎨+=⎪⎩ 取22z =-,可得平面ACG 的一个法向量(3,3,2)=-n . 所以1cos ,2m n ⋅==⋅m n m n .因此所求的角为60︒.【考点】1.垂直关系;2. 空间角的计算【点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.立体几何中角的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等. (18)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的概率;(II )用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 【答案】(I )5.(II)X 的分布列为 X 的数学期望是2EX =.【解析】(I )记接受甲种心理暗示的志愿者中包含1A 但不包含1B 的事件为M ,则485105().18C P M C ==(II)由题意知X 可取的值为:0,1,2,3,4.则565101(0),42C P X C ===41645105(1),21C C P X C ===326451010(2),21C C P X C ===23645105(3),21C C P X C ===14645101(4),42C C P X C ===因此X 的分布列为 X 的数学期望是0(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯= =151******** 2.4221212142⨯+⨯+⨯+⨯+⨯= 【考点】1.古典概型;2.随机变量的分布列与数学期望;3.超几何分布【点睛】本题主要考查古典概型的概率公式和超几何分布概率的计算公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数.本题属中等难度的题目,计算量不是很大,能很好地考查考生数学的应用意识、基本运算求解能力等. (19)(本小题满分12分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T.【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=【解析】(1)设数列{}n x 的公比为q ,由已知0q >.由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=,因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n n T b b b b =++++=L 10132325272(21)2(21)2n n n n ---⨯+⨯+⨯++-⨯++⨯L ① 又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯L ②-①②得121132(22 (2))(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯-所以(21)21.2n n n T -⨯+=【考点】1.等比数列的通项公式;2.等比数列的求和;3.错位相减法求和【点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等. (20)(本小题满分13分)已知函数()22cos f x x x =+,()e (cos sin 22)xg x x x x =-+-,其中e 2.71828=L 是自然对数的底数.(Ⅰ)求曲线()y f x =在点()()π,πf 处的切线方程;(Ⅱ)令()()()()h x g x af x a =-∈R ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)见解析【解析】(Ⅰ)由题意()22f ππ=-,又()22sin f x x x '=-,所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即222y x ππ=--.(Ⅱ)由题意得2()(cos sin 22)(2cos )xh x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-,则()1cos 0m x x '=-≥,所以()m x 在R 上单调递增.因为(0)0,m =所以 当0x >时,()0,m x >当0x <时,()0m x <,(1)当0a ≤时,x e a -0>,当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取到极小值,极小值是 ()021h a =--;(2)当0a >时,()()()ln 2sin x ah x e e x x '=--,由 ()0h x '=得 1ln x a =,2=0x .①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;③当1a >时,ln 0a >,所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增;当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减;当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增.所以 当0x =时()h x 取到极大值,极大值是()021h a =--;当ln x a =时()h x 取到极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--,极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【考点】1.导数的几何意义;2.应用导数研究函数的单调性、极值;3.分类讨论思想【点睛】1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或复杂式子变形能力差.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等. (21)(本小题满分14分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(I )2212x y +=.(Ⅱ)SOT ∠的最大值为π3,取得最大值时直线l 的斜率为1k =.【解析】(1)由题意知 c e a ==,22c =,所以 a =1b =, 因此椭圆E 的方程为2212x y +=.(2)设()()1122,,,A xy B x y ,联立方程22112x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩得()22114210k x x +--=,由题意知0∆>,且121x x +=()12211221x x k =-+,所以121=-=AB x .由题意可知圆M 的半径r为123r AB==由题设知12k k ,所以21k =因此直线OC 的方程为1y. 联立方程22112x y y x⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC ==由题意可知1sin21SOT rOC r OCr∠==++,而1OCr == 令2112t k =+,则()11,0,1t t>∈,因此1OC r==, 当且仅当112t =,即2t =时等号成立,此时1k =,所以 1sin22SOT ∠…, 因此26SOT ∠π…,所以 SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为1k =. 【考点】1.椭圆的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质 【点睛】本题对考生的计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e 的关系,确定椭圆(圆锥曲线)的方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程得到的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题及解决问题的能力等.。
【高考真题】2017年山东省高考数学试卷(理科) 含答案解析
2017年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成(x n+1的区域的面积T n.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.2017年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=x i=22.5,=y i=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.=(3x)r=3r x r.【解答】解:(1+3x)n的展开式中通项公式:T r+1∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X01234PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna),(0,+∞)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a ﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【点评】本题考查了利用导数研究函数的单调性极值、方程的解法、不等式的解法、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于难题.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC 的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin=.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.【解答】解:(Ⅰ)由题意知,,解得a=,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△=>0.,.∴|AB|=.由题意可知圆M的半径r为r=.由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|=.由题意可知,sin=.而=.令t=,则t>1,∈(0,1),因此,=≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【点评】本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.。
2017山东高考真题数学理(含解析)
2017年普通高等学校招生全国统一考试(山东卷)(理科数学)第一部分(选择题共50分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,则AB=()A.B.C.D.2.若复数满足,其中i为虚数为单位,则().A.B.C.D.3.要得到函数的图像,只需要将函数的图像().A.向左平移个单位B.向右平移个单位C.向左平移个单位D向右平移个单位4.已知菱形的边长为,,则().A.B.C.D.5.不等式的解集是()A.B.C.D.6.已知x,y满足约束条件,若的最大值为,则().A.B.C.D.7.在梯形中,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.8.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间内的概率为()(附:若随机变量ξ服从正态分布N,则,A.B.C.D.9.一条光纤从点射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()A.或B..或C.或D.或10.设函数则满足的a取值范围是()A. B.C D.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.(观察下列各式:;;;;……照此规律,当时,_________.12.若“”是真命题,则实数m的最小值为 .13.执行右边的程序框图,输出的的值为_________14.已知函数的定义域和值域都是,则_________15.平面直角坐标系中,双曲线:(,b>0)的渐近线与抛物线,交于,若的垂心为C2的焦点,则的离心率为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)设(Ⅰ)求的单调区间;(Ⅱ)在锐角中,角的对边分别为若求面积的最大值.17.(本题满分12分)如图,在三棱台中,分别为的中点.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的角(锐角)的大小.18.(本小题满分12分)设数列的前n项和为.已知(I)求的通项公式;(II)若数列满足,求的前项和.19.(本小题满分12分)若是一个三位正整数,且的个位数字大于十位数字,十位数字大于百位数字,则称为“三位递增数”(如等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被整除,参加者得分;若能被整除,但不能被整除,得分;若能被整除,得分.(I)写出所有个位数字是的“三位递增数”;(II)若甲参加活动,求甲得分的分布列和数学期望.20.(本小题满分13分)平面直角坐标系中,已知椭圆C:的离心率为,左、右焦点分别是F1、F2.以为圆心以为半径的圆与以为圆心为半径的圆相交,且交点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆为椭圆上任意一点,过点P的直线交椭圆E于两点,射线交椭圆于点.(i)求的值(ii)求面积的最大值.21.(本小题满分4分)设函数,其中。
2017山东高考理综试题及答案
2017山东高考理综试题及答案本文将为您详细介绍2017年山东高考理综试题及答案,以供参考。
第一部分:物理试题及答案
1. 题目内容
(这里是第一道物理题题目的描述)
2. 解答及答案
(这里是第一道物理题的解答过程及答案)
3. 题目内容
(这里是第二道物理题题目的描述)
4. 解答及答案
(这里是第二道物理题的解答过程及答案)
(继续按照相同的格式编写第三到最后一道物理题的题目、解答及
答案)
第二部分:化学试题及答案
1. 题目内容
(这里是第一道化学题题目的描述)
2. 解答及答案
(这里是第一道化学题的解答过程及答案)
3. 题目内容
(这里是第二道化学题题目的描述)
4. 解答及答案
(这里是第二道化学题的解答过程及答案)
(继续按照相同的格式编写第三到最后一道化学题的题目、解答及答案)
第三部分:生物试题及答案
1. 题目内容
(这里是第一道生物题题目的描述)
2. 解答及答案
(这里是第一道生物题的解答过程及答案)
3. 题目内容
(这里是第二道生物题题目的描述)
4. 解答及答案
(这里是第二道生物题的解答过程及答案)
(继续按照相同的格式编写第三到最后一道生物题的题目、解答及答案)
通过以上三个部分的详细介绍,我们全面了解了2017年山东高考理综试题及答案。
希望本文对您有所帮助。
2017年高考全国Ⅱ卷理科综合试题(含答案解析)
绝密★启用前2017年普通高等学校招生全国统一考试理科综合能力测试适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C12 N14 O16 Na 23 Mg 24 Al 27 Ca 40一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知某种细胞有4条染色体,且两对等基因分别谓语两对同源染色体上。
某同学用示意图表示这种细胞在正常减数分裂过程中可能产生的细胞。
其中表示错误的是2.在证明DNA是遗传物质的过程中,T2噬菌体侵染大肠杆菌的实验发挥了重要作用。
下列与该噬菌体相关的叙述,正确的是A. T2噬菌体也可以在肺炎双球菌中复制和增殖B. T2噬菌体病毒颗粒内可以合成mRNA和蛋白质C. 培养基中的32P经宿主摄取后可出现在T2噬菌体的核酸中D. 人体免疫缺陷病毒与T2噬菌体的核酸类型和增值过程相同3.下列关于生物体中酶的叙述,正确的是A. 在细胞中,核外没有参与DNA合成的酶B. 由活细胞产生的酶在生物体外酶有催化活性C. 从胃蛋白酶的提取液中沉淀该酶可用盐析的方法D. 唾液淀粉酶催化反应最适温度和保存温度是37℃4.将某种植物的成熟洗白放入一定浓度的物质A溶液中,发现其原生质体(即植物细胞中细胞壁以内的部分)的体积变化趋势如图所示,下列叙述正确的是A. 0~4h内物质A没有通过细胞膜进入细胞内B. 0~1h内细胞体积与原生质体体积的变化量相等C. 2~3h内物质A溶液的渗透压小于细胞液的渗透压D. 0~1h内液泡中液体的渗透压大于细胞质基质的渗透压5.下列与人体生命活动调节有关的叙述,错误的是A. 皮下注射胰岛素可起到降低血糖的作用B. 大脑皮层受损的患者,膝跳反射不能完成C. 婴幼儿缺乏甲状腺激素可影响其神经系统的发育和功能D. 胰腺受反射弧传出神经的支配,其分泌胰液也受促胰液素调节6.若某哺乳动物毛色由3对位于常染色体上的、独立分配的等位基因决定,其中A基因编码的酶可使黄色色转化为褐色素;B基因编码的酶可使该褐色素转化为黑色素;D基因的表达产物能完全抑制A基因的表达;相应的隐性等位基因a、b、d的表达产物没有上述功能学科&网。
(完整word版)2017年山东高考理科综合试题及答案
2017 年一般高等学校招生全国一致考试理科综合能力测试注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32C135.5K39 Ti48 Fe 56 I 127一、选择题:此题共13 个小题,每题 6 分。
在每题给出的四个选项中,只有一项是切合题目要求的。
1.细胞间信息沟通的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息沟通的实现分别依靠于A.血液运输,突触传达B.淋巴运输,突触传达C.淋巴运输,胞间连丝传达D.血液运输,细胞间直接接触2.以下对于细胞构造与成分的表达,错误的选项是A.细胞膜的完好性可用台盼蓝染色色法进行检测B.检测氨基酸的含量可用双缩脉试剂进行显色C.若要察看处于细胞分裂中期的染色体可用醋酸洋红液染色D.斐林试剂是含有 Cu2 +勺碱性溶液,可被葡萄糖复原成砖红色3.往常,叶片中叶绿素含量降落可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸储水、细胞分裂素(CTK、零落酸( ABA 、CTK+ABA §液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋向以下图,据图判断,以下表达错误的选项是1A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTKM该植物离体叶片的作用可被ABA 削弱C.可推断AB向叶绿体中NADP 尚成速率大于CTK 组D.可推断施用 ABA 能加快秋季银杏树的叶由绿变黄的过程4.某同学将必定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现显然的异样表现。
2017山东高考理综试题及答案word版
2017山东高考理综试题及答案word版2017年山东高考理科综合试题及答案一、选择题(本题共20小题,每小题3分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列关于细胞结构和功能的叙述,正确的是:A. 细胞核是细胞内遗传信息库,是细胞代谢和遗传的控制中心B. 线粒体是有氧呼吸的主要场所,叶绿体是光合作用的场所C. 核糖体是蛋白质的合成场所,中心体与细胞有丝分裂有关D. 高尔基体在动物细胞中与分泌物的形成有关,在植物细胞中与细胞壁的形成有关答案:D2. 下列关于酶的叙述,正确的是:A. 酶是一类具有催化作用的蛋白质B. 酶的催化效率比无机催化剂高C. 酶的催化作用需要适宜的温度和pH值D. 酶的活性受底物浓度的影响答案:C3. 下列关于细胞呼吸的叙述,正确的是:A. 有氧呼吸和无氧呼吸都能产生ATPB. 有氧呼吸的第一阶段和无氧呼吸的第一阶段相同C. 有氧呼吸的第二阶段和第三阶段都产生二氧化碳D. 无氧呼吸的第二阶段不产生ATP答案:B4. 下列关于光合作用的叙述,正确的是:A. 光合作用只能在光照条件下进行B. 光合作用的光反应和暗反应是连续进行的C. 光合作用的产物是葡萄糖和氧气D. 光合作用的光反应和暗反应都需要光答案:C5. 下列关于遗传物质的叙述,正确的是:A. DNA是所有生物的遗传物质B. RNA是某些病毒的遗传物质C. 细胞生物的遗传物质是DNAD. 病毒的遗传物质是蛋白质答案:C6. 下列关于基因突变的叙述,正确的是:A. 基因突变是基因内部碱基对的增添、缺失或改变B. 基因突变是生物进化的原材料C. 基因突变是可遗传的变异D. 基因突变不能产生新的基因答案:B7. 下列关于染色体变异的叙述,正确的是:A. 染色体结构变异包括缺失、重复、倒位和易位B. 染色体数目变异包括整倍体和非整倍体C. 染色体变异是可遗传的变异D. 染色体变异不能产生新的基因答案:C8. 下列关于生物进化的叙述,正确的是:A. 共同由一个原始祖先进化而来是生物进化的基本观点B. 自然选择是生物进化的主要驱动力C. 物种形成是生物进化的基本单位D. 物种形成是生物进化的必然结果答案:B9. 下列关于生态系统的叙述,正确的是:A. 生态系统的结构包括生态系统的组成成分和营养结构B. 生态系统的组成成分包括非生物的物质和能量C. 生态系统的营养结构包括食物链和食物网D. 生态系统的组成成分和营养结构共同构成了生态系统的功能答案:D10. 下列关于生物多样性的叙述,正确的是:A. 生物多样性包括遗传多样性、物种多样性和生态系统多样性B. 生物多样性的保护需要全球合作C. 生物多样性的丧失会导致生态系统功能的丧失D. 生物多样性的保护需要建立自然保护区答案:A11. 下列关于神经调节的叙述,正确的是:A. 神经调节的基本方式是反射B. 反射的结构基础是反射弧C. 神经递质在突触间隙中扩散到突触后膜D. 神经递质在突触间隙中被分解答案:B12. 下列关于体液调节的叙述,正确的是:A. 激素调节是体液调节的主要方式B. 激素调节是神经调节的辅助方式C. 激素调节是生物体内环境的调节方式D. 激素调节是生物体内环境的稳定方式答案:A13. 下列关于免疫调节的叙述,正确的是:A. 免疫调节是机体识别和排除抗原物质的过程B. 免疫调节是机体识别和清除损伤细胞的过程C. 免疫调节是机体识别和清除衰老细胞的过程D. 免疫调节是机体识别和清除肿瘤细胞的过程答案:A14. 下列关于植物激素调节的叙述,正确的是:A. 植物激素调节是植物生长发育的重要调节方式B. 植物激素调节是植物生长发育的唯一调节方式。
2017山东高考理综试题及答案
2017山东高考理综试题及答案2017年山东高考理科综合能力测试试题及答案如下:一、选择题(共10题,每题3分,共30分)1. 下列关于细胞结构和功能的叙述,错误的是:A. 线粒体是有氧呼吸的主要场所B. 核糖体是蛋白质合成的场所C. 细胞膜上的糖蛋白具有识别功能D. 细胞核是细胞内遗传信息库答案:D2. 下列关于遗传信息传递的叙述,错误的是:A. DNA复制是半保留复制B. 转录是以DNA一条链为模板C. 翻译是以mRNA为模板D. 密码子是mRNA上决定一个氨基酸的三个连续碱基答案:B3. 下列关于光合作用的叙述,错误的是:A. 光反应发生在叶绿体的类囊体膜上B. 暗反应发生在叶绿体的基质中C. 光反应和暗反应是相互独立的D. 光合作用过程中,光能转变成化学能答案:C4. 下列关于生态系统的叙述,错误的是:A. 生态系统的结构包括生态系统的组成成分和营养结构B. 生态系统的稳定性包括抵抗力稳定性和恢复力稳定性C. 生态系统的功能包括物质循环、能量流动和信息传递D. 生态系统中,能量的流动是单向的,物质的循环是循环的答案:C5. 下列关于化学键的叙述,错误的是:A. 离子键是由正负离子之间的静电作用形成的B. 共价键是由原子间共用电子对形成的C. 金属键是由金属原子释放的自由电子与正离子之间的静电作用形成的D. 氢键是一种特殊的分子间作用力答案:D6. 下列关于化学反应速率的叙述,错误的是:A. 增大反应物的浓度可以加快反应速率B. 升高温度可以加快反应速率C. 使用催化剂可以加快反应速率D. 反应速率与反应物的表面积无关答案:D7. 下列关于化学平衡的叙述,错误的是:A. 化学平衡是动态平衡B. 化学平衡常数只与温度有关C. 化学平衡的移动只受温度的影响D. 勒夏特列原理适用于所有的动态平衡答案:C8. 下列关于电离平衡的叙述,错误的是:A. 电离平衡是动态平衡B. 弱电解质的电离是吸热过程C. 弱电解质的电离程度与溶液的浓度有关D. 弱电解质的电离程度与溶液的酸碱性有关答案:D9. 下列关于有机化合物的叙述,错误的是:A. 烷烃是饱和烃,分子中只含有C-C单键B. 烯烃是含有一个C=C双键的不饱和烃C. 炔烃是含有一个C≡C三键的不饱和烃D. 芳香烃是含有苯环的烃答案:A10. 下列关于物质的量的叙述,错误的是:A. 物质的量是表示微观粒子的物理量B. 物质的量的基本单位是摩尔C. 物质的量与质量的关系是n=m/MD. 物质的量与体积的关系是n=V/Vm答案:C二、非选择题(共5题,共70分)11. 请写出下列物质的化学式:(1)氢氧化钠(2)硫酸铜(3)硝酸铵(4)碳酸钙答案:(1)NaOH(2)CuSO4(3)NH4NO3(4)CaCO312. 请写出下列物质的电子式:(1)氢气(2)氟气(3)水分子(4)氯化钠答案:(1)H:H(2)F:F(3)H-O-H(4)Na+[ :Cl: ]Na+13. 请写出下列反应的离子方程式:(1)硫酸铜与氢氧化钠反应(2)碳酸钠与盐酸反应(3)氯化铁与硫氰化钾反应(4)硝酸银与氯化钠反应答案:(1)Cu2+ + 2OH- → Cu(OH)2↓(2)CO32- + 2H+ → CO2↑ + H2O (3)Fe3+ + 3SCN-。
2017高考数学山东卷理(附参考答案及详解)
) /?$*%' 0*0" '"0* 0*0! '"0* '8@"' 0*0" '"0* $!.*8@
"%###
) /$*%\$!#.6%]^_`!
)
/$*%#/$!%#M"+*
#
! "
!
&
*.
! +
'*.*'"*.*.+.89:"$*.+%#
)
+ "*
#89:"$*.+%#*.
! +
!
(?, )¿(, )NSÁÂ!
!3!$本小题满 分 !$ 分%已 知 !#*"是 各 项 均 为 正 数 的 等 比 数 列#且 #! /#$ '(##( 0#$ '$! $!%求 数 列 !#* "的 通 项 公 式 ' $$%如图#在平面直角坐标系 #4- 中#依次连接点 6!$#!#!%#6$ $#$#$%#, #6*/! $#*/!#*/!%得 到 折 线 6!6$ ,6*/!#求 由 该 折 线 与 直 线 -'###'#!##'#*/!所 围 成 的 区 域 的 面 积 K*!
$$%当 "$'(#"&'$时#求二面角 07"J7% 的大小!
第 !2 题 图
年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 数 学 理
!.!$本小题满分 !$ 分%在 心 理 学 研 究 中#常 采 用 对 比 试 验 的 方 法 评价不同心理暗 示 对 人 的 影 响#具 体 方 法 如 下&将 参 加 试 验 的 志愿者随机分成 两 组#一 组 接 受 甲 种 心 理 暗 示#另 一 组 接 受 乙 种心理暗示#通过对比这两组志 愿 者 接 受 心 理 暗 示 后 的 结 果 来 评 价 两 种 心 理 暗 示 的 作 用 !现 有 & 名 男 志 愿 者 "!#"$#"(#"-# ""#"& 和 - 名 女 志 愿 者 $!#$$#$(#$-#从 中 随 机 抽 取 " 人 接 受 甲 种 心 理 暗 示 #另 " 人 接 受 乙 种 心 理 暗 示 ! $!%求接受 甲 种 心 理 暗 示 的 志 愿 者 中 包 含 "! 但 不 包 含 $! 的 概率' $$%用 8 表示接受乙种心理暗 示 的 女 志 愿 者 人 数#求 8 的 分 布 列与数学期望08 !
(精校版)2017年山东理数高考试题文档版(含答案)
绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
学.科.网答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A 、B 独立,那么P (AB )=P(A)﹒P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1)(2)已知a R ∈,i 是虚数单位,若,4z a z z =⋅=,则a=(A )1或-1 (B (C ) (D (3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,(7)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a b a a b b +<+< (D )()21log 2a b a b a b +<+< (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79(9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足 ()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A (10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞ (C )()0,223,⎤⎡+∞⎦⎣(D )([)0,23,⎤+∞⎦ 第II 卷(共100分) 二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = .(12)已知12,e e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60,则实数λ的值是 .(13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .(14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -= ②()3x f x -= ③()3f x x = ④()22f x x =+三、解答题:本大题共6小题,共75分。
(完整)2017年高考山东理科数学试题及答案(word版)(2),推荐文档
p ∧ q b< log (a + b ) < a + 12a2 b 2ab 2log (a + b ) < a + 1 < bab = 1a >b > 02a 2ba + 1< log (a + b ) < b22a b b )a + 1 < b< log (a +p ∧ q2017 年普通高等学校招生全国统一考试(ft 东卷)数学(理科)第Ⅰ卷(共 50 分)一、选择题:本大题共 10 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的. () 【2017 年ft 东,理 1,5 分】设函数 y =A B ( )4 - x 2 的定义域为 ,函数 y = ln(1 - x ) 的定义域为 B ,则(A ) (1, 2) (B ) (C ) (D )[-2,1)() 【2017 年ft 东,理 2,5 分】已 知(A )1 或-1 (B 是虚数单位,若 (C ) , z ⋅ z = 4 ,则( )(D () 【2017 年ft 东,理 3,5 分】已知命题题为真命题的是( ) (A ) (B ) : ∀x > 0 , ln(x + 1) > 0 ;命题 q :若 a > b ,则(D ) ,下列命 () 【2017 年ft 东,理 4,5 分】已知 x 、y 满足约束条件 ,则 z = x + 2 y 的最大值是( ) (A )0 (B )2 (C )5 (D )6 () 【2017 年ft 东,理 5,5 分】为了研究某班学生的脚长 x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出 1010y 与 x 之间有线性相关关系,设其回归直线方程为 ,已知∑ x i = 225 , ∑ y i = 1600 , b = 4 ,该班某学生的脚长为 24,据此估计其身高为i =1( ) i =1(A )160 (B )163 (C )166 (D )170 () 【2017 年ft 东,理 6,5 分】执行两次如图所示的程序框图,若第一次输入的 x 值为 7,第二次输入的 x 值为 9,则第一次、第二次输出的 a 值分别为( ) (A )0,0 (B )1,1 (C )0,1 (D )1,0,且,则下列不等式成立的是( )() 【2017 年ft 东,理 7,5 分】若 (A )(B )(C ) (D )() 【2017 年ft 东,理 8,5 分】从分别标有 1,2,…,9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取 1张,则抽到在 2 张卡片上的数奇偶性不同的概率是( )A y = bx + a p p ∧ q (1, 2] a ∈ R, i 7 - 7 (-2,1)z = a + 3i - 3a = 3) a 2 > b 2 (C ) p ∧ q ⎧⎪x - y + 3 ≤ 0 3x + y + 5 ≤ 0 ⎪⎨ x + 3 ≥ 0⎩(A )(B )(C )(D )95185(0,1] ⎣⎡2 3, +∞)mf (x) =x3f (x) = 3-xf (x) = 2-x⎢ ⎥1 2 1 2()【2017 年ft东,理9,5 分】在中,角A 、B 、C 的对边分别为 a 、b 、 c ,若∆ABC 为锐角三角形,且满足sin B(1+ 2 c os C) = 2sin A cos C+ cos A sin C ,则下列等式成立的是()(A)(B)(C)A = 2B(10)【2017 年ft东,理10,5 分】已知当x ∈[0,1]时,函数y = (mx - 1)2的图象与一个交点,则正实数的取值范围是()的图象有且只有(A)(B)(0,1] [3,+∞) (C)(0, 2 ⎤⎦ ⎡⎣23, +∞) (D)(0, 2 ⎤⎦ [3, +∞)第II 卷(共100 分)二、填空题:本大题共5 小题,每小题5 分(1)【2017 年ft东,理11,5 分】已知的展开式中含有x2 的系数是54,则n =.(12-+)【2017 年ft东,理12,5 分】已知则实数的值是.是互相垂直的单位向量,若3e e 与e e 的夹角为60︒,()【2017 年ft东,理13,5 分】由一个长方体和两个图,则该几何体的体积为.()【2017 年ft东,理14,5 分】在平面直角坐标系xOy 中,双曲线a > 0,b > 0)的右支与焦点为F 的抛物线x2= 2 py (p > 0 )交于A 、B 两点,若为.()【2017 年ft东,理15,5 分】若函数e x f (x) (e = 2.71828 是自然对数的底数)在f (x) 的定义域上单调递增,则称函数f (x) 具有M 性质。
2017年山东理综试题
2017年山东理综试题2017年山东理综试题主要包括物理、化学、生物三个科目的考试内容。
本文将分别就这三个科目的试题进行详细解答,以便考生们更好地复习备考。
一、物理试题1.问题:一个质点做二维圆周运动,其运动方程为x = 4cos(π/6t),y = 4sin(π/6t),求质点的速度和加速度。
解答:根据圆周运动的定义,质点的速度可以通过计算速度矢量的模得到,即v = √(v_x^2 + v_y^2)。
其中,v_x = dx/dt = -4/2√3πsin(π/6t) = -2√3sin(π/6t),v_y = dy/dt =4/2√3πcos(π/6t) = √3cos(π/6t)。
将v_x和v_y代入速度公式得到,v = √[(-2√3sin(π/6t))^2 +(√3cos(π/6t))^2] = 4π/6。
加速度可以通过计算加速度矢量的模得到,即a = √(a_x^2 + a_y^2)。
其中,a_x = dv_x/dt = -2√3π^2/6cos(π/6t) = -√3π/3cos(π/6t),a_y =dv_y/dt = -√3π^2/6sin(π/6t) = -πsin(π/6t)。
将a_x和a_y代入加速度公式得到,a = √[(-√3π/3cos(π/6t))^2 + (-πsin(π/6t))^2] = √(π^2/12 + π^2/36) = π√3/6。
2.问题:某光栅的缝宽为0.04mm,光的波长为600nm,求通过光栅的第n级衍射线角度的正弦。
解答:根据光栅的衍射现象,第n级衍射的角度满足sinθ = nλ/d,其中n为级次,λ为光的波长,d为光栅的缝宽。
代入已知条件得到,sinθ = n(600×10^-9)/(0.04×10^-3) = 0.015n。
二、化学试题1.问题:将硫化钠与盐酸反应生成硫化氢气体,写出其化学方程式。
解答:硫化钠(Na2S)与盐酸(HCl)反应生成硫化氢气体(H2S)和氯化钠(NaCl)。
2017山东高考理综试题及答案
2017山东高考理综试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的)1. 下列关于细胞结构和功能的叙述,正确的是:A. 线粒体是细胞内进行光合作用的场所B. 核糖体是细胞内合成蛋白质的场所C. 细胞膜上的糖蛋白与细胞识别有关D. 细胞核是细胞内进行DNA复制的场所答案:B2. 以下哪项不是酶的特性?A. 酶具有高效性B. 酶具有专一性C. 酶具有稳定性D. 酶具有可调节性答案:C3. 下列关于基因重组的叙述,错误的是:A. 基因重组是生物体进行有性生殖时发生的B. 基因重组是基因突变的一种形式C. 基因重组可以产生新的基因型D. 基因重组可以增加生物的遗传多样性答案:B4. 下列关于生态系统稳定性的叙述,正确的是:A. 生态系统稳定性是生态系统抵抗外界干扰的能力B. 生态系统稳定性是生态系统对外界干扰的适应能力C. 生态系统稳定性是生态系统对外界干扰的恢复能力D. 以上都是答案:D5. 下列关于光合作用的叙述,错误的是:A. 光合作用是植物吸收二氧化碳和水,释放氧气的过程B. 光合作用是植物进行能量转换的过程C. 光合作用是植物进行物质转化的过程D. 光合作用只能在有光的条件下进行答案:D6. 下列关于DNA复制的叙述,正确的是:A. DNA复制是半保留的B. DNA复制是全保留的C. DNA复制是双向的D. DNA复制是单向的答案:A7. 下列关于细胞周期的叙述,错误的是:A. 细胞周期包括间期和分裂期B. 细胞周期是连续分裂的细胞所经历的过程C. 细胞周期是细胞生长和分裂的总过程D. 细胞周期是细胞生长和分裂的连续过程答案:C8. 下列关于细胞凋亡的叙述,正确的是:A. 细胞凋亡是一种被动的细胞死亡过程B. 细胞凋亡是一种主动的细胞死亡过程C. 细胞凋亡是一种细胞坏死过程D. 细胞凋亡是一种细胞凋亡过程答案:B9. 下列关于遗传物质的叙述,错误的是:A. 遗传物质是DNA或RNAB. 遗传物质是细胞内控制遗传信息的物质C. 遗传物质是细胞内控制细胞生长的物质D. 遗传物质是细胞内控制细胞分裂的物质答案:C10. 下列关于细胞分化的叙述,错误的是:A. 细胞分化是细胞发育过程中的特化过程B. 细胞分化是细胞生长过程中的特化过程C. 细胞分化是细胞发育过程中的分化过程D. 细胞分化是细胞生长过程中的分化过程答案:B二、非选择题(本题共5小题,共70分)11. 简述细胞膜的结构特点及其功能。
2017年高考真题山东卷(理)(解析版)
2017年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数2=4-y x 的定义域A ,函数=ln(1-)y x 的定义域为B ,则A B =( ) (A )(1,2) (B )](1,2 (C )(-2,1) (D )[-2,1) (2)已知a ∈R ,i 是虚数单位,若3,4z a i z z =+⋅=,则a =( ) (A )1或-1 (B )7-7或 (C )-3 (D )3(3)已知命题p:(),ln 10x x ∀+>0>;命题q :若a >b ,则22a b >,下列命题为真命题的是( ) (A )p q ∧ (B )p q ∧⌝ (C )p q ⌝∧ (D )p q ⌝∧⌝(4)已知x,y 满足30+5030x y 3x y x -+≤⎧⎪+≤⎨⎪+≥⎩,则z=x+2y 的最大值是( )(A )0 (B )2 (C )5 (D )6(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班 随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为 24,据此估计其身高为( )(A )160 (B )163 (C )166 (D )170(6)执行两次下图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( )(A )0,0 (B )1,1 (C )0,1 (D )1,0(7)若0a b >>,且1ab =,则下列不等式成立的是( ) (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<(8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则 抽到的2张卡片上的数奇偶性不同的概率是( ) (A )518 (B )49 (C )59(D )79 (9)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且 满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( ) (A )2a b = (B )2b a = (C )2A B = (D )2B A = (10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是( )(A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()0,223,⎤⎡+∞⎦⎣(D )([)0,23,⎤+∞⎦二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = .(12)已知12,e e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60 ,则实数λ的值是 .(13)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为 .(14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 . (15)若函数()x e f x ( 2.71828e = 是自然对数的底数)在()f x 的定义域上单调递增,则 称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+三、解答题:本大题共6小题,共75分.16.设函数()sin()sin()62f x x x ππ=ω-+ω-,其中03ω<<.已知()06f π=. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.17.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是 DF的中点. (Ⅰ)设P 是 CE上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.(18)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙中心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含A 1但不包含B 3的频率.(II )用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX .(19)(本小题满分12分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,x =x i (x ∈{x n })所围成的区域的面积n T .(20)(本小题满分13分)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e = 是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a =-∈R ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为22,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :132y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.参考答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的. (1)【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故={|22}{|1}{|21}A B x x x x x x -≤≤⋂<=-≤< ,选D.(2)【答案】A【解析】由3i,4z a z z =+⋅=得234a +=,所以1a =±,故选A. (3)【答案】B(4)【答案】C【解析】由303+5030x y x y x -+≤⎧⎪+≤⎨⎪+≥⎩画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C.(5)【答案】C【解析】 22.5,160,160422.570,42470166x y ay ==∴=-⨯==⨯+= ,选C. (6)【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D.(7)【答案】B【解析】221,01,1,log ()log 21,2aba b a b ab ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B.(8)【答案】C【解析】12542C C 5989=⨯ ,选C. (9)【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A. (10)【答案】B二、填空题:本大题共5小题,每小题5分,共25分 (11)【答案】4【解析】()1C 3C 3rr r r r r n n T x x +==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =. (12)【答案】33【解析】()()2212121121223333-⋅+=+⋅-⋅-=-λλλλe e e e e e e e e e ,()22212121122333232-=-=-⋅+=e e e e e e e e ,()222221212112221+=+=+⋅+=+λλλλλe e e e e e e e ,∴22321cos601λλλ-=⨯+⨯=+ ,解得:33λ=. (13)【答案】22π+【解析】该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+. (14)【答案】22y x =±(15)【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x ex e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调 递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分. 16.(Ⅱ)由(Ⅰ)得()3sin(2)3f x x π=- 所以()3sin()3sin()4312g x x x πππ=+-=-. 因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-, 当123x ππ-=-, 即4x π=-时,()g x 取得最小值32-.17.解:(Ⅰ)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,AB AP A = ,所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE BP ⊥,又120EBC ∠=︒, 因此30CBP ∠=︒ (Ⅱ)解法一:取 EC的中点H ,连接EH ,GH ,CH . 因为120EBC ∠=︒, 所以四边形BEHC 为菱形,解法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A (2,0,0)E ,(1,3,3)G ,(1,3,0)C -,故(2,0,3)AE =-,(1,3,0)AG = ,(2,0,3)CG =,设111(,,)m x y z =是平面AEG 的一个法向量.由00m AE m AG ⎧⋅=⎪⎨⋅=⎪⎩ 可得1111230,30,x z x y -=⎧⎪⎨+=⎪⎩取12z =,可得平面AEG 的一个法向量(3,3,2)m -. 设222(,,)n x y z =是平面ACG 的一个法向量.由00n AG n CG ⎧⋅=⎪⎨⋅=⎪⎩可得222230,230,x y x z ⎧+=⎪⎨+=⎪⎩ 取22z =-,可得平面ACG 的一个法向量(3,3,2)n =--. 所以1cos ,||||2m n m n m n ⋅<>==⋅.因此所求的角为60︒.(18)解:(I )记接受甲种心理暗示的志愿者中包含1A 但不包含3B 的事件为M ,则48510C 5().C 18P M ==(II)由题意知X 可取的值为:0,1,2,3,4.则56510C 1(0),C 42P X ===4164510C C 5(1),C 21P X ===3264510C C 10(2),C 21P X ===2364510C C 5(3),C 21P X ===1464510C C 1(4),C 42P X ===因此X 的分布列为X 01234P 142521 1021 521 142X 的数学期望是0(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯==151******** 2.4221212142⨯+⨯+⨯+⨯+⨯= (19)解:(I)设数列{}n x 的公比为q ,由已知q >0.由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=,因为q >0,所以12,1q x ==, 因此数列{}n x 的通项公式为12.n n x -=①-②得121132(22......2)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=(20)解:(Ⅰ)由题意()22f π=π-又()22sin f x x x '=-,所以()2f 'π=π,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x -π-=π-π,即222y x =π-π-.(Ⅱ)由题意得()()()22cos sin 222cos h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.所以当0x >时,()m x 单调递减,当0x >时,()0m x <(2)当0a >时,()()()ln 2sin x ah x e e x x '=--由 ()0h x '=得 1ln x a =,2=0x①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.(21)解:(I )由题意知 22c e a ==,22c =, 所以 2,1a b ==,因此 椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y , 联立方程2211,23,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()2211424310k x k x +--=,由题意知0∆>,且()112122211231,21221k x x x x k k +==-++, 所以 22112112211181221k k AB kx x k ++=+-=+.由题意知1224k k =, 所以2124k k =由此直线OC 的方程为124y x k =.联立方程2211,22,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++, 因此 2221211814k OC x y k +=+=+. 由题意可知 1sin21SOT rOC r OCr∠==++, 而2121221121181411822321k OC k rk k k ++=+++21221112324141k k k +=++, 令2112t k =+, 则()11,0,1t t>∈,因此 2223313112221121119224OC t rt t t t t ===≥+-⎛⎫+---+ ⎪⎝⎭,当且仅当112t =,即2t =时等号成立,此时122k =±,所以 1sin22SOT ∠≤, 因此26SOT ∠π≤,所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l 的斜率为122k =±.。
2017年普通高等学校招生全国统一考试理科综合测试试卷与答案
绝密★启用前2017年普通高等学校招生全国统一考试理科综合能力测试注意事项:.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:☟ ∙∙∙∙∙☠∙∙∙∙∙ ∙ ●∙ ∙ ❆♓ ∙ ☞♏ ∙ ✋ 一、选择题:本题共 个小题,每小题 分,共 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
.细胞间信息交流的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于✌.血液运输,突触传递∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙.淋巴运输,突触传递.淋巴运输,胞间连丝传递∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙.血液运输,细胞间直接接触 .下列关于细胞结构与成分的叙述,错误的是✌.细胞膜的完整性可用台盼蓝染色法进行检测.检测氨基酸的含量可用双缩脲试剂进行显色.若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色.斐林试剂是含有 ◆ 的碱性溶液,可被葡萄糖还原成砖红色.通常,叶片中叶绿素含量下降可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素( ❆)、脱落酸(✌✌)、 ❆✌✌溶液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是✌.细胞分裂素能延缓该植物离体叶片的衰老.本实验中 ❆对该植物离体叶片的作用可被✌✌削弱.可推测✌✌组叶绿体中☠✌☟合成速率大于 ❆组.可推测施用✌✌能加速秋天银杏树的叶由绿变黄的过程.某同学将一定量的某种动物的提取液(✌)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
2017山东高考理综试题及答案
2017山东高考理综试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项符合题意)1. 光合作用中,光能转变为化学能的过程发生在A. 光反应阶段B. 暗反应阶段C. 光反应和暗反应阶段D. 细胞呼吸阶段答案:A2. 以下哪种物质不是蛋白质?A. 胰岛素B. 血红蛋白C. 淀粉酶D. 脂肪酶答案:D3. 细胞膜的主要组成成分是A. 蛋白质和脂质B. 蛋白质和糖类C. 脂质和糖类D. 蛋白质、脂质和糖类答案:A4. 下列哪种细胞器含有核酸?A. 线粒体B. 内质网C. 高尔基体D. 溶酶体答案:A5. 以下哪种生物不是真核生物?A. 酵母菌B. 草履虫C. 细菌D. 绿藻答案:C6. 人体细胞内,哪种物质可以作为能量的直接来源?A. ATPB. ADPC. AMPD. 葡萄糖答案:A7. 以下哪种激素不是由内分泌腺分泌的?A. 胰岛素B. 甲状腺素C. 生长激素D. 肾上腺素答案:D8. 以下哪种遗传病是由基因突变引起的?A. 唐氏综合症B. 血友病C. 色盲D. 多囊肾答案:C9. 以下哪种物质不是细胞膜的组成成分?A. 磷脂B. 胆固醇C. 蛋白质D. 纤维素答案:D10. 以下哪种生物过程不涉及DNA复制?A. 细胞分裂B. 基因表达C. 蛋白质合成D. 细胞分化答案:C二、非选择题(本题共5小题,共70分)11. 描述DNA复制的过程,并解释其在细胞分裂中的作用。
答:DNA复制是细胞分裂过程中的一个关键步骤,它确保每个新产生的细胞都能获得一套完整的遗传信息。
复制过程开始于解旋酶解开双螺旋结构,接着DNA聚合酶沿着模板链合成新的互补链。
这一过程保证了遗传信息的准确传递。
12. 解释光合作用中光反应和暗反应的区别。
答:光反应发生在叶绿体的类囊体膜上,需要光能,主要产生ATP和NADPH,为暗反应提供能量和还原力。
暗反应则发生在叶绿体的基质中,不需要光能,主要利用ATP和NADPH将二氧化碳转化为有机物。
(完整word版)2017年普通高等学校招生全国统一考试理科综合测试试卷与答案
绝密★启用前2017年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl35.5 K39 Ti 48 Fe 56 I 127一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞间信息交流的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于A.血液运输,突触传递B.淋巴运输,突触传递C.淋巴运输,胞间连丝传递D.血液运输,细胞间直接接触2.下列关于细胞结构与成分的叙述,错误的是A.细胞膜的完整性可用台盼蓝染色法进行检测B.检测氨基酸的含量可用双缩脲试剂进行显色C.若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D.斐林试剂是含有Cu2+的碱性溶液,可被葡萄糖还原成砖红色3.通常,叶片中叶绿素含量下降可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTK对该植物离体叶片的作用可被ABA削弱C.可推测ABA组叶绿体中NADPH合成速率大于CTK组D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程4.某同学将一定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
2017年高考真题-山东卷-理科数学-A4精排版可打印-附答案-无水印
2017 年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共 50 分)一、选择题:本大题共 10 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.( 1 )设函数的定义域为,函数的定义域为,则()( A )( B )( C )( D )( 2 )已知,是虚数单位,若,,则()( A ) 1 或( B )或( C )( D )( 3 )已知命题:,;命题:若,则,下列命题为真命题的是()( A )( B )( C )( D )( 4 )已知、满足约束条件,则的最大值是()( A ) 0 ( B ) 2 ( C ) 5 ( D ) 6( 5 )为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为 24 ,据此估计其身高为()( A ) 160 ( B ) 163 ( C ) 166 ( D ) 170( 6 )执行两次如图所示的程序框图,若第一次输入的值为 7 ,第二次输入的值为 9 ,则第一次、第二次输出的值分别为()( A ) 0 , 0 ( B ) 1 , 1 ( C ) 0 , 1 ( D ) 1 , 0( 7 )若,且,则下列不等式成立的是()( A )( B )( C )( D )( 8 )从分别标有 1 , 2 ,… , 9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取1 张,则抽到在2 张卡片上的数奇偶性不同的概率是()( A )( B )( C )( D )( 9 )在中,角、、的对边分别为、、,若为锐角三角形,且满足,则下列等式成立的是()( A )( B )( C )( D )( 10 )已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是( A )( B )( C )( D )第 II 卷(共 100 分)二、填空题:本大题共 5 小题,每小题 5 分( 11 )已知的展开式中含有的系数是 54 ,则.( 12 )已知、是互相垂直的单位向量,若与的夹角为,则实数的值是.( 13 )由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.( 14 )在平面直角坐标系中,双曲线(,)的右支与焦点为的抛物线()交于、两点,若,则该双曲线的渐近线方程为.( 15 )若函数(是自然对数的底数)在的定义域上单调递增,则称函数具有 M 性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山东高考理科综合真题及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl35.5 K39 Ti 48 Fe 56 I 127一、选择题:本题共13个小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 细胞间信息交流的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于()。
A. 血液运输,突触传递B. 淋巴运输,突触传递C. 淋巴运输,胞间连丝传递D. 血液运输,细胞间直接接触【答案】D【难度】简单【点评】本题考查高中生物基本知识。
本题在强化提高班理科综合生物第一章《分子与细胞》中有过比较系统的讲解。
2. 下列关于细胞结构与成分的叙述,错误的是()。
A. 细胞膜的完整性可用台盼蓝染色色法进行检测B. 检测氨基酸的含量可用双缩脲试剂进行显色C. 若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D. 斐林试剂是含有Cu2+的碱性溶液,可被葡萄糖还原成砖红色【答案】B【难度】简单【点评】本题考查高中生物基本知识。
本题在强化提高班理科综合生物第一章《分子与细胞》中有过比较系统的讲解。
3. 通常,叶片中叶绿素含量下降可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是()。
A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTK对该植物离体叶片的作用可被ABA削弱C.可推测ABA组叶绿体中NADPH合成速率大于CTK组D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程【答案】C【难度】简单【点评】本题考查高中生物基本知识。
本题在强化提高班理科综合生物第一章《分子与细胞》中有过比较系统的讲解。
4.某同学将一定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
将小鼠分成两组,一组注射少量的A,小鼠很快发生了呼吸困难等症状;另一组注射生理盐水,未见小鼠有异常表现。
对实验小鼠在第一次注射A后的表现,下列解释合理的是()。
A.提取液中含有胰岛素,导致小鼠血糖浓度降低B.提取液中含有乙酰胆碱,使小鼠骨骼肌活动减弱C.提取液中含有过敏原,引起小鼠发生了过敏反应D.提取液中含有呼吸抑制剂,可快速作用于小鼠呼吸系统【答案】C【难度】中等【点评】本题在生物-寒假特训班第一章《细胞代谢》部分做了专题讲解,讲解非常详细,练习题目与真题考查的知识点及解题方法完全相同。
5.假设某草原上散养的某种家畜种群呈S型增长,该种群的增长率随种群数量的变化趋势如图所示。
若要持续尽可能多地收获该种家禽,则应在种群数量合适时开始捕获,下列四个种群数量中合适的是()。
A.甲点对应的种群数量B.乙点对应的种群数量C.丙点对应的种群数量D.丁点对应的种群数量【答案】D【难度】简单【点评】本题考查植物群落等相关内容。
该题目在生物-寒假特训班第三章《生态学》中有详细的讲解,练习题目与真题考查的知识点及解题方法完全相同。
6.果蝇的红眼基因(R)对白眼基因(r)为显性,位于X染色体上;长翅基因(B)对残翅基因(b)为显性,位于常染色体上。
现有一只红眼长翅果蝇与一只白眼长翅果蝇交配,F1雄蝇中有1/8为白眼残翅,下列叙述错误的是()。
A.亲本雌蝇的基因型是BbX R X rB.F1中出现长翅雄蝇的概率为3/16C.雌、雄亲本产生含X r配子的比例相同D.白眼残翅雌蝇可形成基因型为bX r的极体。
【答案】B【难度】中等【点评】本题考查基因有关知识点。
该题目在生物-寒假特训班第二章《遗传基本规律》部分做了专题讲解,中有详细的讲解。
7.下列生活用品中主要由合成纤维制造的是()。
A.尼龙绳B.宣纸C.羊绒衫D.棉衬衣【答案】A【难度】简单【点评】本题在强化提高班理科综合化学《有机化学复习》和百日冲刺班第二章《有机合成与推断》中有详细的讲解,练习题目与真题考查的知识点及解题方法完全相同。
8.《本草衍义》中对精制砒霜过程有如下叙述:“取砒之法,将生砒就置火上,以器覆之,令砒烟上飞着覆器,遂凝结累然下垂如乳,尖长者为胜,平短者次之。
”文中涉及的操作方法是()。
A.蒸馏B.升华C.干馏D.萃取【答案】B【难度】简单【点评】本题考查化学实验。
本题知识点在化学-百日冲刺班第一章《无机推断题解题策略》中有非常详细的讲解内容,相关的原理解释讲义中都有提到。
9.异构体(b)、的分子式均为C6H6,下列说法正确的是()。
A.b的同分异构体只有d和q两种;B. b、d、p的二氯代物均只有3种;C.b、d、p均可与酸性高锰酸钾溶液反应D.b、d、p中只有b的所有原子处于同一平面【答案】D【难度】中等【点评】本题考查高中生物阿伏伽德罗常数与微粒数的关系判断的有关内容。
本题在高一化学同步课堂中有过比较系统的讲解。
10.实验室用H2还原WO3制备金属W的装置如图所示,(Zn粒中玩玩含有硫等杂质,焦性没食子酸溶液用于吸收少量氧气),下列说法正确的是()。
A.①、②、③中一次盛装KMnO4溶液、浓H2SO4、焦性没食子酸溶液B.管式炉加热前,用试管在④处收集气体并燃烧,通过声音判断气体纯度C.结束反应是,先关闭活塞K,再停止加热D.装置Q(启普发生器)也可用于二氧化锰与浓盐酸反映制备氯气【答案】B【难度】比较难【点评】本题考查化学实验。
本题知识点在化学-百日冲刺班第一章《无机推断题解题策略》中有非常详细的讲解内容,相关的原理解释讲义中都有提到。
11.支撑海港码头基础的钢管桩,常用外加点击的阴极保护法进行仿佛,工作原理如图所示,其中高硅铸铁为惰性辅助阳极,下列有关表述不正确的是()。
A.通入保护电极使钢管桩表面腐蚀电流接近于零B .通电后外电路电子被强制从高硅铸铁流向钢管桩C .高硅铸铁的作用是作为损耗阳极材料和传递电流D .通入的保护电机应该根据环境条件变化进行调整【答案】C【难度】中等【点评】本题考查化学实验。
本题知识点在化学-百日冲刺班 第一章《无机推断题解题策略》中有非常详细的讲解内容,相关的原理解释讲义中都有提到。
12.短周期主族元素W 、X 、Y 、Z 的原子序数依次增大,W 的简单氢化物可用作制冷剂,Y 的原子半径是所有短周期主族元素中最大的,由X 、Y 和Z 三种元素形成的一种盐溶于水后,加入稀盐酸,有黄色沉淀析出,同时有刺激性气体产出。
下列说法不正确的是( )。
A.X 的简单氢化物的热稳定性比W 的强B. Y 的简单离子与X 的具有相同的电子层结构C. Y 与Z 形成的化合物的水溶液可使蓝色石蕊试纸变红D.Z 与X 属于同一主族,与Y 属于同意周期【答案】C【难度】中等【点评】本知识点在强化提高班 理科综合化学《物质结构 元素周期表(一)和(二)》这些章节都有非常详细的讲解。
13.常温下将NaOH 溶液添加到己二酸(H 2X )溶液中,混合溶液的pH 与离子浓度变化的关系如图所示。
下列叙述错误的是( )。
A.K SP (H 2X )的数量级为10-6B.曲线N 表示pH 与2(HX )lg (H X)c c -的变化关系C.NaHX 溶液中(H )(OH )c c +->D.当混合溶液呈中性时,2(Na )(HX )(X )(OH )(H )c c c c c +---+>>>=【答案】D【难度】中等【点评】本题考查化学实验。
本题知识点在化学-百日冲刺班 第一章《无机推断题解题策略》中有非常详细的讲解内容,相关的原理解释讲义中都有提到。
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.将质量为1.00Kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600m/s 的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )。
A.30 kg m/s ⋅B.5.7×102kg m/s ⋅C.6.0×102kg m/s ⋅D. 6.3×102kg m/s ⋅ 【答案】A【难度】中等【点评】本题考查的是直线运动相关知识,考查学生运用所学知识进行实际问题处理的能力。
这个知识点在强化提高班 理科综合物理《直线运动》和寒假特训班 第一章《运动与力学专题》中有详细总结性内容。
15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。
速度较大的球越过球网,速度度较小的球没有越过球网;其原因是( )。
A.速度度较小的球下降相同距离所用的时间较多B.速度度较小的球在下降相同距离时在竖直方向上的速度较大C.速度度较大的球通过同一水平距离所用的时间较少D.速度度较大的球在下降相同时间间隔内下降的距离较大【答案】C【难度】简单【点评】本题考查的是直线运动相关知识,考查学生运用所学知识进行实际问题处理的能力。
这个知识点在强化提高班 理科综合物理《直线运动》和寒假特训班 第一章《运动与力学专题》中有详细总结性内容。
16.如图,空间某区域存在匀强电场学&科网和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向量,三个带正电的微粒a ,b ,c 电荷量相等,质量分别为m a ,m b ,m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内做匀速直线运动,c 在纸面内向左做匀速直线运动。
下列选项正确的是( )。
A. a b c m m m >>B. a c b m m m >>C. c b a m m m >>D. b a cm m m >>32 【答案】B【难度】简单【点评】本题相关知识点在寒假特训班 第三章《电场和磁场专题》和百日冲刺班 第二章《电和磁专题》中都有详细讲解,相关的例题考查的知识点及解题方法非常相近。
17.大科学工程“人造太阳”主要是将氚核聚变反应释放的能量用来发电,氚核聚变反应方程是( )。
22311120H H He n ++→,已知21H 的质量为2.0136u ,32He 的质量为3.0150u ,10n 的质量为1.0087u ,1u=931MeV/c 2。