材料热力学练习题
热力学习题与答案(原件)

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。
答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P ST G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。
(假设两固相具有相同的晶体结构)。
由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。
根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。
在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。
HPV UGTSTS FPV3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。
第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。
图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。
4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。
材料热力学习题集

问:1)当混合气体(97%H2O + 3%H2, 体积)在 1000 K 是否能将 Ni 氧化? 2)现有 Ni-Au 固溶体(XNi = 0.1)。已知在 1000 K 时, 与此合金平衡的氢气体体积
例题 6-8 右图所示是铜和铜铝合金(18 at.% Al)在 700℃温度下扩散退火 38.4 天的浓度分
布曲线。求当 Al 的浓度为 4 at%时,Al 在 Cu 中的扩散系数。
18
Cu - Al
Cu
16
A
14
C , at.% Al
12
k
Matano interface
10
8 mark interface
.
材料热力学上课题目
例 1-1 已知液体铅在 1 个大气压下的热容量 Cp(l)为 Cp(l)=32.43-3.10×10-3T J/(mol·k),固 体铅的热容量 Cp(s)为 Cp(s)=23.56+9.75×10-3T J/(mol·k),已知液体铅在熔点(600 K)凝固为固 体时放热 4811.60 J/mol,求液体铅过冷至 590K 凝固为固体时焓的变化。
6
4
2
A
1
0 -10 -8 -6 -4 -2 0 2 4 6 8 10
x
六大 板块
第一章 第二章 第三章 第四章 第五章 第六章
物理化学复习纲要
热力学定律(热力学第一定律、热力学第二定律) 自由能(ΔF、ΔG) 热力学状态函数、关系式及应用 相变热力学 溶液 扩散
.
材料热力学习题集

材料热力学习题集液态铅在1个大气压下的热容量Cp(l)称为Cp(L)= 32.43-3.10×10-3TJ/(mol·k),固态铅的热容量Cp(s)为Cp(S)= 23.56+9.75×10-3TJ/(mol·k)。
众所周知,当液态铅的熔点(600 K)固化成固体时,液态铅释放4811.60 J/mol的热量,并计算了当液态铅过冷到590K并固化成固体时的焓变化。
液态铅固态铅600Kb恒温相变c温升590Ka初始状态相变d最终状态?H示意图实施例1-2众所周知,锡在505K(熔点)时的熔化热为7070.96焦耳/摩尔,厘泊(L) = 34.69-9.20×10-3TJ/(摩尔·K)厘泊(S) = 18.49+26.36×10-3TJ/(摩尔·K)用于计算锡过冷至495 K时自动凝固的比例505K恒温,放热b相变c最终状态吸收热上升温度吸收热相变放热495Ka初始状态1摩尔液体d x摩尔固体(1-x)摩尔液体?H图例1-3铅的熔点为600K,凝固热为4811.6 J/mol,计算了铅在600K 凝固时的熵值变化(在一个大气压下)。
例1-4已知在1个大气压下液态铅的比热为32.43-3.10×10-3tj/(mol·k)CP(s)= 23.56+9.75×10-3tj/(mol·k)液态铅在其熔点(600K)固化成固体时释放4811.6 J/mol的热量。
计算了液态铅过冷到590K凝固时(在一个大气压下)熵值的变化。
1液态铅固态铅恒温相变600Kbc冷却温升590Ka初始相变d最终状态计算?S示意图实施例2-1已知液态锌的Cp(l)为Cp(L)= 29.66+4.81×10-3TJ/(mol·k),固态锌的Cp(s)为Cp(S)= 22.13+11.05×10-3TJ/(mol·k),锌的熔点为692.6K,熔化热δH = 6589.8J/mol,自由能差δG(δ的实施例2-2使用第一章中的数据计算铅在590 K(过冷10 K)凝固时的自由能变化δg(590 K),并将其与简单近似计算的结果(铅在590K 凝固时δH =-4811.6J/mol)进行比较可以从第一章的计算中看出:当铅在590K凝固时,焓变化δH =-4722.56J/mol;熵变化δs =-8.0j/(Mol·k)例2-3已知γ-铁、δ-铁和液态铁的Cp为Cp(γ)= 7.70+19.50×10-3 TJ/Mol·kcp(d)= 43.93j/Mol·k(1674 ~ 1809k)Cp(L)= 41.84j/Mol·k(L)G亚稳态?相的理论熔点?第一阶段?1673年?L1809G?g?GLT/K?阶段225y = 246.65t-34.138 tlnt+9.75?10t 20-32y/100015y = 14861.57t = 1793.82k 105005001000t,k 1500200025003000| 286K时199例4-1,α-Sn β-Sn的δh = 2092j/mol,锡的= 118.7,πα-Sn = 5.75g/mL,ψ计算100个大气压下相变温度的变化值例4-2在95.5℃单斜硫菱形硫中,δV = 0.01395毫升/克,δH = 13.05焦耳/克,找出压力对相变温度的影响例4-3固体锌的蒸气压与温度的关系为:lgp(ATM)=-6850/T-0.755 gt+8.36液态锌的蒸气压与温度的关系为:lgp(ATM)=-6620/T-1.255 LGT+9.46q:1)液态锌在1个大气压下的沸点;2)三点温度;3)1 ATM沸点下的汽化热;4)三相点的熔化热;5)固体锌和液体锌之间的δCp 例4-4锌在610 K时的蒸气压为10 mmHg,镉的计算蒸气压也为10-5 mmHg杜林定律:当相似物质具有相同的蒸汽压时,T1/T2 =常数例4-5碳在1个大气压和25℃下以石墨为稳定相,并试图找出在25℃下将石墨转化为金刚石所需的压力实施例5-1实验测得的镉-镁的摩尔体积如下表所示Cd-镁合金-5实施例5-2已知三元溶液的摩尔体积为VM = 7x1+10 x2+12x 3-2x1x2+3x1x2x 3(cm3/mol)339解决方案:虚拟机∠X1 = x2 = x3 = 1/3 =869 X1 = 1-X2-X3,因为X1+X2+X3 = 1经过取代,我们可以得到:实施例5-3在1075℃下实验测得的氧在银中的溶解度如下表所示,我们可以找出:1)氧在银中的溶解度是否符合西沃特定律,我们可以找出溶解度常数;2)1075℃时空气中氧在银中的溶解度实施例5-4将0.567 g尿素(CON2H4)溶解在500 g水中,测量该水溶液的冰点为-0.0351℃,并计算尿素的分子量。
2023年新高考II卷物理热力学题及答案

2023年新高考II卷物理热力学题及答案【2023年新高考II卷物理热力学题及答案】一、选择题1. 以下关于热力学第一定律的说法正确的是:A. 热力学第一定律是能量守恒定律的具体表述B. 热力学第一定律说明热量是一种不可逆转的能量转移方式C. 热力学第一定律仅适用于绝热系统D. 热力学第一定律和能量守恒定律意义相同【参考答案】A2. 一个物体温度从30°C升高到60°C,其摄氏温度变化为:A. 30°CB. 60°CC. -30°CD. 90°C【参考答案】A3. 一定质量水的比热容是c,若把温度为T的物体放入温度为0°C 的水中,物体的温度也降到0°C,那么物体的比热容为:A. cB. 2cC. 0.5cD. c/2【参考答案】B4. 空气中两个气体体积相等,压强分别是p和2p,则两者的温度比为:A. 1:2B. 2:1C. 1:4D. 4:1【参考答案】A5. 理想气体的内能只与其:A. 温度有关B. 压强有关C. 体积有关D. 分子数有关【参考答案】A二、计算题1. 一块质量为0.5 kg的铁板温度由20°C升至80°C,已知铁的比热容为460 J/(kg·°C),求此过程中铁板所吸收的热量。
【参考答案】Q = mcΔTQ = 0.5 kg × 460 J/(kg·°C) × (80°C - 20°C)Q = 0.5 kg × 460 J/(kg·°C) × 60°CQ = 13800 J2. 一个物体单位质量的比热量为c,其质量为m,温度由T1升至T2,请计算所需吸收或释放的热量Q。
【参考答案】Q = mcΔTQ = mc(T2 - T1)3. 一个容器内有一定质量的水,初始温度为20°C,加入一物体,使整个水体温度升至30°C,已知物体具有热容量C,求物体的热容量C。
材料热力学练习题

材料热⼒学练习题1、由5个粒⼦所组成的体系,其能级分别为0、ε、2ε及3ε,体系的总能量为3ε。
试分析5个粒⼦可能出现的分布⽅式;求出各种分布⽅式的微观状态数及总微观状态数。
2、有6个可别粒⼦,分布在4个不同的能级上(ε、2ε、3ε及4ε),总能量为10ε,各能级的简并度分别为2、2、2、1,计算各类分布的Ωj 及Ω总。
3、振动频率为ν的双原⼦分⼦的简谐振动服从量⼦化的能级规律。
有N 个分⼦组成玻⽿兹曼分布的体系。
求在温度T 时,最低能级上分⼦数的计算式。
4、⽓体N 2的转动惯量I =1.394?10-46kg ?m 2,计算300K 时的Z J 。
5、已知NO 分⼦的Θυ=2696K ,试求300K 时的Z υ。
ν~J υ7、计算300K 时,1molHI 振动时对内能和熵的贡献。
8、在298K 及101.3kPa 条件下,1molN 2的Z t 等于多少?9、在300K 时,计算CO 按转动能级的分布,并画出分⼦在转动能级间的分布曲线。
10、计算H 2及CO 在1000K 时按振动能级的分布,并画出分⼦在振动能间的分布曲线;再求出分⼦占基态振动能级的⼏率。
11、已知HCl 在基态时的平均核间距为1.264?10-10m ,振动波数ν~=2990m -1。
计算298K 时的Θm S 。
12、证明1mol 理想⽓体在101.3kPa 压⼒下Z t =bLM 3/2(T /K )5/2 (b 为常数)13、计算1molO 2在25?C 及101.3kPa 条件下的Θm G 、Θm S 及Θm H 。
设Θ0U 等于零。
14、已知300K 时⾦刚⽯的定容摩尔热容C V ,m =5.65J ?mol -1?K -1,求ΘE 及ν。
15.已知300K 时硼的定容摩尔热容C V ,m =10.46J ?mol -1?K -1,求(1) ΘD ;(2) 温度分别为30K 、50K 、100K 、700K 、1000K 时的C V ,m 值;(3) 作C V ,m 值? T 图形。
材料热力学复习题

《材料热力学》复习题一、在定压热容C p 的经验表达式中,若使用T 2项来代替T -2项,试导出这时的焓(H)、熵(S)和Gibbs 自由能(G)的表达式。
二、已知液体锌的()l p C 为()K mol J C T C l p •︒-⨯+=-/()8505.419(1081.466.293) 固体密排六方锌的()l p C 为())/(1005.1113.223K mol TJ C s p •⨯+=-,锌的熔点为692.6K ,熔化热mol J H /80.6589=∆,求固、液相之间随温度变化的自由能差值()T G ∆。
三、某化合物A m B 的两种晶体结构分别是α、β,相变稳定为在0.1MPa 压力下为400K ,相变潜热为5.02J·mol -1,相变温度随压力的变化为0.005K·MPa -1,400K 时的密度为1.25g·cm-3,A m B 的相对分子量为120,试求该温度下β相的密度。
四、已知纯Sn 在压力为P MPa 时的熔点T sn 为:T sn =238.1+0.0033(P-0.1)℃ 纯Sn 的熔化潜热为58.8J·g -1,0.1MPa 压力下液体的密度为6.988g·cm-3,试求固体的密度。
五、试用G m-X图解法说明,为什么fcc结构的金属加入铁中后,大多会扩展Fe 的fcc结构相区?而Al(fcc结构)为什么却会封闭Fe的fcc相区?六、根据相图,绘出T1、T2、T3温度下各相(L、α)摩尔自由能-成分曲线的位置关系。
七、根据相图,绘出T1、T2、T3、T4温度下各相(L、α、β)摩尔自由能-成分曲线的位置关系。
八、试用G m-X图中化学势的图解法,解释为什么有的固溶体中会发生上坡扩散?九、试用G m-X图解法说明,为什么fcc结构的金属加入铁中后,大多会扩展Fe 的fcc结构相区?而Al(fcc结构)为什么却会封闭Fe的fcc相区?第六题第七题十、试根据Einstein热容理论,证明Dulong-Petit经验定律的正确性。
材料热力学习题答案

材料热力学习题答案
材料热力学学习题答案
热力学是物理学的一个重要分支,研究物质的热量和能量转化规律。
在学习热
力学的过程中,我们常常会遇到各种各样的学习题,通过解答这些学习题,我
们可以更好地理解热力学的知识,提高自己的学习能力。
1. 热力学第一定律是什么?请用数学公式表示。
答案:热力学第一定律是能量守恒定律,即能量不会自发地产生或消失,只能
从一种形式转化为另一种形式。
数学公式表示为ΔU = Q - W,其中ΔU表示系
统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。
2. 什么是热容?如何计算物质的热容?
答案:热容是物质单位质量在单位温度变化下吸收或释放的热量。
物质的热容
可以通过公式C = Q/mΔT来计算,其中C表示热容,Q表示吸收或释放的热量,m表示物质的质量,ΔT表示温度变化。
3. 什么是热力学循环?请举例说明一个热力学循环的应用。
答案:热力学循环是指一定物质在一定压力下,经过一系列的热力学过程后,
最终回到初始状态的过程。
一个常见的热力学循环是卡诺循环,它被广泛应用
于蒸汽发电厂和制冷系统中。
通过解答这些学习题,我们可以更加深入地理解热力学的知识,掌握热力学的
基本原理和计算方法。
希望大家在学习热力学的过程中能够勤加练习,提高自
己的学习能力,为将来的科学研究和工程实践打下坚实的基础。
热力学习题(精心整理)

热力学基础习题练习一、选择题1. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对2.. 在下面节约与开拓能源的几个设想中, 理论上可行的是[ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100% (B) 利用海面与海面下的海水温差进行热机循环做功 (C) 从一个热源吸热, 不断作等温膨胀, 对外做功 (D) 从一个热源吸热, 不断作绝热膨胀, 对外做功3. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的? [ ] (A) 等温压缩 (B) 等体降压 (C) 等压压缩 (D) 等压膨胀4. 理想气体由初状态( p 1, V 1, T 1)绝热膨胀到末状态( p 2, V 2, T 2),对外做的功为[ ] (A))(12T T C M m V - (B) )(12T T C M mp - (C) )(12T T C M m V -- (D) )(12T T C Mmp -- 5. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同6. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所做的机械功为最大, 这个过程应是 [ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可7. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V ,如图9-1-34所示.在这个循环中, 气体必然 [ ] (A) 内能增加 (B) 内能减少 (C) 向外界放热 (D) 对外界做功8. 在下面节约与开拓能源的几个设想中, 理论上可行的图9-1-34是[ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100% (B) 利用海面与海面下的海水温差进行热机循环做功 (C) 从一个热源吸热, 不断作等温膨胀, 对外做功 (D) 从一个热源吸热, 不断作绝热膨胀, 对外做功9. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成 (B) 完成一次卡诺循环必须有高温和低温两个热源 (C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界做的净功一定大于0 10. 热力学第二定律表明[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功 (B) 在一个可逆过程中, 工作物质净吸热等于对外做的功 (C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体11. 图9-1-50所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号. [ ]12. 在图9-1-51中,I c II 为理想气体绝热过程,I a II 和I b II 是任意过程.此两任意过程中气体做功与吸收热量的情况是 [ ] (A) I a II 过程放热,做负功;I b II 过程放热,做负功 (B) I a II 过程吸热,做负功;I b II 过程放热,做负功 (C) I a II 过程吸热,做正功;I b II 过程吸热,做负功(D) I a II 过程放热,做正功;I b II 过程吸热,做正功 二、填空题1. 各为1 mol 的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积图9-1-51(D)(C)(A)(B)图9-1-50变为2V , 氦气膨胀后压强变为2p, 则氢气和氦气从外界吸收的热量之比为 .2. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外做功300 J . 若冷凝器的温度为7︒C, 则热源的温度为 .3. 1mol 理想气体(设VPC C =γ为已知)的循环过程如图9-2-11所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:=C V , =C T ,=C p .4. 一定量的理想气体,从A 状态),2(11V p 经历如图9-2-12所示的直线过程变到B 状态)2,(11V p ,则AB 过程中系统做功___________, 内能改变△E =_________________.5. 质量为m 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .6. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3) 绝热过程.其中:__________过程气体对外做功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.7. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在图9-2-17中示意地画出这三种过程的p -V 图曲线.在上述三种过程中: (1) 气体的内能增加的是__________过程;(2) 气体的内能减少的是__________过程.8. 将热量Q 传给一定量的理想气体,(1) 若气体的体积不变,则其热量转化为 ; (2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 .T 12T 图9-2-112p 11图9-2-121图9-2-172三、计算题1. 1 mol 刚性双原子分子的理想气体,开始时处于Pa 1001.151⨯=p 、331m 10-=V 的状态,然后经图9-3-1所示的直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV =21(常量)的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求:(1) 在过程I 中气体吸的热量; (2) 整个过程气体吸的热量.2. 一卡诺热机(可逆的),当高温热源的温度为C 127 、低温热源温度为C 27 时,其每次循环对外做净功8000 J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外做净功10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环热机的效率; (2) 第二个循环的高温热源的温度.3. 如图9-3-6所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环.(1) 试在p -V 图上画出相应的理想循环曲线;(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化? (已知冰的熔解热=λ 3.35×105J · kg -1,普适气体常量 R = 8.31 J · mol-1· K -1)4. 比热容比=γ 1.40的理想气体,进行如图9-3-7所示的abca 循环,状态a 的温度为300 K .(1) 求状态b 、c 的温度; (2) 计算各过程中气体所吸收的热量、气体所做的功和气体内能的增量; (3) 求循环效率.5. 绝热壁包围的汽缸被一绝热的活塞分成A ,B 两室,活塞在汽缸内可无摩擦自由滑动,每室内部有1mol 的理想气体,定容热容量R C V 25=.开始时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.1p V图9-3-1图9-3-6图9-3-7)3(1) 求加热之后,A 、B 室中气体的体积和温度; (2) 在这过程中A 室中的气体做了多少功? (3) 加热器传给A 室的热量多少?6. 图9-3-19所示为一循环过程的T -V 曲线.该循环的工质的物质的量为mol n 的理想气体,其中V C 和γ均已知且为常量.已知a 点的温度为1T ,体积为V 1,b 点的体积为V 2,ca 为绝热过程.求:(1) c 点的温度; (2) 循环的效率.7. 设一动力暖气装置由一台卡诺热机和一台卡诺制冷机组合而成.热机靠燃烧时释放的热量工作并向暖气系统中的水放热;同时,热机带动制冷机.制冷机自天然蓄水池中吸热,也向暖气系统放热.假定热机锅炉的温度为C 2101=t ,天然蓄水池中水的温度为C 152 =t ,暖气系统的温度为C 603 =t ,热机从燃料燃烧时获得热量2.1×107J ,计算暖气系统所得热量.热力学基础 答案一、选择题1. A2. B3.D4. C5. B6. A7. C8. B9. C 10. C 11. B 12. B 二、填空题1. 1:12. 127 ︒C3. 2V , 1121T V V -⎪⎪⎭⎫⎝⎛γ,12121-⎪⎪⎭⎫ ⎝⎛γV V V RT4. 0,2311V p A = 5. R M T 32v =∆ 6. 等压,等压,等压7. 过程曲线如解图9-2-17所示,其中ab 为等压过程, ac 为等温过程, ad 为绝热过程.(1) 等压; (2) 绝热.8. (1) 气体内能;(2) 气体对外做功;(3) 内能和对外做功三、计算题1. 解:(1) 在过程Ⅰ中气体对外做功为()()1221121V V p p A -+=图9-3-192内能增量为()()11221212525V p V p T T R T C M m E V -=-=∆=∆ 由热力学第一定律,此过程气体吸收的热量为()()()112212211112521V p V p V V p p E A Q -+-+=∆+=()()()J 1001.110204.425J 101021004.41001.121223355⨯-⨯⨯+-⨯⨯⨯+⨯=--J 1002.23⨯=(2) 在过程II 中气体对外做功为⎰=322V V p A d ()2233222d 32V p V p VVV p V V V -==⎰又据C pV=21可得3332323223m 1032m 01.104.4102--⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=p p V V 所以()J 1085.4J 10204.4103201.123222⨯=⨯⨯-⨯⨯⨯=A过程II 气体内能增量为 ()()22332322525V p V p T T R E -=-=∆()J 1006.6J 10204.4103201.125322⨯=⨯⨯-⨯⨯⨯= 过程II 气体吸热 J 1009.1J 1006.6J 1085.4433222⨯=⨯+⨯=∆+=E A Q 整个过程气体吸收热量 21Q Q Q +=J 1029.1J 1009.1J 1002.2443⨯=⨯+⨯=2. 解:(1) J 32000J 4003001800011112=-==→=-=ηη净净A Q Q A T T ,净A Q Q +=21 J 24000J 8000J 3200012=-=-=净A Q Q第二个热机2Q 不变,则 J 34000J 10000J 2400021=+='+='净A Q Q %4.2934000100001==''='Q A 净η(2) 由 121T T'-='η 得 K 425K %4.291300121=-='-='ηT T解图9-3-13. 解:(1) p –V 图上循环曲线如解图9-3-6所示,其中ab 为绝热线,bc 为等体线,ca 为等温线.(2) 等体过程放热为 Q V = C V (T 2-T 1等温过程吸热为 2ln 111V VRT Q T = (2) 绝热过程方程 211111)2(T V T V --=γγ (3) 双原子分子气体 R C V 25= 4.1=γ由(1)~(3)式解得系统一次循环放出的净热量为2ln )12(25111RT T R Q Q Q T V --=-=-γJ 240= 若100 次循环放出的总热量全部用来熔解冰,则熔解的冰的质量为21016.7100-⨯==λQm kg4. 解:(1) c →a 等体过程有cc a a T pT p = 所以 75)(==ac a c p pT T Kb →c 等压过程有 c ca b T V T V = 所以 225)(==cbcb V V T T K (2) 气体的物质的量为 mol 321.0===aaa RT V p M m ν 由 40.1=γ 可知气体为双原子分子气体,故R C V 25= R C p 27=c →a 等体吸热过程 0=ca A J 1500)(=-=∆=c a V ca ca T T C E Q ν b →c 等压压缩过程 J 400)(-=-=b c b bc V V p AJ 1000)(-=-=∆b c V bc T T C E ν J 1400-=+∆=bc bc bc A E Q 整个循环过程0=∆E ,循环过程净吸热为J 600))((21=--==c b c a V V p p A Q解图9-3-611a →b 过程净吸热 ca bc ab Q Q Q Q --=J500J1500J )1400(J 600=---=(3) 0>ab Q 为净吸热,a →b 过程经历了升温、降温过程,设温度转折点为x , a →b 过程)d d (2d 2d p V V p iT R i M m E +==, V p A d d = 由热力学第一定律p V iV p i A E Q d 2d 22d d d ++=+= ab 直线方程为 43006100-=--V p → V p d 75d -=于是有V V Q d )1925450(d +-=令0d =Q 解得3m 28.4=x V ,即a →x 吸热,x →b 放热J 4.1167d )1925450(d 28.4228.42=+-==⎰⎰V V Q Q ax%5.224.11761500600≈+=+=ax ca Q Q W 净η5. 解:(1) B 室中进行的是绝热过程. 设初始平衡时状态为),,(000T V p ,达到平衡终态时,两室的状态为),,(A A A T V p 和),,(B B B T V p ,则有B A 02p p p == (1)由初终态的状态方程00A A B BA 0Bp V p V p V T T T == (2) 利用(1)式可得0A BA 0B22V V V T T T == (3) 对B 室有准静态绝热过程方程B B 00p V p V γγ= (4)由(3)、(4)式和57==Vp C C γ得 γγ1011B 222V V V ==- 和0011B 22.12T T T ≈=-γ由总体积一定,得A 室的终态体积为解图9-3-73/mγ10B 0A 222V V V V V -=-=代入(3)式001A A 78.2)22(22T T V T V T ≈-==-γ(2) 因活塞处无功耗,故A 气体推动活塞对B 气体做功的值等于B 气体的内能增量000B 55.0)122.1()(RT T C T T C A V V ≈-=-= (3) A 室中吸收的热量等于它对B 室做的功,加上自己内能的增量00A A A A 5)(RT T T C A E A Q V =-+=∆+=6. 解:(1) ca 为绝热过程,则 12111--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγV V T V V T T c a a c(2 ) ab 为等温过程,工质吸热 1211ln V VnRT Q =bc 为等容过程,工质放热为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=-=-121111211)(γVV T nC T T T nC T T nC Q V cV c b V 循环过程的效率1212112ln 111V V V V RC Q Q V -⎪⎪⎭⎫⎝⎛--=-=γη7. 解:卡诺热机效率131211T T Q Q-=-=η热机传给暖气系统热量 1132Q T T Q =(1) 卡诺热机向致冷机输出的功1131)1(Q T T Q A -==η 卡诺致冷机从天然蓄水池中吸收热量为1132322)1('Q T T T T T wA Q -⋅-==于是卡诺致冷机传给暖气的热量为)1(''132313121T TT T Q T Q wA A Q Q --=+=+=η (2)从(1)、(2)两式,再考虑到J 101.271⨯=Q ,可得暖气系统共吸收热量()()112332112'Q T T T T T T Q Q Q --=+=()()()()J 1027.6J 101.22732101560273601521077⨯=⨯⨯+⨯-+⨯-=。
热力学课外习题(含答案)

判断题:√1.自然界发生的过程一定是不可逆过程。
×2.不可逆过程一定是自发过程。
(做了非体积功发生的过程不是自发过程)×3.熵增加的过程一定是自发过程。
(如自由膨胀过程)×4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
×5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
(设计一条可逆非绝热可逆过程来计算熵变)×6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
(环境可能提供负熵流)×7.平衡态熵最大。
(在隔离体系中是对的)×8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?(不矛盾,因为在热全部转化为功的同时,引起了气体的状态的变化)×10.当系统向环境传热时(Q < 0),系统的熵一定减少。
(熵变是可以过程的热温熵)√11.一切物质蒸发时,摩尔熵都增大。
(混乱度增大)×12.吉布斯函数减小的过程一定是自发过程。
(条件:等温等压,非体积功等于0)×13.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
(当有非体积功如电功时可以发生)×14.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。
(等温条件下如对的)×15.因Q p =ΔH ,Q v =ΔU ,所以Q p 和Q v 都是状态函数。
(热是过程量,不是状态函数)×16.水溶液的蒸气压一定小于同温度下纯水的饱和蒸汽压。
(非挥发性溶质的稀溶液)×17.在等温等压不做非体积功的条件下,反应Δr G m <0时,若值越小,自发进行反应的趋势就越强,反应进行得越快。
2012硕士《材料热力学与动力学》复习练习题

Question 16
1) 指出各水平线的三相平衡反应 2) w(SiO2)=0.40 的系统(图中 R 点)从 1700C 冷却到 1000C 时的冷却曲线示意图。 注明每一阶段系统有哪些相?发生哪些 变化?指出各阶段的自由度数? 3) w(SiO2)=0.10 的系统 12 kg,冷却到 1400C 时,液相中含 MnO 多少 kg? 4) w(SiO2)=0.60 的系统 1500C 以哪些相存在?计算其相对 量。
4
2012 研究生《材料热力学与动力学》复习练习题(10 月 8 日交,手写完成)
Question 1 进行下述过程时,系统的ΔU、ΔH、ΔS和ΔG何者为零? 1.1 非理想气体的卡诺循环; 1.2 隔离系统中的任意过程; 1.3 在100C,1大气压下1mol水蒸发成水蒸汽; 1.4 绝热可逆过程。 Question 2 1mol 理想气体等容升温到状态 3,求 Q,W,ΔU,ΔH。 若将理想气体先等压膨胀到状态 2,然后再等温(可 逆)压缩到状态 3,求 Q,W,ΔU,ΔH,并与直接从 1 到 3 的途径相比较。
Question 11 导出液相中 Bi 的活度系数的估算公式。
H m T a Bi exp ( 1) RT Tm
其中,熔化热为 H m 纯 Bi 的熔点为 Tm,R 为气体常数。
Question 12 对下列二元相图,指出其中的错误 (用相律说明原因)
2
Question 13
Trouton's定律为表示为:
1 (V1,T1) 2 (V2,T2) V
H vap 90Tb
单位J/mol, 其中Tb为沸点(K), 汞的沸点为630 K. 计算在
298K液态汞的分压. 用Troutons定律估算汞的汽化热.
材料热力学 习题答案

The problems of the first law1. a lead bullet is fired at a frigid surface. At what speed must it travel to melt on impact, if its initial temperature is 25℃ and heating of the rigid surface of the rigid surface is neglected? The melting point of lead is 327℃. The molar heat of fusion of the lead is 4.8kJ/mol. The molar heat capacity C P of lead may be taken as 29.3J/(mol K) (1.1)Solution: )/(5.112.20721]108.4)25327(3.29[2121)(2322s m V v n n WQ nMv mv W H T C n Q Q Q absorb melting p melt increase absorb ==⨯+-⨯===∆+∆=+=2. what is the average power production in watts of a person who burns 2500 kcal of food in a day? Estimate the average additional powder production of 75Kg man who is climbing a mountain at eh rate of 20 m/min (1.2)Solution )/(24560208.975)/(12160602410467000//)(104670001868.4102500sin 3S J t h mg P S J t Q t W P J Q gincrea Burning Burning =⨯⨯=∆==⨯⨯====⨯⨯=3 One cubic decimeter (1 dm 3) of water is broken into droplets having a diameter of onemicrometer (1 um) at 20℃. (1.3)(a) what is the total area of the droplets?(b) Calculate the minimum work required to produce the droplets. Assume that the dropletsare rest (have zero velocity)Water have a surface tension of 72.75 dyn/cm at 20℃ (NOTES: the term surface energy (ene/cm 2) is also used for surface tension dyn/cm)Solution)(25.218)106103(1075.72)(103)101(4)101(34)101(232523263631J S W m nS S Single total =⨯-⨯⨯⨯=∆=⨯=⨯⨯⨯⨯⨯⨯⨯⨯==-+----σππ4.Gaseous helium is to be used to quench a hot piece of metal. The helium is in storage in an insulated tank with a volume of 50 L and a temperature of 25℃, the pressure is 10 atm. Assume that helium is an ideal gas.(a) when the valve is opened and the gas escapes into the quench chamber (pressure=1 atm),what will be the temperature of the first gas to hit the specimen?(b) As the helium flows, the pressure in the tank drops. What will be the temperature of thehelium entering the quench chamber when the pressure in the tank has fallen to 1 atm? (1.4)Solution: )(180118298)(1185.229810101325501010101325)5500(1)()(118)101(298)()(0334.0/00K T T T K RR nC W T b K T P PT T Adiabatic a p C R P=-=∆-==⨯⨯⨯⨯⨯⨯⨯-⨯==∆=⨯==--5 An evacuated (P=0), insulted tank is surrounded by a very large volume (assume infinite volume) of an ideal gas at a temperature T 0. The valve on the tank is opened and the surrounding gas is allowed to flow quickly into the tank until the pressure inside the tank is equals the pressure outside. Assume that no heat flow takes place. What is the final tempeture of the gas in the tank? The heat capacity of the gas, C p and C v each may be assumed to be constant over the temperature rang spanned by the experiment. You answer may be left in terms of C p and C vhint: one way to approach the problem is to define the system as the gas ends up in the tank. (1.5)solution 0/000/00)()(T P P T T P PT T Adiabatic PPC R C R ≈-==6. Calculate the heat of reaction of methane with oxygen at 298K, assuming that the products of reaction are CO 2 and CH 4 (gas)[This heat of reaction is also called the low calorific power of methane] convert the answer into unites of Btu/1000 SCF of methane. SCF means standard cubic feet, taken at 298 and 1atmNOTE: this value is a good approximation for the low calorific powder of natural gas (1.6)DA TA:)()()(224g O H g CO g CH FOR80.5705.9489.17]/[0298---∙∆mol g Kcal Hsolution)1000/(9.2610252103048.01101076.191)/(76.191)89.1780.57205.94()2(22333332982982224422SCF Btu mol g Kcal H H H H H OH CO O CH CH O H CO =⨯⨯⨯⨯⨯=∙=∆+⨯---=∆-∆+∆-=∆+=+-7. Methane is delivered at 298 K to a glass factory, which operates a melting furnace at 1600 K. The fuel is mixed with a quantity of air, also at 298 K, which is 10% in excess of the amount theoretically needed for complete combustion (air is approximately 21% O 2 and 79% N 2) (1.7)(a) Assuming complete combustion, what is the composition of the flue gas (the gasfollowing combustion)?(b) What is the temperature of the gas, assuming no heat loss?(c) The furnace processes 2000kg of glass hourly, and its heat losses to the surroundingsaverage 400000 kJ/h. calculate the fuel consumption at STP (in m 3/h) assuming that for gas H 1600-H 298=1200KJ/KG(d) A heat exchanger is installed to transfer some of the sensible heat of the flue gas to thecombustion air. Calculate the decrease in fuel consumption if the combustion air is heated to 800KDA TA STP means T=298K, P=1atm22224O N O H CO CH for 2.82.89.117.1316)/(C mol cal C P ∙Solution)(210448.1125.9100076.191298)/(25.9)]87.012.72(2.843.179.1171.87.13[01.0)(%87.0%%12.72%%43.17%2%%71.8)11.1(221791.1231%22)(0,,222222224K T T T C mol cal X C C b O N CO O H CO O H CO O CH a i i p p p =⨯⨯+=∆+=∙=+⨯+⨯+⨯=======-⨯+⨯⨯+=+=+∑)/(1644)0224.011868.448.11)8001600(48.1125.9189570(102800000)/(189570)298800)](48.1187.8)48.1125.9[(100076.191)()/(87.848.11/]211002.22.816[)()/(3214)0224.011868.448.11)2981600(48.1125.9100076.191(102800000)/(280000040000020001200)(33min ,,,,298,,33min h m V mol g cal dTn C n C H H C mol cal X C C d h m V h KJ P C gConsu i i r p i i p p i i p r p g Consu =⨯⨯-⨯-⨯=∙=-⨯-⨯-⨯=--∆=∆∙=⨯⨯+===⨯⨯-⨯-⨯⨯==+⨯=⎰∑∑∑8.In an investigation of the thermodynamic properties of a-manganese, the following heat contents were determined: H 700-H 298=12113 J/(g atom) H 1000-H 298=22803 J/(g atom)Find a suitable equation for H T -H 298 and also for C P as a function of temperature in the form (a+bT) Assume that no structure transformation takes place in the given tempeture rang. (1.8)Solution )298(0055.0)298(62.35011.062.35011.062.3522803)2981000(2)2981000(12113)298700(2)298700(]2[2229822222982---=∆-=-===-+-=-+-+=+==∆⎰⎰T T H TC b a ba ba T baT bTdT a dT C H TP T P9.A fuel gas containing 40% CO, 10% CO 2, and the rest N 2 (by volume) is burnt completely with air in a furnace. The incoming and ongoing temperatures of the gases in the furnace are 773K and 1250K,respectively. Calculate (a) the maximum flame temperature and (b) heat supplied to the furnace per cu. ft of exhaust gas (1.9)molJ Hmol J H CO f CO f /393296/1104580,298,0,298,2-=∆-=∆)/(10184.403.29)/(1067.11010.492.19)/(1037.81020.935.44)/(1042.01097.345.283,253,253,253,222molK J T C molK J T T C molK J T T C molK J T T C N P O P CO P CO P -------⨯+=⨯-⨯+=⨯-⨯+=⨯-⨯+=Solution?0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)()/(1019.01058.528.33722.0278.0)/(1067.01038.477.281.065.005.02.0)()/(282838110458393296%2.72%8.27%10%65%5%20)4/(1122298127332981523733253253298,,,,298,253,,,,,253,,,,,,,0,298,0,298,298,22222222222222==+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆⨯-⨯+=+==⨯-⨯+=+++===-=∆-∆=∆========+-----------⎰⎰⎰∑∑⎰∑∑∑∑T T T T T T T dT T T dTT T dT n C n C n H H molK J T T C C n C C molK J T T C C C C n C C a mol J n Hn H H N CO production O N CO CO reation then O N air mole need fuel mole when CO O CO T TT i i r p i i p p i i N P CO P i i p p r p O P N P CO P CO P i i p p r p i pf i rf idTT T Q dT T T Q b T T T T T T T dT T T dTT T dT n C n C n H H T TT i i r p i i p p i i 9.0)1019.01058.528.33(2.02828389.0)1019.01058.528.33(2.0282838)(0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)(253125029812502982531250298125029829812125029815231250253253298,,,,298,⨯⨯-⨯++⨯-=⨯⨯-⨯++⨯-===+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆-----------⎰⎰⎰⎰⎰∑∑⎰10. (a) for the reaction 2221CO O CO →+,what is the enthalpy of reaction (0H ∆) at 298 K ?(b) a fuel gas, with composition 50% CO, 50% N 2 is burned using the stoichiometric amount of air. What is the composition of the flue gas?(c) If the fuel gas and the air enter there burner at 298 K, what is the highest temperaturethe flame may attain (adiabatic flame temperature)? DA TA :standard heats of formation f H ∆ at 298 K (1.10))/(393000)/(1100002mol J CO mol J CO -=-=Heat capacities [J/(mol K)] to be used for this problem N 2=33, O 2=33, CO=34, CO 2=57 Solution)(21100)298)(39889.0(222.02830000)/(3975.03325.057)/(33111.034222.033666.033)(%,75%%,251.111002.22%%1.11%%,6.66%%,2.222.0/25.015.0%)()/(283000393000110000)(,0,,,,,,22220,298,0,298,0K T T dT C n H H K mol J X C C K mol J X C C C N CO product O N CO fuel b mol J n H n H H a P p p i P r i P r i P p i P p i P f i r f ==-⨯-⨯=-∆=∆∙=⨯+⨯==∙=⨯+⨯+⨯====-====+==+-=∆-∆=∆⎰∑∑∑∑11.a particular blast furnace gas has the following composition by (volume): N 2=60%, H 2=4, CO=12%, CO 2=24%(a) if the gas at 298K is burned with the stochiometric amount of dry air at 298 K, what is the composition of the flue gas? What is the adiabatic flame temperature? (b) repeat the calculation for 30% excess combustion air at 298K(C)what is the adiabatic flame temperature when the blast furnace gas is preheated to 700K (the dry air is at 298K)(d) suppose the combustion air is not dry ( has partial pressure of water 15 mm Hg and a total pressure of 760 mm Hg) how will the flame temperature be affected? DA TA(k J/mol) (1.11)2CO CO FOR513.393523.110)/(--∆m o lkJ H f 2222,)(O N g O H CO CO FOR34505733]/[K mol J C P ∙Solution)(1052)(75438286370])295.03450(241604[026.0])335.03457(110523393513[079.0])([%8.66%%,8.6%%,6.2%%,8.15%%,9.72.0/83.110012%)()(1122)(82538313430])295.03450(241604[029.0])335.03457(110523393513[086.0])([%7.65%%,7.5%%,9.2%%,1.17%%,6.82.0/810012%2121)(,,,,,,,02222,,,,,,,0222222222K T K T T n C T T X C dT n C n C H x H N O H CO CO b K T K T T n C T T X C dT n C n C H x H N O H CO CO OH O H CO O CO a i i r P ii P i i r P i i p P i i i i r P ii P i i r P i i p P i i ===∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====⨯+====∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====+=→+→+∑∑∑⎰∑∑∑∑∑⎰∑∑)(1419),(11213842594034286.0)402(2.39714.0])295.03450(241604[029.0])335.03457(110523393513[086.0)3(K T K T T T T T H ===∆=∆⨯--∆⨯-∆-⨯--+∆-⨯---=∆12.A bath of molten copper is super cooled to 5℃ below its true melting point. Nucleation of solid copper then takes place, and the solidification proceeds under adiabatic conditions. What percentage of the bath solidifies?DATA: Heat of fusion for copper is 3100 cal/mol at 1803℃(the melting point of copper) C P,L =7.5(cal/mol ℃), C P,S =5.41+(1.5*10-3T )(cal/mol ℃) (1.12) Solution)/(310355.75.0)17981803(105.1541.5310002231798,1798,17981803,18031798,1803,mol cal H H dT C dT C HL S SL L P S P LS =⨯-⨯-⨯+⨯+==+++-⎰⎰13.Cuprous oxide (Cu 2O) is being reduced by hydrogen in a furnace at 1000K, (a)write the chemical reaction for the reduced one mole of Cu 2O(b)how much heat is release or absorbed per mole reacted? Given the quantity of heat and state whether heat is evolved (exothermic reaction) or absorbed (endothermic reaction) DATA: heat of formation of 1000K in cal/mol Cu 2O=-41900 H 2O=-59210 (1.13) solution)/(173104190059210222mol cal H OH Cu H O Cu =-=∆+=+,exothermic reaction14. (a) what is the enthalpy of pure, liquid aluminum at 1000K?(b) an electric resistance furnace is used to melt pure aluminum at the rate of 100kg/h. the furnace is fed with solid aluminum at 298K. The liquid aluminum leaves the furnace at 1000K. what is the minimum electric powder rating (kW) of furnace.DATA : For aluminum : atomic weight=27g/mol, C p,s =26(J/molK), C p,L =29(J/molK), Melting point=932K, Heat of fusion=10700J/mol (1.14)Solution )(28.0)(7.2793600110002727184)/(2718410700)9321000(29)298932(261000932,932298,1000,kW W P mol J H dT C dT C H SLL P S P l ==⨯⨯==+-⨯+-⨯=++=⎰⎰15 A waste material (dross from the melting of aluminum) is found to contain 1 wt% metallic aluminum. The rest may be assumed to aluminum oxide. The aluminum is finely divided and dispersed in the aluminum oxide; that is the two material are thermally connected.If the waster material is stored at 298K. what is the maximum temperature to which it may rise if all the metallic aluminum is oxidized by air/ the entire mass may be assumed to rise to the same temperature. Data : atomic weight Al=27g/mol, O=16g/mol, C p,s,Al =26(J/molK), C p,s,Al2O3=104J/mol, heat formation of Al 2O 3=-1676000J/mol(1.15)Solution;)(600)(3021041029927275.116122711676000K T K T T ==∆∆⨯⨯++⨯⨯=⨯⨯16 Metals exhibit some interesting properties when they are rapidly solidified from the liquid state. An apparatus for the rapid solidification of copper is cooled by water. In the apparatus, liquid copper at its melting point (1356K) is sprayed on a cooling surface, where it solidified and cools to 400K. The copper is supplied to the apparatus at the rate of one kilogram per minute. Cooling water is available at 20℃, and is not allowed to raise above 80℃. What is the minimum flow rate of water in the apparatus, in cubic meters per minute? DATA; for water: C p =4.184J/g k, Density=1g/cm 3; for copper: molecular weight=63.54g/mol C p =7cal/mol k, heat of fusion=3120 cal/mol (1.16)Solution:min)/(10573.2)2080(1min /min54.631000)]4001356(73120[min /33m V VQ Q Water Copper -⨯=-=⨯⨯-⨯+=17 water flowing through an insulated pipe at the rate of 5L/min is to be heated from 20℃ to 60℃ b an electrical resistance heater. Calculate the minimum power rating of the resistance heater in watts. Specify the system and basis for you calculation. DATA; For water C p =4.184J/g k, Density=1g/cm 3 (1.17) Solution: )(139476010005)2060(184.4W W =⨯⨯-⨯=18 The heat of evaporation of water at 100℃ and 1 atm is 2261J/mol (a) what percentage of that energy is used as work done by the vapor?(b)if the density of water vapor at 100℃ and 1 atm is 0.597kg/m 3 what is the internal energy change for the evaporation of water? (1.18)Solution: )/(375971822613101%6.71822613101%)/(31010224.0273373101325mol J Q W U mol J V P =⨯+-=+=∆=⨯==⨯⨯=∆19 water is the minimum amount of steam (at 100℃ and 1 atm pressure) required to melt a kilogram of ice (at 0℃)? Use data for problem 1.20 (1.19) Solution )(125,3341000)10018.42261(g m m =⨯=⨯+20 in certain parts of the world pressurized water from beneath the surface of the earth is available as a source of thermal energy. To make steam, the geothermal water at 180℃ is passed through a flash evaporator that operates at 1atm pressure. Two streams come out of the evaporator, liquid water and water vapor. How much water vapor is formed per kilogram of geothermal water? Is the process reversible? Assume that water is incompressible. The vapor pressure of water at 180℃ is 1.0021 Mpa( about 10 atm) Data: C P,L =4.18J/(g k), C P,v =2.00J/(g k), △H V =2261J/g, △H m =334 J/g (1.20) Solution:leirreversib g x x x )(138),1000(8018.4)8018.48022261(=-⨯⨯=⨯-⨯+The problems of the second law1 The solar energy flux is about 4J cm 2/min. in no focusing collector the surface temperature can reach a value of about 900℃. If we operate a heat engine using the collector as the heat source and a low temperature reservoir at 25℃, calculate the area of collector needed if the heat engine is to produce 1 horse power. Assume the engine operates at maximum efficiency. (2.1)Solution )(664.0)(74660104273900)25900(24m S W tWP StQ T T T W H H L H ===⨯⨯+-=-=2 A refrigerator is operated by 0.25 hp motor. If the interior of the box is to be maintained at -20℃ ganister a maximum exterior temperature of 35℃, what the maximum heat leak (in watts) into the box that can be tolerated if the motor runs continuously? Assume the coefficient of performance is 75% of the value for a reversible engine. (2.2)Solution:)(114474625.02035202733475.0%75W P P T T T P Q T T T W L LLLH HHLH =⨯⨯+-⨯=-=-=3 suppose an electrical motor supplies the work to operate a Carnot refrigerator. The interior of the refrigerator is at 0℃. Liquid water is taken in at 0℃ and converted to ice at 0℃. To convert 1 g of ice to 1 g liquid. △H=334J/g is required. If the temperature outside the box is 20℃, what mass of ice can be produced in one minute by a 0.25 hp motor runningcontinuously? Assume that the refrigerator is perfectly insulated and that the efficiencies involved have their largest possible value. (2.3)Solution: )(4576033474625.020273g m M m P P T T T P L LLLH ===⨯⨯=-=4 under 1 atm pressure, helium boils at 4.126K. The heat of vaporization is 84 J/mol what size motor (in hp) is needed to run a refrigerator that must condense 2 mol of gaseous helium at 4.126k to liquid at the same temperature in one minute? Assume that the ambient temperature is 300K and that the coefficient of performance of the refrigerator is 50% of the maximum possible. (2.4)Solution: )(52.0)(393'60284216.4216.4300'5.0%50hp W P P T T T P P Q T T T W L L L H LLLH ==⨯⨯-=-==-= 5 if a fossil fuel power plant operating between 540 and 50℃ provides the electrical powerto run a heat pump that works between 25 and 5℃, what is the amount of heat pumped into the house per unit amount of heat extracted from the power plant boiler. (a) assume that the efficiencies are equal to the theoretical maximum values(b) assume the power plant efficiency is 70% of maximum and that coefficient ofperformance of the heat pump is 10% of maximum(c) if a furnace can use 80% of the energy in fossil foe to heat the house would it be moreeconomical in terms of overall fissile fuel consumption to use a heat pump or a furnace ? do the calculations for cases a and b (2.5)solution:1,2,2,1,212,2,2,2,21,1,1,1,198.82527352527354050540)(H H H H H H L H H H L H P P P P P P P T T T P P T T T P a =+-=+-=-=-=.,)(6286.0)(1,2,not is b ok is a c P P b H H =6 calculate △U and △S when 0.5 mole of liquid water at 273 K is mixed with 0.5 mol of liquid water at 373 K and the system is allowed to reach equilibrium in an adiabaticenclosure. Assume that C p is 77J /(mol K) from 273K to 373K (2.6) Solution:)/(933.0)273323ln(5.0)373323ln(5.0)ln()ln()(02211K J C C T T C n T T C n S J U P P E P E P =+=+=∆=∆ 7 A modern coal burning power plant operates with a steam out let from the boiler at 540℃and a condensate temperature of 30℃.(a) what is the maximum electrical work that can be produced by the plant per joule of heatprovided to the boiler?(b) How many metric tons (1000kg) of coal per hour is required if the plant out put is to be500MW (megawatts). Assume the maximum efficiency for the plant. The heat of combustion of coal is 29.0 MJ/k g(c) Electricity is used to heat a home at 25℃ when the out door temperature is 10℃ bypassing a current through resistors. What is the maximum amount of heat that can be added to the home per kilowatt-hour of electrical energy supplied? (2.7)Solution:)(3.69)(6937136005000.29)()(89.013054030540)(ton kg m T T T mb J Q T T T W a LH LH H L H ==⨯=-=+-=-=)(9.191102525273)(J Q Q T T T W c H HHLH =-+=-=8 an electrical resistor is immersed in water at the boiling temperature of water (100℃) the electrical energy input into the resistor is at the rate of one kilowatt(a) calculate the rate of evaporation of the water in grams per second if the water containeris insulated that is no heat is allowed to flow to or from the water except for that provided by the resistor(b) at what rate could water could be evaporated if electrical energy were supplied at therate of 1 kw to a heat pump operating between 25 and 100℃data for water enthalpy of evaporation is 40000 J/mol at 100℃; molecular weight is 18g/mol; density is 1g/cm 3 (2.8)solution:)(23.2,2510027310010004000018)()(45.0,10004000018)(g m m b g m ma =-+===9 some aluminum parts are being quenched (cooled rapidly ) from 480℃ to -20℃ byimmersing them in a brine , which is maintained at -20℃ by a refrigerator. The aluminum is being fed into the brine at a rate of one kilogram per minute. The refrigerator operates in an environment at 30℃; that is the refrigerator may reject heat at 30℃. what is them minuspower rating in kilowatts, of motor required to operate the refrigerator? Data for aluminum heat capacity is 28J/mol K; Molecular weight 27g/mol (2.9)Solution:)(5.102)(102474202732030)20480(28271000kW W P P T T T P P L L L L H W L ==---=-=--⨯=10 an electric power generating plant has a rated output of 100MW. The boiler of the plantoperates at 300℃. The condenser operates at 40℃(a) at what rate (joules per hour) must heat be supplied to the boiler?(b) The condenser is cooled by water, which may under go a temperature rise of no morethan 10℃. What volume of cooling water in cubic meters per hour, is require to operate the plant?(c) The boiler tempeture is to be raised to 540℃,but the condensed temperature and electricoutput will remain the same. Will the cooling water requirement be increased, decreased, or remain the same?Data heat capacity 4.184, density 1g/cm 3 (2.10)Solution: )(109.7)(102.21040300273300)(1188J t P Q W P T T T P a H H L H H H ⨯==⨯=-+=-=)(1003.1184.41010)(103.4)(34611m V Q V J Q b L L ⨯==⨯⨯⨯⨯=noW P T T T P c L H H H )(10626.11040540273540)(88⨯=-+=-=11 (a) Heat engines convert heat that is available at different temperature to work. Theyhave been several proposals to generate electricity y using a heat engine that operate on the temperature differences available at different depths in the oceans. Assume that surface water is at 20℃, that water at a great depth is at 4℃, and that both may be considered to be infinite in extent. How many joules of electrical energy may be generated for each joule of energy absorbed from surface water? (b) the hydroelectric generation of electricity use the drop height of water as the energy source. in a particular region the level of river drops from 100m above sea level to 70m above the sea level . what fraction of the potential energy change between those two levels may be converted into electrical energy? how much electrical energy ,in kilowatt-hours, may be generated per cubic meter of water that undergoes such a drop? (2.11)Solution:)/(1006.136001000)()(055.0127320420)(6h kW hmg P b J Q T T T W a H H L H ⨯=⨯∆==+-=-=12 a sports facility has both an ice rink and a swimming pool. to keep the ice frozen during the summer requires the removal form the rink of 105 KJ of thermal energy per hour. It has been suggested that this task be performed by a thermodynamic machine, which would be use the swimming pool as the high temperature reservoir. The ice in the rink is to be maintain at a temperature of –15℃, and the swimming pool operates at 20℃, (a) what is the theoretical minimum power, in kilowatts, required to run the machine? (b) how much heat , in joule per hour , would be supplied t the pool by this machine? (2.12)Solution:)(1014.1101527320273)()(77.33600/10152731520)(555kJ Q b kW P T T T P a H L L L H ⨯=-+==-+=-=13solution:)/(81.6810ln 314.877.45277.6282.4)/(152940)()/(67.4977.45277.6282.4)()/(152940)(22)(2molK cal S mol cal H d molK cal S c mol cal H b AlNN Al a -=+-⨯-⨯=∆=∆-=-⨯-⨯=∆=∆=+14solution:)/(2257412000)27340273ln 184.4273336263273ln1.2()(40,010,K J dT T C T H dT T C m S WATER P m mICE P =+++=+∆+=∆⎰⎰- 15)(70428)(2896100077773002J W J Q T T T W L L L H ==-=-=16)(4.3719))2.4300(314.85.13.83(3002.4300)(7.58663.832.42.4300J Q T T T W J Q T T T W H H L H L L L H =-⨯+-=-==-=-=17yesd Q c K J PPnR S b J pdV n W Q OU T a )(0)()/(1.1910ln 314.81ln )()(570410ln 298314.810)(0==⨯⨯==∆=⨯⨯=-=-==∆=∆⎰18)(122233527302033560500g m m m T T T L L H =-=-=⨯教材各章习题参考答案 (魏)3.2 ΔG = -108.9 J/mol; ΔS = -21.42 J/(mol.K)3.6 (a ) 22.09/(.)S J mol K ∆=;(b) At 0︒C, ∆G =0; (c) ∆H = 5841.9 J;(d) ∆S =21.39J /(mol.K),∆G = 109.38 J/mol4.1 (a ) 2898.28J/mol; ( b ) No; ( c ) 345 J/mol; ( d ) 14939 atm; ( e )4921 J/mol4.2 ( a ) 272.8K; ( b ) Pa P 610345⨯≈∆ ; ( c ) 249.46K 4.3 1202K4.4 P=5.73⨯10-6 atm 4.5 0.16P4.7 08.10430685ln +-=TP 4.8 ( a ) 1180K; ( b ) 695.3K; ( c ) 114.4kJ/mol; ( d ) 7123 J/mol; ( e )4.2J/mol4.9 In the initial state: 4.06 mol %; in the final state:5.3 mol% 4.10 ( a )348 kJ; ( b ) 2.3×10-3Pa ;( c ) “ solution not possible ”; (d ) “solution not possible ”5.1 atm p H 0005.0= 5.2、atmp o 1221007.1-⨯=If the error in enthalpy is 500cal, the uncertainty in the pressure calculated is 28.6%, and if the error in enthalpy is -500cal, the uncertainty is -22.1%5.3、(a) T =462K; (b) T = 420K5.4 (a) atm P O 2621014.1-⨯=, (b) P O2 =2.28⨯10-10 atm., (c) The equilibriumoxygen pressure remains the same when the total pressure increases, which means a higher purity level of N 2 .5.5 (a) 略; (b) Pa atm P H 8.181013056.1800019.0)('2=⨯==; (c) 21.5L Ar isneeded to be bubbled into the melt.5.6(a )l n K a1/T, 10-31/K=∆-=∆o o G kJ H 1000;50- 66.6kJ(b) Ja = 3 < Ka, the reaction will proceed from left to right, and theatmosphere will not oxidize Ni. 5.7 略5.8. (a) P SiO = 8.1⨯10-8 (atm) (b) ∆H o = 639500J; ∆So =334.9J/K (c ) PO2 =10-30 atm 5.9 5.10.J H o72250=∆,the reaction is an endothermic one.5.11. (a),166528J H o =∆ the reaction is an endothermic one.; (b) At 1168K, the equilibrium pressure of CO2 equals one atmosphere.)(106.08)(atm Pg u -⨯=5.12 (a) 略 , (b) Mg CO P P =; (c) T = 2037 K 5.13 (a) 略; (b) 13109.2⨯=K ; (c) ppm 186.0 5.14 (a) 略; (b) kJ H 52.267=∆; (c) K T 1592= 5.15 (a) )(106.13atm -⨯≈; (b) )(1028.210)(2atm P g O H -⨯=5.16 (a) 97.9=K ; (b) atm x 14.4=; (c) if the temperature is increased, the fraction of water reacted will increase since the equilibria constant increases with increasing temperature.6.2 (a )1.287V;(b) When the water impure, the voltage will go higher; (c) 1.219V 6.4 (a) 145.3kJ;(b) The maximum work that could be derived is 702.36kJ; (c) In this case, the maximum work that could be derived is696.56kJ.6.5 (a) -6252J/mol; (b) 370.0)(=II Cd a ; (c) )(42.3mmHg P Cd =; 6.67.87⨯10-4 V 6.7 (a))(22g Cl Mg MgCl +=(b) Pa P Cl 21'1086.82-⨯=;(c) 2.485V6.8 (a) Pa P O 11'2105.5-⨯=;(b) Anode: e Ni Ni 2+→Cathode: -→+2222/1O e O ;(c) 0.757V; (d) 0.261V6.10 (a) )(509.3V E o=;(b) 0.074kJ;(c) 4.1⨯106J;(d) Yes. In this case, the open circuit voltage is 3.648V;(e) In this case, to keep the temperature constant, 3.92⨯106J heatshould be removed from the battery per hour. 6.11(a) TG CO Al C O Al o 26.3211008.12/322/36232-⨯=+=+Δ(b) The minimum voltage at which the electrolysis may be carriedout at 1250K is 1.172V .7.1 0.117 atm 7.5 ( a ) ,82.5 2.5 2.5B A BA BB T PV V V x x x x x ⎛⎫∂=+=--⎪∂⎝⎭ ,102.5 2.5 2.5A B A A B A T PV V V x x x x x ⎛⎫∂=+=-- ⎪∂⎝⎭( b) B A M x x V 5.2=7.7 2)1(736.0ln Sn Sn x --=γ7.8 The maximum solubility of MgF2 in liquid MgCl at 900︒C is 19。
热力学高中试题及答案

热力学高中试题及答案一、选择题1. 热力学第一定律表明能量守恒,下列哪项描述是正确的?A. 能量可以被创造或消灭B. 能量可以在不同形式之间转化,但总量保持不变C. 能量只能从高温物体转移到低温物体D. 能量守恒定律不适用于微观粒子答案:B2. 根据热力学第二定律,下列哪项描述是正确的?A. 热可以从低温物体自发地传递到高温物体B. 任何自然过程总是趋向于增加系统的熵C. 熵是一个状态函数,其值与过程无关D. 热力学第二定律只适用于理想气体答案:B3. 理想气体在等压过程中,下列哪项描述是正确的?A. 体积与温度成正比B. 内能与压力成正比C. 温度与体积成正比D. 压力与体积成反比答案:A4. 理想气体在等容过程中,下列哪项描述是正确的?A. 压力与温度成正比B. 体积与温度成正比C. 温度与压力成正比D. 压力与体积成正比答案:A5. 理想气体在绝热过程中,下列哪项描述是正确的?A. 气体与外界没有热量交换B. 气体与外界没有做功C. 气体与外界没有热量交换和做功D. 气体与外界有热量交换和做功答案:C二、填空题1. 热力学第一定律的数学表达式是:__________。
答案:ΔU = Q + W2. 热力学第二定律的克劳修斯表述是:__________。
答案:不可能实现一个循环过程,其唯一结果就是从单一热源吸热并全部转化为功。
3. 理想气体状态方程是:__________。
答案:PV = nRT4. 熵变的计算公式是:__________。
答案:ΔS = Q/T5. 热机效率的计算公式是:__________。
答案:η = 1 - (Q_c/Q_h)三、简答题1. 简述热力学第一定律和第二定律的物理意义。
答案:热力学第一定律表明能量守恒,即能量不能被创造或消灭,只能从一种形式转化为另一种形式,总量保持不变。
热力学第二定律表明自然过程总是趋向于增加系统的熵,即自然界的自发过程总是朝着熵增的方向进行,这反映了自然界的不可逆性。
热力学练习题

热力学练习题在热力学领域中,练习题是提高理论知识应用能力的重要手段。
下面将介绍一些常见的热力学练习题,以加深对热力学概念和计算方法的理解。
1. 理想气体的状态方程假设某理想气体的状态方程为P = nRT/V,其中P表示气体的压力,n表示物质的物质的摩尔数,R表示气体常数,T表示气体的温度,V表示气体的体积。
根据该状态方程,回答以下问题:(1)某容器内有1摩尔理想气体,其体积为2L,温度为300K,求气体的压力。
(2)某容器内的理想气体的摩尔数为0.5mol,其体积为4L,温度为400K,求气体的压力。
(3)某容器内1摩尔理想气体的压力为2atm,温度为400K,求气体的体积。
2. 热力学第一定律热力学第一定律描述了一个系统中能量的守恒原理。
根据此定律,系统的内能变化等于吸热与做功的和。
回答以下问题:(1)某系统吸收了200J的热量,同时对外做了100J的功,求系统内能的变化。
(2)某系统吸收了150J的热量,内能增加了100J,求系统对外做的功。
3. 热力学循环热力学循环是热力学中重要的概念,描述了一系列状态经历的过程。
回答以下问题:(1)对于一个闭合系统,进行完全的热力学循环后,系统内能是否发生变化?(2)对于一个理想气体的循环过程,从状态A到状态B吸热100J,从状态B到状态C做功50J,从状态C到状态A释放30J的热量,求该循环过程中系统的净吸热量和净做功。
4. 热力学中的熵变熵是热力学中描述混乱程度的物理量,熵的增加代表了系统无序性的增加。
回答以下问题:(1)若一个系统的初始熵为50J/K,最终熵为100J/K,求该系统的熵变。
(2)若一个系统吸收了250J的热量,温度上升了50K,求系统的熵变。
以上是一些常见的热力学练习题,通过解答这些题目可以更好地理解和运用热力学的知识。
在实际应用中,还可根据具体问题进行推导和计算,以提高热力学问题解决能力。
希望以上练习对您的学习有所帮助!。
(完整word版)热力学练习题2

热力学练习题2一 选择题1. 蒸汽压缩制冷循环过程中,制冷剂蒸发吸收的热量一定 C 制冷剂冷却和冷凝放出的热量A 大于B 等于C 小于2.卡诺制冷循环的制冷系数与 B 有关。
A 制冷剂的性质B 制冷剂的工作温度C 制冷剂的循环速率D 压缩机的功率3.汽液平衡关系li v i f f ˆˆ=的适用的条件 (A )A 无限制条件B 低压条件下的非理想液相C 理想气体和理想溶液D 理想溶液和非理想气体4.汽液平衡关系i l i i v i x y ϕϕˆˆ=的适用的条件 (A ) A 无限制条件 B 低压条件下的非理想液相 C 理想气体和理想溶液 D 理想溶液和非理想气体5.汽液平衡关系i i si i x P Py γ=的适用的条件 (B )A 无限制条件B 低压条件下的非理想液相C 理想气体和理想溶液D 理想溶液和非理想气体6.汽液平衡关系si i i Py P x =的适用的条件 (C )A 无限制条件B 低压条件下的非理想液相C 理想气体和理想溶液D 理想溶液和非理想气体。
7. 关于化工热力学应用的下列说法中不正确的是 BA. 可以判断新工艺、新方法的可行性B. 预测反应的速率C. 通过热力学模型,用易测得数据推算难测数据;用少量实验数据推算大量有用数据D. 相平衡数据是分离技术及分离设备开发、设计的理论基础8. 超临界流体存在的条件是 AA. 高于T c 和高于p cB. 高于T c 和低于p cC. 低于T c 和高于p cD. 低于T c 和低于p c9. 对应态原理认为,在相同的对比态下,所有物质表现出相同的性质。
即 DA. 若V r ,p r 相同,则ω相同B. 若T r ,Z r 相同,则V r 相同C. 若p r ,ω相同,则V r 相同D. 若T r ,p r 相同,则V r 相同 10. 汽液平衡计算方程式S i i i i py x p γ=适用于 BA. 汽液相均为理想体系B. 汽相为理想体系且液相为非理想体系C. 汽液两相均为非理想体系D. 汽相非理想体系且液相为理想体系11. 以下4个偏导数中,表示偏摩尔性质的是 CA. ()j i i nS ,nV ,n nU n ≠⎡⎤∂⎢⎥∂⎣⎦B. ()j i i nS ,p,n nH n ≠⎡⎤∂⎢⎥∂⎣⎦ C. ()j i T ,p,n nG n ⎡⎤∂⎢⎥∂⎣⎦ D. ()j ii nV ,T ,n nA n ≠⎡⎤∂⎢⎥∂⎣⎦ 12. 绝热可逆膨胀过程线在T-S 图上是 BA. 平行于横坐标的直线B. 平行于纵坐标的直线C. 沿等焓线变化的D. 沿等干度线变化的13. 关于理想溶液的各种表达中错误的是 DA. 分子结构相似,大小一样;分子间的作用力相同;混合时没有热量和体积变化B. 在全浓度范围内,每个组分均遵守Lewis-Randall 定则C. ii id i x f f 0ˆ= D. V G H ∆∆∆,,均为零14. 对理想溶液具有负偏差的体系中,各组分活度系数i γ DA. >1B. = 0C. = 1D. < 115. 气体经过稳流绝热过程,对外作功,如忽略动能和位能变化,无摩擦损失,则此过程气体焓值 BA. 增加B. 减少C. 不变D. 不能确定16. 不可逆过程中孤立体系的DA. 总熵是增加的,也是增加的B. 总熵是减少的,也是减少的C. 总熵是减少的,但是增加的D. 总熵是增加的,但是减少的17. 关于做功和加热本领的描述,不正确的是 CA. 压力相同,过热蒸汽的做功本领比饱和蒸汽大B. 温度相同,高压蒸汽的作功本领比低压蒸汽强C. 温度相同,高压蒸汽的加热能力比低压蒸汽强D. 放出的热相同,高温高压蒸汽的作功本领比低温低压蒸汽的大18. 对同一朗肯循环装置,在绝热条件下如果提高汽轮机入口蒸汽压力,而温度等其余条件不变,则其热效率 AA. 有所提高,乏气干度下降B. 不变,乏气干度增加C. 有所提高,乏气干度增加D. 热效率和干度都不变 19. 关于制冷原理,以下说法不正确的是 DA. 任何气体,经等熵膨胀后,温度都会下降B. 只有当0J μ>,经节流膨胀后,气体温度才会降低C. 在相同初态下,等熵膨胀温度下降比节流膨胀温度下降的多D. 任何气体,经节流膨胀后,温度都会下降20. 吸收式制冷循环中解吸器,换热器,吸收器和泵这一系统的作用相当于蒸汽压缩制冷循环的 CA. 节流阀B. 膨胀机C. 压缩机D. 蒸发器 21. 关于化工热力学研究特点的下列说法中不正确的是 BA. 研究体系为实际状态B. 解释微观本质及其产生某种现象的内部原因C. 处理方法为以理想态为标准态加上校正D. 应用领域是解决工厂中的能量利用和平衡问题22. Pitzer 提出的由偏心因子ω计算第二维里系数的普遍化关系式是 CA. 01B B B ω=⋅B. 01B B B ω=+C.01c c Bp B B RT ω=+ D. 01ccBp B B RT ω=⋅ 23. 下列关于G E 关系式正确的是 CA. ()E i i G RT x ln x =∑B. ()E i i ˆG RT x lna =∑C. ()E i i G RT x ln γ=∑D. ()E i i G R x ln x =∑24. 下列偏摩尔自由焓表达式中,错误的是 DA. i i G μ=B. i i i dG V dp S dT =-C. ()j i i i T ,p,n nG G n ≠⎡⎤∂=⎢⎥∂⎣⎦ D. ()j ii i T ,nV ,n nG G n ≠⎡⎤∂=⎢⎥∂⎣⎦ 25. 体系从同一初态到同一终态,经历二个不同过程,一为可逆过程,一为不可逆过程,此二过程环境熵变关系为 AA. (ΔS 环)可逆< (ΔS 环)不可逆B. (ΔS 环)可逆 >(ΔS 环)不可逆C. (ΔS 环)可逆 = (ΔS 环)不可逆D. (ΔS 环)可逆= 026. 混合气体的第二维里系数是 CA. T 和p 的函数B. 仅为T 的函数C. T 和组成的函数D. p 和组成的函数27.衡算的依据是 D A. 热力学第一定律 B. 热力学第二定律 C. 热力学第三定律 D. 热力学第一、二定律28. 混合物的逸度与纯组分逸度之间的关系是 CA.i i ˆf x f =∑B. iˆf f =∑ C. i i iˆfln f x ln x =∑ D. 0i ln f x lnf =∑29. 在T-S 图上,绝热可逆过程工质的状态总是沿着下列哪条线进行的 BA. 等焓线B. 等熵线C. 等干度线D. 等压线30. 理想功实现的条件为 BA. 完全不可逆B. 完全可逆C. 部分可逆D. 部分不可逆31. 气体真空节流膨胀产生冷效应时的微分节流系数是 BA. 0J μ=B. 0J μ>C. 0J μ<D. 不确定32. 可逆绝热膨胀过程的特征是 BA. 等焓B. 等熵C. 等温D. 等压33. 熵产是由于下列哪种原因而引起的 CA. 体系与环境之间的热量交换B. 体系与外界功的交换C. 体系内部的不可逆性D. 体系与外界的物质交换二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
材料热力学习题答案

材料热力学习题答案材料热力学习题答案热力学是研究物质的能量转化和能量传递规律的科学。
在材料科学中,热力学是一个重要的分支,它可以帮助我们理解材料在不同条件下的性质和行为。
在学习热力学的过程中,我们经常会遇到一些习题,下面我将给出一些常见材料热力学习题的答案。
1. 问题:在常压下,将1mol的水从25℃加热到100℃,需要吸收多少热量?答案:要计算这个问题,我们可以使用热容的概念。
热容是物质在单位温度变化下吸收或释放的热量。
对于水来说,其热容为4.18J/(g℃)。
首先,我们需要知道水的质量,由于1mol的水的摩尔质量为18g/mol,因此1mol的水的质量为18g。
接下来,我们需要计算水的温度变化,即100℃-25℃=75℃。
最后,我们可以使用公式Q=mCΔT来计算所需吸收的热量,其中Q是热量,m是质量,C是热容,ΔT是温度变化。
代入数值得到Q=18g×4.18J/(g℃)×75℃=5613J。
2. 问题:在恒定温度下,气体的体积与压力之间的关系是什么?答案:根据热力学的理论,理想气体的体积与压力成反比。
这可以用理想气体状态方程PV=nRT来解释,其中P是压力,V是体积,n是物质的摩尔数,R是气体常数,T是温度。
根据这个方程,当温度保持不变时,如果压力增加,体积将减小,反之亦然。
这种关系被称为波义尔定律。
3. 问题:在材料科学中,什么是熵?答案:熵是热力学中的一个重要概念,它用于描述物质的无序程度。
熵可以理解为系统的混乱程度或无序程度。
根据热力学的第二定律,系统的熵总是趋向于增加,即系统总是朝着更高的熵状态发展。
当物质从有序状态转变为无序状态时,熵会增加。
例如,当固体融化成液体,或者液体蒸发成气体时,系统的熵会增加。
熵在材料科学中起着重要的作用,可以帮助我们理解材料的相变行为和稳定性。
4. 问题:什么是自由能?答案:自由能是热力学中另一个重要的概念,它用于描述系统的稳定性和可逆性。
材料热力学试题2010-2011

点=1358K,Au 的熔点=1338K,摩尔气体常数 R=8.314J/(mol·k). 七、试通过如图所示的二元合金相图(a)和(b),判断Mg-Si和Cr-W溶体的性质、溶体组元 间的相互作用能。(6分)
(a)
(b)
八、证明分散在 α 相中的 θ 相 (AmBn)的溶解度 X B 与 θ 相粒子的半径 r 之间存在以下关系: (10 分)
1 2 V XB 0XB exp nRT r
这里, X B 是 θ 相粒子具有平面界面(r=∞)时的平衡溶解度,σ 是 α/θ 界面的能量,V 是 θ 相的摩尔体积。并假设 α 溶体为正规溶体,且 0 X B 1。
0
第 2 页
(共
(G / T ) G G V S H , , T P P T (1/ T ) P
(9 分)
(2)在定压热容 Cp 的经验表达式通常采用 Cp=a+bT+cT-2 的形式,请导出此时焓(H)、熵 (S)和 Gibbs 自由能(G)的表达式。(9 分) 三、简答题: (1) 请解释化合物的标准生成焓、标准生成自由能。 (6 分) (2) 用吉布斯自由能曲线及公切线法则说明某些化合物(中间相)存在的成分范围 可能不包含其理想配比的成分。(6 分) (3) 简述 Calphad 的三要素及其主要功能。 (6 分) (4) 请解释 Onsager 倒易关系、最小熵产生原理。 (6 分) 四、 请分析溶解度间隙和有序无序转变发生的热力学条件, 并讨论在何种情况下会导致在一 个材料中同时发生溶解度间隙和有序无序转变。 (8 分) 五、试从热力学的角度分析合金低温时效过程中出现 GP 区(与母相晶体结构相同的溶质原 子富集区) ,包括自由能-成分曲线、GP 区形核的形核驱动力。(8 分) 六、 50%Au-50%Cu( 原子百分数 ) 的混合物在高温下形成固溶体,在低温下形成化合物 (CuAu), (10 分) (1)1mol Cu 和 1mol Au 在 1150K 恒温混合,此时的 Gibbs 自由能的变化量为多少?假设 Cu 和 Au 形成理想溶体。 (2)计算 CuAu 化合物和 Cu-Au 理想溶体的相变温度。假设 Cu-Au 固溶体和有序化合物之 间的相变为一级相变。 (3)实测的 CuAu 化合物和 Cu-Au 理想溶体之间的相变温度为 683K。请解释你计算的结 果比实测结果高或者低的原因。 所需数据:CuAu 化合物的形成焓=-11904J/mol,CuAu 化合物的形成熵忽略不计;Cu 的熔
热力学第二定律练习题及答案

热力学第二定律练习题一、是非题,下列各题的叙述是否正确,对的画√错的画×1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( )2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞开系统。
( )3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。
( )4、隔离系统的熵是守恒的。
( )5、一定量理想气体的熵只是温度的函数。
( )6、一个系统从始态到终态,只有进行可逆过程才有熵变。
( )7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。
( )8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>∆G 和∆G <0,则此状态变化一定能发生。
( )9、绝热不可逆膨胀过程中∆S >0,则其相反的过程即绝热不可逆压缩过程中∆S <0。
( )10、克-克方程适用于纯物质的任何两相平衡。
( )11、如果一个化学反应的∆r H 不随温度变化,则其∆r S 也不随温度变化, ( )12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。
( )13、在-10℃,101.325 kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。
( )14、理想气体的熵变公式只适用于可逆过程。
( ) 15、系统经绝热不可逆循环过程中∆S = 0,。
( ) 二、选择题1 、对于只做膨胀功的封闭系统的(∂A /∂T )V 值是:( )(1)大于零 (2) 小于零 (3)等于零 (4)不确定2、 从热力学四个基本过程可导出VU S ∂⎛⎫ ⎪∂⎝⎭=( ) (1) (2) (3) (4) T p S pA H U G V S V T ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。
热力学考试试题

热力学考试试题一、选择题(每题 5 分,共 30 分)1、下列关于热力学第一定律的表述中,正确的是()A 系统从外界吸收的热量等于系统内能的增加量与系统对外做功之和B 系统内能的增加量等于系统从外界吸收的热量减去系统对外做功C 系统对外做功等于系统从外界吸收的热量减去系统内能的增加量D 以上表述都不正确2、一定质量的理想气体,在绝热膨胀过程中()A 气体的内能增大,温度升高B 气体的内能减小,温度降低C 气体的内能不变,温度不变D 气体的内能不变,温度升高3、对于热机,下列说法中正确的是()A 热机效率越高,做的有用功越多B 热机效率越高,消耗的燃料越少C 热机效率越高,燃料燃烧释放的内能转化为机械能的比例越大D 热机效率可以达到 100%4、下列过程中,可能发生的是()A 某一物体从外界吸收热量,内能增加,但温度降低B 某一物体从外界吸收热量,内能增加,温度升高C 某一物体对外做功,内能减少,但温度升高D 以上过程都不可能发生5、一定质量的理想气体,在等容变化过程中,温度升高,则()A 气体压强增大B 气体压强减小C 气体压强不变D 无法确定气体压强的变化6、关于热力学第二定律,下列说法正确的是()A 不可能使热量从低温物体传向高温物体B 不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化C 第二类永动机不可能制成,是因为它违反了能量守恒定律D 热力学第二定律说明一切宏观热现象都具有方向性二、填空题(每题 5 分,共 20 分)1、热力学温度与摄氏温度的关系为_____,当热力学温度为 273K 时,摄氏温度为_____℃。
2、一定质量的理想气体,在等温变化过程中,压强与体积成_____比。
3、卡诺循环包括_____个等温过程和_____个绝热过程。
4、熵增加原理表明,在任何自然过程中,一个孤立系统的熵总是_____。
三、计算题(每题 15 分,共 30 分)1、一定质量的理想气体,初始状态为压强 p₁= 10×10⁵ Pa,体积 V₁= 10×10⁻³ m³,温度 T₁= 300 K。
材料热力学与动力学复习资料+课后习题

材料热力学与动力学(复习资料)一、 概念•热力学基本概念和基本定律1. 热0:一切互为热平衡的物体,具有相同的温度。
2. 热1: - 焓:恒压体系→吸收的热量=焓的增加→焓变等于等压热效应 - 变化的可能性→过程的方向;限度→平衡3. 热2:任何不受外界影响体系总是单向地趋向平衡状态→熵+自发过程+可逆过程→隔绝体系的熵值在平衡时为最大→熵增原理(隔离体系)→Gibbs 自由能:dG<0,自发进行(同T ,p : )4. 热3:- (H.W.Nernst ,1906): - (M .Plank ,1912):假定在绝对零度时,任何纯物质凝聚态的熵值为零S*(0K)=0 - (Lewis ,Gibson ,1920):对于过冷溶体或内部运动未达平衡的纯物质,即使在0K 时,其熵值也不等于零,而是存在所谓的“残余熵” - Final :在OK 时任何纯物质的完美晶体的熵值等于零• 单组元材料热力学1. 纯金属固态相变的体积效应- 除非特殊理由,所有纯金属加热固态相变都是由密排结构(fcc )向疏排结构(bcc )的转变→加热过程发生的相变要引起体积的膨胀→BCC 结构相在高温将变得比其他典型金属结构(如FCC 和HCP 结构)更稳定(除了Fe )- 热力学解释1→G :温度相同时,疏排结构的熵大于密排结构;疏排结构的焓大于密排结构→低温:H ;高温:TS - 热力学解释2→ Maxwell 方程: - α-Fe →γ-Fe :磁性转变自由能- Richard 规则:熔化熵-Trouton 规则:蒸发熵 (估算熔沸点)2. 晶体中平衡状态下的热空位- 实际金属晶体中空位随着温度升高浓度增加,大多数常用金属(Cu 、Al 、Pb 、W 、Ag …)在接近熔点时,其空位平衡浓度约为10-4;把高温时金属中存在的平衡空位通过淬火固定下来,形成过饱和空位状态,对金属中的许多物理过程(例如扩散、时效、回复、位错攀移等)产生重要影响3. 晶体的热容- Dulong-Petit :线性谐振动子+能量均分定律→适应于较高温度及室温附近,低温时与实验不符U Q W∆=-dH PV U d Q =+=)(δRd Q S Tδ=()d dH TdS G H d TS =--=00lim()lim()0p T T T GS T→→∂∆-=∆=∂()()V T T P V V S ∂∂=∂∂//()()()T T T V P V V S T V H ∂∂+∂∂=∂∂///RK mol J T H S mm m ≈⋅≈∆=∆/3.8/K mol J T H S b v v ⋅≈∆=∆/9.87/3V V VQ dU C RdT dT δ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭-Einstein(固体振动热容理论):晶体总共吸收了n 个声子,被分配到3N 个谐振子中;不适用于极低温度,无法说明在极低温度时定容热容的实验值与绝对温度的3次方成比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、由5个粒子所组成的体系,其能级分别为0、ε、2ε及3ε,体系的总能量为3ε。
试分析5个粒子可能出现的分布方式;求出各种分布方式的微观状态数及总微观状态数。
2、有6个可别粒子,分布在4个不同的能级上(ε、2ε、3ε及4ε),总能量为10ε,
各能级的简并度分别为2、2、2、1,计算各类分布的Ωj 及Ω总。
3、振动频率为ν的双原子分子的简谐振动服从量子化的能级规律。
有N 个分子组成玻耳兹曼分布的体系。
求在温度T 时,最低能级上分子数的计算式。
4、气体N 2的转动惯量I =1.394⨯10-46kg ⋅m 2,计算300K 时的Z J 。
5、已知NO 分子的Θυ=2696K ,试求300K 时的Z υ。
~J υ7、计算300K 时,1molHI 振动时对内能和熵的贡献。
8、在298K 及101.3kPa 条件下,1molN 2的Z t 等于多少?
9、在300K 时,计算CO 按转动能级的分布,并画出分子在转动能级间的分布
曲线。
10、计算H 2及CO 在1000K 时按振动能级的分布,并画出分子在振动能间的分
布曲线;再求出分子占基态振动能级的几率。
11、已知HCl 在基态时的平均核间距为1.264⨯10-10m ,振动波数ν
~=2990m -1。
计算298K 时的Θm S 。
12、证明1mol 理想气体在101.3kPa 压力下
Z t =bLM 3/2(T /K )5/2 (b 为常数)
13、计算1molO 2在25︒C 及101.3kPa 条件下的Θm G 、Θm S 及Θm H 。
设Θ0U 等于零。
14、已知300K 时金刚石的定容摩尔热容C V ,m =5.65J ⋅mol -1⋅K -1,求ΘE 及ν。
15.已知300K 时硼的定容摩尔热容C V ,m =10.46J ⋅mol -1⋅K -1,求(1) ΘD ;
(2) 温度分别为30K 、50K 、100K 、700K 、1000K 时的C V ,m 值;(3) 作C V ,m 值− T 图形。
16、试根据Einstein 热容理论,证明Dulong-Petit 经验定律的正确性。
17、假设∆H 及∆S 与温度无关,试证明金属在熔点以上不可能发生凝固。
18、在25︒C 、0.1MPa 下,金刚石和石墨的摩尔熵分别为 2.45J ⋅K -1⋅mol -1和
5.71J ⋅K -1⋅mol -1,其燃烧热分别为395.40J ⋅K -1⋅mol -1和393.51J ⋅K -1⋅mol -1,其密度分别为3.513g ⋅cm -3和2.26g ⋅cm -3,试求此时石墨→金刚石的相变驱动力。
19、已知纯钛α/β的平衡相变温度为882︒C ,相变焓为14.65kJ ⋅mol -1,试求将βTi 冷却到800︒C 时,β→α的相变驱动力。
20、除铁以外的所有纯金属的加热固态相变有由密排结构向疏排结构的转变的规
律,试用热力学解释这一规律。
21、空位在金属的扩散与相变中都发挥着重要的作用,试推算在平衡状态下,纯
金属中的空位浓度。
22、纯铜经冷变形后,内能增加了418.6J ⋅mol -1,其中约10%用来形成空位,试求空位浓度。
已知形成1个空位时的激活能为2.4⨯10-19J 。
23、纯Bi 在0.1MPa 压力下的熔点为544K 。
增加压力时,其熔点以
3.55/10000K ⋅Pa -1的速率下降。
另外已知熔化潜热为52.7 J ⋅g -1,试求熔点下液、固两相的摩尔体积差。
24、已知纯Sn 在压力为P MPa 时的熔点T Sn 为
T Sn =231.8+0.0033(P -0.1)︒C
纯Sn 的熔化潜热为58.8J ⋅g -1,0.1MPa 压力下液体的密度为
6.988 g ⋅cm -3,试求固体的密度。
已知纯Sn 的原子量为
118.71g ⋅mol -1。
25、试利用在G m -X 图中化学势的图解法,解释为什么有的固溶体中会发生上坡扩散。
26、试由二元系固溶体吉布斯自由能曲线说明固溶体中出现成分不均匀在热力学上是不稳定的。
27、由Fe-Cu 二元系相图知:fcc 结构固溶体的溶解度间隙的最高温度T S 为1350︒C ,试计算该固溶体中Fe-Cu 键的结合能(设定Fe-Cu ,Fe-Cu 键的结合能为零)。
28、试用正规溶体模型计算一个I AB =16.7kJ ⋅mol -1,成分为x B =0.4的二元固溶体,其发生调幅分解的上限温度是多少?
29、某A-B 二元偏聚固溶体的I AB (α)=20 kJ ⋅mol -1,试求800K 时发生调幅分解的成分范围。
30、已知Cr-W 二元合金系中固溶体α相的相互作用参数=αCrW
I 33.50kJ ⋅mol -1,试计算α相的Spinodal 分解曲线及溶解度
间隙
31、已经测得Fe-V 合金的α固溶体的成分为X V =0.5,1325︒C 下其V 活度为
αV =0.312,试估算I FeV 。
32、已知某二元系A -B 的bcc 结构的固溶体中,各种原子结合键之间的关系为u AB + u BA - u AA - u BB =2
C kT ,T C =1000K ,试计算800K 下的调幅分解范围。
33、试证明对于A-B 二元系的正规溶体,Spinodal 线的方程式为可以表示成下列
形式:x B (1-x B )=kT /(2uZ )。
K ,u ,Z 分别为Boltzmann
常数、相互作用键能和配位数。
34、一二元合金由α固溶体和β中间相所组成,试由固溶体和中间相吉布斯自由能曲线说明组成中间相组元间的亲和力愈大,与中间相相邻的固溶体的溶解度愈小。
35、试用G m -X 图解法说明,为什么bcc 结构的金属加入铁中后,大多会封闭Fe
的fcc 结构相区。
36、试用Fe 的奥氏体稳定化参数说明,fcc 结构的Al 为什么是封闭Fe fcc 相区
的元素?
37、已知Fe-W 合金中,W 在γ 相及α相中的分配系数γα→W K =0.49,α中W 的含
量为αW X =0.011,试求在1100︒C 下,纯铁的相变自由能γα→∆Fe m G ,。
38、在1150︒C 下,某Fe -M 二元合金中的α相与γ 相的平衡成分分别为αM X =0.033,
γM X =0.028,试计算元素M 的奥氏体稳定化参数γα→∆M G *
39、某A -B 二元共晶系统中,若两组元在固态下完全不互溶,试计
算此二元相图。
(已知:L AB I =10 kJ ⋅mol -1,T m,A =1536︒C ,T m,B =1024︒C ,
S L A m H →∆, =-13.77 kJ ⋅mol -1,S L B m H →∆,=-7.134 kJ ⋅mol -1)
40、如果在723︒C 下Fe -C 二元系的奥氏体中,Fe 3C 的溶解度为γC x =0.0312,γFeC I =
-12.4 kJ ⋅mol -1,试估算Fe 3C 的生成自由能
γγFe m C m C Fe m G G G ,,,33--。
41、Fe -Cr 系中一合金的成分为x Cr =0.1的合金,在400︒C 时发生无扩散γ→α的
相变,试求此时相变驱动力是多少?已知γ相稳定化参数γα→∆Cr
G *= -628
J ⋅mol -1
42、已知Ti -V 合金700︒C 下平衡两相成分为αV x =0.03,βV x =0.13,试求纯Ti 在该温度下的相变自由能β
α→∆Ti m G ,。
43、如果A -B 二元系中的固相的相互作用键能具有成分依存性,关系为
u =2αx A +αx B ,试求溶解度间隙的顶点温度。
44、已知1300K 下,fcc 结构与石墨结构两种状态碳的摩尔自由能差
2.73,,=-gr C m C m G G γJ ⋅mol -1,9.51-=γFeC I kJ ⋅mol -1,试计算在此温度下,45钢奥氏体中的碳活度(标准态为石墨态碳)与碳浓度的关系。