高中物理光学(复习材料)
高二物理总结光学部分复习重点
高二物理总结光学部分复习重点如下是根据题目要求书写的高二物理总结光学部分复习重点的文章:光学是物理学的一个重要分支,研究光的传播、干涉、衍射等现象。
在高二物理课程中,学生们学习了光的基本性质和光的反射、折射、色散等内容。
以下是关于光学部分的复习重点。
希望对同学们的复习有所帮助。
一、光的反射1. 反射定律:光线的入射角等于反射角,即入射角i等于反射角r。
2. 镜面反射:光线在光滑的镜面上发生反射,反射光线和入射光线在法线上的投影是相等的。
3. 理想平面镜成像规律:平行光经过理想平面镜反射后,光线会汇聚到镜面上的一个点上,成为实像。
虚像则是通过反向延长光线找到的。
二、光的折射1. 折射定律(斯涅尔定律):在两种介质间传播的光线,入射角的正弦与折射角的正弦之比是一个常数,即n₁sin(i) = n₂sin(r),其中n₁和n₂分别是两种介质的折射率。
2. 反向追踪法:借助反向延长光线和延长入射光线在界面上的交点,确定折射光线的方向。
3. 折射的应用:光的折射现象在实际生活中有许多应用,如光的折射可解释为为什么水中的物体看起来更浅、杯底破坏等。
三、光的色散1. 色散现象:将白光通过三棱镜等透明介质,可以看到光线被分解为不同颜色组成的光谱。
2. 折射率和色散关系:不同颜色的光在不同介质中的速度和折射率不同,导致光线通过透明介质时会偏折。
3. 彩虹形成原理:彩虹的形成是阳光经过水滴,发生多次反射、折射和内反射后形成的。
在特定条件下,才能观察到美丽的彩虹。
四、透镜1. 凸透镜和凹透镜:凸透镜呈现凸状,中间较厚;凹透镜呈现凹状,中间较薄。
2. 像的位置:凸透镜成像有两种情况:物距大于二倍焦距时为实像,位于凸透镜的前方;物距小于二倍焦距时为虚像,位于凸透镜的后方。
3. 公式关系:凸透镜的成像公式是1/f = 1/u + 1/v,其中f是透镜的焦距,u是物像距离,v是像物距离。
五、光学仪器1. 显微镜:利用两个透镜(目镜和物镜)的成像放大物体的原理,可以看到微小的物体。
高中物理光学知识点总结归纳
高中物理光学知识点总结归纳考点一:光的直线传播和光的反射光的折射定律、折射率全反射、光导纤维实验:测量玻璃的折射率【知识点】光的直线传播.光的反射一、光源1.定义:能够自行发光的物体.2.特点:光源具有能量且能将形式的能量转化为光能,光在介质中传播就是能量的传播。
二、光的直线传播1.光在同一均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3×108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即v2.本影和半影(l)影:影是自光源发出并与投影物体表切的光线在背光面的后方围成的区域.(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.3.用眼睛看实际物体和像用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只凸透镜。
发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。
三、光的反射1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.分类:光滑平面上的反射现象叫做镜面反射。
发生在粗糙平面上的反射现象叫做漫反射。
镜面反射和漫反射都遵循反射定律.4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的.四、平面镜的作用和成像特点(1)作用:只改变光束的传播方向,不改变光束的聚散性质.(2)成像特点:正立等大的虚像,物和像关于镜面对称.(3)像与物方位关系:上下不颠倒,左右要交换光的折射、全反射一、光的折射1.折射现象:光从一种介质斜射入另一种介质,传播方向发生改变的现象.2.折射定律:折射光线、入射光线跟法线在同一平面内,折射光线、入射光线分居法线异侧,入射角的正弦跟折射角的正弦成正比.3.在折射现象中光路是可逆的.二、折射率1.定义:光从真空射入某种介质,入射角的正弦跟折射角的正弦之比,叫做介质的折射率.注意:指光从真空射入介质.2.公式为注:折射率总大于13.各种色光性质比较:红光的n最小,ν最小,在同种介质中(除真空外)v最大,λ最大,从同种介质射向真空时全反射的临界角C最大,以相同入射角在介质间发生折射时的偏折角最小(注意区分偏折角和折射角)。
光学专题(折射、反射、全反射、干涉、衍射、偏振等的综合应用)(解析版)25年高考物理一轮复习(新高考
光学专题(折射、反射、全反射、干涉、衍射、偏振等的综合应用)60分钟光学专题(折射、反射、全反射、干涉、衍射、偏振等的c cA.23,23【答案】A由于DE 为半径的一半,故a 光束的折射角sin sin a cv a b =解得:22a c v =同理,对于b 束,由几何知识可知,其入射角、折射角的大小分别为sin i c根据几何关系有:31tan 303DE AD R +=°=则有:()22313AE DE R==+31R +A .33L 【答案】C【详解】由几何关系可知,光在得:30r =°A .212x x D D B .21x x D D 【答案】C【详解】根据薄膜干涉原理,干涉条纹平行等宽,当光垂直标准工件方向射向玻璃板时,得到干涉条纹,.肥皂膜上的条纹.劈尖上的条纹.泊松亮斑.牛顿环【答案】C【详解】选项ABD都是光在薄膜的两个表面的两个反射光干涉形成的;选项形成的“泊松亮斑”。
A.图甲为同一装置产生的双缝干涉图像,b光的频率大于a光B.图乙中立体电影原理和照相机镜头表面涂上增透膜的原理一样C.图丙中“水流导光”反映了光的衍射现象D.若只旋转图丁中M或N一个偏振片,光屏P上的光斑亮度不发生变化A .距离b 需满足的条件为33b a <光线在BC 上的入射点为M ,对称,可得:Q C l¢=由几何关系得:tan l a b a =--A .“虹”对应光路图中1级光,色序表现为“内红外紫”B .“霓”的产生和“虹”类似,但日光在水滴中反射两次,则对应光路图中表现为“内红外紫”,故B 正确;CD .对同一束入射日光,产生光传播的路程为:4cos s R =A.水对a光的折射率比对b光的折射率要小B.在水中,b光的传播速度大于a光的传播速度C.A灯照亮水面的面积大于B灯照亮的面积D.将a和b光通过相同的双缝干涉装置、A.若将光屏向右移动,光屏上条纹间距减小B.若将平面镜向下移动一个微小距离,光屏上条纹间距减小A.若干涉圆环向边缘移动,则表示下面的透镜是凹透镜B.若干涉圆环向边缘移动,则表示下面的透镜是凸透镜C.若干涉圆环向中心收缩,则表示下面的透镜是凹透镜A.P点有凹陷B.P点有凸起C.换用绿光照射,条纹间距变大D.抽去一张纸片,条纹间距变大A.图甲中3D眼镜利用光的偏振原理B.图乙利用单色光检查平面的平整度是利用光的衍射C.图丙救护车发出的声波产生多普勒效应,而电磁波不会产生多普勒效应D.图丁直接把墙壁多个条纹的距离当成相邻明条纹距离,计算光的波长结果会偏大【答案】AD【答案】(1)o 30;(2)【详解】设入射角为i ,由题意知,解得:o 30a q =,o 45b q =如图所示由几何关系得:90POB Ð=、b 两束光从棱镜中射出后二者的夹角(2)a 、b 两束光在棱镜中传播的速度分别为:由几何关系可知,a 、b 两束光在棱镜中传播的距离为2cos a a R q =,2cos b l R =(1)该棱镜的折射率n ;(2)该单色光在棱镜中传播的时间t (不考虑光在【答案】(1)3n =(2)52Lt c=根据几何关系可知,入射角做AC 界面法线交于BC 于D 点,光线在AB 界面交于PDC Ð可知PDQ V 为等边三角形,所以:30a =°因为最终出射光线与AC 平行,所以:60b =°根据几何关系可得:12211sin r C r h =+全反射临界角满足:11sin C n =甲灯泡发光区域的面积:211S r p =。
高中物理光学复习要点
高中物理光学复习要点高中物理中的光学部分是比较难理解的,但是它是非常重要的一门学科,因为我们的日常生活中充满着光。
复习光学时,一定要有一个系统的复习计划。
下面,本文将为大家介绍几个光学复习要点。
1. 光的传播与光源光可以被认为是一种波动形式,其传播速度是光速。
光的起源可以是自然或人造的光源,如太阳、灯泡等。
人类发现最早的光源是太阳。
良好的光源需要具有稳定性、亮度、色温等特性。
2. 光的反射和折射光束遇到边缘时可能会经历反射或折射。
镜子或其他光滑而有光反射能力的表面可以反射光。
折射是当光从一个媒介到另一个媒介时改变方向的现象。
在空气中,光是直线传播的,但在其他媒介中,如水和玻璃,光传播时会发生弯曲。
这种现象由光速不同引起的。
3. 光的成像成像是描述物体被物体前的透镜(如眼镜或相机中的透视镜头)所呈现在感光体(如眼睛或相机中的感光后器)上的过程。
物体和透视镜头之间的距离影响透镜的倍率。
透镜和眼睛的焦点距离影响眼睛的后物距和视力。
如果相片或图像的焦点不是正确的距离,那么图像会失去清晰度。
4. 光的波动性当光遇到障碍物时,有一种现象,称为光衍射。
光线的光束,经过缝隙或其他不在光路上的障碍物时,会向侧方弯曲。
衍射出的光往往是一个清晰的周围,被称为衍射图。
这是由于光的波动性所引起的。
5. 光的颜色我们可以从彩虹和色彩电视机来了解颜色。
太阳在被云彩挡住的时候,可以发现一个个美丽的五颜六色的环带,这就是彩虹。
彩虹的出现是由于太阳光在雨水珠中的折射、反射、折射而形成的,造成了光的不同波长分离的现象。
以上是一些关于高中物理光学部分的复习要点,希望大家在备考过程中可以充分掌握这些知识点,以便更好地实现目标。
高三物理光学知识点全面复习
高三物理光学知识点全面复习一、光的传播1.1 光的直线传播•定义:光在同种均匀介质中沿直线传播。
•实例:日食、月食、小孔成像、影子、激光准直。
1.2 光的折射•定义:光从一种介质斜射入另一种介质时,传播方向发生改变,这是光的折射现象。
•定律:斯涅尔定律,$\nicefrac{\Delta \sin \theta_1}{\Delta \sin \theta_2} = \nicefrac{v_1}{v_2} = \nicefrac{n_2}{n_1}$。
•实例:透镜、水底物体看起来浅、彩虹、海市蜃楼。
1.3 光的反射•定义:光照射到物体表面又返回的现象。
•定律:反射定律,入射角等于反射角。
•实例:平面镜成像、光滑物体反光、凸面镜、凹面镜。
二、光的波动性2.1 光的干涉•定义:两束或多束相干光在空间中相遇产生稳定的干涉现象。
•实例:双缝干涉、单缝衍射、迈克尔孙干涉仪。
2.2 光的衍射•定义:光通过狭缝或物体边缘时,发生弯曲现象。
•条件:孔径或障碍物尺寸与波长相当或更小。
•实例:单缝衍射、圆孔衍射、泊松亮斑。
2.3 光的偏振•定义:光波中,电场矢量在某一平面上振动的现象。
•实例:偏振片、马吕斯定律、自然光与偏振光。
三、光的量子性3.1 光电效应•定义:光照射到金属表面,电子被弹射出来的现象。
•定律:爱因斯坦光电效应方程,E k=ℎν−W0。
•实例:太阳能电池、光电管。
3.2 光的粒子性•定义:光具有粒子性质,每个光子具有能量E=ℎν。
•实例:康普顿效应、光电效应。
四、光的测量4.1 光的强度•定义:光的功率密度,表示光的亮度。
•单位:坎德拉(cd)。
4.2 光的颜色•定义:光的频率或波长决定的特性。
•实例:红、橙、黄、绿、蓝、靛、紫。
4.3 光的传播速度•定义:光在介质中传播的速度。
•公式:$v = \nicefrac{c}{n}$,其中c为真空中的光速,n为介质的折射率。
五、光学仪器5.1 透镜•分类:凸透镜、凹透镜、平面透镜。
整理高三物理光学专题复习
光学专题复习[基本知识点回顾]一. 知识框架(一)对光传播规律的研究——几何光学(二)光的本性——物理光学光的干涉薄膜干涉双缝干涉光的光的光的光的衍射电磁说波动说波、粒光二象性的光谱及本电磁波波谱其分析性光的光的光电效应微粒说光量子说(一)几何光学重点知识总结(1)光的直线传播规律条件:同种、均匀介质(2)光的反射定律注:无论是镜面反射或漫反射,对每条反射光线都遵循反射定律。
sini?n)光的折射定律,特例:光从真空(空气)射入介质时,则(3?sin特例:真空i介质γ(4)光的独立传播定律:几束光在同一介质中传播时虽屡屡相交,但互不扰乱,保持页7共页1第各自的方向继续传播。
(5)光路可逆原理:当光线逆着原来的反射线或折射线方向入射时,将逆着原来的入射线方向反射或折射。
(6)几点注意:①光射到两种介质界面上,一般情况下都是既有反射,又有折射,因此需考虑每一条可能的光线(包括垂直入射时按原路返回的反射光)②折射率反映了介质的折光本领,取决于光在真空和介质中的传播速度,即sinicc??1,?n?v??c?vnsin所以,测定了介质的折射率,即可算出光在介质中的速度。
③全反射的条件1)光从介质射向真空(空气);11?)(c?sinc)入射角等于或大于临界角 2n 3)条件应用:光线从光密介质射至光疏介质的界面时,首先要检查一下临界角,然后才能确定光线的实际传播路径。
2. 几何光学器件对光路控制作用对比表:几点说明:①用平面镜控制反射光线去向的相关题型:1)给出入射光线方向与反射光线去向,要求找镜位;??2 2)镜旋转反射光线改变页7共页2第②光线通过平行透明板的侧移距的相关因素:cosi)1?zsini(d?表达式:22isinn?说明d与玻璃板厚度z,玻璃材料折射率n和入射角i 有关系。
③不同色光光路与成像差异的对比:3. 光学器件(平面镜、透镜)的成像①平面镜成像作图与成像计算。
题型:1)平面镜尺寸的设计2)平面镜尺寸对像长的限制3)有一定厚度平面镜成像设计4)平面镜视场②透镜的成像作图法。
《高三物理光学复习》课件
准备好复习光学了吗?这个PPT课件将帮助你扎实复习高三物理的光学知识! 从光的传播到光的成像,让我们一起深入探索!
光的传播
直线传播
探索光是如何以直线传播的,这是光的基本特 性。
光的折射定律
学习光在介质中的折射规律,理解折射定律的 成因和应用。
光的反射定律
了解光在平面镜上的反射行为,掌握反射定律 的原理和应用。
条纹宽度的计算方法
4
条纹,揭示干涉现象的原理。
学习通过计算方法确定条纹宽度的原理, 掌握计算技巧。
光的衍射和偏振
光的衍射现象
探索光通过细小孔径或物体边缘 时表现出的衍射行为,了解衍射 现象的奇妙性质。
偏振现象和偏振光的定义
偏振片的作用及使用方法
学习光的偏振现象以及什么是偏 振光,了解偏振光的特点和应用。
光的全反射现象
探索光在光疏介质和光密介质交界面上的全反 射现象,了解其背后的原理。
光的色散和干涉
1
光的色散现象
揭开光通过透明介质时出现的色散现象
入射角和折射角对光的色散影响
2
的奥秘,发现光的多彩之美。
了解入射角和折射角对光在介质中的色
散行为产生的影响。
3
条纹和干涉现象
进一步学习光通过干理及修正方法
掌握望远镜和显微镜的成像原理和修正方法,深入了解它们的操作原理。
学习偏振片的工作原理,掌握其 在实际生活中的应用。
光的成像和光学仪器
1
球面反射镜和球面折射镜的成像原理
深入理解球面反射镜和球面折射镜的成像规律,掌握成像原理和计算方法。
2
成像公式及计算方法
学习成像公式和计算方法,通过实例计算光学成像的相关参数。
光学(原卷版)—2025年高考物理一轮复习知识清单
光学折射和全反射的综合问题掌握光的折射定律和折射率,并会计算相应的习题;掌握光的全反射现象及其产生的条件,并会用进行相关计算,了解光纤的工作原理;掌握光的干涉、衍射和偏振现象和对应的产生条件;会根据干涉条纹进行简单的计算。
核心考点01光的反射和折射一、光的反射 (3)二、光的折射 (3)三、折射率 (3)核心考点02 全反射 (5)一、光密介质和光疏介质 (5)二、全反射 (5)三、三种光学模型的光路特点 (6)四、光的折射和全反射问题的解题要点 (7)五、光的色散 (8)核心考点03光的干涉、衍射和偏振 (8)一、光的干涉 (9)二、光的衍射 (11)三、光的偏振 (13)核心考点01 光的反射和折射一、光的反射1、定义光从第1种介质射到它与第2种介质的时,一部分光会到第1种介质的现象。
分子的质量:数量级为10-26 kg。
2、反射定律反射光线与光线、处在同一平面内,反射光线与入射光线分别位于法线的。
反射角入射角。
【注意】对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的。
3、图像二、光的折射1、定义光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向的现象叫光的折射。
2、折射定律折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比。
表达式:sinθ1sinθ2=n12,式中n12是比例常数。
3、光路可逆性在光的反射和折射现象中,光路都是可逆的。
如果让光线逆着出射光线射到界面上,光线就会原来的入射光线出射。
4、图像三、折射率1、定义光从真空射入某种介质发生折射时,入射角的 与折射角的 之比,叫这种介质的折射率。
2、定义式n =sin θ1sin θ2。
折射率,光从真空射入到该介质时偏折 。
3、意义反映介质的光学性质的物理量。
4、折射率的理解某种介质的折射率,等于光在真空中的传播速度c 跟光在这种介质中的传播速度v 之比,即vc n =,因v c >,所以任何介质的折射率n 都大于1。
《高三物理光学复习》课件
透镜的应用
放大镜、眼镜、摄影镜 头等。
透镜成像规律
物距、像距、焦距之间 的关系,以及成像规律
在实践中的应用。
照相机与摄像机
01
照相机与摄像机的种类 :数码相机、胶片相机 、摄像机等。
02
照相机与摄像机的原理 :光学成像、感光元件 、图像处理等。
03
照相机与摄像机的应用 :拍摄照片、录制视频 等。
04
照相机与摄像机的性能 指标:像素、光圈、快 门速度、变焦倍数等。
望远镜与显微镜
01
02
03
04
望远镜与显微镜的种类:天文 望远镜、观鸟望远镜、显微镜
等。
望远镜与显微镜的原理:光学 成像、放大倍数等。
望远镜与显微镜的应用:观测 天体、观察生物细胞等。
望远镜与显微镜的性能指标: 放大倍数、清晰度、稳定性等
衍射现象
干涉与衍射的区别与联系
两者都是光波的波动性质的表现,但 干涉强调光波的叠加效果,而衍射强 调光波的传播路径变化。
光波在传播过程中遇到障碍物或小孔 时,产生偏离直线传播的现象。
02 光的反射与折射
光的反射
总结词
详细描述
光的反射是光在两种不同介质表面发生方 向改变的现象。
当光从一个介质射向另一个介质时,如果 入射角大于临界角,会发生全反射现象, 此时反射光能量较大,折射光能量较小。
光动力疗法
02
利用特定波长的光和光敏剂治疗肿瘤等疾病。
激光治疗
03
利用激光的能量对病变组织进行治疗,如激光近视矫正手术等
。
光学在军事中的应用
1 2
红外侦查与夜视技术
利用红外探测器侦查敌方活动,提高夜战能力。
激光武器
高中光学专题复习
2、如右图是用干涉法检查某种厚玻璃的上表 面是否平的装置,所用单色光是用普通光源加 滤光片产生的,检查中所观察到的干涉条纹是 由哪两个表面反射的光叠加而成的( ) A.a的上表面和b的下表面 B.a的上表面和b的上表面 C.a的下表面和b的上表面 D.a的下表面和b的下表面
C
3、如图4-4所示,竖直的肥皂液膜的横截面, 右侧受到一束平行光的照射,关于肥皂液膜产 生干涉条纹的说法正确的是( ) A.在右侧观察到的干涉条纹是由光线在肥皂液 薄膜左右两个表面反射的两列波迭加生成的 B.在右侧观察到的干涉条纹是由光线在肥皂液 薄膜右测表面反射光和原入射光波迭加生成的 C.观察到的条纹可能是黑白相间的也可能是色 彩相间的 D.观察到的条纹可能是水平的 也可能是竖直的
现象:薄膜两表面反射的光互相叠加而成的明暗条纹, 条纹是水平排列.
2、白色(复色)光的薄膜干涉 现象:明暗相间的彩色条纹 解释:由于白光是复色光,各色光的波长不同,各色 光都发生薄膜干涉,但不同颜色的光在不同的位置相互 加强,所以看起来肥皂泡是彩色的膀上的彩色花纹等都是薄膜干涉。
(2)折射率:①表示光从真空进入到一种介质偏
折性能的物理量。
sin i c ' ② n sin r v
③折射光路也是可逆的
(3)全反射: (a)条件:①光从光密媒质进入光疏媒质 ② 入射角大于临界角C; (b)发生全反射时,光线遵守反射定律
全反射的一个重要应用就是用于光导纤维(简称 光纤)。光纤有内、外两层材料,其中内层是光密 介质,外层是光疏介质。光在光纤中传播时,每次 射到内、外两层材料的界面,都要求入射角大于临 界角,从而发生全反射。这样使从一个端面入射的 光,经过多次全反射能够没有损失地全部从另一个 端面射出。
高中物理《光学》高考复习训练试题
⾼中物理《光学》⾼考复习训练试题光学⼀、光的直线传播、光的独⽴传播⼆、物和像:实物与虚物、实像与虚像三、光的反射1、反射定律2、反射成像(1)平⾯镜:u v -=(2)球⾯镜:Rf v u 2111==+ u 、v 实正虚负,R 凹正凸负垂轴放⼤率:uv y y ==,β四、光的折射1、折射定律2、棱⾓3、全反射五、费马原理:光总是沿着光程为极值(极⼤值、极⼩值或恒定值)的路径传播。
六、折射成像1、平⾯折射成像:u n n v 21= 2、单球⾯折射成像:rn n v n u n 1221-=+ u 、v 实正虚负,球⼼在出⾊射光线⼀侧r 取正。
垂轴放⼤率:u n v n y y 21,==β七、薄透镜成像:221121r n n r n n v n u n -+-=+(⾼斯成像公式:121=+v f u f )⼋、透镜成像作图:(1)三条特殊光线(2)副光轴、焦平⾯九、简单光学仪器的视⾓放⼤倍数1、放⼤镜:125+=fcm M 2、显微镜:201f L f L M ?= 3、望远镜:21f f M =⼗、光的⼲涉(1)条件(2)相位差(3)半波损失(4)杨⽒双缝⼲涉等(5)薄膜⼲涉⼗⼀、光的衍射衍射光栅:λθK d =sin ±±=2,1,0K⼗⼆、光的本性【经典⽰例】1、如图所⽰,在圆筒中⼼放⼀平⾯镜,光点S 1发光射到镜⾯上,反射光在筒壁上呈现光斑S 2 ,当镜⾯绕筒的中轴线以⾓速度ω匀速转动时,光点S 1在镜⼦⾥的像S 1’的⾓速度等于__________,光斑S 2在平⾯镜⾥的像S 2’的⾓速度等于______ 。
2、内表⾯只反射⽽不吸收光的圆筒内有⼀半径为R 的⿊球,距球⼼为2R 处有⼀点光源S ,球⼼O 和光源S 皆在圆筒轴线上,如图所⽰.若使点光源向右半边发出的光最后全被⿊球吸收,则筒的内半径r 最⼤为多少?3、试⽤作图法求出下列A 图中的⼊射光线及B 图中的⼊射光线,要求完整地画出光路,并确定B 图中的透镜种类。
整理高三物理光学专题复习
光学专题复习[基本知识点回顾]一. 知识框架(一)对光传播规律的研究——几何光学(二)光的本性——物理光学光的干涉薄膜干涉双缝干涉光的光的光的光的衍射电磁说波动说波、粒光二象性的光谱及本电磁波波谱其分析性光的光的光电效应微粒说光量子说(一)几何光学重点知识总结(1)光的直线传播规律条件:同种、均匀介质(2)光的反射定律注:无论是镜面反射或漫反射,对每条反射光线都遵循反射定律。
sini?n)光的折射定律,特例:光从真空(空气)射入介质时,则(3?sin特例:真空i介质γ(4)光的独立传播定律:几束光在同一介质中传播时虽屡屡相交,但互不扰乱,保持页7共页1第各自的方向继续传播。
(5)光路可逆原理:当光线逆着原来的反射线或折射线方向入射时,将逆着原来的入射线方向反射或折射。
(6)几点注意:①光射到两种介质界面上,一般情况下都是既有反射,又有折射,因此需考虑每一条可能的光线(包括垂直入射时按原路返回的反射光)②折射率反映了介质的折光本领,取决于光在真空和介质中的传播速度,即sinicc??1,?n?v??c?vnsin所以,测定了介质的折射率,即可算出光在介质中的速度。
③全反射的条件1)光从介质射向真空(空气);11?)(c?sinc)入射角等于或大于临界角 2n 3)条件应用:光线从光密介质射至光疏介质的界面时,首先要检查一下临界角,然后才能确定光线的实际传播路径。
2. 几何光学器件对光路控制作用对比表:几点说明:①用平面镜控制反射光线去向的相关题型:1)给出入射光线方向与反射光线去向,要求找镜位;??2 2)镜旋转反射光线改变页7共页2第②光线通过平行透明板的侧移距的相关因素:cosi)1?zsini(d?表达式:22isinn?说明d与玻璃板厚度z,玻璃材料折射率n和入射角i 有关系。
③不同色光光路与成像差异的对比:3. 光学器件(平面镜、透镜)的成像①平面镜成像作图与成像计算。
题型:1)平面镜尺寸的设计2)平面镜尺寸对像长的限制3)有一定厚度平面镜成像设计4)平面镜视场②透镜的成像作图法。
高中物理光学复习要点_光学知识点公式
高中物理光学复习要点_光学知识点公式高中物理光学复习要点提高高三物理做题效率高中物理光学部分公式总结高中物理光学复习要点一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源:发光的物体.分两大类:点光源和扩展光源. 点光源是一种理想模型,扩展光源可看成无数点光源的集合. 光线——表示光传播方向的几何线. 光束通过一定面积的一束光线.它是通过一定截面光线的集合. 光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108 m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的. 虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区. 半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光的直线传播规律:先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律:光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律:反射线、入射线、法线共面;反射线与入射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律:折射线、入射线、法线共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射率n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理:光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.3.常用光学器件及其光学特性(1)平面镜:点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
(2)球面镜:凹面镜:有会聚光的作用,凸面镜:有发散光的作用.(3)棱镜:光密介质的棱镜放在光疏介质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。
高考物理光学必考知识点归纳总结
高考物理光学必考知识点归纳总结光学是高考物理中的重要考点之一,掌握好光学的相关知识点,对于提高物理成绩至关重要。
本文将对高考物理光学必考的知识点进行归纳总结,以帮助同学们更好地复习和应对考试。
一、光的直线传播光的直线传播是光学中最基本的概念,也是高考物理中的重点考点。
光线在均匀介质中直线传播,但在光的传播过程中,会发生折射、反射等现象。
1. 折射定律光线从一介质进入另一介质时,入射角与折射角之间满足折射定律。
即:入射角的正弦与折射角的正弦的比值等于两介质的折射率之比。
2. 反射定律光线从一介质射向另一介质的分界面上时,入射角与反射角之间满足反射定律。
即:入射角等于反射角。
二、光的成像了解光的成像是理解光学的关键。
掌握光的成像规律能够帮助我们解决物体在光学仪器上的成像问题。
1. 凸透镜成像凸透镜是一种常见的光学元件,它可以将光线聚焦或发散。
根据凸透镜的物理特性,可以总结出以下凸透镜成像规律:- 物距大于焦距时(物距大于2倍焦距),凸透镜将形成一个倒立、减小、实的实像。
- 物距等于焦距时,凸透镜将形成一个无穷远处的平行光。
- 物距小于焦距时(物距小于2倍焦距),凸透镜将形成一个正立、放大、虚的虚像。
2. 凹透镜成像凹透镜也是一种重要的光学元件,它具有发散光线的特性。
凹透镜的成像规律如下:- 凹透镜无论物距大小,成像都是倒立、减小、虚的虚像。
三、色散现象色散现象是光学中的重要内容,我们常常可以在光的折射中观察到不同波长的光发生弯曲的现象。
色散现象可分为正常色散和反常色散。
1. 正常色散当光线从光密介质(如玻璃)射向光疏介质(如空气)时,波长较大的红光比波长较小的紫光折射角更小,发生正常色散。
2. 反常色散当光线从光疏介质射向光密介质时,波长较大的红光比波长较小的紫光折射角更大,发生反常色散。
四、光的干涉与衍射光的干涉与衍射是光学中的重要现象,了解光的干涉与衍射现象有助于我们理解和解释一些光学实验和现象。
高中物理光学复习课件
第十一单元光的性质一、知识结构光在空间传播不是连续的,而是一份一份的,每一份叫做一个光子。
光子的能量E=hv。
h=6.63×焦·秒,称普朗克常量。
二、学习要求1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。
2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥皂膜观察薄膜干涉现象。
知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。
3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。
知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。
4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、紫外线、X 射线及γ射线的特征及其主要应用。
5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与其频率成正比;知道光电效应在技术中的一些应用6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。
三、知识内容(一)人类对光的本性的认识历程:课堂介绍(此处略)。
(二)光的干涉和衍射 1、双缝干涉:由英国物理学家托马斯.杨首次在实验室完成。
干涉条件:两束光频率相同或振动情况一致。
相干光源的获得:光从第一狭缝S 到达同距离对称的双狭缝S 1、S 2,通过这两个狭缝的光由于来自同一束光,因此从S 1、S 2射出的光具有相同的振动情况,即为两个相干光源。
整理高三物理光学专题复习
光学专题复习[基本知识点回顾] 一. 知识框架(一)对光传播规律的研究——几何光学(二)光的本性——物理光学(一)几何光学重点知识总结(1)光的直线传播规律 条件:同种、均匀介质 (2)光的反射定律注:无论是镜面反射或漫反射,对每条反射光线都遵循反射定律。
(3)光的折射定律,特例:光从真空(空气)射入介质时,则n i=sin sin γ特例:(4)光的独立传播定律:几束光在同一介质中传播时虽屡屡相交,但互不扰乱,保持各自的方向继续传播。
(5)光路可逆原理:当光线逆着原来的反射线或折射线方向入射时,将逆着原来的入射线方向反射或折射。
(6)几点注意:①光射到两种介质界面上,一般情况下都是既有反射,又有折射,因此需考虑每一条可能的光线(包括垂直入射时按原路返回的反射光)②折射率反映了介质的折光本领,取决于光在真空和介质中的传播速度,即 n i c v v cnc ==>∴=<sin sin γ1, 所以,测定了介质的折射率,即可算出光在介质中的速度。
③全反射的条件1)光从介质射向真空(空气); 2)入射角等于或大于临界角c c n(sin)=-113)条件应用:光线从光密介质射至光疏介质的界面时,首先要检查一下临界角,然后才能确定光线的实际传播路径。
2. 几何光学器件对光路控制作用对比表:几点说明:①用平面镜控制反射光线去向的相关题型:1)给出入射光线方向与反射光线去向,要求找镜位; 2)镜旋转α反射光线改变2α②光线通过平行透明板的侧移距的相关因素: 表达式:d z i i n i=--sin (cos sin )122说明d 与玻璃板厚度z ,玻璃材料折射率n 和入射角i 有关系。
③不同色光光路与成像差异的对比:3. 光学器件(平面镜、透镜)的成像 ①平面镜成像作图与成像计算。
题型:1)平面镜尺寸的设计 2)平面镜尺寸对像长的限制 3)有一定厚度平面镜成像设计 4)平面镜视场②透镜的成像作图法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时3.物理光学(1)光的电磁说①光的干涉现象:两列波长相同的单色光在相互覆盖的区域发生叠加,会出现明暗相间的条纹,如果是白光,则会出现彩色条纹,这种现象称为光的干涉.条件:频率相同、相差恒定、振动方向足足同一直线上.规律:若两光源同相振动的光程差为δ=kλ (k=1,2.……) ——亮条纹δ=(2k-1)λ/2 (k=1,2.……) ——暗条纹纹间距Δx=lλ/d用双缝干涉测光的波长的原理:λ=d·Δx /l特例:薄膜干涉注意:关于薄膜干涉要弄清的几个问题Ⅰ是哪两列光波发生干涉Ⅱ应该从哪个方向去观察干涉图样Ⅲ条纹会向哪个方向侧移②光的衍射现象:光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗;如果是复色光发生衍射,则出现彩色条纹.明显发生衍射的条件:障碍物(或孔、缝)的尺寸可与波长相比拟,且障碍物尺寸比波长越小,衍射越明显。
注意:Ⅰ干涉、衍射现象证明光具有波动性Ⅱ干涉、衍射条纹在宽度、亮度上的区别③光的偏振波的偏振:横波只沿着某一特定的方向振动,称为 波的偏振,光的偏振现象说明光是横波。
偏振光:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。
实验:通过偏振片P 的偏振光再通过偏振片Q (检偏器)时,如果两个偏振片的透振方向平行,则通过P 的偏振光的振动方向跟偏振片Q 的透振方向平行,透射光的强度最大;如果两个偏振片的透振方向垂直,则通过P 的偏振光的振动方向跟偏振片Q 的透振方向垂直,偏振光不能通过Q ,透射光的强度为零。
如图所示。
本质:光波的感光作用和生理作用主要是由电场强度E 引起的,因此常将E 的振动称为光振动。
在与光传播方向垂直的平面内,光振动的方向可以沿任意的方向,光振动沿各个方向均匀分布的光就是自然光。
光振动沿着特定的方向的光就是偏振光。
④光的电磁说、电磁波谱 种类 产生机制 主要性质 无线电波LC 振荡电路(电荷发生振动) 接收和发射电磁波 红外线原子外层电子激发跃迁 热效应(激发固体分子共振) 可见光原子外层电子激发跃迁 视觉效应 紫外线原子外层电子激发跃迁 化学作用、生物作用 伦琴射线 原子内层电子激发跃迁穿透力强 γ射线原子核内激发产生 贯穿本领大、能量大 〖例9〗在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),这时( )A .只有红色和绿色的双缝干涉条纹,其它颜色的双缝干涉条纹消失B .红色和绿色的双缝干涉条纹消失,其它颜色的双缝干涉条纹依然存在C .任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D .屏上无任何光亮〖例10〗市场上有种灯具俗称“冷光灯”,用它照射物品时能使被照物品处产生的的热效应大大降低,从而广泛地应用于博物馆、商店等处。
这种灯降低热效应的原因之一是在灯泡后面放置的反光镜玻璃表面上镀一层薄膜(例如氟化镁),这种膜能消除不镀膜时玻璃表面反射回来的热效应最显著的红外线。
以λ表示此红外线的波长,则所镀薄膜的厚度最小应为( )A .81λB .41λC .21λ D .λ〖例11〗在太阳光照射下,水面油膜上会出现彩色的花纹,这是两列相干波发生干涉的结果,这两列相干光波是太阳光分别经 而形成的。
用平行的单色光垂直照射不透明的小圆板,在圆板后面的屏上发现圆板阴影中心处有一个亮斑,这是光的 现象。
〖例12〗图中为X 射线管的结构示意图,E 为灯丝电源。
要使射线管发出X射线,须在K、A两电极间加上几万伏的直流高压,则()A.高压电源正极应接在P点,X射线从K极发出B.高压电源正极应接在P点,X射线从A极发出C.高压电源正极应接在Q点,X射线从K极发出D.高压电源正极应接在Q 点,X射线从A极发出〖例13〗太阳的连续光谱中有许多暗线,它们对应着某些元素的特征谱线。
产生这些暗线是由于()A太阳表面大气层中缺少相应的元素; B.太阳内部缺少相应的元素;C.太阳表面大气层中存在着相应的元素; D.太阳内部存在着相应的元素。
〖强化训练〗〖练17〗用绿光照射一光电管,能产生光电效应。
欲使光电子从阴极逸出时的最大初动能增大,则应()A.改用红光照射 B.增大绿光的强度C.增大光电管上的加速电压 D.改用紫光照射〖练18〗用红光做双缝干涉实验,在屏上观察到干涉条纹,在其它条件不变的情况下,改用紫光做实验,则干涉条纹间距将变。
如果改用白光做实验,在屏上将出现条纹。
〖练19〗从点光源L发出的白光,经过透镜后成一平行光束,垂直照射到档光板P上,板上开有两条靠得很近的平行狭缝S1、S2如图所示,在屏Q上可看到干涉条纹,图中O点是屏Q上与两狭缝等距离的一点,则()A.干涉条纹是黑白的,O是亮点B.干涉条纹是黑白的,O是暗点C.干涉条纹是彩色的,O是亮点D.干涉条纹是彩色的,O是暗点〖练20〗图46-5所示的是一竖立的肥皂液薄膜的横截面,关于竖立的肥皂薄膜上产生光的干涉现象,看下列陈述,其中哪一些是正确的()⑴干涉条纹产生是由于光线在薄膜前后两表面反射,形成的两列光波的叠加⑵干涉条纹的暗线是由于上述两列反射波的波谷与波谷叠加造成的⑶用绿光照射薄膜产生的干涉条纹间距比黄色光照射时小⑷薄膜上的干涉条纹基本上是竖直的A.只有⑴和⑵ B.只有⑶和⑷ C.只有⑴和⑶ D.只有⑵和⑷〖练21〗关于光谱,下面说法中正确的是()A.炽热的液体发射连续光谱B.太阳光谱中的暗线说明太阳上缺少与这些暗线相应的元素C.明线光谱和吸收光谱都可用于对物质成份进行分析D.发射光谱一定是连续光谱〖练22〗如图所示是用干涉法检查某块厚玻璃板的上表面是否平整的装置,所用单色光是用普通光源加滤光片产生的。
检查中所观察到的干涉条纹是由下列哪两个表面反向的光叠加而成的()A.a的上表面、b的下表面B.a的上表面、b的上表面C.a的下表面、b的上表面D.a的下表面、b的下表面〖练23〗现代光学装置中的透镜,棱镜的表面常涂上一层薄膜(一般用氟化镁),当薄膜的厚度是入射光在薄膜中波长的1/4时,可以大大减少入射光的反射损失,从而增强透射光的强度,这种作用是应用了光的()A.色散现象 B.全反射现象 C.干涉现象 D.衍射现象后记:本课时复习物理光学的基本概念,学生对于记忆部分掌握较好,对光的干涉和衍射理解深刻,能够用所学知识解释物理现象第四课时(1)光子说①光电效应现象:在一定频率光的照射下,从金属表面发射电子的现象,发出的电子叫光电子规律:Ⅰ.光电效应的瞬时性(10-9秒).Ⅱ.每种金属都有一个极限频率,当入射光的频率大于极限频率时,才能发生光电效应.②光子说 :光源发出的是不连续的,而是一份一份的,每一份光叫做一个光子,光子的能量跟光的频率成正比,即E=hν光子论对光电效应的解释:③爱因斯坦光电效应方程:E k=hν-W1.光电效应:⑴在光的照射下物体发射电子的现象叫光电效应。
(右图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。
)⑵光电效应的规律:①各种金属都存在极限频率ν0,只有ν≥ν0才能发生光电效应;②瞬时性(光电子的产生不超过10-9s)。
③、④ ..⑶爱因斯坦的光子说。
光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量E跟光的频率ν成正比:E=h ν⑷爱因斯坦光电效应方程:Ek= hν- W(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。
)题30、对爱因斯坦光电效应方程E K= hν-W,下面的理解正确的有A.只要是用同种频率的光照射同一种金属,那么从金属中逸出的所有光电子都会具有同样的初动能E K B.式中的W表示每个光电子从金属中飞出过程中克服金属中正电荷引力所做的功 C.逸出功W和极限频率ν0之间应满足关系式W=hν0 D.光电子的最大初动能和入射光的频率成正比题31、如图,当电键K断开时,用光子能量为2.5eV的一束光照射阴极P,发现电流表读数不为零。
合上电键,调节滑线变阻器,发现当电压表读数小于0.60V时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。
由此可知阴极材料的逸出功为C.2.5eVD.3.1eV(2)玻尔的原子模型,能级轨道量子化:围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象称为轨道量子化。
在这些状态中,尽管电子做变速运动,却不向外辐射能量,因此这些状态是稳定的。
能量量子化:原子可能的状态是不连续的,因此各状态对应的能量也是不连续的。
这些能量值叫做能级。
氢原子能级如图所示。
基态与激发态光子的发射与吸收:原子从一种定态(En)跃迁到另一VAPK种定态(E k)时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能级差决定:hν=E m-E n原子光谱:稀薄气体通电时只能发出几种确定频率的光,通过分光镜得到的光谱是几条分立的亮线,而且不同气体光谱的亮线位置不同,这种分立的线状光谱叫做原子光谱。
(3)光的波粒二象性物质波1.光的波粒二象性;干涉、衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。
2.正确理解波粒二象性:波粒二象性中所说的波是一种概率波,对大量光子才有意义。
波粒二象性中所说的粒子,是指其不连续性,是一份能量。
⑴个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。
⑵ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性。
⑶光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。
⑷由光子的能量E=hν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。
由以上两式和波速公式c=λν还可以得出:E = p c。
题32、已知由激光器发出的一细束功率为P=0.15kW的激光束,竖直向上照射在一个固态铝球的下部,使其恰好能在空中悬浮。
已知铝的密度为ρ=2.7×103kg/m3,设激光束的光子全部被铝球吸收,求铝球的直径是多大?(计算中可取π=3,g=10m/s2)①光的波粒二象性:光既具有波动性,又具有微粒性,这种性质叫波粒二象性.光子能量: E=hν光子动量: P=h/λ光子质量: m=E/c2=hλ/c②物质波:任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它对应,波长λ是λ=h/p1、原子模型:汤姆生模型(枣糕模型)——卢瑟福模型(核式模型)——.玻尔模型(半经典半量子模型)——现代模型(电子云模型)2、玻尔假设:(1)、原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外辐射能量.(2)、原于从一种能量状态(设能量为E1)跃迁到另一种能量状态(设能量为E2)时,它辐射(或吸收)一定频率的光子,光子的能量(E=hν)由这两种能量状态的能量差决定,即hν=E1=E2.(3)、原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应.原子的能量状态是不连续的,因此电子的可能轨道的分布也是不连续的.3、玻尔原子理论对氢原子解释的两个公式:r n=n2r1,E n=E1/n2,(n= 1,2,3…)4、原子光谱可以用原子的发光机制解释,原于从一种能量状态(设能量为E1 )跃迁到另一种能量状态(设能量为E2 )时,它辐射(或吸收)一定频率的光子,光子的能量(E=hν)由这两种能量状态的能量差决定,即hν=E1=E2.5、玻尔理论的局限性在于没有完全引入量子理论.题34、氢原子的基态能量为E1,电子轨道半径为r1,电子质量为m ,电量大小为e .氢原子中电子在n=3 的定态轨道上运动时的速率为v3,氢原子从n=3 的定态跃迁到n=1 的基态过程中辐射光子的波长为λ,则以下结果正确的是:A.B.C.电子的电势能和动能都要减小D.电子的电势能减小,电子的动能增大题35、已知氢原子基态具有能量-13.6eV .有一群氢原子处于量子数n=3的激发态,请画出能级图,在图上用箭头标明这些原子可能发出的几种频率的光,并计算出其中最短波长。