C51单片机汇编语言指令集

合集下载

C51单片机汇编语言逻辑右移汇编语言SHR右移指令将操作数逻辑右移一位

C51单片机汇编语言逻辑右移汇编语言SHR右移指令将操作数逻辑右移一位

C51单片机汇编语言逻辑右移汇编语言SHR 右移指令将操作数逻辑右移一位在C51单片机汇编语言中,逻辑右移是通过SHR(右移指令)来实现的。

逻辑右移是指将一个二进制数的各位向右移动一位,移动后的位置用0填充。

本文将详细介绍C51单片机汇编语言逻辑右移的操作步骤和具体实现方法。

1. C51单片机汇编语言概述C51单片机汇编语言是由英特尔公司开发的一种用于嵌入式系统的低级编程语言。

它被广泛应用于各种嵌入式系统中,包括家电、汽车电子、通信设备等。

C51汇编语言具有指令丰富、执行效率高、对硬件资源的灵活利用等特点,因此在嵌入式系统开发中得到了广泛的应用。

2. 逻辑右移(SHR)指令的作用和原理逻辑右移是将操作数的二进制表示向右移动一位,移动后的位置用0填充。

逻辑右移(SHR)指令是C51单片机汇编语言提供的一种操作指令,用于实现逻辑右移的功能。

逻辑右移的原理是将操作数的二进制表示向右移动一位,并在最高位位置插入0。

3. 逻辑右移操作的示例下面以一个示例来说明逻辑右移(SHR)的具体操作步骤和实现方法。

假设我们要将一个8位的二进制数A右移一位,将结果保存在另一个变量B中。

首先,将A加载到A寄存器中。

MOV A, #0xFF ; 将0xFF加载到A寄存器中接下来,通过SHR指令对A进行逻辑右移操作,并将结果保存在B中。

SHR A, #1 ; 将A右移一位,结果保存在A中MOV B, A ; 将A的值保存到B中此时,变量B中的值就是二进制数A逻辑右移一位后的结果。

上述示例中,我们将二进制数A右移一位,并将结果保存在B中。

通过逻辑右移,原二进制数中的各位向右移动一位,并在最高位位置插入0。

逻辑右移操作可以通过SHR指令来实现。

4. 总结逻辑右移是C51单片机汇编语言中常用的操作之一,通过SHR指令可以方便地实现逻辑右移的功能。

逻辑右移将操作数的二进制表示向右移动一位,移动后的位置用0填充。

在实际的嵌入式系统开发中,逻辑右移的操作能够有效地处理和优化数据,提高程序的执行效率和系统的性能。

c51 rrc 汇编写法

c51 rrc 汇编写法

c51 rrc 汇编写法
C51是一种常见的8位单片机系列,而RRC是C51汇编语言中的一个指令。

RRC指令是将一个寄存器中的数据循环右移一位,最高位的数据移动到最低位,同时将最低位的数据移动到最高位。

在C51汇编语言中,RRC指令的写法如下:
RRC A ; 将A寄存器中的数据循环右移一位。

这条指令表示将A寄存器中的数据进行循环右移一位。

在C51汇编语言中,A寄存器是一个累加器,用于存储运算结果或临时数据。

RRC指令可以用于对数据进行位操作,常用于加密算法、数据压缩等场景。

除了RRC指令外,C51汇编语言还包括了丰富的指令集,可以进行各种数据操作、逻辑运算、跳转等操作。

在编写C51汇编程序时,需要深入了解指令集的功能和使用方法,以及掌握寄存器的作用和特性,才能正确高效地编写程序。

总的来说,C51汇编语言中的RRC指令可以通过指定寄存器来对数据进行循环右移一位,是C51单片机编程中常用的指令之一。

在实际编写程序时,需要根据具体的需求和逻辑来合理使用RRC指令,以实现所需的功能。

单片机c51汇编语言51单片机汇编语言

单片机c51汇编语言51单片机汇编语言

单片机c51汇编语言51单片机汇编语言单片机C51汇编语言单片机(C51)是指一种集成电路上只包含一个集中式控制器的微处理器,具有完整的CPU指令集、RAM、ROM、I/O接口等功能。

汇编语言是一种低级语言,是用于编写单片机指令的一种语言。

汇编语言能够直接操作单片机的寄存器和输入/输出端口,因此在嵌入式系统的开发中非常重要。

本文将介绍单片机C51的汇编语言编程。

一、了解单片机C51单片机C51是目前应用最广泛的一种单片机系列,广泛用于各种电子设备和嵌入式系统的开发。

C51指的是Intel公司推出的一种基于MCS-51架构的单片机。

该系列单片机具有较高的性能和低功耗的特点,可用于各种控制和通信应用。

二、汇编语言的基本概念汇编语言是一种低级语言,与机器语言紧密相关。

它使用助记符来代替机器指令的二进制表示,使程序的编写更加易读。

在单片机C51汇编语言中,每一条汇编指令都对应着特定的机器指令,可以直接在单片机上执行。

三、汇编语言的基本指令在单片机C51汇编语言中,有一些基本的指令用于控制程序的执行和操作寄存器。

以下是一些常用的指令:1. MOV指令:用于将数据从一个寄存器或内存单元复制到另一个寄存器或内存单元。

2. ADD指令:用于将两个操作数相加,并将结果存储到目的寄存器中。

3. SUB指令:用于将第一个操作数减去第二个操作数,并将结果存储到目的寄存器中。

4. JMP指令:用于无条件跳转到指定的地址。

5. JZ指令:用于在条件为零时跳转到指定的地址。

6. DJNZ指令:用于将指定寄存器的值减一,并根据结果进行跳转。

四、编写单片机C51汇编程序的步骤编写单片机C51汇编程序需要按照以下步骤进行:1. 确定程序的功能和目标。

2. 分析程序的控制流程和数据流程。

3. 设计算法和数据结构。

4. 编写汇编指令,实现程序的功能。

5. 调试程序,并进行测试。

六、实例演示以下是一个简单的单片机C51汇编程序的示例,用于实现两个数的相加,并将结果输出到LED灯上:org 0H ; 程序的起始地址为0mov a, 05H ; 将05H赋值给累加器mov b, 07H ; 将07H赋值给B寄存器add a, b ; 将A寄存器和B寄存器的值相加mov P1, a ; 将相加结果输出到P1口end ; 程序结束在这个例子中,首先将05H赋值给累加器A,然后将07H赋值给B寄存器,接着使用ADD指令将A和B的值相加,将结果存储到累加器A中,最后将累加器A的值输出到P1口。

第三章MCS51系列单片机指令系统及汇编语言程序设计

第三章MCS51系列单片机指令系统及汇编语言程序设计
AJMP addr11 绝对转移指令为2K地址范围内的转移指令,对转移目的地址的要求与 ACALL指令中对子程序入口地址的要求相同。 【3】短转移指令
SJMP rel ;PC+ 2 + rel→PC 短转移指令为一页地址范围内的相对转移指令。因为rel为1字节补码 偏移量,且SJMP rel指令为2字节指令,所以转移范围为-126D~+ 129D 【4】间接转移指令
表3.4 程序存储器空间中的32个基本2K地址范围
0000H~07FFH 0800H~0FFFH 1000H~17FFH 1800H~1FFFH 2000H~27FFH 2800H~2FFFH 3000H~37FFH 3800H~3FFFH 4000H~47FFH 4800H~4FFFH 5000H~57FFH
3. 寄存器寻址
以通用寄存器的内容为操作数的寻址方式。通用寄存 器包括:A,B,DPTR,R0~R7。其中,R0~R7必须在 工作寄存器组之中。
例如:INC R0 ;(R0)+1→R0
需要注意的是,A和B既是通用寄存器,又是具有直 接地址的特殊功能寄存器。
4. 寄存器间接寻址
以寄存器中的内容为地址,该地址中的内容为操作数的寻址方式。能够 用于寄存器间接寻址的寄存器有:R0,R1,DPTR,SP。其中,R0,R1必 须在工作寄存器组之中,SP仅用于堆栈操作。
MCS-51单片机共有111条指令,按功能分类, MCS-51指令系统可分为5大类:
➢ 数据传送类指令(共29条) ➢ 算术操作类指令(共24条) ➢ 逻辑操作类指令(共24条) ➢ 控制转移类指令(共17条) ➢ 布尔变量操作类指令(共17条)
1.数据传送类指令(共29条)
以累加器A为目的操作数类指令(4条)

大学课件MCS51单片机指令系统与汇编语言程序设计

大学课件MCS51单片机指令系统与汇编语言程序设计

ANL C, P ; (C)← (C)∧(P)
其中:P是PSW的第0位,C是PSW的第7位。
(4)字节符号地址(字节名称)加位序号的形式。对于部分特 殊功能寄存器(如状态标志寄存器PSW),还可以用其字节名 称加位序号形式来访问某一位。AC 如:
定义:操作数存放在MCS-51内部的某个工作寄存器Rn (R0~R7)或部分专用寄存器中,这种寻址方式称为 寄存器寻址。
特点:由指令指出某一个寄存器的内容作为操作数。 存放操作数的寄存器在指令代码中不占据单独的一个 字节,而是嵌入(隐含)到操作码字节中。
寻址范围:四组通用寄存器Rn(R0~R7)、部分专用 寄存器( A, B, DPTR, Cy )。
伪指令只出现在汇编前的源程序中,仅提供汇编用的某些控制 信息,不产生可执行的目标代码,是CPU不能执行的指令。
(1)定位伪指令ORG
格式:ORG n
其中:n通常为绝对地址,可以是十六进制数、标号或表达式。
功能:规定编译后的机器代码存放的起始位置。在一个汇编 语言源程序中允许存在多条定位伪指令,但每一个n值都应和前
2.2.2 直接寻址
定义:将操作数的地址直接存放在指令中,这种寻址方式称为 直接寻址。 特点:指令中含有操作数的地址。该地址指出了参与操作的数 据所在的字节单元地址或位地址。计算机执行它们时便可根据 直接地址找到所需要的操作数。
寻址范围:ROM、片内RAM区、SFR和位地址空间。P42
2.2.3 寄存器寻址
定义:指令中给出的操作数是一个可单独寻址的位地址,这种寻址 方式称为位寻址方式。
特点:位寻址是直接寻址方式的一种,其特点是对8位二进制数中 的某一位的地址进行操作。
寻址范围:片内RAM低128B中位寻址区、部分SFR(其中有83位 可以位寻址)。

51单片机汇编语言教程

51单片机汇编语言教程

51单片机汇编语言教程汇编语言是一种低级程序设计语言,直接操作计算机硬件,能够充分发挥硬件的性能,是学习嵌入式系统开发的基础。

而51单片机是广泛应用于嵌入式系统中的一种微控制器,具有功能强大、易于掌握等特点。

本篇文章将为大家介绍51单片机汇编语言的基本概念、编程指令以及应用实例,帮助读者快速入门。

一、51单片机汇编语言概述1.1 51单片机简介51单片机是一种由英特尔公司设计的8位微控制器,其核心是一个CPU,具有RAM、ROM、I/O端口等外围设备。

它采用的是汇编语言编程,具有指令集简单、易于学习等特点,因此深受嵌入式系统开发者的喜爱。

1.2 汇编语言的基本概念汇编语言是一种低级语言,与高级语言相比,更接近计算机底层的硬件操作。

在汇编语言中,程序员通过编写指令来告诉计算机具体的操作,如数据存储、运算等。

二、51单片机汇编语言基础知识2.1 寄存器寄存器是51单片机中的一种重要的存储设备,用于存储数据、地址等信息。

51单片机共有32个寄存器,其中一部分用于存储通用数据,一部分用于存储特定功能的数据。

在汇编语言编程中,我们可以使用这些寄存器来存储数据和进行运算。

2.2 程序存储器程序存储器是51单片机中存储程序的地方,它可以分为ROM和RAM两种类型。

其中,ROM存储的是不可修改的程序代码,而RAM 存储的是可以读写的数据。

2.3 I/O端口I/O端口是51单片机与外部设备进行数据交互的接口,通过输入/输出指令,可以实现数据的输入与输出。

在汇编语言中,我们需要了解如何使用I/O端口来与外部设备进行通信。

三、51单片机汇编语言编程指令3.1 数据传输指令数据传输指令用于将数据从一个地方传输到另一个地方。

常用的数据传输指令有MOV、MOVC、MOVX等,通过这些指令可以实现数据的读取、存储和传输等操作。

3.2 算术运算指令算术运算指令用于对数据进行加、减、乘、除等运算操作。

51单片机中的算术运算指令包括ADD、SUB、MUL、DIV等,通过这些指令可以对数据进行各种运算操作。

C51单片机汇编语言指令集

C51单片机汇编语言指令集

51汇编语言指令集符号定义表符号含义Rn R0~R7寄存器n=0~7Direct 直接地址,内部数据区的地址RAM(00H~7FH) SFR(80H~FFH) B,ACC,PSW,IP,P3,IE,P2,SCON,P1,TCON,P0@Ri 间接地址Ri=R0或R1 8051/31RAM地址(00H~7FH) 8052/32RAM地址(00H~FFH) #data 8位常数#data16 16位常数Addr16 16位的目标地址Addr11 11位的目标地址Rel 相关地址bit 内部数据RAM(20H~2FH),特殊功能寄存器的直接地址的位指令介绍指令字节周期动作说明算数运算指令1.ADD A,Rn 1 1 将累加器与寄存器的内容相加,结果存回累加器2.ADD A,direct 2 1 将累加器与直接地址的内容相加,结果存回累加器3.ADD A,@Ri 1 1 将累加器与间接地址的内容相加,结果存回累加器4.ADD A,#data 2 1 将累加器与常数相加,结果存回累加器5.ADDC A,Rn 1 1 将累加器与寄存器的内容及进位C相加,结果存回累加器6.ADDC A,direct 2 1 将累加器与直接地址的内容及进位C相加,结果存回累加器7.ADDC A,@Ri 1 1 将累加器与间接地址的内容及进位C相加,结果存回累加器8.ADDC A,#data 2 1 将累加器与常数及进位C相加,结果存回累加器9.SUBB A,Rn 1 1 将累加器的值减去寄存器的值减借位C,结果存回累加器10.SUBB A,direct 2 1 将累加器的值减直接地址的值减借位C,结果存回累加器11.SUBB A,@Ri 1 1 将累加器的值减间接地址的值减借位C,结果存回累加器12.SUBB A,0data 2 1 将累加器的值减常数值减借位C,结果存回累加器13.INC A 1 1 将累加器的值加114.INC Rn 1 1 将寄存器的值加l15.INC direct 2 1 将直接地址的内容加116.INC @Ri 1 1 将间接地址的内容加117.INCDPTR1 1 数据指针寄存器值加1说明:将16位的DPTR加1,当DPTR的低字节(DPL)从FFH溢出至00H时,会使高字节(DPH)加1,不影响任何标志位18.DEC A 1 1 将累加器的值减119.DEC Rn 1 1 将寄存器的值减120.DEC direct 2 1 将直接地址的内容减121.DEC @Ri 1 1 将间接地址的内容减122.MUL AB 1 4 将累加器的值与B寄存器的值相乘,乘积的低位字节存回累加器,高位字节存回B寄存器说明:将累加器A和寄存器B内的无符号整数相乘,产生16位的积,低位字节存入A,高位字节存入B寄存器。

51单片机汇编语言带进位加法指令

51单片机汇编语言带进位加法指令

51单片机汇编语言带进位加法指令带进位加法指令(4 条)这4 条指令除与[1]功能相同外,在进行加法运算时还需考虑进位问题。

ADDC A,data ;(A)+(data)+(C)(A)累加器A 中的内容与直接地址单元的内容连同进位位相加,结果存在A 中ADDC A,#data;(A)+#data +(C)(A)累加器A 中的内容与立即数连同进位位相加,结果存在A 中ADDC A,Rn ;(A)+Rn+(C)(A)累加器A 中的内容与工作寄存器Rn 中的内容、连同进位位相加,结果存在A 中ADDC A,@Ri ;(A)+((Ri))+(C)(A)累加器A 中的内容与工作寄存器Ri 指向地址单元中的内容、连同进位位相加,结果存在A 中用途:将A 中的值和其后面的值相加,并且加上进位位C 中的值。

说明:由于51 单片机是一种8 位机,所以只能做8 位的数学运算,但8 位的运算范围只有0-255,这在实际工作中是不够的,因此就要进行扩展,一般是将2 个8 位的数学运算合起来,成为一个16位的运算,这样,可以表达的数的范围就可以到达0-65535。

如何合并呢?其实很简单,让我们看一个十进制数的例子吧:66+78 这两个数相加,我们根本不在意这个过程,但事实上我们是这样做的:先做6+8(低位),然后再做6+7,这是高位。

做了两次加法,只是我们做的时候并没有刻意分成两次加法来做罢了,或者说我们并没有意识到我们做了两次加法。

之所以要分成两次来做,是因为这两个数超过了一位数所能表达的范围(0-9)。

在做低位时产生了进位,我们做的时候是在适当的位置点一下,然后在做高位加法时将这一点加进去。

那么计算机中做16 位加法时同样如此,先做低8 位的,如果两数相加后产生了进位,也要点一下做个标记,这个标记就职进位位C,在程序状态字PSW 中。

在进行高位加法是将这个C 加进去。

例如:1067H+10A0H,先做67H+A0H=107H,而107H 显然超过了0FFH,因此,最终保存在A 中的数是。

51单片机汇编语言指令教程汇集

51单片机汇编语言指令教程汇集

51单片机汇编语言指令教程汇集
1.MOV
MOV指令把源操作数的值复制到目的操作数。

格式如下:
MOV dest,src
dest :用于存储源操作数值的目的操作数。

src :用于取源操作数值的源操作数。

MOV指令可以把源操作数的值复制到目的操作数里,其中它的源操作数和目的操作数可以是内存单元,寄存器或立即数。

2.MVI
MVI指令把单字节立即数的值复制到其中一寄存器或内存单元。

格式如下:
MVI dest,data
dest :用于存放单字节立即数值的目的操作数。

data :用于取立即数值的立即数。

MVI指令可以把数据(data)复制到dest所指向的存储单元。

它的目的操作数可以是内存单元或寄存器,源操作数只能是8位立即数。

3.LXI
LXI指令可以把16位数据装载到左边和右边双字节寄存器中。

格式如下:
LXI rp,data
rp :用接受16位数据的双字节寄存器,它可以是BC,DE,HL或SP。

data :用于取16位立即数的立即数。

LXI指令可以把16位立即数data复制到双字节寄存器rp里。

4.LDA
LDA指令可以把存储单元中的数据装载到A寄存器中,格式如下:
LDA addr
addr :用于取存储单元数据值的存储单元地址。

LDA指令可以把存储单元addr中的数据复制到A寄存器中。

5.STA
STA指令可以把A寄存器的值存入指定的存储单元中,格式如下:
STA addr。

51单片机汇编cjnz指令

51单片机汇编cjnz指令

51单片机汇编cjnz指令题目:51单片机汇编指令cjnz的功能与应用引言:在51单片机汇编语言中,指令是程序员用来编程的基本元素之一。

其中,cjnz(Compare and Jump if Not Zero)指令是一条非常有用的条件分支指令。

本文将逐步介绍cjnz指令的功能、使用方法以及一些常见的应用场景。

第一部分:cjnz指令的功能和使用方法cjnz指令是一条带有条件判断的跳转指令。

它的基本功能是,在条件为非零时进行跳转,否则执行顺序往下执行。

使用方法如下:cpl A ; 对寄存器A中的内容进行取反操作cjnz A, Label ; 根据A寄存器的值,决定是否跳转到标签Label处其中cpl A指令是用来对寄存器A的内容进行逻辑非运算的,即将0变为1,将非零值变为零。

第二部分:cjnz指令的基本格式和实例分析cjnz指令的基本格式如下:cjnz 条件,目标地址其中,条件可以是寄存器、内部RAM、外部RAM或直接常数。

以下是一些实例分析,以进一步说明cjnz指令的使用方式和效果。

实例1:使用cjnz指令进行循环控制我们想要实现一个循环程序,将寄存器B的值依次加1,直到其值达到10为止。

可以使用cjnz指令来实现以下伪代码:loop:inc B ; 将寄存器B的值加1cjnz B, loop ; 如果B寄存器不为零,就跳转到标签loop处继续循环实例2:使用cjnz指令进行条件判断假设我们编程一个LED灯开关程序,当按下开关时,亮起LED灯,再按下开关则熄灭灯光。

可以使用cjnz指令来实现以下伪代码:main:cjnz P1.0, Led_On ; 如果P1.0口是高电平,则跳转到标签Led_On 处sjmp main ; 如果P1.0口是低电平,则一直停留在标签main处Led_On:setb P2.0 ; 设置P2.0口为高电平,从而点亮LED灯sjmp main ; 返回到标签main处,等待下一次按下开关第三部分:cjnz指令的优点和应用场景cjnz指令具有以下优点和应用场景:1. 简化程序逻辑:cjnz指令使得程序员可以通过条件判断来控制程序的执行路径,从而实现多样化的程序逻辑。

C51单片机汇编语言程序设计

C51单片机汇编语言程序设计

C51单片机汇编语言程序设计一、二进制数与十六进制数之间的转换1、数的表达方法为了方便编程时书写,规定在数字后面加一个字母来区别,二进制数后加B十六进制数后加H。

2、二进制数与十六进制数对应表二进制十六进二进制制0000000100100011010001010110011101234567100010011010101111001101 11101111十六进制89ABCDEF3、二进制数转换为十六进制数转换方法为:从右向左每4位二进制数转化为1位十六进制数,不足4位部分用0补齐。

例:将(1010000110110001111)2转化为十六进制数解:把1010000110110001111从右向左每4位分为1组,再写出对应的十六进制数即可。

0101000011011000111150D8F答案:(1010000110110001111)2=(50D8F)16例:将1001101B转化为十六进制数解:把10011110B从右向左每4位分为1组,再写出对应的十六进制数即可。

100111109E答案:10011110B=9EH4、十六进制数转换为二进制数转换方法为:将每1位十六进制数转换为4位二进制数。

例:将(8A)16转化为二进制数解:将每位十六进制数写成4位二进制数即可。

8A10001010答案:(8A)16=(10001010)2例:将6BH转化为二进制数解:将每位十六进制数写成4位二进制数即可。

6B01101011答案:6BH=01101011B二、计算机中常用的基本术语1、位(bit)计算机中最小的数据单位。

由于计算机采用二进制数,所以1位二进制数称作1bit,例如110110B为6bit。

2、字节(Byte,简写为B)8位的二进制数称为一个字节,1B=8bit3、字(Word)和字长两个字节构成一个字,2B=1Word。

字长是指单片机一次能处理的二进制数的位数。

如AT89S51是8位机,就是指它的字长是8位,每次参与运算的二进制数的位数为8位。

51单片机汇编语言指令教程(校对版)ppt课件

51单片机汇编语言指令教程(校对版)ppt课件

06
05
04
03
02
01
00
返回前一次
最新课件
19
2.2.3立即寻址
指令本身直接含有所需要的8位或16位的操作数。
将此数称为“立即数”(使用#标明)。如:
MOV A,#30H
;将(8位)立即数送累加器A
MOV DPTR,#2000H ;16位立即数送DPTR积存器
【注意】:MOV A,#30H MOV A,30H 两者的区别。 立即数寻址的指令长度为2或3个字节。
三字节指令在存储器中存放的方式示意图
最新课件
9
指令的字节数与指令的运行时间
指令的字节多是否意味着指令周期就长?
指令
字节数 周期数
MOV A,R0
1
1
MOV A,#0FFH 2
1
MOV 20H,#30H 3
2
MUL AB
1
4
INC DPTR
1
1
指令说明 R0内容送累加器A
立即数FFH送A 立即数30H送内存20h单元
MOV A,00H ;将RAM中00H单元数据送累加器A
MOV A,R0 ;将工作寄存器R0的内容送累加器A
这里使用了不同的寻址方式,其指令的结构也不相同。
前者是:11100101(0E5H)、00000000(00H) 双字节。
后者的机器码是:11101000(0E8H)
单字节;
在物理结构上,R0与RAM的00H单元恰好是同一单元, 所以不同的指令而执行结果是一样的。
或者:指令中分别包含1个字节的操作数和1个字节的操作 数地址。如:
MOV direct,#data 举例:MOV 20H,#0FFH

51单片机汇编语言

51单片机汇编语言

51单片机汇编语言51单片机汇编语言是一种基于51系列单片机的汇编语言,它是一种直接操作硬件的低级语言。

在嵌入式系统开发中,经常需要使用汇编语言来编写底层驱动程序和实现特定功能。

本文将介绍51单片机汇编语言的基本概念、语法结构以及常用指令集。

一、51单片机简介51单片机是一种基于哈佛结构的8位单片机,由英特尔公司设计,并于1980年发布。

它具有低功耗、高性能和易于编程的特点,广泛应用于家电、汽车电子、工控设备等领域。

二、汇编语言基础1. 数据类型:51单片机汇编语言支持的数据类型包括位(bit)、字节(byte)、字(word)和双字(dword)。

可以通过定义变量来使用这些数据类型。

2. 寄存器:51单片机包含一组通用寄存器和特殊功能寄存器。

通用寄存器用于存储临时数据,特殊功能寄存器用于控制和配置硬件。

常用的通用寄存器有ACC累加器、B寄存器和DPTR数据指针。

3. 指令集:51单片机汇编语言的指令集丰富多样,包括数据传送指令、算术运算指令、逻辑运算指令、跳转指令等。

例如,MOV指令用于数据传送,ADD指令用于加法运算,JMP指令用于无条件跳转。

三、汇编语言示例下面是一个简单的51单片机汇编语言程序示例,实现了一个LED 灯的闪烁效果。

```ORG 0x0000 ; 程序起始地址MOV P1, #0x00 ; 将0x00赋值给P1口,关闭LED灯LOOP:MOV P1, #0xFF ; 将0xFF赋值给P1口,打开LED灯CALL DELAY ; 调用延时子程序MOV P1, #0x00 ; 将0x00赋值给P1口,关闭LED灯CALL DELAY ; 调用延时子程序JMP LOOP ; 无条件跳转到LOOP标签DELAY:MOV R0, #0xFF ; 将0xFF赋值给R0寄存器DELAY_LOOP:DJNZ R0, DELAY_LOOP ; R0减1,如果不等于0则跳转到DELAY_LOOP标签RET ; 返回调用子程序的指令END ; 程序结束标志```四、汇编语言开发工具51单片机汇编语言的开发工具有很多,常用的有Keil C51、SDCC、ASM51等。

汇编语言指令与c51单片机指令的异同处

汇编语言指令与c51单片机指令的异同处

汇编语言指令与c51单片机指令的异同处系别:机电系测控一班姓名:陈瑞关日宏郝秀辉魏文阳前言 (10)一、汇编语言 (11)1.概括: (11)3.汇编语言优缺点 (12)4.汇编语言指令:一、数据传输指令1. 通用数据传送指令.MOV (MOVe) 传送字或字节.MOVS (MOVe String) 串传送指令MOVSX 先符号扩展,再传送.MOVZX 先零扩展,再传送.PUSH 把字压入堆栈.POP 把字弹出堆栈.PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.BSWAP 交换32位寄存器里字节的顺序XCHG (eXCHanG)交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)CMPXCHG比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )XADD 先交换再累加.( 结果在第一个操作数里 )XLAT (TRANSLATE) 字节查表转换.── BX 指向一张 256 字节的表的起点, AL 为表的索引值 (0-255,即0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL )2. 输入输出端口传送指令.IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器 )输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,其范围是 0-65535.3. 目的地址传送指令.LEA (Load Effective Address)装入有效地址.例: LEA DX,string ;把偏移地址存到DX.LDS (Load DS with pointer)传送目标指针,把指针内容装入DS.例: LDS SI,string ;把段地址:偏移地址存到DS:SI.LES (Load ES with pointer)传送目标指针,把指针内容装入ES.例: LES DI,string ;把段地址:偏移地址存到ES:DI.LFS 传送目标指针,把指针内容装入FS.例: LFS DI,string ;把段地址:偏移地址存到FS:DI.LGS 传送目标指针,把指针内容装入GS.例: LGS DI,string ;把段地址:偏移地址存到GS:DI.LSS 传送目标指针,把指针内容装入SS.例: LSS DI,string ;把段地址:偏移地址存到SS:DI.4. 标志传送指令.LAHF (Load AH with Flags)标志寄存器传送,把标志装入AH.SAHF (Store AH into Flgs)标志寄存器传送,把AH内容装入标志寄存器. PUSHF (PUSH the Flags)标志入栈.POPF (POP the Flags)标志出栈.PUSHD 32位标志入栈.POPD 32位标志出栈 (13)二、算术运算指令ADD 加法.ADC 带进位加法.INC 加 1.AAA 加法的ASCII码调整.非压缩的BCD码加法十进制调整指令DAA 加法的十进制调整.压缩的BCD码加法十进制调整指令SUB (SUBtract)减法.SBB (SuVtrach with borrow)带借位减法.DEC (DECrement)减 1.NEC (NEGate)求反(以 0 减之).CMP (CoMPare)比较.(两操作数作减法,仅修改标志位,不回送结果).AAS 减法的ASCII码调整.非压缩的BCD码加法十进制调整指令DAS 减法的十进制调整.压缩的BCD码减法十进制调整指令MUL (unsinged MULtiple)无符号乘法.IMUL (sIgned MUL tiple)整数乘法.以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),AAM 乘法的ASCII码调整.DIV (unsigned DIVide)无符号除法.IDIV (sIgned DIVide)整数除法.以上两条,结果回送:商回送AL,余数回送AH, (字节运算);或商回送AX,余数回送DX, (字运算).AAD 除法的ASCII码调整.CBW (Count Byte to Word)字节转换为字. (把AL中字节的符号扩展到AH中去) CWD (Count Word to Doble word)字转换为双字. (把AX中的字的符号扩展到DX 中去)CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)三、逻辑运算指令AND 与运算.or 或运算.XOR 异或运算.NOT 取反.TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).SHL (SHift logical Letf)逻辑左移.SAL 算术左移.(=SHL)SHR (SHift logical Right)逻辑右移.SAR 算术右移.(=SHR)ROL (Rotate Left )循环左移.ROR (Rotate Right)循环右移.RCL (Rotate Left through Carry)通过进位的循环左移.RCR (Rotate Right through Carry)通过进位的循环右移.以上八种移位指令,其移位次数可达255次.移位一次时, 可直接用操作码. 如 SHL AX,1.移位>1次时, 则由寄存器CL给出移位次数.如 MOV CL,04SHL AX,CL四、串指令DS:SI 源串段寄存器 :源串变址.ES:DI 目标串段寄存器:目标串变址.CX 重复次数计数器.AL/AX 扫描值.D标志 0表示重复操作中SI和DI应自动增量; 1表示应自动减量.Z标志用来控制扫描或比较操作的结束.MOVS 串传送.( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. )CMPS (CoMPare String)串比较.( CMPSB 比较字符. CMPSW 比较字. )SCAS (SCAn String)串扫描指令.把AL或AX的内容与目标串作比较,比较结果反映在标志位.LODS 装入串.把源串中的元素(字或字节)逐一装入AL或AX中.( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. )STOS (STOre into String)保存串.是LODS的逆过程.REP (REPeat)当CX/ECX<>0时重复.REPE/REPZ (REPeat while Equal/Zero)当ZF=1或比较结果相等,且CX/ECX<>0时重复. REPNE/REPNZ (REPeat while Not Equal/Zero)当ZF=0或比较结果不相等,CX/ECX<>0时重复.REPC 当CF=1且CX/ECX<>0时重复.REPNC 当CF=0且CX/ECX<>0时重复.五、程序转移指令1>无条件转移指令 (长转移)JMP 无条件转移指令CALL 过程调用RET/RETF过程返回.2>条件转移指令 (短转移,-128到+127的距离内)( 当且仅当(SF XOR OF)=1时,OP1<OP2 )JA/JNBE 不小于或不等于时转移.JAE/JNB 大于或等于转移.JB/JNAE 小于转移.JBE/JNA 小于或等于转移.以上四条,测试无符号整数运算的结果(标志C和Z).JG/JNLE 大于转移.JGE/JNL 大于或等于转移.JL/JNGE 小于转移.JLE/JNG 小于或等于转移.以上四条,测试带符号整数运算的结果(标志S,O和Z). JE/JZ 等于转移.JNE/JNZ 不等于时转移.JC 有进位时转移.JNC 无进位时转移.JNO 不溢出时转移.JNP/JPO 奇偶性为奇数时转移.JNS 符号位为 "0" 时转移.JO 溢出转移.JP/JPE 奇偶性为偶数时转移.JS 符号位为 "1" 时转移.3>循环控制指令(短转移)LOOP CX不为零时循环.LOOPE/LOOPZ CX不为零且标志Z=1时循环.LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.JCXZ CX为零时转移.JECXZ ECX为零时转移.4>中断指令INT 中断指令INTO 溢出中断IRET 中断返回5>处理器控制指令HLT 处理器暂停, 直到出现中断或复位信号才继续. WAIT 当芯片引线TEST为高电平时使CPU进入等待状态. ESC 转换到外处理器.LOCK 封锁总线.NOP 空操作.STC 置进位标志位.CLC 清进位标志位.CMC 进位标志取反.STD (SeT Direction flag)置方向标志位.CLD (CLear Direction flag)清方向标志位.STI 置中断允许位.CLI 清中断允许位.六、伪指令DW 定义字(2字节).PROC 定义过程.ENDP 过程结束.SEGMENT 定义段.ASSUME 建立段寄存器寻址.ENDS 段结束.END 程序结束.8088 汇编跳转cmp a,b 比较a与bmov a,b 把b的值送给aret 返回主程序nop 无作用,英文“no operation”的简写,意思是“do nothing”call 调用子程序je 或jz 若相等则跳jne或jnz 若不相等则跳jmp 无条件跳jb 若小于则跳ja 若大于则跳jg 若大于则跳jge 若大于等于则跳jl 若小于则跳jle 若小于等于则跳pop 出栈push 压栈MOV功能: 把源操作数送给目的操作数语法: MOV 目的操作数,源操作数格式: MOV r1,r2MOV r,mMOV m,rMOV r,dataXCHG功能: 交换两个操作数的数据语法: XCHG格式: XCHG r1,r2 XCHG m,r XCHG r,mPUSH,POP功能: 把操作数压入或取出堆栈语法: PUSH 操作数 POP 操作数格式: PUSH r PUSH M PUSH data POP r POP mPUSHF,POPF,PUSHA,POPA功能: 堆栈指令群格式: PUSHF POPF PUSHA POPALEA,LDS,LES功能: 取地址至寄存器语法: LEA r,m LDS r,m LES r,mXLAT(XLATB)功能: 查表指令语法: XLAT XLAT m算数运算指令ADD,ADC功能: 加法指令语法: ADD OP1,OP2 ADC OP1,OP2格式: ADD r1,r2 ADD r,m ADD m,r ADD r,data影响标志: C,P,A,Z,S,OSUB,SBB功能:减法指令语法: SUB OP1,OP2 SBB OP1,OP2格式: SUB r1,r2 SUB r,m SUB m,r SUB r,data SUB m,data影响标志: C,P,A,Z,S,OINC,DEC功能: 把OP的值加一或减一语法: INC OP DEC OP格式: INC r/m DEC r/m影响标志: P,A,Z,S,ONEG功能: 将OP的符号反相(取二进制补码)语法: NEG OP格式: NEG r/m影响标志: C,P,A,Z,S,OMUL,IMUL功能: 乘法指令语法: MUL OP IMUL OP格式: MUL r/m IMUL r/m影响标志: C,P,A,Z,S,O(仅IMUL会影响S标志)DIV,IDIV功能:除法指令语法: DIV OP IDIV OP格式: DIV r/m IDIV r/mCBW,CWD功能: 有符号数扩展指令语法: CBW CWDAAA,AAS,AAM,AAD功能: 非压BCD码运算调整指令语法: AAA AAS AAM AAD影响标志: A,C(AAA,AAS) S,Z,P(AAM,AAD)DAA,DAS功能: 压缩BCD码调整指令语法: DAA DAS影响标志: C,P,A,Z,S位运算指令集AND,OR,XOR,NOT,TEST功能: 执行BIT与BIT之间的逻辑运算语法: AND r/m,r/m/data OR r/m,r/m/data XOR r/m,r/m/data TEST r/m,r/m/data NOT r/m影响标志: C,O,P,Z,S(其中C与O两个标志会被设为0) NOT指令不影响任何标志位SHR,SHL,SAR,SAL功能: 移位指令语法: SHR r/m,data/CL SHL r/m,data/CL SAR r/m,data/CL SAL r/m,data/CL 影响标志: C,P,Z,S,OROR,ROL,RCR,RCL功能: 循环移位指令语法: ROR r/m,data/CL ROL r/m,data/CL RCR r/m,data/CL RCL r/m,data/CL 影响标志: C,P,Z,S,O程序流程控制指令集CLC,STC,CMC功能: 设定进位标志语法: CLC STC CMC标志位: CCLD,STD功能: 设定方向标志语法: CLD STD标志位: DCLI,STI功能: 设定中断标志语法: CLI STI标志位: ICMP功能: 比较OP1与OP2的值语法: CMP r/m,r/m/data标志位: C,P,A,Z,OJMP功能: 跳往指定地址执行语法: JMP 地址JXX功能: 当特定条件成立则跳往指定地址执行语法: JXX 地址注:A: ABOVE,当C=0,Z=0时成立B: BELOW,当C=1时成立C: CARRY,当弁时成立 CXZ: CX寄存器的值为0(ZERO)时成立E: EQUAL,当Z=1时成立G: GREATER(大于),当Z=0且S=0时成立L: LESS(小于),当S不为零时成立N: NOT(相反条件),需和其它符号配合使用O: OVERFLOW,O=1时成立P: PARITY,P=1时成立PE: PARITY EVEN,P=1时成立PO: PARITY ODD,P=0时成立S: SIGN,S=1时成立Z: ZERO,Z=1时成立LOOP功能: 循环指令集语法: LOOP 地址LOOPE(Z)地址 LOOPNE(Z) 地址标志位: 无CALL,RET功能: 子程序调用,返回指令语法: CALL 地址 RET RET n标志位: 无INT,IRET功能: 中断调用及返回指令语法: INT n IRET标志位: 在执行INT时,CPU会自动将标志寄存器的值入栈,在执行IRET时则会将堆栈中的标志值弹回寄存器字符串操作指令集MOVSB,MOVSW,MOVSD功能: 字符串传送指令语法: MOVSB MOVSW MOVSD标志位: 无CMPSB,CMPSW,CMPSD功能: 字符串比较指令语法: CMPSB CMPSW CMPSD标志位: C,P,Z,S,OSCASB,SCASW功能: 字符串搜索指令语法: SCASB SCASW标志位: C,P,Z,S,OLODSB,LODSW,STOSB,STOSW功能: 字符串载入或存贮指令语法: LODSB LODSW STOSB STOSW标志位: 无REP,REPE,REPNE功能: 重复前缀指令集语法: REP 指令S REPE 指令S REPNE 指令S标志位: 依指令S而定 (15)二、C51汇编语言 (29)1.概括: (29)2.特点: (30)3.C语言优缺点 (30)C语言的优点 (30)C语言的缺点 (32)4.C51语言指令 (32)数据传送类指令 (32)程序调用及返回指令表 (35)无条件转移指令表 (36)条件转移指令 (36)位操作指令 (36)程序存储器取数据指令 (38)堆栈操作指令 (38)数据交换指令 (38)算术运算指令表 (39)三、异同处: (40)前言漫步在繁华的现代化的大都市的大街上,随时都可以看到街上有很多可以用卡取钱的机器(ATM自动柜员机),十字路口的交通灯。

51单片机汇编语言指令教程汇集

51单片机汇编语言指令教程汇集

51单片机汇编语言指令教程汇集1.MOV指令:MOV指令用于将一个值从一个寄存器或内存位置复制到另一个寄存器或内存位置。

例如,MOVA,将常数10复制到累加器A中。

2.ADD指令:ADD指令用于将两个操作数相加,并将结果保存在目标操作数中。

例如,ADDA,B将寄存器B的值与累加器A的值相加,并将结果保存在累加器A中。

3.SUB指令:SUB指令用于将源操作数减去目标操作数,并将结果保存在目标操作数中。

例如,SUBA,B将寄存器B的值减去累加器A的值,并将结果保存在累加器A中。

4.INC指令:INC指令用于将指定的操作数加1、例如,INCA将累加器A的值加15.DEC指令:DEC指令用于将指定的操作数减1、例如,DECA将累加器A的值减16.JMP指令:JMP指令用于无条件地跳转到指定的地址。

例如,JMP1000h将跳转到地址1000h处执行指令。

9. ACALL指令:ACALL指令用于调用一个子程序,其地址由指令给出,子程序结束后返回到调用指令的下一条指令。

例如,ACALL Subroutine将调用一个名为Subroutine的子程序。

10.RET指令:RET指令用于从子程序返回到调用指令的下一条指令。

例如,RET将从子程序返回。

11.NOP指令:NOP指令用于空操作,即不执行任何操作。

它通常用于延时或填充空白。

以上是一些常用的51单片机汇编语言指令,这些指令可以用于控制I/O口、进行算术运算、执行跳转和调用子程序等。

学习并熟练掌握这些指令,对于编写高效的51单片机汇编程序非常重要。

希望本文提供的51单片机汇编语言指令教程能够帮助你入门和掌握51单片机汇编语言的基本知识。

如果你想深入学习51单片机汇编语言,建议参考相关的教材或在线资源,进行更加系统和全面的学习。

51单片机汇编程序

51单片机汇编程序

51单片机汇编程序1. 简介51单片机是一种常用的8位单片机芯片,具有广泛的应用领域。

51单片机的编程语言主要有汇编语言、C语言和底层汇编语言。

本文主要介绍51单片机的汇编程序。

2. 汇编程序基础2.1 寄存器51单片机的CPU有4个8位寄存器(A、B、DPTR、PSW)和一个16位寄存器(PC)。

在汇编程序中,我们可以使用这些寄存器来进行各种操作。

•A寄存器(累加器):用于存储数据和进行算术运算。

•B寄存器:辅助寄存器,可用于存储数据和进行算术运算。

•DPTR寄存器:数据指针寄存器,用于存储数据存取的地址。

•PSW寄存器:程序状态字寄存器,用于存储程序运行状态信息。

•PC寄存器:程序计数器,用于存储当前执行指令的地址。

2.2 指令集51单片机的指令集包含了多种汇编指令,可以用来进行数据操作、算术运算、逻辑运算、控制流程等。

常用的汇编指令有:•MOV:数据传送指令。

•ADD、SUB:加法和减法运算指令。

•ANL、ORL、XRL:逻辑运算指令。

•MOVX:外部RAM的读写指令。

•CJNE、DJNZ:条件分支指令。

•LCALL、RET:函数调用和返回指令。

2.3 编写一个简单的汇编程序下面是一个简单的汇编程序示例,用于将A寄存器中的数据加1,并将结果存储到B寄存器中。

ORG 0x0000 ; 程序的起始地址MOV A, #0x01 ; 将A寄存器赋值为1ADD A, #0x01 ; 将A寄存器加1MOV B, A ; 将A寄存器的值传送到B寄存器END ; 程序结束在上面的示例中,ORG指令用于指定程序的起始地址,MOV 指令用于将A寄存器赋值为1,ADD指令用于将A寄存器加1,MOV指令用于将A寄存器的值传送到B寄存器,END指令用于标记程序结束。

3. 汇编语言的应用51单片机的汇编语言广泛应用于各种嵌入式系统中,包括智能家居、工业自动化、仪器仪表等领域。

汇编程序具有以下特点:•程序执行效率高:由于汇编语言直接操作硬件,可以精确控制程序的执行流程,提高程序的执行效率。

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集一、数据传送类指令(7种助记符)MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送;MOVC(Move Code)读取程序存储器数据表格的数据传送;MOVX (Move External RAM) 对外部RAM的数据传送;XCH (Exchange) 字节交换;XCHD (Exchange low-order Digit) 低半字节交换;PUSH (Push onto Stack) 入栈;POP (Pop from Stack) 出栈;二、算术运算类指令(8种助记符)ADD(Addition) 加法;ADDC(Add with Carry) 带进位加法;SUBB(Subtract with Borrow) 带借位减法;DA(Decimal Adjust) 十进制调整;INC(Increment) 加1;DEC(Decrement) 减1;MUL(Multiplication、Multiply) 乘法;DIV(Division、Divide) 除法;三、逻辑运算类指令(10种助记符)ANL(AND Logic) 逻辑与;ORL(OR Logic) 逻辑或;XRL(Exclusive-OR Logic) 逻辑异或;CLR(Clear) 清零;CPL(Complement) 取反;RL(Rotate left) 循环左移;RLC(Rotate Left throught the Carry flag) 带进位循环左移;RR(Rotate Right) 循环右移;RRC (Rotate Right throught the Carry flag) 带进位循环右移;SWAP (Swap) 低4位与高4位交换;四、控制转移类指令(17种助记符)ACALL(Absolute subroutine Call)子程序绝对调用;LCALL(Long subroutine Call)子程序长调用;RET(Return from subroutine)子程序返回;RETI(Return from Interruption)中断返回;SJMP(Short Jump)短转移;AJMP(Absolute Jump)绝对转移;LJMP(Long Jump)长转移;CJNE (Compare Jump if Not Equal)比较不相等则转移;DJNZ (Decrement Jump if Not Zero)减1后不为0则转移;JZ (Jump if Zero)结果为0则转移;JNZ (Jump if Not Zero) 结果不为0则转移;JC (Jump if the Carry flag is set)有进位则转移;JNC (Jump if Not Carry)无进位则转移;JB (Jump if the Bit is set)位为1则转移;JNB (Jump if the Bit is Not set) 位为0则转移;JBC(Jump if the Bit is set and Clear the bit) 位为1则转移,并清除该位;NOP (No Operation) 空操作;五、位操作指令(1种助记符)CLR 位清零;SETB(Set Bit) 位置1。

单片机指令表汇总

单片机指令表汇总

51单片机指令表汇总51单片机是一种广泛应用的微控制器,其指令集是进行编程的基础。

下面将51单片机的指令表进行汇总,以帮助初学者更好地理解其指令集。

一、数据传输指令1、MOV指令:将源操作数的内容传送到目标操作数。

2、XCH指令:将两个操作数的内容互换。

3、MOVC指令:从外部存储器将数据传送到目标操作数。

4、MOVX指令:将外部存储器中的数据传送到目标操作数。

5、PUSH指令:将数据压入堆栈。

6、POP指令:从堆栈中弹出数据。

二、算术运算指令1、ADD指令:将两个操作数相加,并将结果存放在目标操作数中。

2、SUB指令:从目标操作数中减去源操作数,并将结果存放在目标操作数中。

3、MUL指令:将两个操作数相乘,并将结果存放在目标操作数中。

4、DIV指令:将目标操作数除以源操作数,并将结果存放在目标操作数中。

5、ANL指令:对目标操作数和源操作数进行按位与运算,并将结果存放在目标操作数中。

6、ORL指令:对目标操作数和源操作数进行按位或运算,并将结果存放在目标操作数中。

7、XRL指令:对目标操作数和源操作数进行按位异或运算,并将结果存放在目标操作数中。

8、CPL指令:对目标操作数进行按位取反运算,并将结果存放在目标操作数中。

9、INC指令:将目标操作数加1。

10、DEC指令:将目标操作数减1。

11、ASR指令:将目标操作数右移n位,最高位用符号位补齐。

12、LSR指令:将目标操作数右移n位,最低位用0补齐。

13、ROL指令:将目标操作数循环左移n位,最高位移入最低位。

14、ROR指令:将目标操作数循环右移n位,最低位移入最高位。

单片机汇编指令表一、概述在单片机的世界里,汇编语言扮演着举足轻重的角色。

它是一种低级语言,能够直接与硬件进行交互,提供高效的代码执行效率。

下面,我们将详细列出一些常见的单片机汇编指令,以及它们的功能。

二、指令表1、MOV指令:用于将数据从一个寄存器移动到另一个寄存器。

例如,MOV R1, R2将把 R2的内容移动到 R1中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

42 . XRL 3 2 将直接地址的内容与常数的值做XOR
direct,#data
的逻辑判断,结果存回该直接地址
43.CLR A 1 1 清除累加器的值为0
44.CPL A 1 1 将累加器的值反相
45.RL A 1 1 将累加器的值左移一位
46.RLC A 1 1 将累加器含进位C左移一位
47.RR A 1 1 将累加器的值右移一位
A,@Ri
53 . MOV 2 1 将常数载入累加器
A,#data
54 . MOV 1 1 将累加器的内容载入寄存器
Rn,A
55 . MOV 2 2 将直接地址的内容载入寄存器
Rn,direct
56 . MOV 2 1 将常数载入寄存器
Rn,gdata
57 . MOV 2 1 将累加器的内容存入直接地址
ANL 2 1 将累加器的值与直接地址的内容做AND
A,direct
的逻辑判断,结果存回累加器
ANL 1 1 将累加器的值与间接地址的内容做AND
A,@Ri
的逻辑判断,结果存回累加器
ANL 2 1 将 累 加器 的 值与 常数 做 AND的 逻辑 判
A,#data
断,结果存回累加器
ANL 2 1 将直接地址的内容与累加器的值做AND
A,#data,rel
等则跳至rel所指的相关地址
CJNE @Rn, 3 2 将寄存器的内容与常数比较,若不相
#data,rel
等则跳至rel所指的相关地址
CJNE @Ri, 3 2 将间接地址的内容与常数比较,若不
#data,rel
相等则跳至rel所指的相关地址
109 . DJNZ Rn,rel 110 . DJNZ direct,rel 111.NOP
@Ri,A
指定的外部存储器(8位地址)
71 . MOVX 1 2 将累加器的内容写入数据指针所
@DPTR,A
指定的外部存储器(16位地址)
72 . PUSH 2 2 将直接地址的内容压入堆栈区
direct
73 . POP 2 2 从堆栈弹出该直接地址的内容
direct
74 . XCH 1 1 将累加器的内容与寄存器的内容
51汇编语言指令集
符号定义表 符号
含义
Rn
R0~R7寄存器n=0~7
Direct 直接地址,内部数据区的地址RAM(00H~7FH)
SFR(80H~FFH) B,ACC,PSW,IP,P3, IE,P2,SCON,P1,TCON,P0
@Ri 间 接 地 址 Ri=R0 或 R1 8051/31RAM 地 址 (00H~7FH) 8052/32RAM地址(00H~FFH)
C,/bit
做AND的逻辑判断,结果存回进位C
86 . ORL 2 2 将进位C与直接地址的某位做OR的逻
C,bit
辑判断,结果存回进位C
87 . ORL 2 2 将进位C与直接地址的某位的反相值
C,/bit
做OR的逻辑判断,结果存回进位C
88 . MOV 2 1 将直接地址的某位值存入进位C
C,bit
2 1 将累加器与直接地址的内容相加,结 果存回累加器
3.ADD
1 1 将累加器与间接地址的内容相加,结
A,@Ri
果存回累加器
4.ADD A,#data
2 1 将累加器与常数相加,结果存回累加 器
5.ADDC
1 1 将累加器与寄存器的内容及进位C相
A,Rn
加,结果存回累加器
6.ADDC A,direct
89 . MOV 2 2 将进位C的值存入直接地址的某位
bit,C
90.JC rel 2 2 若进位C=1则跳至rel的相关地址
91.JNC rel 2 2 若进位C=0则跳至rel的相关地址
92 . JB 3 2 若直接地址的某位为1,则跳至rel的相
bit,rel
关地址
93 . JNB 3 2 若直接地址的某位为0,则跳至rel的相
标志位
18.DEC A 1
1 将累加器的值减1
19.DEC Rn 1
1 将寄存器的值减1
20.DEC direct 2 1 将直接地址的内容减1
21.DEC @Ri 1
1 将间接地址的内容减1
22.MUL AB 1 4 将累加器的值与B寄存器的值相
乘,乘积的低位字节存回累加器,
高位字节存回B寄存器
说明:将累加器A和寄存器B内的无符号整数相乘,产生
36 . ORL 3 2 将直接地址的内容与常数值做OR的逻
direct,#data
辑判断,结果存回该直接地址
37 . XRL 1 1 将累加器的值与寄存器的值做XOR的
A,Rn
逻辑判断,结果存回累加器
38 . XRL 2 1 将 累 加 器 的值 与 直 接地址 的 内 容做
A,direct
XOR的逻辑判断,结果存回累加器
bit,rel
关地址
94 . JBC 3 2 若直接地址的某位为1,则跳至rel的相
bit,rel
关地址,并将该位值清除为0
程序跳跃
95.ACALL 2 2 调用2K程序存储器范围内的子程序
addr11
96.LCALL 3 2 调用64K程序存储器范围内的子程序
addr16
97.RET 1 2 从子程序返回
48.RRC A 1 1 将累加器含进位C右移一位
49 . SWAP 1 1 将累加器 的高4位与低 4位的内容 交
A
换。(A)3-0←(A)7-4
数据转移指令
50 . MOV 1 1 将寄存器的内容载入累加器
A,Rn
51 . MOV 2 1 将直接地址的内容载入累加器
A,direct
52 . MOV 1 1 将间接地址的内容载入累加器
位(OV)被清除为0
24.DA 1 1 将累加器A作十进制调整,
A
若 (A) 3-0>9 或 (AC)=1 , 则 (A)
3-0←(A)3-0+6
若 (A) 7-4>9 或 (C)=1 , 则 (A) 7-4←(A)7-4+6
逻辑运算指令
ANL A,Rn
1 1 将累加器的值与寄存器的值做AND的逻 辑判断,结果存回累加器
的逻辑判断,结果存回累加器
33 . ORL 1 1 将累加器的值与间接地址的内容做OR
A,@Ri
的逻辑判断,结果存回累加器
34 . ORL 2 1 将累加器的值与常数做OR的逻辑判
A,#data
断,结果存回累加器
35 . ORL 2 1 将直接地址的内容与累加器的值做OR
direct,A
的逻辑判断,结果存回该直接地址
的相关地址
103.JZ rel 2 2 累加器的内容为0,则跳至rel所指相
关地址
104.JNZ rel 2 2 累加器的内容不为0,则跳至rel所指
相关地址
105. CJNE 3 2 将累加器的内容与直接地址的内容
A,direct,rel
比较,不相等则跳至rel所指的相关地

106. CJNE 3 2 将累加器的内容与常数比较,若不相
98.RETI 1 2 从中断子程序返回
99 . AJMP 2 2 绝对跳跃(2K内)
addr11
100.LJMP 3 2 长跳跃(64K内)
addr16
101 . SJMP 2 2 短跳跃(2K内)-128~+127字节
rel
102 . JMP 1 2 跳至累加器的内容加数据指针所指
@A+DPTR
14.INC Rn 1 1 将寄存器的值加l
15.INC
2 1 将直接地址的内容加1
direct
16.INC @Ri 1 1 将间接地址的内容加1
17.INC
1 1 数据指针寄存器值加1
DPTR
说明:将16位的DPTR加1,当DPTR的低字节(不影响任何
A,Rn
互换
75 . XCH 2 1 将累加器的值与直接地址的内容
A,direct
互换
76 . XCH 1 1 将累加器的值与间接地址的内容
A,@Ri
互换
77 . XCHD 1 1 将累加器的低4位与间接地址的低
A,@Ri
4位互换
布尔代数运算
78.CLR C 1 1 清除进位C为0
79.CLR bit 2 1 清除直接地址的某位为0
2 1 将累加器与直接地址的内容及进位C 相加,结果存回累加器
7.ADDC
1 1 将累加器与间接地址的内容及进位C
A,@Ri
相加,结果存回累加器
8.ADDC A,#data
2 1 将累加器与常数及进位C相加,结果 存回累加器
9.SUBB A,Rn
1 1 将累加器的值减去寄存器的值减借 位C,结果存回累加器
direct,A
的逻辑判断,结果存回该直接地址
ANL direct,#data
3 2 将直接地址的内容与常数值做AND 的逻辑判断,结果存回该直接地址
ORL A,Rn
1 1 将累加器的值与寄存器的值做OR的逻 辑判断,结果存回累加器
32 . ORL 2 1 将累加器的值与直接地址的内容做OR
A,direct
将间接地址的内容存入直接地址
将常数存入直接地址
将累加器的内容存入某间接地址
将直接地址的内容存入某间接地 址 将常数存入某间接地址
将16位的常数存入数据指针寄存 器
(A) ←((A)+(DPTR)) 累加器的值再加数据指针寄存器 的值为其所指定地址,将该地址的 内容读入累加器
相关文档
最新文档