4G-LTE下载速率理论计算公式
华为LTE面试题整理
1、注册成功率=?UE成功注册次数/UE注册请求次数2、VoLTE语音网络接通率=VoLTE语音网络接通次数/VoLTE语音呼叫总次数3、eSRVCC切换成功率=?eSRVCC切换成功次数/eSRVCC切换总次数4、eSRVCC切换时延=?eSRVCC切换累计时长/eSRVCC切换成功次数接通率:LTE差小区问题分析与处理方法1、接入类接入失败通常有三大类原因:无线侧参数配置问题、信道环境影响以及核心网侧配置问题。
因此遇到无法接入的情况,可以大致按以下步骤进行排查:1. 确认是否全网指标恶化,如果是全网指标恶化,需要检查操作,告警,是否存在网络变动和升级行为。
2. 如果是部分站点指标恶化,拖累全网指标,需要寻找TOP站点。
3. 查询RRC连接建立和ERAB建立成功率最低的TOP3站点和TOP时间段。
4. 查看TOP站点告警,检查单板状态,RRU状态,小区状态,OM操作,配置是否异常。
5. 提取CHR日志,分析接入时的信道质量和SRS的SINR是否较差(弱覆盖),是否存在TOP用户。
6. 针对TOP站点进行针对性的标准信令跟踪、干扰检测分析。
7. 如果标准信令和干扰检测无异常,将一键式日志,标口跟踪,干扰检测结果返回给开发人员分析资源分配失败导致RRC连接建立失败1、将SRS资源配置方式修改为接入增强、收缩功率2、增大T302定时器,增加在RRC连接建立拒绝后延长惩罚的时间(默认4s)UE无应答导致RRC建立失败结合实际无线环境通过工程参数调整、站点补盲解决弱覆盖问题;1、根据干扰在每个PRB上的分布特征,定位干扰类型,排查干扰源;2、极端情况下提升小区最小接入电平控制用户接入;3、调整上行功控参数路径损耗因子(0.7)、PUSCH标称P0值(-67)提升UE发射功率;4、降低RACH最大传输次数,减少边缘用户RRC请求核心网问题1、首先确认问题出现的时间点及涉及范围;2、与核心网确认是否在此期间进行过相关操作;3、根据日志分析是否为TOP终端问题;首先要获取全网的掉话率指标及话统变化趋势,如果全网指标突然恶化,需要执行以下检查工作:1. 确认是否存在传输告警,设备异常告警等;2. 分析是否由于话务量突增导致的掉话率恶化;3. 确认近期是否有过版本升级、打补丁等操作等重大操作;4. 分析小区级掉话指标,按照掉话绝对次数分析TOPN,首先核查小区是否存在RRU、通道、传输、基带板等相关告警;5. 分析小区掉话原因、是否存在TOP用户;6. 针对不同原因进行优化调整;无线层问题导致的异常释放eNodeB发起的原因为无线层问题的UEContext释放次数eNodeB发起的原因为上行弱覆盖的UEContext异常释放次数1. 弱覆盖优化建议:结合实际测试无线环境进行RF调整;1、覆盖空洞区域加站;2、边缘覆盖区域通过调整互操作参数使其尽快切换至异系统;3、极端情况通过调整最小接入电平控制用户接入;4、对于上行弱覆盖,可通过调整上行功控参数提升UE发射功率;切换失败原因主要有以下几个方面:传输、设备内部处理、覆盖(弱覆盖/越区覆盖)、干扰、邻区漏配、切换不及时等;传输问题定位需要在收发端抓取数据确认;设备内部处理出错需要提取工作日志进行分析定位;弱覆盖、越区覆盖、干扰、切换不及时、邻区漏配一般体现在信令丢失导致切换失败,属于空口质量问题,优化方法如下:1. 弱覆盖区域需要通过调整天馈、增加功率、新建站点解决;2. 越区覆盖通过控制下倾(机械下倾、电下倾)来控制覆盖范围;3. 干扰问题需要定位干扰类型,外部干扰可通过扫频确认干扰源;内部干扰可使用相关干扰算法降低影响;4. 添加漏配邻区;5. 切换不及时可通过调整切换门限、CIO、迟滞、触发时间等切换参数控制切换点;高误块MOD PCCHCFG 增大用户寻呼下发次数,可提高寻呼成功率MOD CELLCHPWRCFG 寻呼信道功率、随机响应信号功率(值变大增大覆盖,负值降低覆盖),增大该值可提高寻呼成功率MODCELLDLSCHO 随机接入响应消息和寻呼消息码率越小寻呼成功率越高网络驻留能力类(覆盖)、234G互操作类、终端营销类1、TDS空闲态、业务态参数:最低接入、高优先级E-UTRA小区重选RSRP信号门限、TDS重定向至LTE门限;2、GSM重选至LTE门限:基于EUTRAN的最小接入电平、优先级;3、LTE侧空闲态:最低接收电平(小区选择)、最低接收电平(小区重选)、服务频点低优先级重选门限通过以上四个维度为切入点,建立以下五个步骤提升LTE网络用户感知:网络结构优化:弱覆盖区域优化、重叠覆盖优化、干扰小区、故障小区处理;网络质量提升:SINR提升;关键性能参数:PCI参数优化、LTE邻区优化、2G/3G/4G互操作邻区优化、CSFB参数配置优化;双层网异频优化:梳理切换带、PCI合理优化、邻区优化;网络调度提升:服务器、传输带宽、参数、硬件问题。
知识点:4G、LTE、TDD-LTE和FDD-LTE
知识点:4G、LTE、TDD-LTE和FDD-LTE【4G】4G网络既第四代移动通信网络,是3G网络的演进,但却并非是基于3G网络简单升级而演变形成的,从技术角度来说,4G网络的核心与3G网络的核心是完全两种不同的技术,3G 网络主要以CDMA为核心技术,而4G采用许多关键技术来支撑,包括:OFDM(正交频分调制)、多载波调制技术、自适应调制和编码(AMC)技术、MIMO(多入多出)技术和智能天线技术、基于IP的核心网、软件无线电技术以及网络优化和安全性等。
按照ITU的定义,静态传输速率达到1Gbps/s,用户在高速移动状态下可以达到100Mbps/s,就可以作为4G的技术之一。
【4G的特征】1.传输速率更快:对于大范围高速移动用户(250km/h)数据速率为2Mbps;对于中速移动用户(60km/h)数据速率为20Mbps;对于低速移动用户(室内或步行者),数据速率为100Mbps;2.频谱利用效率更高:4G在开发和研制过程中使用和引入许多功能强大的突破性技术,无线频谱的利用比第二代和第三代系统有效得多,而且速度相当快,下载速率可达到5Mbps~10Mbps;3.网络频谱更宽:每个4G信道将会占用100MHz或是更多的带宽,而3G网络的带宽则在5~20MHz之间;4.容量更大:4G将采用新的网络技术(如空分多址技术等)来极大地提高系统容量,以满足未来大信息量的需求;5.灵活性更强:4G系统采用智能技术,可自适应地进行资源分配,采用智能信号处理技术对信道条件不同的各种复杂环境进行信号的正常收发。
另外,用户将使用各式各样的设备接入到4G系统6.实现更高质量的多媒体通信:4G网络的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频信道传送出去,让用户可以在任何时间、任何地点接入到系统中,因此4G也是一种实时的宽带的以及无缝覆盖的多媒体移动通信7.兼容性更平滑:4G系统应具备全球漫游,接口开放,能跟多种网络互联,终端多样化以及能从第二代平稳过渡等特点【LTE—3GPP】这种以OFDM/FDMA为核心技术可以被看做“准4G”技术或3.9G。
LTE速率计算
LTE速率计算下行峰值速率的计算:计算峰值速率一般米用两种方法:第一种:是从物理资源微观入手,计算多少时间内(一般采用一个TTI或者一个无线帧)传多少比特流量,得到速率;另一种:是直接查某种UE类型在一个TTI(LTE系统为1ms)内能够传输的最大传输块,得到速率。
下面以FDD-LTE为例,分别给出两种方法的举例。
【方法一】首先给出计算结果:20MHz带宽情况下,一个TTI内,可以算得最高速率为:总速率二,业务信道的速率=*75洽150Mbps数字含义:6:下行最高调制方式为64QAM 1个符号包含6bit信息;2和7:LTE系统的TTI为1个子帧(时长1mS,包含2个时隙,常规CP下,1 个时隙包含7个符号;因此:在一个TTI内,单天线情况下,一个子载波下行最多传输数据6X7X2bit ; 2:下行采用2X2MIMO两层空分复用,双流可以传输两路数据;1200:20MHz 带宽包含1200个子载波(100个RB每个RB含12个子载波)75%下行系统幵销一般取25% (下行幵销包含RS信号(2/21)、PDCCH/PCFICH/PHICH(4/21) SCH BCH等),即下行有效传输数据速率的比例为75%如果是TD-LTE系统,还要考虑上下行的时隙配比和特殊时隙配比,对下行流量对总流量占比的影响。
如在时隙配比3:1/特殊子帧配比10:2:2的情况下:一个无线帧内,各子帧依次为DSUDD??DSU,其中D为下行子帧U为上行子帧,每个子帧包含2个时隙共14个符号,S为特殊子帧,10:2:2的配置,表示DwPTS(Downlink Pilot TimeSlot) 、GP(Guard Period)和UpPTS(Uplink Pilot TimeSlot)各占10个、2个和2个符号。
那么所有下行符号等效在一个TTI内占的比例为(6*14+2*10)/14*10=74%,如果也粗略考虑75%勺控制信道幵销,那么TD-LTE 系统在3:1/10:2:2 的配置下,下行峰值速率可达:*75%*74躺112Mbps其他的时隙配比、特殊子帧配比,都可以参考这个方法来计算。
4G --LTE知识点
LTE课程1.ofdm/mimo2.EPC:核心网3.CS:电路域4.eNB:无线资源管理(基站)5.x2口:eNB与eNB之间的接口6.PDCCCH:下行控制信道7.传统FDM:为避免载波间干扰,需要在相邻的载波间保留一定保护间隔,大大降低了频谱效率。
8.吞吐量:下载速率9.GP:控制信令10.TD-LTE子帧= 1ms = 30720Ts10:2:2 = 21952Ts : 4384Ts : 4384Ts3:9:2 = 6592Ts : 19744Ts : 4384Ts11.TD-SCDMA时隙= 675usDwPTS = 75us GP = 75us UpPTS = 125us扰码:WCDMA是一种码分多址的扩频通信系统,在上行方向用扰码来区分不同的UE,用正交可变扩频因子(OVSF)的信道化码进行扩频。
在下行方向用扰码来识别不同的小区,用正交可变扩频因子的信道化码进行扩频,并用于分离同一小区内不同的下行信道。
WCDMA系统的扩频和加扰过程如下图所示。
WCDMA下行方向共有8192个扰码,分成512组,每组包含1个主扰码和15个辅扰码,每个小区分配1个唯一的主扰码和对应的辅扰码组。
下行公共信道用主扰码加扰,以识别不同的小区。
WCDMA下行方向用正交可变扩频因子(OVSF)的信道化码对信道进行扩频,并利用不同信道化码的正交性来分离不同的下行信道。
OVSF码可以用码树来表示,码树上的码可以表示为C ch,SF,k,其中SF为扩频因子,k为码号,0 ≤k ≤ SF-1。
OVSF码树上同一SF的码相互正交,不同SF且不同码树分支上的码也相互正交,但同一码树上不同SF的码不正交。
由于下行信道要求相互正交,因此,当一个码被分配以后,其所在码树上的下层低速的码节点和上层高速的码节点将不能再被分配,即被阻塞。
由于下行信道化码的这些特性,使得下行信道化码成为一种受限的资源,如果分配不合理,将会降低系统容量,因此下行信道化码的分配和管理是WCDMA系统中码资源管理的核心内容。
最新(完美版)LTE下载速率分析
One antenna port
slot0
slot1
R0
R0
RSRP:R0平均值
R0
R0
RSRP Total为测试终端天线R0和R1中的
R0
R0
l0
l6 l0
l6
基本无线参数 - RSSI
RSSI (Received Signal Strength Indicator): 指在测量带宽内所有包含参考信 号的OFDM符号上接收到的信号功率的线性平均值(参见36.214) ,包括本小区 和同频邻小区在此位置的信号、邻道干扰、热噪声等全部信号量。
空口基本配置 无线资源调度算法 切换参数 天馈 传输带宽 ….
LTE帧结构
时域100X10X14
X
频域100× 12 X 6 (64QAM) X 2 (MIMO)
= 201.6M
决定空口理论速率的基本参数
系统带宽 子帧配比 特殊子帧配比
TM模式
CP长度 控制信道开销 UE能力等级 各协议层开销
下理论峰值速率(mbps)
CAT3 单流 30.15 41.46 45.23 56.53 双流 40.82 56.13 61.23 76.54 CAT4 单流 30.15 41.46 45.23 56.53 双流 59.91 82.37 89.87 112.33
配置2 (1:3)
理论速率与MCS关系
20M带宽, RB满调度,子帧配置为2:2或1:3,特殊子帧可用于传输下行数据时,理论 速率与MCS的关系如下图所示:
MCS为10、15、20时理论速率分别为23M、46M
、70M
与速率相关的参数
1. 无线参数 RSRP RSSI RSRQ SINR
LTE测试下载速率学习
LTE测试下载速率学习一、下载速率的计算1.1 帧结构1.2 RB and RE1.2.1 RBLTE空中接口分配资源的基本单位是物理资源块(physical Resource Block,PRB)。
一个物理资源块包括频域上的连续12个子载波,和时域上的7个连续的OFDM 符号周期。
一个RB对于的是带宽为180kHZ、时长为0.5ms的无线资源。
以20M带宽为例,一共有100个RB数。
1.2.2 RELTE的下行物理资源可以看成是时域和频域资源组成的二维栅格,把一个常规的OFDM符号周期和一个子载波组成的资源成为一个资源单位(Resource Element,RE),那么一个RB包含12*7=84个RE。
每个RE都可以根据无线环境选择QPSK、16QAM或64QAM的调制方式,调制方式为QPSK时可以携带2bit信息,16QAM时可以携带4bit,而64QAM则可以携带6bit信息。
1.3 CP保护间隔中的信号与该符号尾部相同,即循环前缀(Cyclic Prefix,简称CP)。
Tcp的作用:既可以消除多径的ISI,又可以消除ICI。
一个OFDM的符号周期包括有用符号时间Tu和循环前缀Tcp,Tofdm=Tu+Tcp。
一般分为普通CP和扩展CP,普通CP配置情况下,一个时隙内有用符号为7个,扩展CP配置情况下为6个。
所谓有用符号就是可以携带有效数据的符号。
1.4 PCFICH、PHICH和PDCCH配置1.5 上下行理论计算1.5.1 下行峰值速率以20M带宽为例,可用RB为100。
1)以常用的双天线为例,RS的图案如下图所示。
可以看出每个子帧RS的开销为16/168=2/21。
2)PCFICH、PHICH占用的是每个子帧的第一个Symbol,PDCCH通常占用每个子帧的前三个Symbol,如下图所示。
考虑到和RS信号重复的部分,PCFICH、PHICH和PDCCH的开销为(36-4)/168=4/21。
4G网络lte技术
第一课认识4G LTE4G就是第四代移动通信系统,第四代移动通信系统可称为广带接入和分布式网络,其网络结构将是一个采用全IP的网络结构。
4G网络采用许多关键技术来支撑,包括正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM) ,多载波调制技术,自适应调制和编码(Adaptive Modulation and Coding,AMC)技术,MIMO和智能天线技术,基于IP的核心网,软件无线电技术一件网络优化和安全性等。
另外,为了与传统的网络互联需要用网关建立网络的互联,所以4G将是一个复杂的多协议网络。
第四代移动通信系统具有如下特征:1.传输速率更快:对于大范围高速移动用户(250km/h)数据速率为2Mbps;对于中速移动用户(60km/h)数据速率为20Mbps;对于低速移动用户(室内或步行者),数据速率为100Mbps.2.频谱利用效率更高:4G在开发和研制过程中使用和引用许多功能强大的突破性技术,无线频谱的利用比第二代和第三代系统有效的多,而且速度相当的快,下载速率可达到5~10Mbps;3.网络频谱更宽:每个4G信道将会占用100MHz或是更多的带宽,而3G网络的带宽则在5~20MHz之间;4.容量更大:4G 将来采用新的网络技术(如空分多址技术)来极大地提高系统容量,以满足未来大信息量的需求。
5.灵活性更强:4G系统采用智能技术,可自适应地进行资源分配,采用智能信号处理技术对信道条件不同的各种复杂环境进行信号的正常收发。
另外,用户将使用各式各样的设备接入到4G系统;6.实现更高质量的多媒体通信:4G网络的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频信道传送出去,让用户可以在任何时间、任何地点接入到系统中,因此4G也是一种实时的宽带的以及无缝覆盖的多媒体通信。
7.兼容性更平滑:4G系统应具备全球漫游,接口开放,能跟多种网络互联,终端多样化以及能从第二代平稳过渡等特点。
LTE帧结构与速率计算
#0
#1
#2
#3
#18
#19
One subframe
帧结构特点: 每个10ms无线帧,分为20个时隙,10个子帧 每个子帧1ms,包含2个时隙,每个时隙0.5ms 上行和下行传输在不同频率上进行
TDD帧结构
帧结构特点: 每个10ms无线帧,2个长度为5ms的半帧构成 ,每个半帧由5个长度为1ms 的子帧构成 普通子帧由两个0.5ms的时隙组成,特殊子帧由3个特殊时隙(DwPTS、GP 和UpPTS)组成 TD-LTE支持5ms和10ms的上下行转换点,转换周期为5ms时一个帧有两 个特殊时隙。
在常规CP上,一个资源块包括7个SC— FDMA符号(下行时OFDM符号)
LTE子载波间隔是15kHz,一个资源块占用 的带宽是180kHz.
LLTE系统支持6种不同的传输带宽,分别为1.4 MHz、3 MHz、5 MHz、10 MHz、15 MHz、20 MHz对应RB数:
带宽
1.6
3
5
10
15
OFDM符合个数
3、采用QPSK调制,指示一个子帧中用于传输PDCCH的OFDM符号数、传输
格式;
4、小区级shift,随机化干扰
PDCCH QPSK
用于指示PDSCH相关的传 输格式,资源分配, HARQ信息等
1、频域:占用全带宽; 2、时域:占用每个子帧的前n个OFDM符号,n<=3 3、用于发送上/下行资源调度信息、功控命令等,通过下行控制信息块 DCI承载。不同用户使用不同的DCI资源。
LTE帧结构与速率计算
一、LTE帧结构
• FDD—LTE帧结构
频分双工,上下行用频率区分,上下行的资源在时间上 是连续的。
LTE系统峰值速率的计算
LTE系统峰值速率的计算LTE(Long-Term Evolution)是第四代移动通信网络技术,其峰值速率是衡量其性能的重要指标之一、峰值速率是指在理想条件下,系统所能支持最高的数据传输速率。
下面将详细介绍如何计算LTE系统的峰值速率。
下行峰值速率的计算需要考虑以下多个因素:a. 带宽(Bandwidth):LTE系统中,下行带宽通常为5、10或20 MHz。
带宽越大,峰值速率越高。
b. MIMO(Multiple-Input Multiple-Output)技术:MIMO技术允许在同一频段上使用多个天线,从而提高数据传输速率。
LTE系统中,支持的MIMO配置有1x1、2x2、4x2等。
MIMO配置越高,峰值速率越高。
c.调制与编码方案:LTE系统中常用的调制与编码方案包括QPSK、16QAM和64QAM,分别代表4、16和64个相位的星座图。
使用更高阶的调制方案可以提高传输速率,但对信道质量和干扰抑制要求也更高。
d.调度算法:LTE系统中采用动态资源分配和调度算法,在不同的用户和信道条件下,会采用不同的调度策略。
调度算法的性能直接影响到峰值速率的实际达到情况。
根据上述因素,下行峰值速率的计算公式如下:DL Peak Rate = 带宽 x MIMO配置 x 峰值调制阶数 x 符号速率例如,LTE系统中采用20MHz带宽,4x2MIMO配置,64QAM调制,每个符号传输6个比特,则下行峰值速率为:DL Peak Rate = 20 MHz x 4x2 x 64 x 6 = 3.84 Gbps上行峰值速率的计算与下行类似,同样需要考虑带宽、MIMO配置、调制与编码方案和调度算法等因素。
上行峰值速率的计算公式如下:UL Peak Rate = 带宽 x MIMO配置 x 峰值调制阶数 x 符号速率例如,LTE系统中采用10MHz带宽,2x2MIMO配置,16QAM调制,每个符号传输4个比特,则上行峰值速率为:UL Peak Rate = 10 MHz x 2x2 x 16 x 4 = 1.28 Gbps需要注意的是,上述计算结果是在理想条件下的峰值速率,实际情况受到多种因素的影响,例如信道质量、干扰、用户数量等。
LTE每日一课_LTE理论速度计算(根据帧结构计算)
1.基本概述LTE理论速度的计算,归根结底,还是要统计多少个RE传输下行数据,多少个传输上行数据,多少个RE是系统开销掉的,然后再根据调制方式计算传输块大小。
即吞吐率取决于MAC层调度的选择的TBS,理论吞吐率就是在一定条件下可选择的最大TBS 传输块。
TBS可有RB和MCS的阶数对应表中进行查询可得。
2.计算思路具体计算思路如下:2.1 计算每个子帧中可用RE数量这里要根据协议规定,扣除掉每个子帧中的PSS、SSS、PBCH、PDCCH、CRS等开销,然后可以得到可使用的RE数目。
在这里,PSS、SSS、PBCH是固定的,但是其他系统开销需要考虑到具体的参数配置,如PDCCH符号数、特殊子帧配比、天线端口映射等。
信道映射举例如下:TD-LTE帧结构图(信道、子载波、时隙)2.2 计算RE可携带比特数比特数=RE数*6(2.3 选择子帧TBS传输块依据可用RB数,选择CR(码率)不超过0.93的最大TBS。
2.3.1 码率下表是CQI与码资源利用率的关系,可以看到,即使是使用64QAM调制,最大的码字也不能达到6,最多达到0.926,这里也算是修正我们上一步乘以6bit的一些差值。
2.3.2 MCS与TBS对应关系以20M带宽,100RB计算,对应关系如下表:这里我们根据RE*6*CR的值,在下表中找出比这个值小,但是最接近的TBS块大小,就是该子帧能达到的最大理论速度。
全部的MCS、RB、和TBS的对应关系如附件:MCS与TBS映射.xlsx2.4 累加各子帧的TBS根据时隙配比,累计各个子帧的TBS;如果是双流,还需要乘以2,就可以计算出最高的吞吐量了。
3.下行理论速度计算举栗子配置为:20M带宽,2x2 MIMO,子帧配比1,特殊子帧配比7, PDCCH符号1,所以下行传数的子帧有:0, 1, 4,5, 6, 9。
子帧0:可用RE=(((符号数-PDCCH-PBCH-辅同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)*每RB12个子载波-CRS)*剩余RB)*调制系数=(((14-1-4-1)*12-8)*6+((14-1)*12-12)*(100-6))*6=84384,乘以码率0.93,得78477,查询100RB 对应的TBS,可以选择75376(MCS28)子帧1:可用RE=(((符号数-PDCCH-主同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)*每RB12个子载波-CRS)*剩余RB)*调制系数=(((10-l-l)*12-8)*6+((10-l)*12-8)*(100-6))*6=59568, 乘以码率0.93,得55398,TBS 选择55056(MCS24)子帧4:可用RE=(((符号数-PDCCH)*每RB12个子载波-CRS)*RB)*调制系数=(((14-1)*12-12)*100)*6=86400, 乘以码率0.93,得80352,TBS 选择75376(MCS28)子帧5:可用RE=(((符号数-PDCCH-辅同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)* 每RB12个子载波-CRS)*剩余RB)*调制系数=(((14-l-l)*12-12)*6+((14-l)*12-12)*(100-6))*6=85968, 乘以码率0.93,得79950,TBS 选择75376(MCS28)子帧6与子帧1计算相同,子帧9与子帧4计算相同所以下行吞吐率=(子帧0+子帧1+子帧4+子帧5+子帧6+子帧9)*2*100/1000000=(75376+55056+75376+75376+55056+75376)*2*100/1000000=82.323Mbps理论速度对应表如下:4.上行理论速度计算上行计算思路和下行基本一样,只不过上行需要考虑扣除的开销没有下行那么复杂,只需要在时域考虑每个子帧扣除2个符号的DMRS,频域考虑扣除PUCCH占用的RB数,和PRACH周期到来时,再扣除6个RB。
LTE下行峰值速率计算
LTE下行峰值速率计算LTE(Long-Term Evolution)是第四代移动通信技术的一种,其下行峰值速率是衡量网络效能的重要指标之一、下面将详细介绍LTE下行峰值速率的计算方法。
1. 带宽(Bandwidth):带宽是指网络传输速率的最大限制。
在LTE 中,带宽可以分为10MHz、15MHz和20MHz等几个不同的选项。
带宽越大,可支持的数据传输速率也就越高。
2. 调制解调方式(Modulation and Coding Scheme,MCS):MCS用于将数字信号转换为模拟信号以便传输。
在LTE中,MCS的选择取决于信道质量和信噪比。
较好的信道质量可以选择更高效的MCS,从而提高传输速率。
3. 天线数目(Number of Antennas):天线数目是指发送和接收信号所使用的天线数量。
在LTE中,可以使用1根、2根或4根天线。
多根天线可以通过MIMO(Multiple-Input Multiple-Output)技术实现信号的并行传输,从而提高传输速率。
4. 调度算法(Scheduling Algorithm):调度算法决定了哪些用户可以优先获得网络资源。
LTE中的调度算法通常根据用户的优先级和信道条件来决定分配给用户的资源,从而进一步提高传输速率。
根据上述因素,可以使用下行峰值速率的计算公式来估算LTE网络的传输速率:下行峰值速率=(子载波数量x符号数)/(子载波间隔x时隙数)x符号速率x编码率其中,子载波数量是根据带宽确定的,具体数值如下:-对于10MHz带宽,子载波数量为50;-对于15MHz带宽,子载波数量为75;-对于20MHz带宽,子载波数量为100。
符号数是指每个时隙中进行调制的符号数量,通常为7或者14子载波间隔是确定LTE频率资源的参数,它通常有三种可选的值:15kHz、7.5kHz和3.75kHz。
时隙数是指每个子帧中的时隙数量,一个子帧通常由14个时隙组成。
符号速率是指每秒传输的调制符号数量,它的数值根据MCS的不同而变化。
宽带网下载速度的计算公式和方法
宽带网下载速度的计算公式和方法在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit1B=8b ---------- 1B/s=8b/s(或1Bps=8bps)1KB=1024B ---------- 1KB/s=1024B/s1MB=1024KB ---------- 1MB/s=1024KB/s在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。
然而我们可以按照换算公式换算一下:128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。
4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s 上行速率是指用户电脑向网络发送信息时的数据传输速率,下行速率是指网络向用户电脑发送信息时的传输速率。
比如用 FTP上传文件到网上去,影响上传速度的就是“上行速率”;而从网上下载文件,影响下载速度的就是“下行速率”。
当然,在实际上传下载过程中,线路、设备(含计算机及其他设备)等的质量也会对速度造成或多或少的影响。
宽带网速计算方法.基础知识:在计算机科学中,bit叫做比特,是表示信息的最小单位,也叫做二进制位;一般用0和1表示。
Byte叫做字节,由8个位(8bit)组成一个字节(1Byte),用于表示计算机中的一个字符。
bit与Byte之间可以进行换算,其换算关系为:1Byte=8bit(或简写为:1B=8b);在实际应用中一般用简称,即1bit简写为1b(注意是小写英文字母b),1Byte简写为1B(注意是大写英文字母B)。
4GLTE网络
Cat. 4, CA 2Q ’13
TD-LTE Jul ‘13
4Q ’13 ~
GT-B3710 (瑞典)
世界第一部LTE 接收器
Droid Charge (美国)
世界第一部LTE 手机
G.S3 (南韩)
世界第一部 VoLTE
G.S4 (南韩)
第一部 Cat.4
Note II (中国移动)
国内第一部 TD-LTE
– 4G的标准是理论下载速率可达100Mbps以上,在网络情况比较好的地方, 实际可达80Mbps左右的下载速度,比3G快10倍以上!可以秒杀家里的 20M宽带。 – 举例:4G网络在信号稳定的最佳网络状态下,下载一首8MB大小的高品质 歌曲只需1秒钟,下载1GB的高清电影也仅需大概1分半钟。
本资料仅用于内部培训,产品信息以最终上市为准
Note3 LTE (中国移动)
本资料仅用于内部培训,产品信息以最终上市为准
4G与三星:4G来了
本资料仅用于内部培训,产品信息以最终上市为准
4G与三星:4G来了
现有服务将大幅度改善使用体验
高速无线网络带来高效率,手机等移动终端不再是只能简单打电话、上网等应用,还可 以有更深层面的应用,将会深刻改变我们未来的生活。比如:无延迟的即时传输、智能 “物联网”世界、高效的生活节奏。
本资料仅用于内部培训,产品信息以最终上市为准
4G来了 • TD-LTE和FDD-LTE有什么区别?哪个更好?
– TD-LTE和FDD-LTE都是4G LTE的技术,只是数据的传输方式不同。不同的
国家和地区,以及不同的运营商,选择了不同的LTE技术。其实从用户的体 验来看,没有太大的区别,网络传输速度都是相当的。
多样的设备间互联 设备间远程控制成为可能
传输速率的计算公式
传输速率的计算公式
传输速率是指在单位时间内传输的数据量,通常使用比特每秒(bps)作为单位。
计算传输速率的公式如下:
传输速率(bps)= 数据量(比特)÷传输时间(秒)
例如,如果要计算一个文件大小为10兆字节(MB)的文件在10秒内传输的传输速率,需要将文件大小转换为比特,即10MB ×8 = 80兆比特(Mb),然后将其除以传输时间10秒,即:
传输速率(bps)= 80,000,000 bps ÷10秒= 8,000,000 bps 或8 Mbps
需要注意的是,实际传输速率可能会受到各种因素的影响,如网络拥塞、传输距离、传输介质等。
因此,计算的传输速率仅供参考。
LTE速率计算资料讲解
1、FDD理论计算公式:一个时隙(0.5ms)内传输7个OFDM符号,即在1ms内传输14个OFDM符号,一个资源块(RB)有12个子载波(即每个OFDM在频域上也就是15KHZ),所以1ms内(2个RB)的OFDM个数为168个(14*12),它下行采用OFDM技术,每个OFDM包含6个bits,则20M带宽时下行速速为:<OFDM的bits数>*<1ms内的OFDM数>*<20M带宽的RB个数>*<1000ms/s>=6*168*100*1000=100800000bits/s=100Mb2、TDD理论计算公式:假设:带宽为20MHZ,TDD配比使用配置为1,即DL:UL:S=4:4:2,特殊时隙配置为DwPTS : Gp : UpPTS=10:2:2,子帧中下行控制信道占用3个符号,传输天线为2。
总10ms周期内,下行子帧有效数为4+10/14*2=5.4320MHZ带宽下:每帧中下行符号数为14*12*100*(4+10/14*2)=91200每帧中下行控制信道所占用的符号数为(3*12-2*2)*100*5.43=17371.4 每帧中下行参考信号数目为16*100*5.43=8685.7每帧中用于同步的符号数为288每帧中PBCH符号数为(4*12-2*2)*6=264则每帧中下行的PDSCH符号数为91200-17371.4-8685.7-288-264=64951 假设采用64QAM,码率为5/6,则速率为:(6*5/6*64951*2)/10ms=64.951Mbits/s其中6为64 QAM时每符号的比特数,5/6为码率,2为天线数RE:资源粒子 RB资源块1RB=7*12=84RE一个RB=12个子载波20M带宽:12*15*100=18000Hz,加2M保护带宽,不就是20M了嘛,不同的带宽不同的资源粒子数OFDM符号是在时域上说的,一个RE就是OFDM符号。
LTE速率计算
计算举例:以上我做的修正是基于CFI=3,下面的表格中我未细算,应该是有CFI=1的情况,如112M的情况,这里统一按CFI=3来计算吧:以2U:2D 10:2:2 UE等级3,CFI=3配置,按36.306协议规定,CAT3时,终端在一个TTI (1ms)内单流时能处理75376bit,双流时能处理102048bit的数据,在一个5ms内,下行有2个普通子帧和一个特殊子帧,2个普通子帧可传102048*2的数据,特殊子帧终端也可以处理102048bit的数据,但由于特殊子帧只有10个symbol,按码率不能超过0.93的规定,此时只能传送(46888*2=93776bits)的数据,因此在5ms内可传102048*2+46888*2=297872bits数,在一秒内,共200个5ms,因此峰速为297872*200=59.57Mbits。
UE能力表格:3.CRS共4列,每列4个,共4*4=16个RE,其中第一列包含在PDCCH中,余下三列:3*4=12,相当于一个symbol不能用于传数据,因此,数据部分还剩10个symbol因此数据部分共有10*12=120个RE4.按照64QAM调制,一个prb能传输120*6=720个bit5.下行1个子帧(1ms)100个PRB,共能传72000个bit6.按协议规定,终端接收数据的码率不能超过0.93,因此最多能传72000*0.93=66960个bit7.查协议36.213 Table 7.1.7.2.1-1:,100prb,Itbs=25(MCS=27)时,可传送的数据块大小为63776,Itbs=26(MCS=28)时为75376,因此,只能传得下MCS=27时的数据块63776,62776*2=127552,但由上面表格,CAT3时最大能处理102048bit,因此,普通子帧在CAT3时只能最大处理102048的数据,CAT4时能处理150752的数据,但由于受上面码率的限制,cat4时只能传输63776的数据块.8.因此普通子帧在CAT3时的的速率:102048*400(5ms内2个普通子帧)=40.8192Mbps9.特殊子帧10:2:2时,相当于0.75个子帧,20M带宽时相当于75个prb,同理按上面的几个步骤的计算,最大能传MCS=27时的46888bit,因此特殊子帧速率:46888*2*200=18.7552Mbps10.总速率:=40.8192+18.7552=59.57Mbps。
4G常用计算指标说明
Q m :调制级数,QPSK、16QAM、64QAM 分别对应 2、4、6; TRE :每个 RE 的周期;
f :子载波带宽。
为保证每个子帧的持续时间为 1ms,则每个 OFDM 符号的持续时间为 1/15ms,每个子 帧的所有 CP 的持续时间为 1/15ms。
7
下行所需信道资源计算
UE 下行传输所需 PRB 资源由业务速率和频谱效率共同决定,计算步骤如下: 步骤 1:确定下行传输所需 PRB 资源 下行 SINR 可由 Cell-Specific RS 测量得到,由 SINR 与调制方式的映射关系可以确定 UE 传输的频谱效率。下行传输所需 PRB 资源计算如下:
3
参考信号接收质量(RSRQ)
参考信号接收质量的计算如下: RSRQ = RSRP * NPRB / RSSI 其中, RSRQ:参考信号接收质量; RSRP:参考信号接收功率; NPRB:下行传输中所需要的 PRB 总数; RSSI:载波接收信号强度指示。
4
下行 RS 的 SINR 计算
将 RB 上的功率平均分配到各个 RE 上。 下行 RS 的 SINR = RS 接收功率 /(干扰功率 + 噪声功率) RS 接收功率 = RS 发射功率 * 链路损耗 干扰功率 = RS 所占的 RE 上接收到的邻小区的功率之和
6
调制方式和编码速率的选择
LTE TDD 系统中调制方式和编码速率的选择由参考信号的测量估计得到,步骤如下: 步骤 1:获得参考信号的 SINR 值 LTE TDD 下行 SINR 值由 Cell-Specific RS 测量得到,上行 SINR 值由 SRS 测量得到。 步骤 2:确定 SINR 对应的等效 SNR 阈值 将参考信号的 SINR 近似地看为 AWGN 信道条件下的等效 SNR,并通过 SINR 与调制 方式和速率的对应关系表可以确定小于或等于 SINR 值的最大 SNR 阈值。 步骤 3:确定调制方式、编码速率、频谱利用率 由表 1 可以得到等效 SNR 阈值对应的调制方式、编码速率、频谱效率。
MR数据在4G网络SINR优化中的应用
MR数据在4G网络SINR优化中的应用一、成果背景目前公司正在集中全力发展LTE网络建设,由于LTE属于较新的业务,因此目前缺少有效的分析手段。
现阶段主要是靠路测和用户的投诉来发现网络存在的问题,解决的主要是发生在道路上的问题,对于用户实际所处位置的使用情况无法得知和分析。
针对这个问题采取有目的性的采集特定时段MR数据来分析和解决。
MR数据在主流的应用中主要是针对无线网络覆盖问题,即通过接收功率(RSRP)的情况确认弱覆盖、过覆盖等情况,但4G网络优化中,下载速率的多少主要取决于信号与干扰加噪声比(SINR)的情况,本文通过MR数据的深入挖潜,探索了一条对4G网络SINR的优化方法,使得通过后台数据直接定位4G速率问题,极大提高了4G优化工作效率。
二、解决方案影响用户使用感受的主要是覆盖差和信号质量差,也就是RSRP差和SINR差。
其中覆盖问题多数只能靠新建基站等建设手段解决,而RSRP好但SINR差的情况则大多可以通过优化手段来解决,这也是优化最常遇到的问题。
用户终端申请下载速率就是以其解调出的SINR为依据,然后上报CQI需求,网络根据用户上报申请分配下行速率,所以可以说SINR的优化是网络优化的重点。
目前主要是通过用户投诉来发现RSRP好但SINR差的问题,如果能通过MR数据分析来主动的发现这类问题,在用户投诉之前争取解决,则网络优化效率可以得到质的改变。
但是在MR的上报数据中只有用户的RSRP和RSRQ的数据,并没有上报SINR 的数据。
因此需要将上报的RSRQ数据转换为SINR来评估,下面介绍一下具体的计算方法:1. 指标定义RSRP(Reference Signal Receiving Power):是在某个Symbol内承载Reference Signal的所有RE上接收到的信号功率的平均值;RSSI(Received Signal Strength Indicator):是在这个Symbol内接收到的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率的平均值;RSRQ (Reference Signal Receiving Quality):RSRP和RSSI的比值,当然因为两者测量所基于的带宽不同,会用一个系数来N调整,也就是RSRQ = N*RSRP/RSSI,N是全带宽的RB数目(跟带宽有关系)。