变频调速的工作原理

合集下载

变频器调速的基本原理

变频器调速的基本原理

变频器调速的基本原理变频器调速是一种常见的电力调节设备,它通过改变电机的供电频率来实现调速的目的。

变频器调速的基本原理是将交流电源输入变频器中,经过整流、滤波、逆变等电路处理后,得到一个可调的直流电压,然后再通过逆变器将直流电压转换成可调的交流电源,供给电机使用。

根据电机的负载情况和工作要求,调节变频器输出电压和频率的大小,从而实现对电机转速的精确控制。

变频器调速的基本原理可以简单概括为以下几个步骤:1. 交流电源输入:将交流电源输入变频器中,一般为三相交流电源。

这些交流电源经过变频器内部的整流和滤波电路,将其转换为稳定的直流电压。

2. 逆变器输出:经过整流和滤波后的直流电压,再经过逆变器的处理,转变为可调的交流电源。

逆变器通过控制输出电压和频率的大小,实现对电机的精确控制。

3. 控制信号输入:通过控制器或编程器,向变频器输入控制信号,包括所需的转速、负载变化等参数。

控制器根据这些输入信号,计算出逆变器应输出的电压和频率值,并将其发送到逆变器中控制输出。

4. 电机驱动:逆变器输出的交流电源供给电机进行驱动,根据逆变器输出的电压和频率值,电机转速得到控制和调节。

变频器调速的基本原理可以通过以下几个方面来解释:1. 频率控制:变频器通过调节输出电压的频率来控制电机的转速。

一般情况下,电机的转速与输入电源的频率成正比,即频率越高,电机转速越快。

通过调节变频器的输出频率,可以实现对电机转速的精确控制。

2. 电压控制:变频器还可以通过调节输出电压的大小来控制电机的转速。

一般情况下,电机的转速与输入电压成正比,即电压越高,电机转速越快。

通过调节变频器的输出电压,可以实现对电机转速的精确调节。

3. 软启动:变频器调速还具有软启动功能,即在启动电机时,逐渐增加输出频率和电压,使电机平稳启动,避免了突然启动对电机和负载的冲击。

4. 负载适应:变频器调速可以根据电机的负载情况实时调节输出频率和电压,以适应负载的变化。

变频调速工作原理

变频调速工作原理

变频调速工作原理
变频调速,即通过改变电机供电频率来调整电机的转速。

其工作原理基于变频器(也称为频率变换器、变频调速器)的控制。

变频器是由整流器、滤波器、逆变器和控制电路组成的电子器件。

它的基本原理是将固定频率的交流电转换为可调频率的交流电,以控制电机的速度。

具体原理如下:
1. 输入电源经过整流器将交流电转换为直流电,并通过滤波器去除波动。

2. 变频器的控制电路通过调整逆变器的开关频率和占空比,将直流电转换为大小可调的交流电。

3. 变频器通过改变交流电的频率,改变电机的转速。

通过控制电路输入不同的频率信号,可以实现电机转速的精细调节。

4. 控制电路还可以根据电机的工作负载情况,自动调整输出频率和电流,以提高电机的效率和节能性。

总之,变频调速工作原理是通过变频器将固定频率的交流电转换为可调频率的交流电,从而控制电机的转速。

通过调整变频器输入的频率信号,可以精确地调节电机的运行速度,达到不同工作要求。

变频调速器的工作原理

变频调速器的工作原理

变频调速器的工作原理一、引言变频调速器是一种能够实现电动机无级调速的电力传动设备,其在现代工业生产中得到了广泛应用。

本文将详细介绍变频调速器的工作原理。

二、基本概念1. 变频调速器变频调速器是一种能够控制电机转速的设备,它通过改变电机输入的电压和频率来实现对电机转速的控制。

2. 交流电机交流电机是一种将交流电能转换为机械能的装置,它由定子和转子两部分组成。

当定子上通入交流电时,会在定子上形成一个旋转磁场,这个旋转磁场会作用于转子上,使得转子跟随旋转磁场一起旋转。

三、变频调速器的组成部分1. 整流桥整流桥是变频调速器中最基本的部分之一,它主要用于将交流输入信号转换为直流信号。

2. 滤波器滤波器是为了减少整流后输出信号中含有的谐波而设置的一个部件。

它可以将直流信号中含有的谐波滤除掉,从而保证后续使用时输出的信号质量更加稳定。

3. 逆变器逆变器是变频调速器中最核心的部分之一,它主要用于将直流信号转换为交流信号,并且可以通过改变输出交流信号的电压和频率来实现对电机转速的控制。

4. 控制电路控制电路是变频调速器中负责控制逆变器输出信号的部分,它可以根据用户设定的转速要求来控制逆变器输出的电压和频率,从而实现对电机转速的精确控制。

四、工作原理当用户需要对电机进行调速时,首先需要将交流电源输入到变频调速器中。

经过整流桥和滤波器处理后,得到了一个稳定的直流信号。

接着这个直流信号会被输入到逆变器中进行处理。

逆变器会将这个直流信号转换为交流信号,并且通过改变输出交流信号的电压和频率来实现对电机转速的控制。

最后,控制电路会根据用户设定的转速要求来控制逆变器输出的电压和频率,从而实现对电机转速的精确控制。

五、优缺点分析1. 优点(1)能够实现对电机的无级调速,可以满足不同工况下对电机转速的要求。

(2)具有较高的控制精度和控制稳定性,能够保证电机运行时的稳定性和可靠性。

(3)能够降低电机运行时的噪音和振动,提高生产环境的舒适度。

水泵变频调速原理

水泵变频调速原理

水泵变频调速原理
水泵变频调速是利用变频器控制水泵的工作频率,进而调整水泵的转速的一种方法。

其原理是通过改变输入电压的频率来控制电动机的转速。

变频器是一种能够将固定频率交流电转换为可调频率交流电的电子设备。

在传统的水泵系统中,水泵的转速是由电源提供的固定频率交流电决定的,一旦电源的频率确定,水泵的转速也就确定了。

而采用变频调速技术后,可以通过改变电源的频率,实现对水泵转速的精确控制。

变频调速主要分为三个步骤:检测、控制和输出。

首先,检测部分通过传感器实时采集水泵转速的信息,将其转换为电信号,传送给变频器。

然后,控制部分根据设定的转速需求,通过对变频器进行编程,控制电源的频率和电压输出。

最后,输出部分将调整后的电源输出给电动机,从而改变水泵的转速。

当需要增加水泵转速时,变频器会提高输入电压的频率和电压,输出给电动机,从而使电动机转速增加。

反之,当需要降低水泵转速时,变频器会降低输入电压的频率和电压。

通过这种方式,可以实现对水泵转速的平稳调整。

水泵变频调速技术具有精确控制、高效节能和平稳运行等优点。

通过根据不同的工况需求,调整水泵的转速,可以提高水泵的工作效率,减少能源消耗,同时延长水泵的使用寿命。

因此,在工业生产和建筑应用中,水泵变频调速技术得到了广泛应用。

变频器调速的基本工作原理

变频器调速的基本工作原理

变频器调速的基本工作原理根据电机转速的公式 n=n1(1-s)(1) N1=60f/p(2)式中:n-电机转速;n1-电机的同步转速;s-滑差;f-旋转磁场频率;P-电机极对数可知改变电机转速的方法有改变滑差s、改变旋转磁场频率f、改变电机极对数p三种。

变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。

是由由主电路和控制带电路组成的。

主电路是给异步电动机提供可控电源的电力转换部分,变频器的主电路分为两类,其中电压型是将电压源的直流变换为交流的变频器,直流回路的滤波部分是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波部分是电感。

它由三部分构成,将工频电源变换为直流功率的整流部分,吸收在转变中产生的电压脉动的平波回路部分,将直流功率变换为交流功率的逆变部分。

控制电路是给主电路提供控制信号的回路,它有决定频率和电压的运算电路,检测主电路数值的电压、电流检测电路,检测电动机速度的的速度检测电路,将运算电路的控制信号放大的驱动电路,以及对逆变器和电动机进行保护的保护电路组成。

现在大多数的变频器基本都采用交直交方式(VVVF变频或矢量控制),将工频交流电源通过整流器转换为直流电源,再把直流电源转换成近似于正弦波可控的交流电以供给电动机。

以图1为例简单说明一下变频器的工作原理。

三相交流电经过VD1~VD6整流后,正极经过RL,RL在这里是防止电流忽然变大。

经过RL电流趋于稳定,晶闸管触点会导通。

之后直流电压加在了滤波电容CF1、CF2上,这两个电容的作用是让直流电波形变得更加平滑。

之所以是两个电容是由于一个电容的耐压有限,所以用两个电容串联起来使用。

均压电阻R1、R2是让CF1和CF2上的电压一样,两个电容的容量不同的话,分压就会不同,所以各并联了一个均压电阻。

而中间的放电回路作用则是释放掉感性负载启动或停止时的反电势,用来保护逆变管V1~V6和整流管VD1~VD6。

变频调速原理

变频调速原理

异步电动机是电力、化工等生产企业最主要的动力设备。

作为高能耗设备,其输出功率不能随负荷按比例变化,大部分只能通过挡板或阀门的开度来调节,而电动机消耗的能量变化不大,从而造成很大的能量损耗。

近年来,随着变频器生产技术的成熟以及变频器应用范围的日益广泛,使用变频器对电动机电源进行技术改造成为各企业节能降耗、提高效率的重要手段。

1 变频调速原理n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。

由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。

变频调速就是通过改变电动机电源频率实现速度调节的。

变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。

变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。

整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

2 谐波抑制变频器使用的突出问题就是谐波干扰,当变频器工作时,输出电流的谐波电流会对电源造成干扰。

虽然各变频器厂家对变频器谐波的治理均采取了措施且基本达到国家标准要求,但谐波仍然是变频器选型和使用中最需要关注的问题。

变频器的输出电压中含有除基波以外的其他谐波。

较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

由于变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较陡的脉冲波,其谐波分量较大。

为了消除谐波,主要采用以下对策:a.增加变频器供电电源内阻抗通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。

变频调速的工作原理

变频调速的工作原理

变频调速的工作原理变频器的功用是将频率固定的(通常为50Hz的)交流电(三相或单相)变成频率联系可调(多数为O-4OOH0的三相交流电。

由公式:n0=60f/p其中n0为旋转磁场的转速通常称为同步转速f 为电流的频率p 为旋转磁场的磁极对数当频率f连续可调时(一般P为定数),电动机的同步转速也连续可调。

又因为异步电动机的转子转速总是比同步转速略低一些,所以,当同步转速连续可调时,异步电动机转子的转速也是连续可调的。

变频器就是通过改变f (电流的频率)来使电动机调速的在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。

如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。

一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R S T,应该有大约几十欧的阻值,且基本平衡。

相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。

将红表棒接到N 端,重复以上步骤,都应得到相同结果。

如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。

B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。

2、测试逆变电路将红表棒接到P端,黑表棒分别接U V W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。

将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。

在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

2、检查变频器各接播口是否已正确连接,连接是否有松动, 连接异常有时可能导致变频器出现故障, 严重时会出现炸机等情况。

3、上电后检测故障显示内容, 并初步断定故障及原因。

变频器调速原理

变频器调速原理

变频器调速原理
变频器调速是由变频器控制电机来实现变速的技术。

变频器把电
源的电压和频率变成所需要的电压和频率,从而使电机达到调节的目的。

变频器调速原理主要是利用变频器和伺服电机协调工作,首先电
机需要设定的频率再经过变频器的调节,变频器会根据电机设定频率
生成相应的旋钮,然后再送入电机,改变电机的运行频率,从而调节
电机的速度。

变频器调速有许多优点,它可以根据现场应用的要求实现电机的
最佳调速,流畅耐用,节电率高,噪音低,以及精确的调节精度等等。

电机的调速过程可以根据现场实际需求,实时调节电机的转速,从而
实现更准确,便捷和安全的生产。

变频器调速是现代设备调速电机的一种非常有效的见效方式,变
频器调速技术可以降低能耗,保护环境,提高精度,运行可靠性,保
证产品质量和可靠性,满足客户的需求。

借助变频器调速技术,有利于实现智能化,现代化的自动调速系统以
满足客户生产的多样性需求,提高生产率,节省能源,降低成本,增
加企业的经济效益。

变压变频调速的基本原理

变压变频调速的基本原理

变压变频调速的基本原理变压变频调速是利用变压器和变频器来控制电动机的转速。

它的基本原理是通过改变电动机的供电电压和频率来实现转速的调节。

在工业生产中,电动机的转速通常需要根据实际生产需求进行调节,采用变压变频调速技术可以实现精准的转速控制,提高设备的运行效率,降低能耗和维护成本。

一、变压变频调速的基本原理变压变频调速是利用变压器和变频器联合控制电动机的转速。

其中变压器用来调节电动机的供电电压,而变频器则用来调节电动机的供电频率。

通过改变电动机的供电电压和频率,可以实现电动机转速的精准调节。

变压变频调速技术通常应用于工业生产中,用来控制各种类型的电动机,如交流电动机和直流电动机等。

1.变压器变压变频调速中的变压器主要用来调节电动机的供电电压。

在电动机的运行过程中,通过改变变压器的输出电压可以实现对电动机转速的调节。

调整变压器的输出电压可以更改电动机的输入功率,从而控制电动机的转速。

变压器通过调整变压比例来实现对电动机供电电压的调节,从而实现变压变频调速的目的。

2.变频器变频器是变压变频调速系统中的核心部件,主要用来控制电动机的供电频率。

通过改变变频器的输出频率可以实现对电动机转速的调节。

变频器通过调整输出电压和频率的波形来改变电动机的输入功率,从而控制电动机的转速。

变频器具有精准的频率调节能力,可以实现对电动机转速的精确控制,适用于各种工业应用场合。

二、变压变频调速的工作原理变压变频调速系统以电网为主要供电来源,通过变压器和变频器对电动机进行供电控制。

具体的工作流程如下:1.电网供电变压变频调速系统首先接收来自电网的交流电能,这部分电能被送入变压器。

2.变压器调节电压变压器将来自电网的交流电能进行调节,输出适当的电压供给电动机,调节电压可以实现对电动机转速的控制。

3.变频器调节频率变压变频调速系统通过变频器调节输出电压和频率的波形,从而改变电动机的输入功率,实现对电动机转速的控制。

4.实现转速调节通过变压变频调速系统的调节,可以实现对电动机转速的精确控制,使电动机运行在最佳状态,适应不同的生产需求。

变频调速原理

变频调速原理

变频调速的基本方式在电机调速时,一个重要的因素就是希望保持磁通不变量m Φ为额定值不变。

如果磁通太弱没有充分利用铁心,是一种浪费;若要增大磁通,从而导致过大的励磁电流,严重时会因绕组果然热而损坏电机。

对于直流电机,励磁系统是独立的,只要对电枢反应的补偿合适,保持m Φ不变时很容易做到的。

在交流异步电机中,磁通是定子和转子磁势合成产生的。

三相异步电机每相电动势的有效值:·m N g k N f E Φ=11144.4 (1—1)式中:g E ——气隙磁通在定子每相中感应电动势有效值,单位为V ;1f ——定子频率,单位为Hz ; 1N ——定子每相绕组串联匝数; 1N k ——基波绕组系数; m Φ——每极气隙磁通,单位Wb由(1—1)式可知,只要控制好感应电动势和定子频率,便可以达到控制磁通的目的,因此需要考虑基频以下和基频以上两种情况。

基频以下调速由式(1—1)可知,要保持m Φ不变,当频率从额定值n f 1向下调节时,必须同时降低g E 使常值=1f E g(1—2) 即采用固定的电动势频比的控制方式。

然而,绕组中感应电动势是难以控制的,当电动势值较高时,可以忽略定子绕组的漏磁阻抗压降,而认为定子相电压g U U ≈1,则得到:常值=11f U (1—3) 这是恒压频比的控制方式。

低频时,1U 和g E 都较小,定子阻抗压降所占的分量就比较显著,不能再忽略。

这时,可以认为的把电压1U 抬高一些,以便近似的补偿定子压降。

带定子压降补偿的恒压频比控制特性曲线有补偿的如图中的b 线,物补偿的如图中的a 线。

O Us f 1图6-1 恒压频比控制特性a b基频以上调速在基频以上调速,频率可以从n f 1往上增高,但电压1U 却不能增加得比额定电压n U 1还要大,最多只能保持n U U 11 。

由式(1-1)可知,这将迫使磁通与频率成反比的降低,相当于直流电机弱磁升速的情况。

把基频以下和基频以上两种情况合起来,可得到如图所示的异步电动机变频调速的控制特性。

变频器调速原理简述

变频器调速原理简述

变频器调速原理简述变频器调速的原理主要是通过改变电源的频率来控制电机的转速。

以下是其详细原理简述:一、电机转速与频率的关系电机的转速与电源频率之间存在着紧密的关系,其公式为:(其中是电机转速,是电源频率,是电机的极对数)。

从这个公式可以看出,在电机的极对数不变的情况下,改变电源频率,就可以直接改变电机的转速。

二、变频器的基本构成及作用变频器主要由整流器、滤波器、逆变器和控制器等部分组成。

1.整流器:将交流电源转换为直流电源。

通常采用二极管整流电路,将输入的交流电变为直流电,为后续的逆变环节提供稳定的直流电压。

2.滤波器:对整流后的直流电压进行滤波,去除其中的脉动成分,使直流电压更加平滑稳定。

3.逆变器:将直流电转换为频率和电压均可调的交流电。

逆变器由多个功率开关器件(如 IGBT)组成,通过控制这些开关器件的导通和关断时间,可以改变输出交流电的频率和电压。

4.控制器:是变频器的核心部分,负责根据给定的速度指令和反馈信号,计算出所需的输出频率和电压,并控制逆变器的工作。

控制器通常采用微处理器或数字信号处理器(DSP),可以实现复杂的控制算法和功能。

三、调速过程1.给定速度指令:用户根据实际需求,通过操作面板、外部模拟信号或通信接口等方式给定电机的速度指令。

2.控制器计算:控制器接收到速度指令后,根据当前电机的实际转速反馈信号(通常通过编码器等传感器获得),采用特定的控制算法(如PID控制)计算出所需的输出频率和电压。

3.逆变器输出调整:控制器将计算得到的输出频率和电压信号发送给逆变器,控制逆变器中功率开关器件的导通和关断时间,从而改变输出交流电的频率和电压,使电机的转速逐渐接近给定的速度指令。

4.反馈调节:在电机运行过程中,编码器等传感器不断将电机的实际转速反馈给控制器,控制器根据反馈信号与给定速度指令之间的偏差,实时调整输出频率和电压,实现闭环控制,确保电机的转速稳定在给定值附近。

综上所述,变频器通过改变电源的频率来控制电机的转速,具有调速范围广、精度高、节能等优点,在工业生产和自动化控制等领域得到了广泛的应用。

变频器定义及工作原理概述

变频器定义及工作原理概述

变频器定义及工作原理概述概述:变频器是一种电子设备,用于控制交流电动机的转速和扭矩。

它通过改变电源电压和频率,实现对电机的精确控制,从而满足不同工作条件下的需求。

本文将详细介绍变频器的定义、工作原理和应用。

一、定义:变频器,又称为变频调速器,是一种能够改变交流电源频率的电子设备。

它通过将输入的固定频率交流电转换为可调节频率的交流电,从而实现对电机速度的控制。

变频器广泛应用于各种工业领域,如制造业、石化、电力、交通等。

二、工作原理:1. 输入电源:变频器通常使用三相交流电源作为输入电源。

输入电源的电压和频率决定了变频器的输出电压和频率范围。

2. 整流器:输入电源经过整流器将交流电转换为直流电。

整流器通常采用可控硅器件,可以根据需要调整输出电压。

3. 滤波器:直流电经过滤波器,去除电源中的脉动,使输出电压更稳定。

4. 逆变器:经过滤波器的直流电通过逆变器转换为可调频率的交流电。

逆变器采用晶闸管或IGBT等器件,能够将直流电转换为交流电,并通过调整开关频率和脉宽来控制输出电压和频率。

5. 控制系统:变频器的控制系统根据用户的需求,通过调整逆变器的开关频率和脉宽,来控制输出电压和频率,从而实现对电机的精确控制。

三、应用:变频器广泛应用于各种工业领域,具有以下几个主要应用场景:1. 电机调速:变频器可以通过调整输出电压和频率,实现对电机的精确调速。

在一些需要变速运行的设备中,如风机、泵、压缩机等,变频器能够根据工作负载的需求,实时调整电机的转速,提高设备的效率和能耗。

2. 节能降耗:通过变频器控制电机的转速,可以避免电机一直以满载运行,从而降低能耗和损耗。

在一些周期性负载较大的设备中,如起重机、卷取机等,变频器能够根据负载情况,调整电机的转速,提高设备的能效。

3. 软启动:变频器可以实现电机的软启动,避免了电机启动时的冲击和压力。

通过逐渐增加电机的转速,变频器能够使电机平稳启动,减少设备的损坏和维修成本。

变频调速基本原理及控制原理

变频调速基本原理及控制原理

变频调速基本原理及控制原理1.基本原理:目前使用较多的是“交—直—交”变频,原理如图1所示,将50Hz交流整流为直流电Ud,再由三相逆变器将直流逆变为频率可调的三相交流供给鼠笼电机实现变频调速。

2.控制原理:变频调速装置主电路(见图2)由空气开关QF1,交流接触器KM1和变频器VF组成,由安装在配电柜面板上的转换开关SA,复位开关SB;或安装在现场防爆操作柱上启动按钮SB 和停止按钮SB2控制VF的运行:(1)启动VF时必须先合上QF1和QF2,使SA置于启动位置,KM1便带动电触点闭合,来电显示灯HL2亮;此时按下SB,也可以按下现场SB1使KA1带电触点闭合,VF投入运行同时运行指示灯HL3亮。

(2)需要停止VF时,按下SB2使KA1失电,VF停止运行,此时HL3灭;置SA于停止位置,KM1断开同时HL1亮表示停机。

(3)如果在运行过程中VF有故障FLA、FLC端口将短接,KA2带电,KM带电其触点断开,同时故障指示灯HL3亮并报警。

由于工艺条件复杂,实际运行过程中有多方面不确定因素,为安全其见,每台变频器均加有一旁路接触器KM2;如果KM1或VF发生故障时保证电机仍能变频运行。

变频调速实行闭环负反馈自动控制即由仪表装置供给变频器1V和CC端口4~20MA电信号,靠信号大小改变来控制VF频率高低变化达到调节电动机转速和输出功率的目的,使泵流量和实际工艺需求最佳匹配,实现仪表电气联合自动控制体系。

二、实际运用分析1.变频调速实行工艺过程控制,由于生产流程和工艺条件的复杂性;不通过实践有些问题不被人们认识,只有通过实践才能找出解决这此问题方法和途径。

在闭环控制回路中,变频器作用类似风开式调节阀,对于实用风关式调节阀控制回路需在变频器上设定最低下降频率,当仪表装置故障时变频器输出最低频率,保证电机运转,维持工艺流程最低安全量,不至于生产中断。

变频器下限频率设定必须通过实际测试,不能随意变动。

就拿P6101A 脱丙烷塔进料泵来说,当时调试时当仪表信号4AM时,变频器输出频率10Hz,此时根本达不到工艺需要流量,通过仪表、电气专业人员多测试设定4MA信号输出23Hz能达到最低安全量,故23Hz 便没定为法定下限参数,这样既可保证工艺安全运行又有27Hz的频率调节范围。

变压变频调速的基本原理

变压变频调速的基本原理

变压变频调速的基本原理变压变频调速技术是一种通过改变电机的供电电压和频率来实现电机转速调节的方法。

这种调速方法被广泛应用于工业生产领域,能够实现电机的平稳启动、精确调速和高效运行,同时还能够减少能耗和延长设备的使用寿命。

在本文中,将详细介绍变压变频调速技术的基本原理、工作过程和应用场景。

一、基本原理1.变压变频调速的基本原理是通过改变电机的供电电压和频率来实现电机的转速调节。

在传统的电机调速系统中,通常采用调压式或调频式的调速方式。

调压式调速是通过改变电机的供电电压来控制电机的转速,而调频式调速则是通过改变电机的供电频率来实现电机调速。

而变压变频调速技术则是将调压和调频两种方式结合起来,通过改变电机的供电电压和频率来实现电机的精确调速。

2.在变压变频调速系统中,通常会配备一台变频器,用来控制电机的供电电压和频率。

变频器是一种能够将输入电压和频率转换为可调的输出电压和频率的电子设备,通过改变变频器的输出参数来实现对电机的调速。

通常情况下,变频器会根据电机的实际运行状态和需要的转速来自动调整输出电压和频率,以确保电机能够稳定、精确地运行。

3.除了变频器外,变压变频调速系统还会配备一台变压器,用来控制电机的供电电压。

变压器是一种能够改变输入电压的变压装置,通过改变变压器的输出电压来实现对电机供电电压的调节。

在变压变频调速系统中,变压器通常会和变频器一起配合使用,通过同时调节电压和频率来实现对电机的精确调速。

二、工作过程1.变压变频调速系统的工作过程可以分为三个步骤:输入电压和频率转换、变频器控制和电机转速调节。

首先,当电机开始运行时,输入的电压和频率会经过变压器和变频器的处理,转换为可调的输出电压和频率。

然后,变频器会根据电机的实际运行状态和需要的转速来自动调整输出电压和频率,以确保电机能够稳定、精确地运行。

最后,电机会根据变频器的控制信号来调整自身的转速,实现电机的精确调速。

2.在变压变频调速系统中,变频器是起到关键作用的设备。

变频调速的原理

变频调速的原理

变频调速的原理
交流电动机在不同的旋转磁场和负载下,其转速是不相同的,所以为了使电动机的转速能连续调谐,必须对其控制。

通过改变电源的频率来改变电动机转速的调速方法叫变频调速。

其工作原理是:当改变电源频率时,电动机的转矩与电流之间成正比,而电流与电源频率之比成反比。

即改变电源频率,则电动机的转矩增大或减小;反之,则增大或减小。

这样可使电动机在高速时具有很高的转矩输出,在低速时具有很大的转矩输出。

变频器可分为直流调速、交流调速和交-直-交变频三类。

直流调速是通过改变直流电源的电压来控制电动机转速的。

交流调速是用三相交流电源通过三相异步电动机定子绕组,通过三相异步电动机转子绕组产生旋转磁场来带动负载的。

它主要有交流变频器和直流调速系统两种。

交流变频器按其控制原理可分为有级和无级两种。

有级变频控制是根据电机的特性来确定其运行范围的一种控制方式,其基本思想是在额定电压下将交流电变为直流电,然后再对直流电进行变压、降压使电机工作在额定状态。

—— 1 —1 —。

变频调速的基本原理

变频调速的基本原理

变频器多段速度控制1.变频调速的原理异步电机的转速n可以表示为式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。

可见,改变电源频率就可以改变同步转速和电机转速。

频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。

显然这是不允许的。

为此,要在降频的同时还要降压。

这就要求频率与电压协调控制。

此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。

实现变频调速的装置称为变频器。

变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。

首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。

在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。

PWM的优点是能消除或抑制低次谐波,使负载电机在近似正弦波的交变电压下运行,转矩脉冲小,调速范围宽。

2.电机调速的分类按变换的环节分类(1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器按直流电源性质分类(1)电压型变频器电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。

(2)电流型变频器电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。

变频器调速按钮的工作原理

变频器调速按钮的工作原理

变频器调速按钮的工作原理
变频器调速按钮的工作原理是通过电路控制变频器的输出电压和频率,从而改变电机的转速。

具体工作原理如下:
1. 检测输入信号:调速按钮接收操作者的输入信号,通过按钮的开关状态来控制电路的开关状态。

2. 控制电路:当按钮处于关闭状态时,控制电路通断正常,输出电压和频率为默认数值,电机工作在设定速度。

当按钮处于打开状态时,控制电路打开。

3. 短时延迟:为了防止频繁开关按钮导致变频器故障,控制电路引入一定的延时机制,短时间内的按钮开关操作不会引起频率和电压的改变。

4. 电路控制:按钮的打开状态触发控制电路工作,改变变频器的输出电压和频率。

电路会根据按钮的操作信号对应的电压和频率值,调整变频器输出端的电压和频率设置。

5. 变频器输出调整:经过控制电路调整后,变频器会输出新的电压和频率值。

变频器输出的电压和频率变化会引起电动机参数的改变,从而改变电动机的转速。

6. 电动机调速:电动机接收到新的电压和频率值后,根据这些参数开始调整自身的工作状态,从而实现转速的调整。

根据电动机的负载情况,调速会有一定的响应时间。

综上所述,通过控制电路的开关状态,按钮可以改变变频器输出的电压和频率,从而通过调整电机的转速实现调速功能。

变频器的调速原理

变频器的调速原理

变频器的调速原理
变频器的调速原理是指利用变频器对电机进行频率和电压的调节,从而实现对电机转速的精确控制。

其工作原理主要包括以下几个方面:
1. 输入电源调整:变频器通过检测输入电源的电压和频率,并将其转化为所需的电压和频率信号。

这些信号经过变频器内部的电路处理后,输出给电机供电。

2. 电压调整:变频器可以根据控制信号的输入调节输出给电机的电压。

通过改变电压的大小,可以控制电机输出的功率和转速。

例如,降低电压可以降低电机的转速,提高电压则可以提高电机的转速。

3. 频率调整:变频器还可以根据控制信号的输入调节输出给电机的频率。

通过改变频率的大小,可以改变电机的转速。

一般来说,提高频率会使电机加速,降低频率则会使电机减速或者反向运转。

4. 控制回路:变频器内部有一个控制回路,用于实时监测电机的转速。

通过与预设的转速进行比较,控制回路可以计算出调整电机电压和频率的偏差,并输出相应的校正信号,实现对转速的闭环控制。

变频器的调速原理通过以上几个方面的控制,可以精确地调节电机的转速,适应不同工况和需求。

这种调速方式具有灵活性
高、能耗低、运行平稳等优点,已广泛应用于各个领域的电机控制系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频调速的工作原理变频器的功用是将频率固定的(通常为50Hz的)交流电(三相或单相)变成频率联系可调(多数为0-400Hz)的三相交流电。

由公式:n0=60f/p其中n0为旋转磁场的转速通常称为同步转速f为电流的频率p为旋转磁场的磁极对数当频率f连续可调时(一般P为定数),电动机的同步转速也连续可调。

又因为异步电动机的转子转速总是比同步转速略低一些,所以,当同步转速连续可调时,异步电动机转子的转速也是连续可调的。

变频器就是通过改变f(电流的频率)来使电动机调速的在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。

如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。

一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。

相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。

将红表棒接到N端,重复以上步骤,都应得到相同结果。

如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。

B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。

2、测试逆变电路将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。

将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。

在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。

3、上电后检测故障显示内容,并初步断定故障及原因。

4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。

如出现缺相、三相不平衡等情况,则模块或驱动板等有故障5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。

测试时,最好是满负载测试。

三、故障判断1、整流模块损坏一般是由于电网电压或内部短路引起。

在排除内部短路情况下,更换整流桥。

在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。

2、逆变模块损坏一般是由于电机或电缆损坏及驱动电路故障引起。

在修复驱动电路之后,测驱动波形良好状态下,更换模块。

在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。

在确定无任何故障下,运行变频器。

3、上电无显示一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。

4、上电后显示过电压或欠电压一般由于输入缺相,电路老化及电路板受潮引起。

找出其电压检测电路及检测点,更换损坏的器件。

5、上电后显示过电流或接地短路一般是由于电流检测电路损坏。

如霍尔元件、运放等。

6、启动显示过电流一般是由于驱动电路或逆变模块损坏引起。

7、空载输出电压正常,带载后显示过载或过电流该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起。

关于变频调速给水的基本原理目前,变频调速生活给水在建筑给水中应用越来越广,其主要原因是:1.变频调速给水的供水压力可调,可以方便地满足各种供水压力的需要。

在设计阶段可以降低对供水压力计算准确度的要求,因为随时可以方便地改变供水压力。

但在选泵时应注意,泵的扬程宜大一些,因为变频调速其最大压力受水泵限制。

最低使用压力也不应太小,因为水泵不允许在低扬程大流量下长期超负荷工作,否则应加大变频器和水泵电机的容量,以防止发生过载。

2.目前,变频器技术已很成熟,在市场上有很多国内外品牌的变频器,这为变频调速供水提供了充份的技术和物质基础。

变频器已在国民经济各部门广泛使用。

任何品牌的变频器与变频供水控制器配合,即可实现多泵并联恒压供水。

因为建筑供水的应用广泛,有些变频器设计生产厂家把变频供水控制器直接做在供水专用变频器中;这种变频器具有可靠性好,使用方便的优点。

3.变频调速恒压供水具有优良的节能效果。

由水泵-管道供水原理可知,调节供水流量,原则上有二种方法;一是节流调节,开大供水阀,流量上升;关小供水阀,流量下降。

调节流量的第二种方法是调速调节,水泵转速升高,供水流量增加;转速下降,流量降低,对于用水流量经常变化的场合(例如生活用水),采用调速调节流量,具有优良的节能效果。

我国国家科委和国家经贸委在《中国节能技术政策大纲》中把泵和风机的调速技术列为国家九五计划重点推广的节能技术项目。

应当指出,变频恒压供水节能的效果主要取决于用水流量的变化情况及水泵的合理选配,为了使变频恒压供水具有优良的节能效果,变频恒压供水宜采用多泵并联的供水模式。

由多泵并联恒压变频供水理论可知多泵并联恒压供水,只要其中一台泵是变频泵,其余全是工频泵,可以实现恒压变量供水。

在变频恒压变量供水当中,变频泵的流量是变化的,当变频泵是各并联泵中最大,即可保证恒压供水。

多泵并联恒压供水,在设计上可做到在恒压条件下各工频泵的效率不变(因工况不变),并使之处于高效率区工作,变频泵的流量是变化的,其工作效率随流量而改变。

因为采用多泵并联恒压供水,变频泵的功率降低,从而可以降低多泵并联变频恒压供水系统的能耗,改善节能状况。

当多泵并联恒压供水系统采用具有自动睡眠功能的变频器,当用水流量接近于零,变频泵能自动睡眠停泵,从而可以做到不用水时自动停泵而没有能量损耗,具有最佳的节能效果。

多泵并联变频恒压变量供水的工作模式通常是这样的:当用水流量小于一台泵在工频恒压条件下的流量,由一台变频泵调速恒压供水;当用水流量增大,变频泵的转速自动上升;当变频泵的转速上升到工频转速,为用水流量进一步增大,由变频供水控制器控制,自动启动一台工频泵投入,该工频泵提供的流量是恒定的(工频转速恒压下的流量),其余各并联工频泵按相同的原理投入。

在多泵并联变频恒压变量的供水情况下,当用水流量下降,变频调速泵的转速下降(变频器供电频率下降);当频率下降到零流量的时候,变频供水控制器发出一个指令,自动关闭一台工频泵使之超出并联供水。

为了减少工频泵自动投入或超出时的冲击(水力的或电流的冲击)。

在投入时,变频泵的转速自动下降,然后慢慢上升以满足恒压供水的要求。

在超出时,变频泵的转速应自动上升,然后慢慢下降以满足恒压供水的要求。

上述频率自动上升,下降由供水变频控制器控制。

另一种变频供水模式通常叫做恒压变量循环状启动并先开先停的工作模式。

在这种供水模式中,当供水流量少于变频泵在恒压工频下的流量时,由变频泵自动调速供水,当用水流量增大,变频泵的转速升高。

当变频泵的转速升高到工频转速,由变频供水控制器控制把该台水泵切换到由工频电网直接供电(不通过变频器供电)。

变频器则另外启动一台并联泵投入工作。

随用水流量增大,其余各并联泵均按上述相同的方式软启动投入。

这就是循环软启动投入方式。

当用水流量减少,各并联工频泵按次序关泵超出,并泵超出的顺序按先投入先关泵超出的原则由变频控制器单板计算机控制。

由上述可见,对于变频恒压变量给水通常有两种工作模式,一是变频泵固定方式,二是变频循环软启动工作方式。

在变频泵固定方式中,各并联水泵是按工频方式自动投入或超出的。

因为变频泵固定不变,当用水流量变化,变频泵始终处于运行状态,因此变频泵的运行时间最长。

为了均衡各水泵的运行时间,对于变频泵固定运行方式,可以设计成变频泵定时轮换运行方式。

即当某一台变频泵运行一定时间后,由变频控制器控制变频泵自动进行轮换。

例如:开始时1泵变频,2- 3泵工频,当1泵变频运行T时间后(T可按序设定)自动轮换为2泵变频,3-1泵工频;在此状态下运行T时间后自动轮换为3泵变频,1-2工频,……。

如此反覆进行定时轮换。

显然,具有变频泵自动轮换控制的变频恒压变量供水系统,变频泵是定时改变的,即任何一台并联泵都有可能成为变频泵。

由变频恒压变量供水理论可知,为了保证恒压供水,变频泵必须是各并联泵中的最大者。

为此,对于变频恒压供水并变频泵自动定时轮换的水机,各并联水泵的大小应相同以保证恒压供水。

按变频器工作原理,在运行中的变频器不允许在其输出端进行切换;否则在切换过程中会使变频器中的某些电子器件受到大电流冲击而降低其寿命。

在变频泵自动轮换过程中,要在变频器的输出端进行切换;为了保护变频器,在进行自动切换之前应使变频器停止运行。

在变频器停止运行的条件下,在其输出端进行切换。

在切换好后再重新启动变频器而恢复正常运行。

因此,自动轮换控制的电路比较复杂,会增加变频控制柜的造价并降低其使用可靠性。

当变频恒压变量供水系统具有变频泵自动轮换功能,其优点是各并联泵可定时轮换到变频运行,使各并联泵的磨损均衡。

但是,在任一台泵变频运行时,万一水泵故障有可能使变频器保护跳闸而停止工作。

各并联水泵是由变频器控制运行的;当变频器跳闸,必然使所有并联水泵停机而中断供水。

因此,当水泵的可靠性一定,具有自动轮换控制功能的变频恒压供水机的供水可靠性将低于不具备自动轮换控制功能的变频恒压供水机。

笔者认为,供水可靠性是主要矛盾。

因此我们不主张采用具有自动轮换控制功能的变频恒压给水系统。

多泵并联,循环软启动的变频恒压给水系统,同样存在上述变频恒压自动轮换工作模式的缺点。

为了保证恒压供水,同样要求各并联泵的大小相同。

综上可述,为保证供水可靠性,笔者不主张采用自动轮换和变频循环软启动的工作模式。

清华紫光集团自动化工程部在其《ABB恒压供水系统用户手册》中说,“循环软启动!这是一个危险的诱惑,很多搞恒压供水的人热衷于发展此项技术,但我们的建议是否定的。

……”我们赞同清华紫光集团自动化工程部的上述学术见解,不热衷于搞变频循环软启动供水。

由水泵-管路供水原理可知,当节流损耗等于零,则供水系统具有最佳的节能效果,此时水泵的供水扬程完全消耗在供水高度和供水流阻损失上。

这种变频调整供水称为理态的变压变量供水,这种供水系统的扬程-流量曲线和管路系统的流阻—流量曲线重合。

在理想的变压变量供水系统中,在用水点,其扬程恒定,属于恒压供水。

在实际建筑中,用水点是多处,不是一处,因此很难确定何处是恒压用水点。

变压变量供水系统没有通用性,在工程上很少应用。

一种实用的变压变量供水系统叫做准变压变量供水系统;在准变压变量供水系统中,其恒压值随用水流量增加而跃阶上升。

例如多泵并联恒压供水,当一台泵工作,其恒压值为P1;当投入一台泵,其恒压值自动变为P1+ΔP1;当二、三、四台泵投入,其恒压值分别自动变为P1+ΔP1+ΔP2,P1+ΔP1+ΔP2+ΔP3,P1+ΔP1+Δ P2+ΔP3+ΔP4,……。

相关文档
最新文档