电力系统元件等效电路和参数共90页

合集下载

电力系统元件的各序参数和等值电路

电力系统元件的各序参数和等值电路

正序等值电路的构建
根据元件的物理特性和工作原理,通 过测量或计算得到正序电阻、正序电 感和正序电容等参数。
根据得到的参数,构建出元件的正序 等值电路,该电路由电阻、电感和电 容等元件组成,能够反映元件的正序 电气特性。
正序等值电路的应用
01
在电力系统稳定分析中,利用正序等值电路可以分 析系统的暂态和稳态运行特性。
03
电力系统元件的正序等 值电路
正序参数的计算
01
02
03
正序电阻
正序电阻是电力系统元件 在正序电压和电流下的阻 抗,它反映了元件的电导 和电感的综合效应。
正序电感
正序电感是电力系统元件 在正序电压和电流下的感 抗,它反映了元件的电感 和电容的效应。
正序电容
正序电容是电力系统元件 在正序电压和电流下的容 抗,它反映了元件的电感 和电导的效应。
零序电感
对于变压器和电动机等设备,由于磁路的对称性,它们的零序电感 通常远大于正序电感。
零序电容
在电力系统中,由于输电线路的不对称或变压器绕组的偏移,会产 生零序电容。
零序等值电路的构建
零序等值电路的构建需要将系统中所有元件的零序参数进行汇总,并按照 实际电路的连接方式进行等效。
在构建零序等值电路时,需要注意元件之间的相互影响,以及元件对地电 容的影响。
03
计算。
THANKS FOR WATCHING
感谢您的观看
负序电感是电力系统元件在负序磁场下的感抗,与 元件的几何尺寸、材料性质和电流频率有关。
负序电容
负序电容是电力系统元件在负序电压下的容 抗,与元件的几何尺寸、电极间距离和材料 性质有关。
负序等值电路的构建
1
根据元件的负序参数,使用电路理论构建负序等 值电路。

电力系统元件参数及等值电路PPT学习教案

电力系统元件参数及等值电路PPT学习教案

• 分布参数
参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这
说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐
标的函数。
第15页/共53页
是否考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的 电压、电流的波长之间的关系。若 电压或电流的波长>>电路本身的最大线性尺寸
第7页/共53页
1、线路电阻
使导线消耗有功并发热,造成电压降落。 每相导线单位长度的电阻可按下式计算
r1
S
式中, r1—导线单位长度的电阻, ;
—导线材料的电阻率, / km S—导线的额定截面积, mm2 / km
mm2
第8页/共53页
2、线路电抗
当交流电流通过时,产生电抗压降并消耗无功功率。 三相输电线按每相导线根数可分为普通导线和分
几何均距主要与导线的具体布置有
任意布置关:。Djp 3 D1D2 D3 按等边三角形布置: Djp 3 D1D2D3 D 按水平布置:
Djp 3 D1D2 D3 3 D D 2D 3 2D 1.26D
注意:当三相导线为非正三角形布置时,由于各相导 线相互间在几何位置上不对称,即使通过平衡的三相 电流,三相中各相导线的感抗值也不相等,为使三相 导线的感抗值相等,输电线路的各相导线必须进行换 位。目前对电压在110KV以上,线路长度在100公里 以上的输电线路一般均需要进行完全换位。
分裂导线的作用:减少导线的电晕损耗
减少导线的电抗
对于频率为50Hz的三相普通架空导线,每相每千米感抗计 算公式为:
x1
0.1445 lg
D jp r
0.0157 r
式中,r—导线的半径,cm或mm;

电力网各元件的等值电路与参数计算PPT(25张)

电力网各元件的等值电路与参数计算PPT(25张)

例2-3 330kV架空线路的参数为: r0=0.0579/km, x0=0.0316/km, b0=3.55×10-6S/km 试分别计算长度为100,200,300,400,500km线 路的形等值电路参数的近似值、修正值和精确值。
2.2 变压器的等值电路和参数计算
2.2.1变压器的等值电路来自•17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。

18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。

19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。

4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落,花谢花开,岂不自在,哪里来的尘埃!
1. 双绕组变压器
RT jXT
GT
–jBT
2. 三绕组变压器
R1 jX1
GT
–jBT
2.2.2 双绕组变压器的参数计算
1. 电阻():
RT

ΔPSVN2 SN2
103
2. 电抗():
XT
VS%VN2 100 SN
103
3. 电导(S):
GT

ΔP0 VN2
103
4. 电纳(S): BT 1I0% 00VSNN2 103

3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。

电力系统各元件的特性参数和等值电路

电力系统各元件的特性参数和等值电路

第二章 电力系统各元件的特性参数和等值电路 主要内容提示:本章主要内容包括:电力系统各主要元件的参数和等值电路,以及电力系统的等值网络。

§2-1电力系统各主要元件的参数和等值电路一、发电机的参数和等值电路一般情况下,发电机厂家提供参数为:N S 、N P 、N ϕcos 、N U 及电抗百分值G X %,由此,便可确定发电机的电抗G X 。

按百分值定义有100100%2⨯=⨯=*NNGG G U S X X X 因此 NNG G S U X X 2100%⋅= (2—1) 求出电抗以后,就可求电势G E •)(G G G G X I j U E •••+=,并绘制等值电路如图2-1所示。

二、电力线路的参数和等值电路电力线路等值电路的参数有电阻、电抗、电导和电纳。

在同一种材料的导线上,其单位长度的参数是相同的,随导线长度的不同,有不同的电阻、电抗、电导和电纳。

⒈电力线路单位长度的参数电力线路每一相导线单位长度参数的计算公式如下。

⑴电阻:()[]201201-+=t r r α(Ω/km ) (2—2) ⑵电抗:0157.0lg1445.01+=rD x m(Ω/km ) (2—3) 采用分裂导线时,使导线周围的电场和磁场分布发生了变化,等效地增大了导线半径,从而减小了导线电抗。

此时,电抗为nr D x eq m 0157.0lg1445.01+=(Ω/km ) 式中m D ——三相导线的几何均距;(a ) G ·(b )G ·图2-1 发电机的等值电路(a )电压源形式 (b )电流源形式eq r ——分裂导线的等效半径;n ——每相导线的分裂根数。

⑶电纳:6110lg 58.7-⨯=rD b m(S/km ) (2—4)采用分裂导线时,将上式中的r 换为eq r 即可。

⑷电导:32110-⨯=UP g g∆(S/km ) (2—5)式中g g ∆——实测的三相线路的泄漏和电晕消耗的总功率, kW/km ; U ——实测时线路的工作电压。

第二章 电力系统各元件的等值电路和参数计算

第二章 电力系统各元件的等值电路和参数计算
' ' S (1 − 2 )
( (
SN 2 ) S2N SN min{ S 2 N , S 3 N SN 2 ) S 3N
'
S (2−3)
S ( 3 −1)
(
)2 }
(3)仅提供最大短路损耗的情况
R( S N )
2 ∆PS .maxVN = ×103 2 2S N
2 ∆PSiVN Ri = × 10 3 (i = 1,2,3) 2 SN
2.2.3 三绕组变压器的参数计算
(2)三绕组容量不同(100/100/50、100/50/100) 三绕组容量不同(100/100/50、100/50/100)
∆ PS (1 − 2 ) = ∆ P ∆ PS ( 2 − 3 ) = ∆ P ∆ PS ( 3 − 1 ) = ∆ P
2.2.3 输电线路的参数计算
1.电阻 电阻 有色金属导线单位长度的直流电阻: 有色金属导线单位长度的直流电阻: r = ρ / s 考虑如下三个因素: 考虑如下三个因素: (1)交流集肤效应和邻近效应。 )交流集肤效应和邻近效应。 (2)绞线的实际长度比导线长度长 ~3 %。 )绞线的实际长度比导线长度长2~ (3)导线的实际截面比标称截面略小。 )导线的实际截面比标称截面略小。 2 因此交流电阻率比直流电阻率略为增大: 因此交流电阻率比直流电阻率略为增大:铜:18.8 Ω ⋅ mm / km 铝:31.5 Ω ⋅ mm 2 / km 精确计算时进行温度修正: 精确计算时进行温度修正: rt = r20 [1 + α (t − 20)]
架空线路的换位问题
A B C C A B B C A A B C
目的在于减少三相参数不平衡 整换位循环: 整换位循环:指一定长度内有两次换位而三相导线 都分别处于三个不同位置,完成一次完整的循环。 都分别处于三个不同位置,完成一次完整的循环。 滚式换位 换位方式 换位杆塔换位

第二章电力网各元件的参数和等值电路精品文档

第二章电力网各元件的参数和等值电路精品文档
如下表,空载电流I0为1.243%,空载损耗P0为132kW。 试求归算到220kV侧的变压器参数。
变压器短路试验数据表(未经归算)
短路电压百分数Us% 短路损耗Ps(kW)
高—中 12.20 343.0
高—低 6.00
251.5
中—低 8.93
285.0
第2章 电力网各元件参数和数学模型
14 发电机组的运行特性和数学模型
φ ——功率因数角,u i ;
S、P、Q——分别为视在功率、有功功率、无功功率。
2.1 发电机组的运行特性和数学模型
一、发电机稳态运行时的相量图和功角特性
1. 隐极式发电机的相量图和功角特性
S ~ ( U d j q ) U I d j q I U d I d U q I q j U q I d U d I q P jQ
Uq EqIdxd EQIdxq Ud Iqxq
jQ E ( U d jq U ) jq x I d jq I
即, EQUjxqI 可以运用作图法求得交轴正方向,从而 E q 确定的正方向。
2.1 发电机组的运行特性和数学模型
P EqUd UdUq UdUq
1 双绕组变压器
电阻
RT

PkU
2 N
1000SN2
RT——变压器高低压绕组的总电阻(Ω ); Pk——变压器的短路损耗(kW); SN——变压器的额定容量(MVA); UN——变压器的额定电压(kV)。
2.2 变压器的参数和数学模型(续1)
1 双绕组变压器
电抗
XT
UN Uk%Uk% UN 2 3IN 100 10SN 0
2.2 变压器的参数和数学模型(续3)

第2章电力系统元件参数和等值电路资料

第2章电力系统元件参数和等值电路资料

D 0.1445lg m 0.0157 ( / km)
x1
n
req
式中: n — 相线分裂次数; req—分裂导线的等值半径。
第一节 电力线路参数和等值电路
n
r d n r
eq
1i
i2
比等导电面积的非 分裂导线的半径大
式中,r—每根子导线的半径; d1i—第1根导线与第i根导线间的距离,i=2,3,…,n
扇形三芯电缆的构造 1—导体;2—绝缘层;3—铅包皮; 4—黄麻层;5—钢带铠甲; 6—黄麻保护层
第一节 电力线路参数和等值电路
二、电力线路的参数
分布参数( distributed parameter ) 的单相等值电路
从《电路分析》课程学习中,我们知道,当被研究对象的尺寸不 是远小于其正常工作频率所对应的波长时,被研究对象的等效电路就
n—分裂导线的分裂数;
始临界电压比等截
r—每一根导线的半径(cm); 面普通导线的高
m、Dm与前面式子意义相同; n、β的关系下表:
n 2 3 4 5 6 7 8 10 β 2.0 3.48 4.24 4.7 5.0 5.2 5.38 5.58
第一节 电力线路参数和等值电路
在晴天运行的相电压等于电晕临界相电压时,电力线路不 会出现电晕现象。
A
r
B
C
R
DAB
DBC
DAC
采用四分裂导线的三相线路示意图
第一节 电力线路参数和等值电路
讨论:
x1
0.1445lg
Dm req
0.0157r
n
n≥2
比等导电面积的非 分裂导线的半径大
结论:采用分裂导线,其电抗将减小。分裂导线的根

电力网各元件参数和等值电路PPT培训课件

电力网各元件参数和等值电路PPT培训课件

性。并网运行时,需要考虑发电机的参数和等值电路,以确保与系统的
匹配和稳定。
02
参数匹配
发电机并网运行时,需要确保其参数与系统相匹配,包括电压、频率、
相位角等。这些参数的匹配能够减少并网时的冲击电流,提高系统的稳
定性。
03
等值电路应用
在发电机并网运行中,等值电路的应用非常重要。通过等值电路,可以
分析发电机的内阻抗、电抗和电感等参数,从而更好地了解发电机的性
THANKS
感谢观看
电力网各元件参数和等值 电路PPT培训课件
• 电力网元件介绍 • 元件参数介绍 • 等值电路介绍 • 电力网元件参数和等值电路的关系 • 实际应用案例分析
01
电力网元件介绍
发电机
01
02
03
种类
水轮发电机、汽轮发电机、 燃气轮发电机等。
工作原理
利用机械能转化为电能, 通过转子磁场和定子线圈 的相对运动产生感应电动 势。
元件电容
元件电容的大小影响等值电路中的电容值,对电压的相位和波形产 生影响。
等值电路在电力网中的应用
系统分析
01
等值电路可用于电力网的系统分析,帮助理解电力网的运行特
性和状态。
短路计算
02
等值电路可用于短路电流的计算,为保护装置的选择和整定提
供依据。
潮流计算
03
等值电路可用于电力网的潮流计算,确定各节点的电压和功率
额定电流
总结词
表示电器在正常工作时允许的最大电 流。
详细描述
额定电流是指电器在正常工作时所允 许的最大电流值,也是电器的一个重 要参数。如果电流超过额定值,可能 会引起电器过热、烧毁等故障。
额定功率

电力网各元件参数和等值电路

电力网各元件参数和等值电路

3、分裂导线的原理
分裂导线附近电磁场变化了,每相电荷分布在该相的 各根分导线上,就等效于加大了该相导线的半径,减 小了导线表面电荷密度,因而降低导线表面电场强度,从 而抑制电晕放电。
图中所示为不同分裂导线周围的电场分布。各分裂导 线直径分别为5、3.6、2.9、2.5厘米;裂相距离为45厘米; 离地面高度20米。
和电流的关系
(2-20)与(2-21)相比较,若取
U1 AU 2 BI2 I1 CU 2 DI2
(2-21) A D chl
B ZC shl
C shl
ZC
输电线是对称的无源二端口网络
二端口网络 通用方程
可用对称的等值电路来表示。
2、输电线 的集中参数等值电路
➢ 长线路
(>330kV, >300km架空线路、>100km电缆线路)
同,当三相相间距离为Dab、 Dbc、 Dca时, Dm= 3 Dab Dbc Dca (mm)
工程近似取:x1=0.4(Ω/km)
➢ 分裂导线单位长度电抗:
x1
0.1445 lg
Dm req
0.0157 n
(2-4)
其中:n—每相分裂根数 ,mm
r
eq--分裂导线的等值半径,其值为:req
n
n
r d1i
(2-8)
b与几何均距、导线半径→对数关系,架空线路电纳变化不大,
其值一般在2.85×10-6S/km左右。电缆线路电纳比架空线路大
得多 2)分裂导线单位长度电纳
b 7.58 106 s / km lg Dm req
(2-9)
分裂导线→改变导线周围的电场,导线半径等效↑,每相导线的电 纳↑ 。式中 的代表意义与式(2-4) 相同。 每相分裂根数为 2→ 3.4×10-6 (S/km)

第二章_电力系统各元件的参数和等值电路

第二章_电力系统各元件的参数和等值电路

四.电力线路的数学模型
电力线路的数学模型就是以电阻、电抗、电纳和 电导来表示线路的等值电路。(集中参数电路) 分三种情况讨论:
1)
短线路
2) 中等长度线路 3) 长线路(分布参数电路或修正集中参数电路)
1.短输电线路:电导和电纳忽略不计 长度<100km 电压60kV以下 短的电缆线 线路阻抗
2 2
然后按双绕组变压器相似的公式计算各绕组电阻
2 2 2 Pk 1U N Pk 2U N Pk 3U N RT 1 , RT 2 , RT 3 2 2 2 1000S N 1000S N 1000S N
电阻
对于100/50/100或100/100/50
由于短路损耗是指容量小的一侧达到额定电流时的 数值,因此应将含有不同容量绕组的短路损耗数据归算 为额 定电流下的值。 例如:对于100/50/100 IN ' Pk (1 2 ) Pk (1 2 ) ( ) 2 4 Pk'(1 2 ) IN / 2 IN 2 ' Pk ( 2 3 ) Pk ( 2 3 ) ( ) 4 Pk'( 2 3 ) IN / 2 然后,按照100/100/100计算电阻的公式计算各绕组电阻。
图 中等长度线路的等值电路 (a) π形等值电路;(b) T形等值电路
3 长线路的等值电路(需要考虑分布参数特性) 长线路:长度超过300km的架空线和超过100km的电缆。 精确型 根据双端口网络理论可得:
1 2coshrl 1 Y' sin hrl Zc sin hrl 其中: Z c z1 / y1 r z1 y1
电阻
由于容量的不同,对所提供的短路损耗要做些处理
对于100/100/100

电力系统分析第2章 电力网各元件的参数和等值电路

电力系统分析第2章  电力网各元件的参数和等值电路

三绕组变压器
手册中查到的是两两绕组的短路电压 ,先求出每个绕 组的短路电压(short-circuit voltage)百分数,再计算 每个绕组的电抗,即:
U S1 % 1 2(U S (12) % U S (31) % U S (23) %) U S 2 % 1 2(U S (12) % U S (23) % U S (13) %) U S 3 % 1 2(U S (23) % U S (31) % U S (12) %)
2.3.2
三绕组变压器
三绕组变压器按其三个绕组排列方式的不同有两种结构: 升压结构和降压结构,如图2.10所示。
由于绕组的排列方式不同,绕组间的漏抗不同,因而短
路电压也不同。
图2.10 三绕组变压器的排列方式
电力系统分析
2.3.2
三绕组变压器
导纳 三绕组变压器导纳的计算方法与双绕组变压器相同。
电力系统分析
长线路:
长线路的等值电路
指长度超过300km的架空线路和长度超过100km的 电缆线路。
图2.5 长线路的等值电路
电力系统分析
2.3 变压器的等值电路及参数
2.3.1 双绕组变压器(double-column transformer)
2.3.2
三绕组变压器(three-column transformer)
电力系统分析
2.1.4 电纳(susceptance)
三相电路经整循环换位后,每相导线单位长 度电纳的计算式如下。 1.单相导线线路电纳
b0 7.58 10 6 S / km Deq lg r
2.分裂导线线路电纳
b0 7.58 10 6 S / km Deq lg req

电力网各元件等值电路和参数计算ppt课件

电力网各元件等值电路和参数计算ppt课件
设经过整循环换位的三相线路的三相导线上每单位长 度的电荷分别为+ga,+gb,+gc,三相导线的镜像 上的电荷分别为-ga,-gb,-gc,沿线均匀分布 六导线系统介电系数ε为常数,可应用叠加原理。 选地面作为电位参考点,利用公式(2-23)分别计算 三对线电荷单独存在时在a相导线产生的电位,
(2-23)
线路出现电晕现象的最小电压称为临界电压 Vcr 。 三相导线排列在等边三角形顶点上时,电晕临界相电压的经验公式为:
(2-16)
m1:反映导线表面状况的系数(常量),对多股绞线 m1=0.83~0.87 m2:反映气象状况的系数,对于干燥和晴朗的天气,m2=1 ,对于有雨、 雪、雾等的恶劣天气,m2=0.8~1 (随天气变化), δ为空气的相对密度;按左式计算: p为大气压力,单位Pa ; t为大气摄氏温度;当 t=25C, p=76Pa时,δ=1 r:导线的计算半径,单位为cm;D为相间距离单位与r相同。 对水平排列的线路,两边线路的电晕临界电压Vcr比上式算得的值高6%; 而中间线路的Vcr比上式算得的值低4%。
电力系统中元件的三相等值电路也有星形电路和三角形电路。
为了便于应用一相等值电路进行分析计算,要把三角形等值电路化 为星形等值电路。
等值电路中的参数是计及了其余两相影响(如相间互感等)的一相 等值参数
2-1 架空输电线路的参数
输电线路的参数包括:
电阻r0:反映线路通过电流时产生 的有功功率损失; 电憾L0:反映载流导线产生的磁场 效应; 电导g0:反映线路带电时绝缘介质 中产生泄漏电流及导线附近空气游 离而产生的有功功率损失; 电容C0:反映带电导线周围电场效 应的。
分裂导线线路的电抗值随分裂数的增加而减小
钢导线,由于集肤效应及导线内部的磁导率均随导线通过的电流大小而 变化,它的电阻和电抗均不是恒定的, 钢导线构成的输电线路将是一个非线性元件。 钢导线的阻抗无法用解析法确定, 一般用实验测定电压、电流值来确定其阻抗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank youຫໍສະໝຸດ 电力系统元件等效电路和参数
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
相关文档
最新文档