图论 图的基本概念

合集下载

图论及其应用

图论及其应用

图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。

图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。

本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。

图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。

图可以分为有向图和无向图两种类型。

有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。

有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。

有向图的表示可以用邻接矩阵或邻接表来表示。

无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。

无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。

无向图的表示通常使用邻接矩阵或邻接表。

常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。

通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。

DFS可以用于判断图是否连通,寻找路径以及检测环等。

广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。

不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。

BFS可以用于寻找最短路径、搜索最近的节点等。

最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。

其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。

迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。

最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。

其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。

图论知识点

图论知识点

图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。

图由节点(或顶点)和连接这些节点的边组成。

本文将概述图论的基本概念、类型、算法以及在各种领域的应用。

1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。

边可以是有向的(指向一个方向)或无向的(双向连接)。

1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。

环是一条起点和终点相同的路径。

1.3 度数节点的度数是与该节点相连的边的数量。

对于有向图,分为入度和出度。

1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。

2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。

2.2 简单图和多重图简单图是没有多重边或自环的图。

多重图中,可以有多条边连接同一对节点。

2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。

有向图的连通性称为强连通性。

2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。

3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。

3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。

3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。

4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。

4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。

4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。

5. 结论图论是数学中一个非常重要和广泛应用的领域。

它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。

随着科技的发展,图论在新的领域中的应用将会不断涌现。

本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。

(图论)图的基本概念--第一章

(图论)图的基本概念--第一章

证明 设G=<V,E>为任意一图,令
V1={v|v∈V∧d(v)为奇数} V2={v|v∈V∧d(v)为偶数} 则V1∪V2=V,V1∩V2= ,由握手定理可知
2m d (v) d (v) d (v)
vV
vV1
vV2
由于2m和 d (v) ,所以 d (v) 为偶数,
举例
NG(v1) = {v2,v5} NG(v1) = {v1,v2,v5} IG(v1) = {e1,e2,e3}
Г+D(d ) = {c} Г-D(d ) = {a,c} ND(d ) = {a,c} ND(d ) = {a,c,d}
简单图与多重图
定义1.3 在无向图中,关联一对顶点的无向边如果多于1条,则 称这些边为平行边,平行边的条数称为重数。 在有向图中,关联一对顶点的有向边如果多于1条,并且这些 边的始点和终点相同(也就是它们的方向相同),则称这些边 为平行边。 含平行边的图称为多重图。 既不含平行边也不含环的图称为简单图。
无向图和有向图
定义1 一个无向图是一个有序的二元组<V,E>,记作G,其中 (1)V≠称为顶点集,其元素称为顶点或结点。 (2)E称为边集,它是无序积V&V的多重子集,其元素称为无向 边,简称边。
定义2 一个有向图是一个有序的二元组<V,E>,记作D,其中 (1)V≠称为顶点集,其元素称为顶点或结点。 (2)E为边集,它是笛卡儿积V×V的多重子集,其元素称为有向 边,简称边。
vV2
vV1
但因V1中顶点度数为奇数, 所以|V1|必为偶数。
问题研究
问题:在一个部门的25个人中间,由于意见不同,是否可能每 个人恰好与其他5个人意见一致?

图论期末总结

图论期末总结

图论期末总结一、引言图论是一门研究图和网络结构的数学学科。

图论不仅在数学领域中有着广泛的应用,而且在计算机科学、物理学、化学、生物学等交叉学科中也扮演着重要的角色。

在本学期的图论课程中,我系统地学习了图论的基本概念、算法和应用,对图论的知识有了更深入的理解和认识。

在本文中,我将对本学期学习的图论知识进行总结和归纳。

二、基本概念1. 图的定义与表示:图是由一组顶点和一组边组成的数学模型。

在图中,顶点表示图中的实体,边表示顶点之间的关系。

图可以用邻接矩阵或邻接表来表示。

2. 图的类型:图可以分为有向图和无向图、加权图和非加权图、简单图和多重图等。

有向图的边具有方向性,无向图的边没有方向性。

加权图的边带有权重,非加权图的边没有权重。

简单图没有自环和平行边,多重图可以有自环和平行边。

3. 图的基本术语:顶点的度数是指与该顶点相关联的边的数量。

入度是有向图中指向该顶点的边的数量,出度是有向图中从该顶点发出的边的数量。

路径是由边连接的一系列顶点,路径的长度是指路径上边的数量。

连通图是指从一个顶点到任意其他顶点都存在路径。

三、图的算法1. 图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS)是两种常用的图遍历算法。

DFS从一个顶点出发,探索所有可能的路径,直到无法继续深入为止。

BFS从一个顶点开始,逐层探索图中的其他顶点,直到所有顶点都被访问过为止。

2. 最短路径算法:最短路径算法用来计算图中两个顶点之间的最短路径。

迪杰斯特拉算法和弗洛伊德算法是两种常用的最短路径算法。

迪杰斯特拉算法适用于没有负权边的图,通过每次选择到某个顶点的最短路径来逐步扩展最短路径树。

弗洛伊德算法适用于有负权边的图,通过每次更新两个顶点之间的最短路径来逐步求解最短路径。

3. 最小生成树算法:最小生成树算法用于找到连接图中所有顶点的最小代价树。

克鲁斯卡尔算法和普林姆算法是两种常用的最小生成树算法。

克鲁斯卡尔算法通过每次选择代价最小的边来逐步扩展最小生成树。

图论导引参考答案

图论导引参考答案

图论导引参考答案图论导引参考答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图由节点和边组成,节点表示对象,边表示对象之间的连接关系。

图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。

本文将介绍图论的基本概念和常见算法,并提供一些参考答案来帮助读者更好地理解和应用图论。

一、图的基本概念1.1 有向图和无向图图可以分为有向图和无向图两种类型。

有向图中,边有方向,表示节点之间的单向关系;而无向图中,边没有方向,表示节点之间的双向关系。

1.2 路径和环路径是指图中一系列节点和边的连续序列,路径的长度为路径中边的数量。

如果路径的起点和终点相同,则称之为环。

1.3 连通图和连通分量在无向图中,如果任意两个节点之间都存在路径,则称该图为连通图。

连通图中的极大连通子图称为连通分量。

1.4 强连通图和强连通分量在有向图中,如果任意两个节点之间都存在路径,则称该图为强连通图。

强连通图中的极大强连通子图称为强连通分量。

二、图的存储方式2.1 邻接矩阵邻接矩阵是一种常见的图的存储方式,使用一个二维矩阵来表示图中节点之间的连接关系。

矩阵的行和列分别表示节点,矩阵中的元素表示节点之间是否存在边。

2.2 邻接表邻接表是另一种常见的图的存储方式,使用一个数组和链表的结构来表示图中节点之间的连接关系。

数组中的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。

三、常见图算法3.1 深度优先搜索(DFS)深度优先搜索是一种用于遍历图的算法。

从图中的一个节点开始,沿着一条路径一直深入直到无法继续为止,然后回溯到上一个节点,继续深入其他路径。

DFS可以用于判断图的连通性、寻找路径等问题。

3.2 广度优先搜索(BFS)广度优先搜索也是一种用于遍历图的算法。

从图中的一个节点开始,先访问其所有相邻节点,然后再依次访问这些节点的相邻节点,以此类推。

BFS可以用于计算最短路径、寻找连通分量等问题。

3.3 最小生成树算法最小生成树算法用于求解一个连通图的最小生成树,即包含图中所有节点且边的权重之和最小的子图。

图论:图的基本概念

图论:图的基本概念
3.子图 设 G = (V, E)是一个图,图 H = (V1, E1)称为 G 的一个子图, 其中 V1 是 V 的非
空子集且 E1 是 E 的子集 如果 G1 是 G 的子图,则说 G 包含 G1
Tips:
1.注意,顶点集合非空
∑ 2.显然的,Kn 有
p
k(k ‒ ������)
������(������,������)·2 ������ 个子图
Tips:
1.生成子图中包含原图的所有顶点
n(������ ‒ ������)
2.显然的,Kn 有2 ������ 生成子图
表示
设 x 是 G 的一条边,则 G 的生成子图(V,E\{x})简记为 G-x(生成子
图只能去边)
如果 u 和 v 是 G 的两个不邻接的顶点,则图(V,E∪{u,v})简记成
设 G 是一个连通图,则下列命题等价: (1)G 是一个欧拉图 (2)G 的每个顶点的度都是偶数 (3)G 的边集能划分成若干互相边不相交的圈
(3)延伸---欧拉迹 1.包含图的所有顶点和边的迹称为欧拉迹 判定 图 G 有一条欧拉迹当且仅当 G 是连通的且有两个奇度顶点 2.一笔画问题 若每个顶点的度均为大于或等于 2 的偶数,图又是连通的,则这个图能 一笔画出,并且最后还能回到出发点。
(2)当 v0=vn 时,则称此通道为闭通道(回路/复杂回路) (3)在计算通道的长时,重复走过的边重复计算
(4)如果一条闭通道上的各边互不相同,则此闭通道称为闭迹(简单回
路)
(5)如果闭通道上各顶点互不相同,则称此闭通道为圈,或回路(初级回
路)
(6)可见,迹和路是通道的特例,闭迹和回路是闭通道的特例。
图 G 为偶图的充分必要条件是它的所有圈都是偶数长 6.5 欧拉图

图论基础知识的名词解释

图论基础知识的名词解释

图论基础知识的名词解释图论是数学的一个分支,研究图的属性和关系。

图是由节点和节点之间的边组成的抽象模型,被广泛应用于计算机科学、网络分析、医学和社会科学等领域。

下面,我们将解释一些图论中常用的基础概念和术语。

1. 图 (Graph)图是图论研究的基本对象,由一组节点和连接这些节点的边组成。

节点也被称为顶点 (Vertex),边则是节点之间的连接线。

图可以分为有向图 (Directed Graph) 和无向图 (Undirected Graph) 两种类型。

在有向图中,边有方向,从一个节点指向另一个节点;而在无向图中,边没有方向,节点之间的关系是双向的。

2. 顶点度数 (Degree of a Vertex)顶点度数指的是一个顶点与其他顶点相邻的边的数量。

在无向图中,顶点度数即与该顶点相连的边的数量;在有向图中,则分为入度 (In-degree) 和出度 (Out-degree)。

入度表示指向该节点的边的数量,而出度表示从该节点出发的边的数量。

3. 路径 (Path)路径指的是通过边连接的一系列节点,形成的顺序序列。

路径的长度是指路径上边的数量。

最短路径 (Shortest Path) 是指连接两个节点的最短长度的路径。

最短路径算法被广泛应用于计算机网络中的路由选择和地图导航系统中的路径规划。

4. 连通图 (Connected Graph)连通图是指图中的任意两个节点之间都存在路径的图。

如果一个图不是连通图,那么它可以被分割为多个连通分量 (Connected Component)。

连通图在社交网络分析和传感器网络等领域中具有重要的应用。

5. 完全图 (Complete Graph)完全图是指任意两个节点之间都存在边的图。

在完全图中,每对节点之间都有一条边相连。

n个节点的完全图有n(n-1)/2条边。

完全图经常用于描述需要互相交流的问题,如计算机网络中的通信。

6. 树 (Tree)树是一种无环连通图,其中任意两个节点之间有且仅有一条路径相连。

图论-图的基本概念

图论-图的基本概念
若 i, j 中有奇数,比如 i 是奇数,则路 P 上 v0 到 vi 的一段与边 v0vi 构成一个偶圈; 若 i, j 都是偶数,则路 P 上 vi 到 v j 的一段与边 v0vi 及 v0v j 构成一个偶圈。证毕。 例 1.1.4 设 G 是简单图,若δ (G) ≥ 3 ,则 G 中各个圈长的最大公因数是 1 或 2。 证明:由上例知,G 中有长分别为 i + 1, j + 1和 j − i + 2 的圈。若 i + 1, j + 1, j − i + 2 三 数有公因数 m > 2 ,则 m | ( j − i) ,于是 m | 2 ,这是不可能的。因此 i + 1, j + 1, j − i + 2
证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果 V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。

图论常考知识点总结

图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。

顶点之间的连接称为边,边可以有方向也可以没有方向。

若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。

图的表示方式:邻接矩阵和邻接表。

邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。

2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。

强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。

弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。

3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。

广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。

4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。

弗洛伊德算法:用于计算图中所有顶点之间的最短路径。

5. 最小生成树普里姆算法:用于计算无向图的最小生成树。

克鲁斯卡尔算法:用于计算无向图的最小生成树。

6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。

以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。

当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。

图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。

图论讲义-图的基本概念

图论讲义-图的基本概念

到目前为止,判断两图同构 还只能从定义出发。判断过 程中不要将两图同构的必要 条件当成充分条件。
注意:在研究图的过程中,顶点的位置以及边的曲直长短 都是无关紧要的。而且也没有假定这些顶点和边都要在一 个平面上(正方体的顶点和棱也可构成图)。我们研究的 只是顶点的多少及这些边是连接那些顶点的。
五、顶点的度
若e=(u,v),则表示u到v的一条边(Edge),此时的
图称为无向图(Undigraph)。
有向图(Digraph)、无向图(Undigraph)
V1 V4
V1
V5 V2 V3 V2 V3
V4
有向图(Digraph)、无向图(Undigraph)
例1、设V={v1,v2,v3,v4,},E={e1,e2,e3,e4,e5},满足e1=(v1,v2),
六、路与图的连通性
v1 v2 v5
图G中,取Γ1=v1v2v3,
v3
v4
G
Γ2=v1v2v3v4v2, Γ3=v1v2v3v2v3v4 则 Γ1,Γ2,Γ3依次为长为2,4,5的 通路,其中Γ1与Γ2为简单通路, Γ1为基本通路。 由定义可看出,G中v1v2v5v1为 长为3的圈,v1v2v3v4v2v5v1为 长为6的简单回路。
e2=(v2,v3),e3=(v2,v3),e4=(v3,v4),e5=(v4,v4),则G=(V,E)是一个图。图 中边集E的边也可直接由点对表示,而将E作为多重集(即允许E中有相同元素的 集合)。 例2、设V={v1,v2,v3,v4},E={(v1,v2),(v1,v2),(v2,v3)},则H=(V,E)是 一个图。 e
d (V ) 2m
i 1 i
n
五、顶点的度
推论:任何图(无向图或有向图)中,度为奇数的顶点个

图论--图的基本概念

图论--图的基本概念

图论--图的基本概念1.图:1.1⽆向图的定义:⼀个⽆向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。

E是⽆序积V&V的有穷多重⼦集,称作边集,其元素称作⽆向边,简称边。

注意:元素可以重复出现的集合称作多重集合。

某元素重复出现的次数称作该元素的重复度。

例如,在多重集合{a,a,b,b,b,c,d}中,a,b,c,d的重复度分别为2,3,1,1。

从多重集合的⾓度考虑,⽆元素重复出现的集合是各元素重复度均为1的多重集。

1.2有向图的定义:⼀个有向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。

E是笛卡尔积V✖V的有穷多重⼦集,称作边集,其元素为有向边,简称为边。

通常⽤图形来表⽰⽆向图和有向图:⽤⼩圆圈(或实⼼点)表⽰顶点,⽤顶点之间的连线表⽰⽆向边,⽤带箭头的连线表⽰有向边。

与1.1,1.2有关的⼀些概念和定义:(1)⽆向图和有向图统称为图,但有时也把⽆向图简称作图。

通常⽤G表⽰⽆向图,D表⽰有向图,有时也⽤G泛指图(⽆向的或有向的)。

⽤V(G),E(G)分别表⽰G的顶点集和边集,|V(G)|,|E(G)|分别是G的顶点数和边数,有向图也有类似的符号。

(2)顶点数称作图的阶,n个顶点的图称作n阶图。

(3)⼀条边也没有的图称作零图,n阶零图记作N n。

1阶零图N1称作平凡图。

平凡图只有⼀个顶点,没有边。

(4)在图的定义中规定顶点集V为⾮空集,但在图的运算中可能产⽣顶点集为空集的运算结果,为此规定顶点集为空集的图为空图,并将空图记作Ø。

(5)当⽤图形表⽰图时,如果给每⼀个顶点和每⼀条边指定⼀个符号(字母或数字,当然字母还可以带下标),则称这样的图为标定图,否则称作⾮标定图。

(6)将有向图的各条有向边改成⽆向边后所得到的⽆向图称作这个有向图的基图。

(7)若两个顶点v i与v j之间有⼀条边连接,则称这两个顶点相邻。

图论参考答案

图论参考答案

图论参考答案图论参考答案图论作为一门数学分支,研究的是图的性质与关系。

图由节点(顶点)和连接节点的边组成,它可以用来解决许多实际问题,如网络规划、社交网络分析等。

本文将从图的基本概念、图的表示方法、图的遍历算法以及图的应用等方面进行探讨。

一、图的基本概念图由节点和边构成,节点表示对象,边表示节点之间的关系。

图可以分为有向图和无向图两种类型。

在有向图中,边有方向,表示从一个节点到另一个节点的箭头;而在无向图中,边没有方向,表示节点之间的双向关系。

图中的节点可以用来表示不同的实体,如人、地点、物品等。

而边则表示节点之间的关系,可以是实体之间的联系、交互或者依赖关系等。

图的度是指与节点相连的边的数量。

在无向图中,节点的度等于与之相连的边的数量;而在有向图中,节点的度分为入度和出度,入度表示指向该节点的边的数量,出度表示从该节点出发的边的数量。

二、图的表示方法图可以使用邻接矩阵和邻接表两种方式进行表示。

邻接矩阵是一个二维数组,其中的元素表示节点之间的关系。

如果节点i和节点j之间有边相连,则邻接矩阵中的第i行第j列的元素为1;否则为0。

邻接矩阵的优点是可以快速判断两个节点之间是否有边相连,但是对于稀疏图来说,会浪费大量的空间。

邻接表是一种链表的形式,其中每个节点都有一个指针指向与之相连的节点。

邻接表的优点是可以有效地节省空间,适用于稀疏图。

但是在判断两个节点之间是否有边相连时,需要遍历链表,效率较低。

三、图的遍历算法图的遍历算法是指以某个节点为起点,按照一定的规则依次访问图中的所有节点。

深度优先搜索(DFS)是一种常用的图遍历算法。

它的思想是从起始节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,继续访问其他路径。

DFS可以用递归或者栈来实现。

广度优先搜索(BFS)是另一种常用的图遍历算法。

它的思想是从起始节点开始,先访问所有与起始节点直接相连的节点,然后再依次访问与这些节点相连的节点。

图论及应用习题答案

图论及应用习题答案

图论及应用习题答案图论及应用习题答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图论在现实生活中有着广泛的应用,涵盖了许多领域,如计算机科学、通信网络、社交网络等。

本文将为读者提供一些关于图论及应用的习题答案,帮助读者更好地理解和应用图论知识。

1. 图的基本概念题目:下面哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 线段答案:D. 线段。

图的基本概念包括顶点、边和路径。

线段是指两个点之间的连线,而在图论中,我们使用边来表示两个顶点之间的关系。

2. 图的表示方法题目:以下哪个不是图的表示方法?A. 邻接矩阵B. 邻接表C. 边列表D. 二叉树答案:D. 二叉树。

图的表示方法包括邻接矩阵、邻接表和边列表。

二叉树是一种特殊的树结构,与图的表示方法无关。

3. 图的遍历算法题目:以下哪个不是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 迪杰斯特拉算法D. 克鲁斯卡尔算法答案:D. 克鲁斯卡尔算法。

图的遍历算法包括深度优先搜索和广度优先搜索,用于遍历图中的所有顶点。

迪杰斯特拉算法是用于求解最短路径的算法,与图的遍历算法有所不同。

4. 最小生成树题目:以下哪个算法不是用于求解最小生成树?A. 克鲁斯卡尔算法B. 普里姆算法C. 弗洛伊德算法D. 公交车换乘算法答案:D. 公交车换乘算法。

最小生成树是指包含图中所有顶点的一棵树,使得树的边的权重之和最小。

克鲁斯卡尔算法和普里姆算法是常用的求解最小生成树的算法,而弗洛伊德算法是用于求解最短路径的算法,与最小生成树问题有所不同。

5. 图的应用题目:以下哪个不是图的应用?A. 社交网络分析B. 路径规划C. 图像处理D. 数字逻辑电路设计答案:D. 数字逻辑电路设计。

图的应用广泛存在于社交网络分析、路径规划和图像处理等领域。

数字逻辑电路设计虽然也涉及到图的概念,但与图的应用有所不同。

总结:图论是一门重要的数学分支,具有广泛的应用价值。

通过本文提供的习题答案,读者可以更好地理解和应用图论知识。

图论知识点总结笔记

图论知识点总结笔记

图论知识点总结笔记一、图的基本概念1. 图的定义图是由节点(顶点)和连接节点的边构成的一种数据结构。

图可以用来表示各种关系和网络,在计算机科学、通信网络、社交网络等领域有着广泛的应用。

在图论中,通常将图记为G=(V, E),其中V表示图中所有的节点的集合,E表示图中所有的边的集合。

2. 节点和边节点是图中的基本单位,通常用来表示实体或者对象。

边是节点之间的连接关系,用来表示节点之间的关联性。

根据边的方向,可以将图分为有向图和无向图,有向图的边是有方向的,而无向图的边是没有方向的。

3. 度度是图中节点的一个重要度量指标,表示与该节点相连的边的数量。

对于有向图来说,可以分为入度和出度,入度表示指向该节点的边的数量,出度表示由该节点指向其他节点的边的数量。

4. 路径路径是图中连接节点的顺序序列,根据路径的性质,可以将路径分为简单路径、环路等。

在图论中,一些问题的解决可以归结为寻找合适的路径,如最短路径问题、汉密尔顿路径问题等。

5. 连通性图的连通性是描述图中节点之间是否存在路径连接的一个重要特征。

若图中每一对节点都存在路径连接,则称图是连通的,否则称图是非连通的。

基于图的连通性,可以将图分为连通图和非连通图。

6. 子图子图是由图中一部分节点和边组成的图,通常用来描述图的某个特定属性。

子图可以是原图的结构副本,也可以是原图的子集。

二、图的表示1. 邻接矩阵邻接矩阵是一种常见的图表示方法,通过矩阵来表示节点之间的连接关系。

对于无向图来说,邻接矩阵是对称的,而对于有向图来说,邻接矩阵则不一定对称。

2. 邻接表邻接表是另一种常用的图表示方法,它通过数组和链表的组合来表示图的节点和边。

对于每一个节点,都维护一个邻接点的链表,通过链表来表示节点之间的连接关系。

3. 关联矩阵关联矩阵是另一种图的表示方法,通过矩阵来表示节点和边的关联关系。

关联矩阵可以用来表示有向图和无向图,是一种比较灵活的表示方法。

三、常见的图算法1. 深度优先搜索(DFS)深度优先搜索是一种常见的图遍历算法,通过递归或者栈的方式来遍历图中所有的节点。

图论中几个典型问题的求解

图论中几个典型问题的求解
§1 图的基本概念
图是一种直观形象地描述已知信息的方 式,它使事物之间的关系简洁明了,是分 析问题的有用工具,很多实际问题可以用 图来描述。
一、图的定义
图论是以图为研究对象的数学分支,在图论 中,图由一些点和点之间的连线所组成.
称图中的点为顶点(节点),称连接顶点的 没有方向的线段为边,称有方向的线段为弧.
具有n个顶点的无向连通图是树的充分必要条 件是它有n-1条边.连通图G的子图T,如果它的 顶点集与G的顶点集相同,且T为树,则称T是图 G的生成树,又称支撑树。如果图的边有权(对 应于边的实数),则生成树上各边权的总和称为
生成树的权,生成树并不唯一,权达到最小的生
成树称为最小生成树(Minimal Spanning Tree, 简称MST),最小生成树不一定唯一.
end
%以上循环调整候选边集合,入选该集合的 边数等于当前白点数,对每一个白点入选一条边, 该边通过比较连接该白点到红点的边的权值大小 确定,小者入选。该循环是程序的关键和核心部 分。
end
T,e 以上程序以文件名prim.m存盘。
例2 以2007年研究生数学建模竞赛C题为例, 已知县邮政局X1和16个邮政支局的初始距离矩 阵,求该运输图的最小生成树。
for j=2:n
b(1,j-1)=1;
b(2,j-1)=j;
b(3,j-1)=a(1,j);
end %以上一段程序生成3行n-1列的矩阵,存储初 始候选边及其权值信息,该矩阵的第一行都是1, 表示第一个红色点是1号顶点,第二行表示白色 点依次为2,3,…,n,第三行表示所有连接红点和 白点的边的权值
while size(T,2)<n-1 %只要最小生成树的边数 小于n-1就循环

总结-图论

总结-图论

生成树
设 T 为无向连通图 G 中一棵生成树,e 为 T 的任意一条弦,则 T ∪e 中含 G 中只含一条弦其余边均为树枝的圈,而且不同的弦对应的圈 也不同。
设 T 是连通图 G 的一棵生成树,e 为 T 的树枝,则G 中存在只含树 枝 e,其余边都是弦的割集,且不同的树枝对应的割集也不同。
r 叉完全正则树——树叶的层数均为树高的 r 叉正则树
r 叉完全正则有序树——r 叉完全正则树是有序的的
平面图
G 是可平面图或平面图——如果能将无向图 G 画在平面 上,使得除顶 点处外无边相交。
G 的平面嵌入——画出的无边相交的平面图。 非平面图——无平面嵌入的图。
K5 和 K3,3 都不是平面图。
平面图
(1)设 T 为根树,若将 T 中层数相同的顶点都标定次序,
则称 T 为有序树。 (2)分类:根据根树 T 中每个分支点儿子数以及是否有序 r 叉树——每个分支点至多有 r 个儿子
r 叉有序树——r 叉树是有序的
r 叉正则树——每个分支点恰有 r 个儿子 r 叉正则有序树——r 叉正则树是有序的
T 是 n (n≥2) 阶有向树, (1) T 为根树— T 中有一个顶点入度为 0, 其余顶点的入度均为 1
(2) 树根——入度为 0 的顶点
(3) 树叶——入度为 1,出度为 0 的顶点 (4) 内点——入度为 1,出度不为 0 的顶点 (5) 分支点——树根与内点的总称 (6) 顶点v的层数——从树根到v的通路长度 (7) 树高——T 中层数最大顶点的层数 (8) 根树——平凡树(规定)
d
i 1
n
i
0( mod 2)
图的基本概念
图同构、子图、生成子图、导出子图等。

图论 第1章 图的基本概念

图论 第1章 图的基本概念

G
G[{e1 , e4 , e5 , e6 }]
G − {e5 , e7 }
G + {e8 }
图G1,G2的关系
设 G1 ⊆ G, G2 ⊆ G. 若 V (G1 ) V (G2 ) = φ x-disjoint) 若 E (G1 ) E (G2 ) = φ ,则称G1和G2是边不交的 (edge-disjoint) G1和G2的并, G1 G2 其中 V (G1 G2 ) = V (G1 ) V (G2 )
连通性
设 u, v 是图G的两个顶点,若G中存在一条 (u, v)
≡ v表示顶点 u 和v是连通的。 如果图G中每对不同的顶点 u , v都有一条 (u , v)
以 u
道路,则称顶点 u和 v是连通的(connected)。
道路,则称图G是连通的。
连通图
连通图
图G的每个连通子图称为G的连通分支,简
证明:G中含奇数个 1 (n − 1) 度点。 2 | Vo | 为 证明 V (G ) = Vo Ve 由推论1.3.2知, 偶数。因为 n ≡ 1(mod 4) ,所以n为奇数个。 因此,| Ve | 为奇数个。 n ≡ 1(mod 4) , 1 2 ( n − 1) 为偶数。 1 1 d ( x ) = n − 1 − d ( x ) ≠ (n − 1) 设 x ∈Ve。若 d ( x) ≠ 2 (n − 1),则 且 2 为偶数。由 G ≅ G c ,存在y,使得 d ( y) = d ( x) 为偶数。即 y ∈Ve 且 d ( y) ≠ 1 (n − 1) 。Ve 中度不为 2 1 (n − 1) 的点是成对的出现的。 2
G
G[{v1 , v2 , v3 }]

图论的基本概念及其应用

图论的基本概念及其应用

图论的基本概念及其应用图论是离散数学中的一个重要分支,研究的是图的性质和图之间的关系。

图由节点和连接节点的边组成,以解决现实生活中的许多问题。

本文将介绍图论的基本概念,并探讨它在不同领域中的应用。

一、图的基本概念1. 节点和边图由节点(顶点)和边组成,节点代表某个实体或概念,边表示节点之间的关系。

节点和边可以有不同的属性,如权重、方向等。

2. 有向图和无向图有向图中,边有固定的方向,表示节点之间的单向关系;无向图中,边没有方向,节点之间的关系是相互的。

3. 连通图和非连通图连通图是指图中任意两个节点之间都存在路径;非连通图则存在至少一个节点无法到达其它节点。

4. 网络流每条边上有一个容量限制,网络流通过边传输,满足容量限制的条件下尽可能多地进行。

二、图论在计算机科学中的应用1. 最短路径通过图论中的最短路径算法,可以计算出两个节点之间的最短路径。

最短路径在无人驾驶、物流配送等领域中具有重要的应用价值。

2. 最小生成树最小生成树算法用于寻找连接图中所有节点的最小总权重的树形结构。

在通信网络、电力输送等领域中,最小生成树被广泛应用。

3. 网络流问题图论中的网络流算法可以用于解决诸如分配问题、路径规划等优化问题。

例如,在医疗资源调度中,网络流算法可以帮助医院优化资源分配。

三、图论在社交网络分析中的应用1. 社交网络社交网络可以用图模型来表示,节点代表个体,边表示个体之间的联系。

利用图论分析社交网络,可以发现用户群体、影响力传播等信息。

2. 中心性分析中心性分析用于评估节点在网络中的重要性,衡量指标包括度中心性、接近中心性等。

中心节点的识别对于广告投放、信息传播等决策具有指导意义。

3. 社团检测社团检测可以发现社交网络中具有紧密联系的节点群体,进一步分析社交群体的行为模式、用户偏好等。

四、图论在物流优化中的应用1. 供应链管理供应链中的各个环节可以用图模型表示,通过图论算法优化物流路径,提高物流效率。

2. 仓库位置问题通过图论中的最短路径算法和最小生成树算法,可以找到最佳的仓库位置,使物流成本最小化。

离散数学 第7章 图论

离散数学 第7章 图论

v2 v3
v4
v3
(b) 图G
v3 (c) 图G’
(a) 完全图K5
图G是图G’ 相对于图K5的补图。 图G’不是图G 相对于图K5的补图。(图G’中有结点v5 )
例:276页图7-1.7 图(c)是图(b)相对于图(a)的补图。 图(b)不是图(c)相对于图(a)的补图。
25
7-1
图的同构
图的基本概念
8
7-1
图的基本概念
1.无向图:每条边均为无向边的图称为无向图。 2.有向图:每条边均为有向边的图称为有向图。 3.混合图:有些边是无向边,有些边是有向边的图称 为混合图。
v1 (孤立点) v5 V1’
v1 v2
v2
v4 v3 (a)无向图
V2’
V3’ (b)有向图 V4’
v4 v3 ( c ) 混合图
17
7-1
图的基本概念
三、特殊的图
定义4 含有平行边的图称为多重图。 不含平行边和环的图称为简单图。
定义5 简单图G=<V,E>中,若每一对结点间均有边 相连,则称该图为完全图。
无向完全图:每一条边都是无向边 不含有平行边和环 每一对结点间都有边相连
有n个结点的无向完全图记为Kn。
18
7-1
图的基本概念
推论 在一个具有n个结点的图中,如果从结点vj 到结点vk存在一条路,则从结点vj到结点vk 必存在一条边数小于n的通路。
32
7-2
路与回路
定理7-2.1的证明 如果从结点vj到vk存在一条路,该路上的结点序列 是vj…vi…vk,如果在这条中有l条边,则序列中必有 l+1个结点,若l>n-1,则必有结点vs,它在序列中不止 出现一次,即必有结点序列vj…vs…vs…vk,在路中去 掉从vs到vs的这些边,仍是vj到vk的一条路,但此路比 原来的路边数要少,如此重复进行下去,必可得到一 条从vj到vk的不多于n-1条边的路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇圈与偶圈
n个顶点构成的道路记作 Pn 。 n个顶点构成的圈记作Cn 。
n为奇数的圈称为奇圈。 n为偶数的圈称为偶圈。
图的基本术语(4)
正则图:图的每个顶点的度都相同
每个点的度均为k的正则图,称为k-正则图
0-正则图
1-正则图
2-正则图
3-正则图
握手定理
顶点的度与边的关系:∑ deg(v) = 2 E v∈V
d (v1) = 2, d (v2 ) = 4, d (v3) = 3, d (v4 ) = 3, d (v5 ) = 4
G1 = (V, E) V = {v1, v2, v3, v4, v5} E = {e1, e2, e3, e4, e5, e6, e7} e1 = (v1, v2 ), e2 = (v2, v3 ), e3 = (v3, v4 ), e4 = (v2, v4 ), e5 = (v1, v4 ), e6 = (v4, v5 ), e7 = (v1, v5 )
12为(n −偶1) 数的。点即是成y ∈对Ve且的出dG (现y) ≠的12 (n。−1) 。Ve 中度不为
链 (walk,chain)
链: 从顶点u到顶点v的一条链是指一个序 列 µ = v0e1v1e2v2...vk−1ekv,k 其中 ei 的起点终点 为vi−1及 vi ;k 称作途径的长度;v0 = u 称为链的 起点;vk = v称为链的终点。
哥尼斯堡七桥问题
图论起源于著名的哥尼斯堡七桥问题:
哥尼斯堡市跨越河的两岸,河中心有两个小岛。 小岛与河的两岸有七条桥连接。在所有桥都只 走一遍的前提下,如何才能把这个地方所有的 桥都走遍?
哥尼斯堡七桥问题
在任何顶点出发,必须从一条边进,从另一条边出 一进一出,每个顶点相关联的边必须为偶数。
例题
证明:在任意六人中必存在三人,要么都相 识,要么都不相识。
证明 构造图。六个人={a, b, c, d, e, f}
边集:两人认识,则代表两人的顶点之间连 一条红边,否则连一条绿边。
考虑某点,不妨设为f,至少有3条边同色 (不妨设为红色)。设这三条同色边为fa, fb,fc。考虑三角形abc。1.abc中含红边 (设为bc),则fbc为一同色三角形;2.abc 不含红边,则abc为一同色三角形(绿色)。
图的基本术语(1)
阶:图G的顶点集合V的大小称为图G的阶
没有任何边的图称为空图,记作Φ。 只有一个顶点的图称为平凡图(trivial graph)。
关联与邻接:
点与点的邻接(adjacent) 点与边的关联(incident) 两个顶点之间有边相连,则两个顶点邻接,并
且通过这条边关联。
差运算
由G1中去掉G2中的边组成的图称为G1和G2 的差(difference),Fra bibliotek作 G1 − G2
G1
G2
G1 − G2
例题 1.3.2
设G是简单无向图且 G ≅ Gc , n ≡ 1(mod 4) 。 证明:G中含奇数个 1 (n −1) 度点。
证明 V (G) = Vo Ve 2由推论1.3.2知,|Vo | 为
重边:连接同一对顶点的边数大于1 环:顶点通过同一条边与自己关联
图的基本术语(2)
多重图:允许重边,又允许有环的图 简单图:没有环及多重边的图 有向图/无向图:
每条边都规定了方向的图称为有向图,而边没 有方向的图为无向图。
有限图/无限图:
顶点集合和边集合都是有限集合称为有限图, 否则称为无限图。
证明:设u和 v是G中任意两个顶点。 (1)若 u和 v在G中不邻接,则它们在补图G一定邻接。 (2)若 u和 v 在G中邻接,则它们属于G的同一分支,而在 G的另一个分支中一定存在一个顶点 w ,使得在G中 w和 u不邻接,w和v 也不邻接,而在补图G中,u和v 均 与w邻接,那么uwv是一条道路。 综上,在 G中,任意两个顶点都是连通的。
并运算
设G1和G2是两个无孤立点的图
(1) 由G1和G2中所有边组成的图,称为G1和G2
的并(union),记作 G1 G2
相同的顶点 在并中只能 出现一次
G1
G2
G1 G2
交运算
由G1和G2的公共边组成的图称为G1和G2的 交(cap),记作 G1 G2
G1
G2
G1 G2
若以下条件有一项成立,则H称为G的真子图。 (1) V (H ) ⊂ V (G); (2)E(H ) ⊂ E(G);
(3)H中至少有一条边的重数小于G中对应边重数
子图
生成子图(Spanning graph),又称支撑子图。
满足 V (H ) = V (G), E(H ) ⊂ E(G) 的真子图
分划(V1,V2 )称为图G的二分划。
完全二部图
对于二部图G,如果 V1中的顶点与V2中的每 个顶点都邻接,则称为完全二部图。
若 V1 = m, V 2 = n ,则完全二部图记作Km,n 。
Petersen 图

习题 1.2.3 pp. 13 证明:下列三个无向图都与Pertersen图同构。
G
G[{e1, e4 , e5, e6}] G −{e5, e7}
G +{e8}
图G1,G2的关系
设 G1 ⊆ G,G2 ⊆ G. 若V (G1) V (G2 ) = φ ,则称G1和G2是点不交
(vertex-disjoint) 若 E(G1) E(G2 ) = φ ,则称G1和G2是边不交的
若所有顶点v0v1v2...vk均不相同(所有边必然不 相同),则称该途径为道路(path) 。
闭的迹称为回(circuit);闭的道路称作圈(cycle)
圈:v1v2v3v4v1
Hamilton路
定义:包含图中每个顶点的路称为Hamilton 图。
Th1.4.1 每个竞赛图都含有Hamilton有向路。 证明 反证,设P= x1x2x3.........xl 是图的最长路。
以 u ≡ v表示顶点 u和v是连通的。
如果图G中每对不同的顶点u, v都有一条 (u, v) 道路,则称图G是连通的。
连通图
连通图
图G的每个连通子图称为G的连通分支,简 称分支(Component)。分支的个数记为w(G)。
分支大于1的图称为分离图或非连通图。
连通图
分离图
连通图的性质
定理 若图G是非连通的,则补图 G是连通的。
且l<n。则存在点 x ∈V (D) \V (P) ,且x1x, xxl ∈ E(D) 可以推出存在 xi−1x, xxi ∈ E(D) 。
则找到一条比P还要长的路 x1x2.....xi−1xxi.....xl
矛盾。
连通性
设 u, v是图G的两个顶点,若G中存在一条 (u, v) 道路,则称顶点u和 v是连通的(connected)。
链: v1e3v4e4v3e6 v5e7v4
简便起见,只用顶点表示为:
v1v4v3v5v4
链 (chain)
如果 u = v,称该途径是闭的,反之则称为开 的;
链 µ 逆转后得到的链µ′ = vkekvk−1...v2e2v1e记1v0 为µ −1 ,称为µ 的逆链。
链µ 中一段子序列 viei+1vi+1...v j−1e jv j 称为µ 的 节(vi , v j )。
偶数。因为 n ≡ 1(mod 4) ,所以n为奇数个。
因此,|Ve | 为奇数个。
n ≡ 1(mod 4)

1 2
(n

1)
为偶数。
设为偶数。。若由 ,,存则在y,使得 且 x ∈Ve
d
G
(x)
G
≠ 1 (n −
2
≅G
c
1)
dGc
(x)
=
n
−1−
dG
(x)

1 2
(n
−1)
dG ( y) = dGc (x)
∑ d (vi ) = (2 + 4 + 3 + 3 + 4) = 16 v E =8
在任意图G中,度为奇数的顶点个数是偶数
∑ d(v) + ∑ d(v) = 2 E
v∈V1
v∈V2
子图
若V (H ) ⊆ V (G), E(H ) ⊆ E(G),且H中边的重 数不超过G,则H称为G的子图,记作 H ⊆ G
(edge-disjoint) G1和G2的并, G1 G2 其中 V (G1 G2 ) = V (G1) V (G2 )
E(G1 G2 ) = E(G1) E(G2 )
图的运算
设G1和G2是两个图,若G1和G2无公共顶点, 则称它们是不相交的(disjoint);若G1和G2无 公共边,则称它们是边不重的(edge disjoint)。
图的基本术语(3)
顶点的度:与该顶点相关联的边的数目
记作 deg(v),或简记作 d (v); 度为零的顶点称为孤点; 度为1的顶点称为悬挂点; 对于有向图,有出度和入度之分; 奇顶点和偶顶点; 计算有环的顶点,环边计两次.
图G的最大度: ∆(G) = max{d (v) | v ∈V (G)} 图G的最小度:δ (G) = min{d (v) | v ∈V (G)}
G
G[{v1, v2 , v3}]
G − v2
边导出子图
边导出子图:
设E′ ⊆ E(G) ,以E′ 为边集,以E′中所有边的端点 为顶点集,组成的子图称为G的边导出子图,记 作G[E′] 。
从 E(G)中删去 E的′ 所有边得到的子图,记作 G − E′ 在 E(G)上增加一个边集 E所′ 得到的图,记作 G + E′
相关文档
最新文档