风力发电机组雷电防护
风力发电机组的气象防雷保护
风力发电机组的气象防雷保护:随着风力发电机组单机容量的不断増大,风机轮毂高度和叶片高点也在不断増高,在旷野、山顶和沿海地区,风机遭受雷击的概率非常大。
从各风场反馈的情况来看,雷击不但是造成风机故障停机的重要因素,甚至直接影响风电场的安全运行。
本文首先从雷电的破坏机理和形式入手,对雷电的防护区域进行了划分,并提出了风力发电机组的防雷保护设计原则和防雷系统工程方案;而后对风机整机系统的防雷保护进行了系统的分析,并提出了具体的防雷保护方法。
标签:风力发电防雷雷电1引言风能是一种绿色、安全的清洁能源,也是当前技术最成熟、最具备规模开发条件的可再生能源。
近年来,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毅高度和叶轮直径不断增高;同时,高原、沿海、海上等新型风力发电机组的开发,使风力发电机组开始大量应用于高原、沿海、海上等地形更为复杂,环境更为恶劣的地区,更加加大了风力发电机组被雷击的风险。
据统计,风电机组故障中,由遭遇雷击导致的故障占到4%。
电具有极大的破坏力,雷击释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等故障,给风电场带来直接和间接的巨大经济损失,此风力发电机组的防雷保护已日益引起各个风电机组制造厂家和风电机组研发设计人员的重视。
风电机组的防雷是一个综合性的工程,防雷设计的到位与否,直接关系到风电机组在雷雨天气时能否正常工作,并且确保风电机组内的各种设备不受损害。
2雷电的产生及危害雷电是雷云间或雷云与地面物体间的放电现象,电位差可达数兆瓦甚至十兆瓦,放电电流几十千安甚至几百千安。
经验表明,对地放电的雷云绝大部分带负电荷,当雷暴经过大地时,云块下方原本负电荷充电的几公里的雷暴范围内的大地可以变为正极充电。
这些正电荷会集中在垂的物体上,比如树木和高耸的建筑物。
这些物体向上释放出正极的放电,并试图与从云块发出的向下的负极放电相结合,当正负电荷相结合时,闪电就发生了。
2.1雷电的破坏形式风力发电机一般都是安装在空旷的地方,并且明显高于附近的建筑物和树木,所以整个风机是暴露在直接雷击的威胁下,尤其是叶片。
浅析风力发电机组的雷电防护
浅析风力发电机组的雷电防护摘要随着风电技术的发展,大型风力发电机不断研制成功,随之机组的塔架也越来越高,风力机遭受雷击的几率也比过去增加了很多,在沿海或林区的风电场,防雷是不可忽视的,在这些风电场尽管也采取了一些防雷措施,但雷击还是造成了叶片和电控器件的损坏,借鉴经验及总结教训,我们应该做到防患于未燃,将防雷工作做的更彻底、更全面,以使雷击对风机的损坏降到最小。
关键词:风电;风力发电机;防雷一、引言雷电是自然界中一种常见的放电现象。
关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。
当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。
具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。
一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。
在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。
而对我们生活产生影响的主要是近地的云团对地的放电。
经统计,近地云团大多是负电荷,其场强最大可达20kV/m。
二、雷电的危害自然界每年都有几百万次闪电。
雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一。
最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。
全球每年因雷击造成人员伤亡、财产损失不计其数。
雷击造成的危害主要有5种:(1)直击雷带电的云层对大地上的某一点发生猛烈的放电现象,称为直击雷。
它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。
风力发电机的防雷解决方案
风力发电机的防雷解决方案(2009-03-02 00:00:54)标签:风机防雷教育分类:行业相关风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。
风能发电为人与自然和谐发展提供了基础。
由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。
例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20%。
为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害等。
一、直击雷防护该风机主体高度约80米,叶片长度约40米,即风机最高点高度约为120米,且大多数风力发电机位于空旷地带,较孤立。
风机的高度加上所处特殊的环境,造成风力发电机在雷雨天气时极易遭受直击雷。
国际电工委员会对防雷过电压保护的防护区域划分为:LPZ0 区(LPZ0A、LPZ0B),LPZ1 区,LPZ2 区。
在金属塔架接地良好的情况下,叶片、机舱的外部(包括机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0 区,这些部位是遭受直击雷(绕雷)或不遭受直击雷但电磁场没有衰减的部位。
机舱内、塔架内的设备应属于 LPZ1 区,这其中包括电缆、发电机、齿轮箱等。
塔架内电气柜中的设备,特别是屏蔽较好的弱电部分应属于 LPZ2。
对与现有风力发电机的 LPZ0 区防雷过电压保护装置进行分析后,在LPZ0 区内,直击雷的防护在没有技术突破的前提下仍然沿用传统的富兰克林避雷方法:利用自身的高度使雷云下的电场发生畸变,从而将雷电吸引,以自身代替被保护物受雷击,以达到保护避雷的目。
对风力发电机组直击雷防护措施的探讨46
对风力发电机组直击雷防护措施的探讨摘要:本文探讨了风力发电机组的防雷技术,从直击雷对风力发电机组的危害的后果分析,探讨了其对应的防雷措施。
关键字:风力发电机组;直击雷;措施1.直击雷对风力发电机组的危害作用在遭受直接雷击时,强大的雷电流从雷击点流入被击物体,产生的热量能够在雷击点范围内及电流通路附近引起很高的温度,可以造成金属物体熔化或非金属物体的烧毁,这就是雷击热效应危害的典型表现。
一直以来风力发电机组的直击雷的防护都是利用机组的金属部分接闪,通过转动和非转动系统部件间的放电间隙过渡,流经引下线,然后通过良好的接地装置迅速而安全地引入大地。
机组上,桨叶、轴承和机舱特别容易遭受直击雷,下面就这三个部位进行相应的分析。
2.桨叶的防雷措施传统的桨叶防雷装置,主要由接闪器和引下导体组成。
通常将接闪器做成盘形状,将其嵌装在桨叶的叶尖部,盘面与叶面平齐。
当桨叶叶尖受到雷击时,雷电流由接闪器导入引下导体,叶片根部通过截面积不小于70mm2的铜芯电缆连接到轮毂,通过放电间隙把雷电流从叶根部轮毂引至机舱主机架和塔筒等,最终通过引下线泄入大地。
现在的大型风机使用的叶片,从结构上可分为两大类型:定浆距失速型风机和变桨距风机,前者广泛使用的是有叶尖阻尼器结构的叶片,后者则采用无叶尖阻尼器的叶片。
(1)无叶尖阻尼器的叶片防雷结构对于无叶尖阻尼器的叶片,一般是在叶尖部分的玻璃纤维外表面预置金属化物作为接闪器,并与埋置于叶片内的铜导体相连(50mm2铜导体与叶根处的金属法兰连接)。
外表面金属化物可以采用网状或箔状结构。
雷击可能会对这样的表面造成局部熔化或灼蚀损伤,但不会影响叶片的强度或结构。
(2)有叶尖阻尼器的叶片防雷结构在有叶尖阻尼器的叶片,通常是在叶尖部分的玻璃纤维中预置金属导体作为接闪器,通过碳纤维轴与用于兼作引下导体的刹车控制线(缆)连接,这种结构可以耐受200KA的冲击电流实验而叶片却不会损伤。
虽然这种叶片是金属结构组成的,雷击概率比绝缘材料制成的叶片高,只要要求导电结构有足够的强度和横截面积安全的将雷电流引入大地就可以了。
关于风力发电机主轴承的雷电防护措施
关于风力发电机主轴承的雷电防护措施摘要:在风力归电机组运行过程中,会出现遭受雷击的现象,雷击后会通过风力发电机的主轴承进行雷电产生电流的泄散,轴承会受到一定程度的损伤,也会对发电机产生危害。
因此,加强对主轴承的雷电防护是风力电力场的重要工作。
基于此,本文首先介绍了雷电的破坏形式,阐述了雷电防护设计的基本原则,并对风力发电力机主轴承的防雷保护进行分析,进而提出两种风力发电机主轴承的雷电防护方案,希望可保障风力发电机组的安全与稳定运行。
关键词:风电发电机;主轴承;雷电防护经过实践分析发现,雷击是导致风电机组轴承出现损坏的直接原因。
由于受到雷击的影响,风电机组的叶片以及主轴承等结构都易受到严重的损坏,并且这些结构的维修与更换所需消耗的成本较高,采取有效的措施避免风电机组遭受雷击至关重要。
因此,本文将针对风力发电机组的主轴承进行有效的雷电防护措施的探讨。
一、雷电的破坏形式1、雷电直接击中设备而使之出现损坏;2、雷电脉冲顺着信号线或电源线侵入其所连接着的设备,最终导致设备遭到损害;3、设备接地体在累计时产生瞬间高电位形成电位反击而损坏;4、设备因安装方法或安装位置不当,受雷电在空间分布的电场、磁场影响而损坏。
二、雷电防护设计的基本原则1、采取适合的防雷方法,应用先进的技术及设备,确保系统得以正常工作;2、防雷设计时要对投资的合理性进行详细分析,确保防护重点明确,并提高防护工作的全面性;3、确保防雷系统的使用寿命较长且具有合理性;4、应根据国家标准及相应规范进行防雷设计,以确保系统可得到良好的维护。
三、主轴承的防雷保护分析在雷击现象发生时,主轴承上会通过强大的雷电流,这会使轴承接触上出现明显的灼蚀点,但因轴承尺寸较大,雷电流的密度并不高,因此所产生的损伤对风电机组运行产生的影响并不大,但会使风电机组出现噪音或振动现象,进而会减少轴承的使用期限。
1、有绝缘垫层的雷电防护部分轴承设计时加装了绝缘垫层,主轴上的防雷碳刷会将雷电流传导至塔筒中,进而可有效减轻轴承受到的损伤。
风力发电机的防雷与接地
过电压保护设备:在发电机、开关盘、控制器模块电子组 件、信号电缆终端等,1般是采用防雷器或压敏块电阻的过 电压保护.
风力发电机的防雷与接地
thanks
内部防雷(过电压)保护系统
四种雷电保护带
风力发电机的防雷与接地
内部防雷(过电压)保护系统
在金属塔架接地良好的情况下,叶片、机舱的外部(包括 机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0 区,在0区内的各部分物体都可能遭到直接雷击,并且电磁 场没有衰减,但是,雷击的危险性也最高.其中,完全暴露但 不受接闪器保护的区域属于LPZ0A区;受到接闪器保护的 区域,并且在风力发电机的外部的区域属于LPZ0B区.受到 接闪器保护的区域,并且在风力发电机的内部,属于 LPZ1 区,这其中包括电缆、发电机、齿轮箱等.塔架内电气柜中 的设备,特别是屏蔽较好的弱电部分应属于 LPZ2. 依 次 类 推,可划分为不同的区域,越往内部,危险程度越低.当电气 走线或金属管线穿过这些分区界面时,必须在每1穿过点做 等电位连接.
风力发电机的防雷与接地
内部防雷保护系统Biblioteka 等电位连接:1般情况下,只需要对从1个保护带跨到另1更 低保护水平防雷带的电缆进行过电压保护,而无需对本区 内的电缆进行保护.在不同的保护区的交界处,通过SPD (防雷及电涌保护器)对有源线路(包括电源线、数据线、 测控线等)进行等电位连接.适当的等电位连接可以在雷 击时避免出现触摸电压和跨步电压从而起到保护作用,并 减少对电气电子系统的危害.
叶片防雷系统的主要目标 是避免雷电直击叶片本体, 而导致叶片本身发热膨胀、 迸裂损害.
风力发电机的雷电绕击分析与防护
风力发电机的雷电绕击分析与防护风力发电因其清洁无污染、可永续利用等特点,对于调整我国能源结构、加强资源节约利用、促进生态环境保护、推进经济可持续发展意义重大。
我国幅员辽阔,风能资源丰富,发展风力发电优势得天独厚。
为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。
对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。
标签:风力发电机;雷电绕击;防护风力发电是将风能进行较为直接地开发利用,风电场一般建立在山顶、荒漠、滩涂等自然地理环境复杂且容易受到雷电灾害影响的地方,雷击事故时有发生,风力发电的蓬勃发展正在受到日益严重的雷电灾害的威胁。
国内外相关案例都表明雷击是严重威胁风力发电场安全的主要问题之一。
雷电击中风机后,雷电流将会对风机叶片等结构造成严重破坏,导致高昂的经济损失,如维修费用、人工成本和停运损失等。
为避免雷击事故中雷电流对风机的损害,风电场的雷击防护至关重要。
一、雷电放电概述雷电具有非常强大的爆发力,也具有很大的随机性,雷电的放电主要是雷云和雷云之间或者雷云内部进行的,其中雷云放电是在某些适当的地理和气象条件下,由于比较强烈的潮湿热气流不断上升进入稀薄大气层后冷凝的结果。
雷云对地放电是从下行先导放电阶段开始的。
如今的风电机组容量已经从几百千瓦扩大到兆瓦级的,高度也已经达到了一百多米,属于高体结构,其雷云在下行先导通道中负电荷的感应作用下,风电机组会出现感应正电荷。
当下行先导头部接近机组时,风机的叶片尖端部分会发生畸变作用,伴随着电场强度快速扩大,附近的大部分空气产生游离,就会发生上行先导。
其中上升放电先导是分布正电荷,向上的速度是(0.05~1.2)×106m/s。
接着上升先导和下升先导在空气中会合之处就产生了回击放电,于是风机就遭受了雷击,会合之处就是雷击点。
风力发电机组防雷保护策略综述
风力发电机组防雷保护策略综述摘要:风电机组的防雷保护由于电气和机械特性而提出了许多问题。
本文以一种简单而全面的方式整理有关目前保护风电机组的现有工作,并提出可能有助于未来保护风电机组免受雷击造成的重大损失的建议。
关键词:雷击,风电机组接地,高压输电线路,防雷,浪涌一、概述目前,在世界上的103个国家,风力发电被用于民用和工商业用电。
风能是世界上增长最快的可再生能源之一。
然而,由于它们的物理尺寸,风电机组特别容易遭受雷击。
因此,本文梳理了有关防雷保护的已知信息,并提出了一些改进建议。
二、风电机组尺寸与雷击的关系在岸上和近海地区的规模继续增加。
众所周知,较大的风电机组被闪电击中的可能性较大。
然而,对于这些设备的保护和增加的高度和离岸安装的综合影响,人们明显缺乏专业知识。
考虑到额定功率,目前大规模应用的单机容量从0.25kW-4500kW不等。
风力发电机的功率输出主要取决于风速、涡轮额定功率和转子直径。
如果转子直径增加,塔架的高度也会增加。
随着风电机组整体高度的持续增长,它们变得越来越容易受到雷击。
三、防雷保护的现状与标准目前风机所采用的防雷系统由防雷点、导线、接地系统和各子系统的浪涌保护装置组成。
采用低阻抗路径是进行防雷工作的前提条件。
外部防雷系统,由以下部分组成:转子叶片中的空气终止和向下导体系统、保护机舱的空气终止系统、上层建筑,机舱,和轮毂。
外部防雷系统用于拦截塔上的直击雷击,包括雷击,并将雷电电流从撞击点引导到地面。
机舱的构造应成为防雷系统的组成部分,以确保闪电击中金属部件;或者在机舱上提供空气终止系统。
对于涂有玻璃纤维增强塑料或类似材料的机舱,应配备空气终止系统并在机舱周围形成笼。
该保护系统基于国际标准IEC61400-24和IEC62305。
防雷系统的所有子部件都应符合IEC61400-24规定的防雷等级(LPL-1),除非风险分析建议采用较低的LPL-1等级。
内部防雷系统,转子叶片广泛使用的防雷方法是一种能够承载雷电电流的内部避雷导体。
浅谈风力发电机主轴承的雷电防护
浅谈风力发电机主轴承的雷电防护摘要:在风力发电机运行过程中,由于雷电放电导致的风机主轴承损坏现象时有发生。
因此,为确保风力发电机在恶劣天气下安全运行,必须对风力发电机主轴承采取必要的防护措施。
本文主要针对风力发电机主轴承的雷电防护措施进行了研究,旨在为风力发电机的运行维护人员提供参考。
在风力发电机运行过程中,由于雷电放电产生的强脉冲电流会通过电缆、光缆等进入到风机主轴承中,当这些强脉冲电流在主轴承壳体中产生局部过热时,会造成风电机组主轴承局部温度升高。
在某些情况下,还会造成风机主轴承内部出现裂纹,这将对风电机组的安全运行构成严重威胁。
关键词:风力发电机;主轴承;雷电防护随着中国经济的快速发展,电力需求不断增加,使得风力发电得到了越来越广泛的应用。
风力发电机主轴承是由主轴、轴承和轴承座组成。
其中,主轴是整个风力发电机的核心部件,起着关键作用。
它将风能转化为机械能,并将其传递给轴承。
轴承则用于支撑主轴和整个机组的重量,还起着密封和润滑作用。
1.风力发电机雷电防护现状随着我国风电行业的发展,风电机组的单机容量也在不断增大,这为风电场的建设提供了巨大的空间。
然而,随着风电机组单机容量的增大,雷击造成的风机损坏事故也随之增多。
目前,在国内风电机组上使用最多的防雷措施是避雷针和接地装置,这两种防雷措施能有效地避免雷击事故对风机造成损伤。
而在实际工作中,由于雷击事故对风机主轴承的影响往往容易被忽视,从而导致风电机组遭受雷击事故。
风力发电机运行时产生的强脉冲电流会通过电缆、光缆等进入到风机主轴承中,由于电缆、光缆具有绝缘性能较差、线路防护等级低等特点,当这些强脉冲电流通过电缆、光缆进入到主轴承中时,会造成主轴承局部温度升高,进而对风电机组造成损伤。
在这种情况下,若不采取有效措施对风机主轴承进行防护,那么风力发电机将会因雷击而出现损坏。
然而目前国内对于风电机组雷电防护技术研究较少,对风机主轴承雷电防护技术不够重视。
风力发电机组的气象防雷保护
风力发电机组的气象防雷保护:随着风力发电机组单机容量的不断増大,风机轮毂高度和叶片高点也在不断増高,在旷野、山顶和沿海地区,风机遭受雷击的概率非常大。
从各风场反馈的情况来看,雷击不但是造成风机故障停机的重要因素,甚至直接影响风电场的安全运行。
本文首先从雷电的破坏机理和形式入手,对雷电的防护区域进行了划分,并提出了风力发电机组的防雷保护设计原则和防雷系统工程方案;而后对风机整机系统的防雷保护进行了系统的分析,并提出了具体的防雷保护方法。
标签:风力发电防雷雷电1引言风能是一种绿色、安全的清洁能源,也是当前技术最成熟、最具备规模开发条件的可再生能源。
近年来,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毅高度和叶轮直径不断增高;同时,高原、沿海、海上等新型风力发电机组的开发,使风力发电机组开始大量应用于高原、沿海、海上等地形更为复杂,环境更为恶劣的地区,更加加大了风力发电机组被雷击的风险。
据统计,风电机组故障中,由遭遇雷击导致的故障占到4%。
电具有极大的破坏力,雷击释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等故障,给风电场带来直接和间接的巨大经济损失,此风力发电机组的防雷保护已日益引起各个风电机组制造厂家和风电机组研发设计人员的重视。
风电机组的防雷是一个综合性的工程,防雷设计的到位与否,直接关系到风电机组在雷雨天气时能否正常工作,并且确保风电机组内的各种设备不受损害。
2雷电的产生及危害雷电是雷云间或雷云与地面物体间的放电现象,电位差可达数兆瓦甚至十兆瓦,放电电流几十千安甚至几百千安。
经验表明,对地放电的雷云绝大部分带负电荷,当雷暴经过大地时,云块下方原本负电荷充电的几公里的雷暴范围内的大地可以变为正极充电。
这些正电荷会集中在垂的物体上,比如树木和高耸的建筑物。
这些物体向上释放出正极的放电,并试图与从云块发出的向下的负极放电相结合,当正负电荷相结合时,闪电就发生了。
2.1雷电的破坏形式风力发电机一般都是安装在空旷的地方,并且明显高于附近的建筑物和树木,所以整个风机是暴露在直接雷击的威胁下,尤其是叶片。
风电场防止风电机组雷击事故措施
风电场防止风电机组雷击事故措施风电场是利用风能发电的重要设施,但由于其高处位置和金属结构等特点,容易成为雷击的目标。
雷击风电机组可能导致设备损坏、发电停止甚至火灾等严重后果,因此必须采取有效的措施防止雷击事故的发生。
以下是一些常见的措施:1.雷电监测系统:在风电场周围建立雷电监测系统,通过实时监测雷暴活动情况,以提前预警风电机组和人员,确保安全转避。
2.超高大风避雷装置:安装超高大风避雷装置,可大大降低风电机组被雷击的概率。
该装置采用棒状闪络绳、金属网和接地装置等,构成一个良好的避雷网,能够吸引雷电并将其引入地下。
3.接地系统的建设:准确设计和建设风电机组的接地系统,确保接地电阻低于一定标准。
接地系统能够将雷电引入地下,以保护风电机组设备免受雷击。
4.避雷针/避雷网:在风电机组的周围安装避雷针或避雷网,以降低雷击的可能性。
避雷针通过尖端放电,将雷电引导到地下,避免了对风电机组的伤害。
5.避雷防护盖:对风电机组的机舱部分安装避雷防护盖,减少雷击的可能性。
避雷防护盖能够吸引和引导雷电分散,避免雷电直接击中敏感部位。
6.防止静电聚集:有效地排除风电机组上的静电,减少雷击的可能性。
可以通过在机组上加装静电释放装置等方法来实现。
静电释放装置能够及时将静电释放到大气中,减少风电机组周围的电场变化。
7.高压装置的防护:电力设备和输电线路等高压装置容易成为雷击的目标,必须采取相应的防护措施。
可以通过安装避雷针、避雷网等设施,建立有效的接地系统,保护高压装置免受雷击。
8.定期维护和检测:定期对风电场的防雷设施进行维护和检测,确保其正常运行。
包括检查避雷装置的完好性,及时更换损坏的部件,保证其良好工作状态。
9.停电保护:在雷电活动频繁的天气条件下,可以考虑临时停电措施,以确保人员和设备的安全。
及时关闭风电机组,减少雷击风险。
总之,为了防止风电机组的雷击事故,必须采取一系列的措施,包括建立雷电监测系统、安装避雷装置和避雷网、做好接地系统、保护静电聚集、维护和检测等。
风电机组外部防雷技术措施PPT课件
C.Wagener
风电机组接闪状况
- clima sensors - aviation lights - antennas
cooling system
- generator - brake - gearbox - topbox - hydraulic
yaw drive
transformer station
--- 云地闪的形成过程
风电机组外部防雷相关参考标准
GB 50057 建筑物防雷设计规范
IEC 62305-1: 2006 雷电防护 第1部分: 总则 GB/T 21714.1-2008
IEC 62305-2: 2006 雷电防护 第2部分: 风险管理 GB/T 21714.2-2008
IEC 62305-3: 2006 雷电防护 第3部分:建筑物的物理损坏GB/T 21714.3-2008 和生命危险
2839
428
发电 能力 MW
每年风 力发电 机组数
352 9204
698 22000
178 1487
雷电 故障
738 851 86
每年每 百台风 力发电 机组故 障数 8.0
3.9
5.8
雷电对风电机组的损害(2)
-- 引自IEC61400-24 表5 雷击损毁风力发电机组的地区效应(德国)
设置 位置
沿海
北部 低地
数据库中 风力发电 机组数
616
519
发电 能力MW
178 88
每年风 力发电 机组数
4018
3213
雷电 故障
223 239
低山
363
86
总数
1498
352
1973
风电机组雷电防护技术发展综述
风电机组雷电防护技术发展综述摘要:雷电活动,属正常的大自然现象,当前尚没有绝对可靠的防雷技术和措施,现有的防雷技术措施,只能够降低雷害概率。
风电机组因其独特的结构、高度以及区域环境,遭受雷击的风险巨大。
基于此,本文就风电机组雷电防护技术发展进行简要探讨。
关键词:风电机组;雷电防护;技术发展1 风电机组雷电防护概述1.1 常规风力发电机组防雷接地系统目前,一般的风力发电机组防雷接地网设计都是以风机塔筒中心为圆心一圈环形施工水平接地体,再根据现场地形辐射接地网及设置降阻坑,将发生雷击事件产生高频和高强度能量的自然雷电流安全地引导入地,确保人身和设备安全。
而对于高海拔、高土壤电阻率地区风电场,为了让风机接地网电阻值达到设计值,往往是采取各台风机接地网与附近机组的接地装置及架空集电线路避雷线接地网相连,形成大接地网,才能满足风机接地网接地电阻值≤10Ω的要求。
但这种大接地网随着运行年限增加,各相连部位会发生断接或连接不可靠等问题及其他各种外界因素影响,造成单台风机接地网电阻值大大增加,达不到风机防雷的要求。
1.2 风力发电机组防雷接地系统优化改造对于高海拔、高土壤电阻率地区风电场,除了按照常规的风力发电机组设备雷电防护系统安装技术操作规范基本要求进行风机接地网施工外,还应结合风场当地的土壤电阻率、环境因素等,对风机的接地网进行接地优化改造。
通过增设深井接地极、传统垂直接地极和外引水平接地极,与风机原有接地网组成复合接地网,尽可能有效降低接地网的接地电阻,保证风电场各台风机接地网符合防雷要求,以便减小其遭受雷击的概率。
2 风电机组雷击的影响风电机组大多裸露在自然环境中,极易受到雷电的影响。
风电机组遭受雷击后,会形成强烈的过电压,进而对风电机组产生影响。
风电机组雷击的类型,主要包括两种,首先是直击雷,直击雷的损害主要是通过雷电直接放电产生的巨大电磁能量对所击中的风机叶片或者机舱等部件产生的损害。
其次是感应雷,指的是雷电击中风电机组或附近以及雷电流泄放过程中传导到电气和控制系统的电磁效应,这些系统和设备耐压能力弱,极易损坏。
雷电流对风电机组的危害及安全防护措施
雷电流对风电机组的危害及安全防护措施摘要:雷击灾害是自然界中对风电机组产生物理危害的重要威胁之一,并且可能导致风电机组不能安全运行。
本文主要结合实际情况,分析了雷电对于风电机组的危害,并提出了一些防护措施,以供相关部门参考。
关键词:雷电流;风电机组;危害;防护措施当今社会,资源日益紧张的现象越发明显,风力发电凭借高效清洁的特点,逐渐受到人们的青睐。
我国的风力发电多年以来已实现翻番增长,并且还在迅速发展,全国各地都争先恐后地开发风力发电项目。
在这样的大好形势之下,相关专家表示,在发展风电行业的同时也要注意在防雷接地方面的措施,若没有处理妥当,有可能会引发风电机组发生雷击事故。
1、风电机组雷电防御的概述风电机组的构造、材质以及安装方式在很大程度上决定了其遭受雷电灾害的可能性较大,随着现代科学技术的不断进步,风电机组的单机容量也逐渐变大,为了可以吸收更多能量,轮毂高度与叶轮直径也越来越高,风机的安装高度与安装位置致使其成为了雷击的首选通道,同时风机内部也集中了大量较为敏感的电子、电气设备,如果遭遇雷击,必将带来巨大的损失。
可见,为风机内的电子、电气设备安装完善的防雷保护装置是非常有必要的。
通过安装相应的防雷保护系统,使设备得到保护,从而减少维护与维修的费用,并且能够提升设备正常运行的时间。
站在效率的角度去看,应该从风电机组的设计之初就将防雷保护的问题考虑在内,如此一来就能够有效避免日后昂贵的维修费用,减少工程改造。
只有设备的高效运行才可以将投资尽快收回,也只有这样,才能吸引更多的投资者接收这一项目。
2、雷电的形成雷电的形成是由于空气汇中的冰晶、尘埃等物质在云层中翻滚时,经过一些较为复杂的过程,使这些物质分布带上正电荷或是负电荷。
经过一系列的运动,带着相同电荷的质量相对较重的物质会到达云层的下部,带着相同电荷质量相对轻一点的物质会到达云层的上部。
如此一来,同性电荷的汇集就产生了一些带电中心,当异性带电中心之间的控制遭到强大电场击穿的时候,就产生了“云间放电”(即为雷电)。
风力发电防雷综合防护
浅析风力发电系统雷电综合防护摘要:风力发电作为一种新型能源,正在受到越来越多的应用。
而与风力发电机运行直接相关的防雷问题也就十分突出了。
本文通过对国家所颁标准中有关规定的理解以及雷电知识的掌握,阐述了风力发电系统雷电综合防护的具体要求,并给出了一些看法,这对风力发电系统的防雷工作有着重要的现实意义。
关键词: 防雷、风电、雷击、接地不可再生资源日益匮乏的今天,风力发电作为一种可再生并无污染的新型能源,正在受到越来越多的应用。
我们在享用风力发电带来的好处的同时,也要时时关心下风力发电的安全问题,这其中就包括风力发电系统的防雷安全。
如今,每年发生的雷电等自然灾害越来越多,雷击成了自然界中对风电机组安全运行危害最大的一种灾害。
在过去的几年中,因雷击造成的风电机组损坏已是一个公认的越来越严重的问题。
雷电释放的巨大能量,会造成风电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
统计资料显示,从1991年到1998年,德国全部的1498台风电机组共发生738起雷击故障事件。
我国风电场所处位置的地质和气候相对复杂,风电机组遭到雷击的事故也经常发生。
我国红海湾风电场建成投产至今发生了多次雷击事件。
其中,叶片被击中率达4%,其他通讯电器元件被击中率更高达20%。
若风电机组遭受雷击,除了损失修复期间应该发电所得之外,还要负担受损部件的拆装和更新的巨大费用。
风电机组安装数量的增多,单机容量越来越大,随着轮毂高度和叶轮直径的增高,相对也增加了被雷击的风险,使得雷击破坏发生率比预期的有所扩大,维修费用已达到不可接受的水平。
随着风电机组单机容量加大以及风电机组向海上发展,雷击故障对风电机组运行可靠性产生重大影响。
特别是当多台大型风电机组安装在风电场同时使用时,因一次雷击导致多台大型风机停运的潜在损失是不可接受的。
架空线、变电站和发电厂等其他电气设施的周边或上方可有针对性地设置保护性导体。
与这些设施不同,风电机组因其实际尺寸和性质上的特点,它的防雷问题也不同。
风力发电雷电防护技术浅析
风力发电雷电防护技术浅析张辉(安徽省天长市气象局,天长市,239300)摘要结合本地风力发电场实况,通过对国家现行标准中相关规定的理解和相关雷电知识的掌握,从风力采集—风塔、风力发电机组,升压站—变电所、svg装置及控制室、35千伏配电装置,设备控制室等等风力发电系统(电力输送属高压端防护,本次不考虑其雷电防护)的雷电防护措施进行具体的阐述。
关键词:风力发电、风塔、升压站、继电保护室、雷电防护、屏蔽、等电位、浪涌保护器、接闪杆1、雷电对风力发电系统的危害风塔一般分散安装在野外空旷的平原地带或山地山顶地带或沿海沿湖地带(天长风力发电处在高邮湖岸边),风塔高度一般在80米以上,风叶长度一般超过50米,致使风电采集装置总高度超过100米以上,运行时直径可达100米以上,根据雷电选择性和风塔所处位置(水陆交界、孤立高耸),结合雷电危害形式(直击雷、侧击雷、雷电波侵入、雷电感应过电压)以及发电机组系统内部控制系统耐压水平和地电位反击等因素,风电发电设施,极易遭受雷击,会造成风机叶片爆裂、自动化控制系统击穿和毁坏、通信系统件烧毁等危害。
所以对风力发电设施采取有效的防雷措施是非常必要的。
风塔形状及地理位置风力发电设施雷电防护区域的划分:Ⅰ、直击雷非防护区(LPZOA):电磁场没有衰减,各类物体都可能遭到直接雷击,属完全暴露的不设防区。
Ⅱ、直击雷防护区(LPZOB):电磁场没有衰减,各类物体很少遭受直接雷击,属充分暴露的直击雷防护区。
Ⅲ、第一防护区(LPZ1):由于建筑物的屏蔽措施,流经各类导体的雷电流比直击雷防护区(LPZOB)区进一步减小,电磁场得到了初步的衰减,各类物体不可能遭受直接雷击。
Ⅳ、第二防护区(LPZ2):进一步减小所导引的雷电流或电磁场而引入的后续防护区。
Ⅴ、后续防护区(LPZn):需要进一步减小雷电电磁脉冲,以保护敏感度水平高的设备的后续防护区。
风电采集装置—防雷防护区升压站—防雷防护区3.1、风叶的雷电防护叶片应通过装设接闪器(接闪小针),可利用叶片本身或单设构件,引下线可在叶片内部通过铜芯导线或直接利用叶片组件,与塔筒形成有效连接,为确保叶片能承受相应的雷电流冲击而不损坏,叶片材料应符合下表要求。
风力发电机雷电防护
风力发电机雷电防护区域 的划分
LPZ 1 可选择SPD保护设备,存在电涌破坏的危险,电磁场由于 可选择SPD保护设备,存在电涌破坏的危险,电磁场由于 屏蔽作用已经减弱。 这类区域包括:轮毂内部;机舱电控柜内部;发电机接线 盒内部;照明系统;机舱与塔筒的线缆;塔筒内部;箱式 变电站内部; LPZ 2…n 电涌破坏进一步减弱,电磁破坏影响更小 2… 这类区域包括:变桨控制箱内部;塔基控制柜内部;箱式 变电站开关柜内部;
图(8 图(8)机架接地点示意图
等电位连接
机舱柜 门和侧板使用6mm 门和侧板使用6mm2的电缆进行跨接。 控制柜带有一个可靠的外部接地点,这一点通过35mm2的 控制柜带有一个可靠的外部接地点,这一点通过35mm2的 电缆与机架接地点进行最短距离连接。控制柜外部接地点 如图(9 如图(9)所示。
发电机定子与变频柜接地连接采用240mm 发电机定子与变频柜接地连接采用240mm2电缆。 变频器与塔内接地环采用240mm 变频器与塔内接地环采用240mm2接地电缆可靠相连,保证 变频器可靠接地。
等电位连接
齿轮箱机座与机架接地点相连。选用35mm 齿轮箱机座与机架接地点相连。选用35mm2接地电缆。齿 轮箱机座接地点如图(11)所示。 轮箱机座接地点如图(11)所示。
图(11)齿轮箱机座外部接地点 图(11)齿轮箱机座外部接地点
等电位连接
每节塔筒之间以及第一节塔筒与基础环的法兰处用三条 35mm2接地电缆相连。接地电缆在法兰处呈120度分布, 35mm2接地电缆相连。接地电缆在法兰处呈120度分布, 保证塔筒可靠电气连通。塔筒跨接示意图如图(12) 保证塔筒可靠电气连通。塔筒跨接示意图如图(12)
图(5 图(5)主轴接地示意图
外部防雷措施
风电机组雷击损伤分析与防护
风电机组雷击损伤分析与防护摘要:风能越来越被认为是清洁的可再生能源。
中国的风力发电储量庞大,分布广泛,风力发电正在迅速发展,成为仅次于欧洲、美国和印度的世界主要市场之一。
随着风力发电自主能力的提高,风力发电塔越来越高。
此外,大型风力发电机通常安装在开阔的山区或山区,这增加了它们闪电的可能性。
例如,对风力涡轮机的防雷设计给予了相当大的关注。
本文将介绍机组雷电的特点和叶片及轴承部件雷电的破坏机理,探讨机组直接雷击的防护措施。
关键词:风能;风力发电机;雷电防护;措施分析;前言由于风力发电机所处的地理位置和建筑结构,闪电撞击的可能性增加,从而使闪电成为影响风力发电机安全运行的一个重要因素。
应根据风力发电机的特点和风力发电场的实际情况来考虑风力发电机的防雷问题。
根据综合管理、全面防御、多重保护和分层保护的原则,雷击防护系统的工程设计应采用防雷和防雷电磁脉冲法,以减少直接闪电和灵敏闪电对风力单位的影响。
一、风力发电机组雷击特性1.雷击部位风力发电一般建在沿海地区、高山等由于其独特的结构,它们很容易在该国不同地区的不同情况下引起风暴。
根据调查数据和使用滚动球法进行的研究,受闪电影响的风力发电机的主要组成部分是叶片、风球、电力系统、控制系统(轴承、舱)和发电机。
2.雷击概率分析在国外进行的研究表明,闪电对风力发电机的影响率如下:叶片(15-20%)、电力系统(15-25%)、控制系统(40-50%)和发电机(5%)。
从图1的几何角度来看,当单位高度和叶片长度增加时,沿单位滚珠丝杠产生的空间照度会增加和增加,从而增加闪电撞击单位的可能性。
由于叶片位于不同的空间位置,因此单位空间的照度曲面也会发生变化。
研究表明,叶片的单位高度和长度与闪电的概率直接相关,叶片的倾斜对单位闪电的概率有重大影响。
国外实验数据表明,当一个刀片直接向上滚动时,被闪电击中的可能性最大,另外两个刀片正好在两侧。
图1显示了正上方的叶片,通过左侧和右侧叶片的最外侧点与地面上的两个点相切,形成了一个曲面。
风电场防止风电机组雷击事故措施
风电场防止风电机组雷击事故措施
1.1在风电场可研设计阶段,应严格土壤视在电阻率测试和雷电等级确定,根据有关标准确定风电机组设防等级。
1.2强雷暴区域风电机组叶片引雷线宜采用铜导线,各类引雷线的直径应满足技术规范要求。
1.3叶片引雷线必须固定牢固,与叶片根部法兰连接的那一段引下线不能悬空,要设计机构使其固定,在招标及订货时明确提出。
1.4 叶片到场后和吊装前,均应检查叶片防雷引下线是否完好,并检测叶片接闪器到叶片根部法兰之间的直流电阻,不得高于厂家规定的电阻值。
应仔细检查防雷引下线各连接点联接是否存在问题,或通知生产厂家来现场处理。
1.5 机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙等)的完好性;并确认塔筒跨接线连接可靠。
叶片吊装前,应检查并确保叶片疏水孔通畅。
1.6 应及时修补表面受损叶片,防止潮气渗透入玻璃纤维层,造成内部受潮。
定期清理叶片表面的污染物,防止接闪器失效。
1.7 应定期检查从轮毂至机组塔底引雷通道,每年一次测量阻值。
要及时清理引雷滑环的锈蚀,及时紧固引雷接线,确保引雷通道接触良好,阻值正常。
1.8 必须确保风电机组电气系统中所有的等电位连接无异常。
1.9 定期检查风电机组电气回路的避雷器,及时更换失效避雷器。
1.10 应在每年雷季来临前测量一次风电机组接地电阻,确保接地电阻值在4欧姆以下并尽可能降低接地电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析风力发电机组的雷电防护
摘要随着风电技术的发展,大型风力发电机不断研制成功,随之机组的塔架也越来越高,风力机遭受雷击的几率也比过去增加了很多,在沿海或林区的风电场,防雷是不可忽视的,在这些风电场尽管也采取了一些防雷措施,但雷击还是造成了叶片和电控器件的损坏,借鉴经验及总结教训,我们应该做到防患于未燃,将防雷工作做的更彻底、更全面,以使雷击对风机的损坏降到最小。
关键词:风电;风力发电机;防雷
一、引言
雷电是自然界中一种常见的放电现象。
关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。
当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。
具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。
一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。
在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。
而对我们生活产生影响的主要是近地的云团对地的放电。
经统计,近地云团大多是负
电荷,其场强最大可达20kv/m。
二、雷电的危害
自然界每年都有几百万次闪电。
雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一。
最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。
全球每年因雷击造成人员伤亡、财产损失不计其数。
雷击造成的危害主要有5种:(1)直击雷
带电的云层对大地上的某一点发生猛烈的放电现象,称为直击雷。
它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。
(2)雷电波侵入
雷电不直接放电在建筑和设备本身,而是对布放在建筑物外部的线缆放电。
线缆上的雷电波或过电压几乎以光速沿着电缆线路扩散,侵入并危及室内电子设备和自动化控制等各个系统。
因此,往往在听到雷声之前,我们的电子设备、控制系统等可能已经损坏。
(3)感应过电压
雷击在设备设施或线路的附近发生,或闪电不直接对地放电,只在云层与云层之间发生放电现象。
闪电释放电荷时,在电源和数据传输线路及金属管道金属支架上感应生成过电压。
雷击放电于具有避雷设施的建筑物时,雷电波沿着建筑物顶部
接闪器(避雷带、避雷线、避雷网或避雷针)、引下线泄放到大地的过程中,会在引下线周围形成强大的瞬变磁场,轻则造成电子设备受到干扰,数据丢失,产生误动作或暂时瘫痪;严重时可引起元器件击穿及电路板烧毁,使整个系统陷于瘫痪。
(4)系统内部操作过电压
因断路器的操作、电力重负荷以及感性负荷的投入和切除、系统短路故障等系统内部状态的变化而使系统参数发生改变,引起的电力系统内部电磁能量转化,从而产生内部过电压,即操作过电压。
操作过电压的幅值虽小,但发生的概率却远远大于雷电感应过电压。
实验证明,无论是感应过电压还是内部操作过电压,均为暂态过电压(或称瞬时过电压),最终以电气浪涌的方式危及电子设备,包括破坏印刷电路印制线、元件和绝缘过早老化寿命缩短、破坏数据库或使软件误操作,使一些控制元件失控。
(5)地电位反击
如果雷电直接击中具有避雷装置的建筑物或设施,接地网的地电位会在数微秒之内被抬高数万或数十万伏。
高度破坏性的雷电流将从各种装置的接地部分,流向供电系统或各种网络信号系统,或者击穿大地绝缘而流向另一设施的供电系统或各种网络信号系统,从而反击破坏或损害电子设备。
同时,在未实行等电位连接的导线回路中,可能诱发高电位而产生火花放电的危险。
三、风力发电机防雷的必要性分析
在某些沿海风电场,如果广东石碑山风电场,雷电日为40个左
右,为雷雨多发地区,而据统计资料显示,对于高度为h(m)的建筑物在每年平均10个雷电日的情况下,年遭雷击的概率n如表1所示: 表1高度与雷击次数的关系
年均雷电日10天
表2显示了在强雷区中结构物分别高于12-16米都应考虑设置防雷保护,如金风s43/600风力发电机塔架高度为48.5米,加之叶片长度应在60米以上,因而更易遭到雷击.
表2应设防雷保护的结构物高度
统计表明风力发电机受到的雷击大多是直接雷击,并且遭受雷
击的风机如果缺少有效的防雷保护,其叶片和电器系统都会受到不同程度的损坏,严重的会导致风力发电机发生着火。
因此,风机的防雷技术很重要,应引起各风机制造厂家的重视,以使风机遭受雷击时受到的损害为最小。
四、金风s43/600风力机的雷电防护体系
金风s43/600机组的全雷电防护体系,包括对叶片、机舱、塔架、输电线路以及控制系统.它是利用雷电的选择最小阻抗路径的自然特性,人为架设一条低阻抗通路,让雷电的能量顺着预定的线路泄放,降低电位提升,减小温度升高,保护风力机设备免遭损坏.具体
的防雷体系及修改建议如下:
(一) 叶片的防雷保护
雷电击中叶片后,在内部形成的高温以及造成的空气膨胀,使叶片开裂,因此对于叶片的防雷应给以足够的重视, 叶片采用内置式的雷电接闪器。
见下图:
这种防雷装置经过试验室测定:可经受
1600kv的雷击电压和200ka的电流。
该装置简单精巧,与叶片的寿命一样。
如果需要,可以很方便的更换。
图1 叶片的雷电保护
1.液压缸支架
2.钢丝
3.碳纤维轴
4.接闪器
整个叶片分成两段,叶尖部分玻璃纤维聚脂层预制铸铝型心作为接闪器,通过碳纤维材料的阻尼器轴,与连接轮毂的叶尖阻尼器钢丝相连接,当遭到雷击时,雷电流经叶片中金属导体迅速传到叶根金属法兰和轮毂,在机舱主轴端设有两个防雷碳刷,用于传接由叶尖传过来的雷电流,最后通过接地低阻抗通路时雷电能量泄放,从而达到防雷目的。
在这里提出,钢丝绳与轮毂之间的连接导线采用专用的铜线,导线的横截面积不少于50mm².在石碑山风电场中,接地线的螺栓发生腐蚀,使导线和底板接触不良,形成隐患。
建议对接地螺栓采用防腐性能更好的螺栓.或采用专门的防腐材料进行及时有效的防腐。
另外,叶尖接闪面较小,接闪器离叶尖太远,雷电流经过叶尖雷击点到接闪器之间的玻璃纤维时引起叶尖材料温度急剧升高而爆
裂。
(二)对机舱的保护
风力机的风轮、机舱都是转动的,要将雷电的能量从转动的部分可靠的引到地下,关键要保持良好的接触,否则雷电流将会流到机舱其他部位,比如击穿油膜,对轴承或齿轮箱放电,从而损坏设备。
安装在机舱罩后上部的避雷针可以保护整个机舱,同时机舱内各部件包括机舱罩通过95mm²的接地电缆与机舱底座连接,机舱底座通过偏航轴承与塔架连接,确保雷电流迅速从塔架流入大地。
图2 发电机接地线图3 齿轮箱接地线
根据在风电场维护运行中,发现以上图片中接地电缆长度较长,发电机接地线的长度按工艺要求为550mm,可以缩减到520mm;齿箱接地线可以由610mm缩减到580mm,就可以满足安装要求.另一方面,接地线越短,其电阻越小,那么风机的低阻抗通路性能就越好.
(三)风机的接地
风机的接地系统是风机防雷系统中的关键环节,应包括一个围绕风机基础的环状导体,与基础一同构成风机的接地系统,环状导体采用70mm²或更大些的铜导体,若按这种方式测得接地电阻>2ω,则必须采取措施如增加电极直到≤2ω。
如图所示:
图4 风机接地
1.环状金属导体 2.接地电极
广东石碑山风电场属于临海地区,土壤电阻率较高,为降低接地电阻,开挖接地网沟后,建议用土壤电阻率较低的土壤回填,会比现有的添加降阻剂效果更加显著。
四、结论
1、改善叶尖防雷结构,接闪器离叶尖不易太远,雷电流经过叶尖雷击点到接闪器间的玻璃纤维时,引起叶尖材料温度急剧升高而爆裂,建议改进风机叶片的防雷设计,订购叶片时要求厂家提供叶片防雷的实验数据和资料。
2、针对广东沿海地区气候潮湿,接地螺栓的防腐须提高要求,防雷保护的关键在于金属接触要充分。
3、针对临海地区土壤电阻率较高,建议在开挖接地网沟后,用电阻率低的土壤回填。
注:文章内所有公式及图表请以pdf形式查看。