克里金插值(kriging)(推荐完整)
克里金插值
空间场是否存在漂移(drift)可将克里金插值分
为普通克里金和泛克里金(Kriging with a trend
model,即具有趋势的克里金) ,其中普通克里 金(Ordinary Kriging简称OK法)常称作局部最优 线性无偏估计
常规克里金插值
•
其内插值与原始样本的容量有关,当
的方差结果常小于
常规克里金插值, 所以,生成的平滑 插值表面不会发生 常规克里金模型的 凹凸现象。
常规克里金插值
Байду номын сангаас
PK
块克里金插值
六、克里金插值的优缺点
优点
• 估计的无偏性
• 反映了变量的空间结构性 • 能得到估计精度
局限性
(1)克里金插值为 局部估计方法,对估计 值的整体空间相关性考 虑不够,它保证了数据 的估计局部最优,却不 能保证数据的总体最优, 因为克里金估值的方差 比原始数据的方差要小。
克里金插值法
制作人:李威晶 11级地理科学1班
一、概况
• 克里金(Kriging)插值法又称空间自协方差最
佳插值法,它是以南非矿业工程师
D.G.Krige的名字命名的一种最优内插法。
经过几十年的实践,克里金法已成为地质统计
学(Geostatistics)的基础工具,也是地质统计
学的核心。
二、应用
(2)克里金插值法为光滑内插方法, 为减小估计方差而对真实观测数据的离散 性进行了平滑处理,虽然可以得到由于光 滑而更美观的等值线图或三维图,但一些 有意义的异常带也可能被光滑作用而“光 滑”掉了。所以,有时,克里金方法被称 为一种“移动光滑窗口”。
我的理解
以某地一个点为例 根据一个点周围的距离较近的 其他点的属性来判断他的属性
克里金(kriging)插值的原理与公式推导
克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。
具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。
克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。
克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。
在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。
克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。
除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。
总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。
在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。
克里金插值法(参考内容)
克⾥⾦插值法(参考内容)克⾥⾦插值法克⾥⾦插值法⼜称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进⾏⽆偏最优估计的⼀种⽅法,是地统计学的主要内容之⼀,由南⾮矿产⼯程师D. Matheron 于1951年在寻找⾦矿时⾸次提出,法国著名统计学家G. Matheron 随后将该⽅法理论化、系统化,并命名为Kriging ,即克⾥⾦插值法。
1 克⾥⾦插值法原理克⾥⾦插值法的适⽤范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利⽤克⾥⾦插值法进⾏内插或外推。
其实质是利⽤区域化变量的原始数据和变异函数的结构特点,对未知样点进⾏线性⽆偏、最优估计,⽆偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平⽅和最⼩[1]。
因此,克⾥⾦插值法是根据未知样点有限领域内的若⼲已知样本点数据,在考虑了样本点的形状、⼤⼩和空间⽅位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进⾏的⼀种线性⽆偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克⾥⾦插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ(1)式中i λ是待定权重系数。
其中Z(x i )之间存在⼀定的相关关系,这种相关性除与距离有关外,还与其相对⽅向变化有关,克⾥⾦插值⽅法将研究的对象称“区域化变量”针对克⾥⾦⽅法⽆偏、最⼩⽅差条件可得到⽆偏条件可得待定权系数i λ (i=1,2,……,n)满⾜关系式: 11=∑=n i i λ(2)以⽆偏为前提,kriging ⽅差为最⼩可得到求解待定权系数i λ的⽅程组:==+∑∑= = 1 )n ,2,1 )( , ( ) , (1 1 n iijjin iijx x C x x C λµ(3)式中,C(x i,x j)是Z(x i)和Z(x j)的协⽅差函数。
(完整)克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1].因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z *(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数.其中Z (x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量"针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z (x i )和Z (x j )的协方差函数.2 方法步骤克里金插值法的应用步骤如下:1、输入原始数据,即采样点,下面以输入三个采样点求待估插值为例来进行说明。
克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
克里金插值法的详细介绍。kriging。
克里金插值法的详细介绍。
kriging。
kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。
在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。
这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。
2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。
半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。
利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。
----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。
3.用拟合的模型计算出三个参数。
例如球状模型中nugget为c0,range为a,sill为c。
4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。
假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。
(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。
do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999hmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))then< p="">elsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))then locat(j)=i3exitend ifenddoendifenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5*$ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j)) end doenddoendifenddo</hmid(k))then<>。
克里金插值
克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
克里金插值(kriging)
二、统计推断与平稳要求
任何统计推断(cdf,数学期望等)均要求重复取样。 但在储层预测中,一个位置只能有一个样品。 同一位置重复取样,得到cdf,不现实
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
空间一点处的观测值可解释为一个随机变量在该点
P
F(u; z) F(u h; z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
为相应的观测值。区域化变量在 x0处的值 z* x0 可
采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 i 选取的标准
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。
E(ξ) =
xp( x)dx
数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
python克里金插值法
python克里金插值法Python克里金插值法克里金插值法(Kriging)是一种用于空间插值的统计方法,常用于地质学、地球物理学、环境科学等领域。
它通过样本点的空间分布信息,推断未知点的值,并生成一幅连续的表面。
一、克里金插值法的原理克里金插值法的核心思想是通过已知点之间的空间相关性来估计未知点的值。
该方法基于两个假设:1)空间上相近的点具有相似的值;2)相邻点之间的差异可以通过某种函数来描述。
插值的第一步是计算已知点之间的空间相关性。
通常使用半方差函数(semivariogram)来量化相邻点之间的差异。
半方差函数表示了不同距离下的样本点间的差异,可以通过实际数据的半方差函数图来选择合适的函数模型。
插值的第二步是确定权重。
克里金插值法假设未知点的值是已知点的线性组合,权重由已知点之间的空间相关性决定。
一般来说,距离已知点越近且权重越大,距离已知点越远且权重越小。
插值的第三步是计算未知点的值。
根据已知点的值和权重,使用线性插值的方法来估计未知点的值。
这样,就可以生成一幅连续的表面,反映了未知点的分布情况。
二、克里金插值法的应用克里金插值法在地质学、地球物理学、环境科学等领域有广泛的应用。
以下是一些典型的应用案例:1. 地下水位插值地下水位的空间分布对于水资源管理和环境保护至关重要。
通过收集已知点的地下水位数据,可以利用克里金插值法推断未知点的地下水位值,从而绘制出地下水位的分布图。
2. 污染物扩散模拟污染物扩散对于环境风险评估和污染治理具有重要意义。
通过收集已知点的污染物浓度数据,可以利用克里金插值法推断未知点的污染物浓度值,从而模拟污染物的扩散情况。
3. 地震震级插值地震震级是评估地震强度的重要指标。
通过收集已知点的地震震级数据,可以利用克里金插值法推断未知点的地震震级值,从而绘制出地震震级的分布图。
4. 土壤质量评估土壤质量是农业生产和生态环境保护的关键因素。
通过收集已知点的土壤质量数据,可以利用克里金插值法推断未知点的土壤质量值,从而评估土壤质量的空间分布。
克里金插值
克里金插值克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
kriging(克里金方法-克里金插值)汇总
(h) C(0) C(h)
(二阶平稳假设条件下变差函数与协方差的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
F(u; z) Pr ob{Z(u) z}
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}
离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
从矩的角度说,方差是ξ的二阶中心矩。
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
克里金插值方法
克里金插值方法克里金插值方法(Kriging Interpolation)是一种常用的空间插值技术,用于预测未知位置的属性值。
它是由南非地质学家克里金(Danie G. Krige)在20世纪60年代提出的。
克里金插值方法通过对已知点周围的样本点进行空间插值,推断出未知点的属性值,从而实现对空间数据的预测。
克里金插值方法的基本思想是建立一个局部的空间模型,考虑样本点之间的空间相关性,并利用这种相关性来预测未知点的属性值。
它的核心思想是将空间数据看作是一个随机场,通过对随机场的统计分析来确定未知点的属性值。
克里金插值方法的具体步骤如下:1. 数据收集:首先需要收集一定数量的已知点数据,这些数据应该包含未知点的属性值以及其空间坐标。
2. 变异函数拟合:根据已知点的属性值和空间坐标,建立变异函数模型。
变异函数描述了样本点之间的空间相关性,可以采用不同的函数形式进行拟合,如指数函数、高斯函数等。
3. 半变异函数计算:通过对已知点之间的差异进行半变异函数计算,确定样本点之间的空间相关性。
4. 克里金权重计算:根据已知点的属性值、空间坐标和半变异函数,计算未知点与已知点之间的空间权重。
5. 属性值预测:利用已知点的属性值和克里金权重,对未知点进行属性值预测。
预测值可以根据不同的权重计算方法得到,如简单克里金、普通克里金、泛克里金等。
6. 模型验证:对预测结果进行验证,可以使用交叉验证等方法评估预测的准确性。
克里金插值方法在地质学、环境科学、农业、地理信息系统等领域广泛应用。
它可以用于地下水位、气象数据、土壤污染等空间数据的插值预测。
克里金插值方法不仅可以提供对未知点的预测值,还能估计预测误差,并提供空间数据的空间分布图。
尽管克里金插值方法具有很多优点,但也存在一些限制。
首先,克里金插值方法假设样本点之间的空间相关性是平稳的,即在整个研究区域内具有一致性。
然而,在实际应用中,样本点之间的空间相关性可能会随着距离的增加而变化。
kriging插值
l 反映了变量的空间结构性 l 能得到估计精度
克里金方法的局限性
(1)克里金插值为局部估计方法,对估计值的 整体空间相关性考虑不够,它保证了数据的估计局 部最优,却不能保证数据的总体最优,因为克里金 估值的方差比原始数据的方差要小。因此,当井点 较少且分布不均时可能会出现较大的估计误差,特 别是在井点之外的无井区误差可能更大。
(4)变差函数参数的最优性检验: 变差函数是否符合实际,应该进行检验。 一种实用的检验方法为“交叉验证法” (Cross-validation),检验标准是在各实测 点,根据周围点计算的克里金估计值与该实测 值的误差平方平均最小。 估计误差的平方与克里金估计方差之比越接 近1,则说明变差函数与实际的符合程度越高。 实际上,这种方法在检验变差函数的同时,也 在检验所使用的克里金估计方法的适用性。
可得到关系式:
i 1
n
i
1
(2)估计方差最小
k2
E Z x Z x
* 2 0 0
E Z * x0 Z x0 E Z * x0 Z x0 min
2
应用拉格朗日乘数法求条件极值
j
假设空间点x只在一维的x轴上变化,则将区域化 变量Z(x)在x,x+h两点处的值之差的方差之半定义 为Z(x)在x轴方向上的变差函数,记为 ( x, h )
( x, h ) =
=
1 2 1 2
Var[Z(x)-Z(x+h)]
E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2
半变差函数(或半变异函数)
i 1
n
k2 i xi x0 x0 x0
克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
Kriging插值法
Kriging插值法克⾥⾦法是通过⼀组具有 z 值的分散点⽣成估计表⾯的⾼级地统计过程。
与插值⼯具集中的其他插值⽅法不同,选择⽤于⽣成输出表⾯的最佳估算⽅法之前,有效使⽤⼯具涉及 z 值表⽰的现象的空间⾏为的交互研究。
什么是克⾥⾦法?IDW(反距离加权法)和样条函数法插值⼯具被称为确定性插值⽅法,因为这些⽅法直接基于周围的测量值或确定⽣成表⾯的平滑度的指定数学公式。
第⼆类插值⽅法由地统计⽅法(如克⾥⾦法)组成,该⽅法基于包含⾃相关(即,测量点之间的统计关系)的统计模型。
因此,地统计⽅法不仅具有产⽣预测表⾯的功能,⽽且能够对预测的确定性或准确性提供某种度量。
克⾥⾦法假定采样点之间的距离或⽅向可以反映可⽤于说明表⾯变化的空间相关性。
克⾥⾦法⼯具可将数学函数与指定数量的点或指定半径内的所有点进⾏拟合以确定每个位置的输出值。
克⾥⾦法是⼀个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表⾯,还包括研究⽅差表⾯。
当您了解数据中存在空间相关距离或⽅向偏差后,便会认为克⾥⾦法是最适合的⽅法。
该⽅法通常⽤在⼟壤科学和地质中。
克⾥⾦法公式由于克⾥⾦法可对周围的测量值进⾏加权以得出未测量位置的预测,因此它与反距离权重法类似。
这两种插值器的常⽤公式均由数据的加权总和组成:其中:Z(s i) = 第i个位置处的测量值λi = 第i个位置处的测量值的未知权重s0 = 预测位置N = 测量值数在反距离权重法中,权重λi仅取决于预测位置的距离。
但是,使⽤克⾥⾦⽅法时,权重不仅取决于测量点之间的距离、预测位置,还取决于基于测量点的整体空间排列。
要在权重中使⽤空间排列,必须量化空间⾃相关。
因此,在普通克⾥⾦法中,权重λi取决于测量点、预测位置的距离和预测位置周围的测量值之间空间关系的拟合模型。
以下部分将讨论如何使⽤常⽤克⾥⾦法公式创建预测表⾯地图和预测准确性地图。
使⽤克⾥⾦法创建预测表⾯地图要使⽤克⾥⾦法插值⽅法进⾏预测,有两个任务是必需的:找到依存规则。
克里格插值法
克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
kriging(克里金方法_克里金插值)[1]
(h) C(0) C(h)
(二阶平稳假设条件下边查函数与写防查的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
Z*(x0)
(1)无偏条件
从本征假设出发, 可知 EZx为常数,有
EZ * x0 Zx0
E n i Z xi Z x0
i1
n i m m 0 i1
(在搜寻邻域内为 常数,不同邻域可 以有差别)
可出现E[Z(u)]不存在, 但E[Z(u)-Z(u+h)]存在并为零的情况
E[Z(u)]可以变化,但E[Z(u)-Z(u+h)]=0
② 增量[Z(u)-Z(u+h)]的方差函数 (变差函数,Variogram)
存在且平稳 (即不依赖于u),即:
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
1977年我国开始引入
区域化变量理论 克里金估计 随机模拟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。
E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)
(应用随机函数理论)
井眼 地震
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P
连续变量:
累积分布函数(cdf)
Z (u)
cumulative distribution function
F(u; z) Pr ob{Z(u) z}
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}
离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
•从矩的角度说,方差是ξ的二阶中心矩。
如具有三个自变量(空间
点的三个直角坐标)的随
机场
随机函数的特征值
协方差(Variance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
其简算公式为 Cov(ξ,η) = E (ξη)-E(ξ) ·E(η)
P
F(u; z) F(u h; z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u 研究范围} 简记为 Z(u)
条件累积分布函数(ccdf)
F(u1,,uK ; z1,, zK | (n)) Prob{Z(u1) z1,, Z(uK ) zK | (n)}
随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
绝对收敛,则称ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
1977年我国开始引入
区域化变量理论 克里金估计 随机模拟
克里金插值方法
n
z* x0 i zxi i 1 (普通克里金)
•不仅考虑待估点位置与
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
严格平稳
F(u1,,uK ; z1,, zK ) F(u1 h,,uK h; z1,, zK )
对于单变量而言:
特殊地,当h=0时,上式变为 Var[Z(u)]=C(0), 即方差存在且为常数。
第二讲
克里金插值
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。
地质统计学
由法国巴黎国立高等矿业学院G.马特隆教授于 1962年所创立。 主要是为解决矿床储量计算和误差估计问题而 发展起来的
不同的取值方式:估计(estimation)
模拟(simulation)
连续型地质变量
构造深度 砂体厚度 有效厚度 孔隙度 渗透率 含油饱和度
离散型地质变量
(范畴变量) 类型变量
砂体 相 流动单元 隔夹层 断层
随机变量的特征值:
(1)数学期望 是随机变量ξ的整体代表性特征数。
①设离散型随机变量ξ的所有可能取值为 x1,x2,…,其相应的概率为