九年级数学圆知识点及习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、圆的有关概念与性质
1.圆上各点到圆心的距离都等于 半径 。
2.圆是 轴 对称图形,任何一条直径所在的直线都是它的 对称轴 ;圆又是 中心 对
称图形, 圆心 是它的对称中心。
3.垂直于弦的直径平分 这条弦 ,并且平分 弦所对的弧 ;平分弦(不是直径)的 直径 垂
直于弦,并且平分 弦所对的弧 。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 相等 ,
那么它们所对应的其余各组量都分别 相等 。
5.同弧或等弧所对的圆周角 相等 ,都等于它所对的圆心角的 一半 。
6.直径所对的圆周角是 90° ,90°所对的弦是 直径 。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 外
心,是三角形 三边垂直平分线 的交点。
8.与三角形各边都相切的圆叫做三角形的 内切圆 ,内切圆的圆心是三角形 三条角平分线的交点
的交点,叫做三角形的 内心 。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.
10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角
2、与圆有关的位置关系
1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆
心的距离d 和半径r 之间的数量关系分别为:
①d > r ,②d = r ,③d < r.
2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ;
对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为:
①d < r ,②d = r ,③d > r.
3.圆与圆的位置关系共有五种:
① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ;
两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:
①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r.
4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条
直径 的直线是圆的切线.
5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切
线的夹角。
3、与圆有关的计算
1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180r ,n °的圆心角所对的弧长
为 180r n π ,弧长公式为180r n l π=n 为圆心角的度数上为圆半径) .
2. 圆的面积为 πr 2 ,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n
2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径). 3.圆柱的侧面积公式:S= 2 πr l (其中
为 底面圆 的半径 ,为 圆柱 的高.) 4. 圆锥的侧面积公式:S=(其中为 底面 的半径 ,为 母线 的长.)
圆锥的侧面积与底面积之和称为圆锥的全面积
测试题
一、选择题(每小题3分,共45分)
1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位
置关系是( )。
A .C 在⊙A 上 B.C 在⊙A 外
C .C 在⊙A 内 D.C 在⊙A 位置不能确定。
2.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( )。
A .16cm 或6cm B.3cm 或8cm C .3cm D.8cm
3.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )。
A .40° B.140°或40° C .20° D.20°或160°
4.O 是△ABC 的内心,∠BOC 为130°,则∠A 的度数为( )。
A .130° B.60° C .70° D.80°
5.如图1,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度
数是( )。
A .55° B.60° C .65° D.70°
6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A 、B 、C 、D
处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其
中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。
A . A 处
B . B 处
C .C 处
D .D 处
图1 图2
7.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。
A .内含 B.内切 C .相交 D. 外切
8.已知半径为R 和r 的两个圆相外切。则它的外公切线长为( )。
A .R +r B.R 2+r 2
C .R+r D.2Rr
9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )。
A.10π B .12π C.15π D.20π
10.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( )。
A .3
B .4
C .5
D .6
11.下列语句中不正确的有( )。
①相等的圆心角所对的弧相等
②平分弦的直径垂直于弦
③圆是轴对称图形,任何一条直径都是它的对称轴
④长度相等的两条弧是等弧
A .3个 B.2个
C .1个 D.4个 12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。 A .7)332( B.8)332( C .7)23( D.8)2
3( 13.如图3,⊿ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切于⊿ABC ,则阴影部分面积为( )
A .12-π B.12-2π C .14-4π D.6-π
14.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交 AC
于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。
A .4-94π
B .4-98π
C .8-94π
D .8-9
8π 15.如图5,圆内接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( )。
A .2对 B.3对 C .4对 D.5对
图3 图4 图5
二、填空题(每小题3分,共30分)
1.两圆相切,圆心距为9 cm ,已知其中一圆半径为5 cm ,另一圆半径为_____.
2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。
3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。
4.同圆的外切正六边形与内接正六边形的面积之比为_________。
5.矩形ABCD 中,对角线AC =4,∠ACB =30°,以直线AB 为轴旋转一周得到圆柱的表面积是_________。
6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。
7.圆的半径为4cm ,弓形弧的度数为60°,则弓形的面积为_________。
8.在半径为5cm 的圆内有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为
_________。
9.如图6,△ABC 内接于⊙O,AB=AC ,∠BOC=100°,MN 是过B 点而垂直于OB 的直线,则∠ABM=________,
∠CBN=________;
10.如图7,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A ′B ′C ′D ′的位置,则在
转过程 中,边CD 扫过的(阴影部分)面积S=_________。
图6 图7
三、解答下列各题(第9题11分,其余每小题8分,共75分)
1.如图,P 是⊙O 外一点,PAB 、PCD 分别与⊙O 相交于A 、B 、C 、D 。
(1)PO 平分∠BPD ; (2)AB=CD ;(3)OE ⊥CD ,OF ⊥AB ;(4)OE=OF 。
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。
2.如图,⊙O 1的圆心在⊙O 的圆周上,⊙O 和⊙O 1交于A ,B ,AC 切⊙O 于A ,连结CB ,BD 是⊙O 的直径,
∠D =40°求:∠A O 1B 、∠ACB 和∠CAD 的度数。