太阳能光伏提水系统原理图
【科普】太阳能光伏扬水系统
简介
太阳能光伏扬水系统,英文称为Solar Water Pumping System,是利用太阳辐射能量转化为电力并驱动水泵进行抽水的系统。
特点
1.光伏发电系统全自动运行,无须人工值守;光伏扬水系统由太阳电池阵列、扬水逆变器及水泵构成,省却掉蓄电池之类的储能装置,以蓄水替代蓄电,直接驱动水泵扬水,可靠性高,同时大幅降低系统的建设和维护成本。
2.采用光伏扬水逆变器,根据日照强度的变化调节水泵转速,使输出功率接近太阳电池阵列的最大功率;当日照很充足时,保证水泵的转速不超过额定转速;当日照不足时,根据设定最低运行频率是否满足,否则自动停止运行。
3.水泵由三相交流电机驱动,从深井中抽水,注入蓄水箱/池,或直接接入灌溉系统。
根据实际系统需求和安装条件,可采用不同类型的水泵进行工作。
4.可以根据地区、客户不同需求提供经济有效的解决方案。
原标题:【科普】太阳能光伏扬水系统。
光伏水泵系统的结构和原理
光伏水泵系统的结构和原理光伏水泵系统大致由四部分组成:光伏阵列,控制器、电机和水泵。
1.1光伏阵列光伏阵列由众多的太阳电池串、并联构成,其作用是直接把太阳能转换为直流形式的电能。
目前用于光伏水泵系统的太阳电池多为硅太阳电池,其中包括单晶硅、多晶硅及非晶硅太阳电池。
太阳电池的伏安特性曲线如图:所示。
它具有强烈的非线性。
太阳电池输出的最大功率就是它的额定功率。
图:中曲线上的大圆黑点表示在相应日射下太阳电池输出最大功率的位置,称最大功率点.光伏阵列的伏王特性曲线具有和单体太阳电他同样的形状,若忽略单体太阳电池生产过程中的差异、组件相互之间的连接电阻,吕附设它具有理想的一致性光伏阵列的伏安特性曲线可以看作仅是单体太阳电池伏安特性曲线按串、并联方式放大其坐标的比例尺。
1.2控制器光伏阵列的输thtr乎特性曲线具有强那朔)线他而且和太阳辐照度、环境温度、阴、晴、雨、雾等气象条件有密切关系,其输出随日照而变化的是直流电量,而作为光伏阵列负载的光伏水泵,它的驱动电机有时是直流电机,有时是交流电机甚至还有其它新型电机,它们同样具有非线性性质。
在这种情况下要使光伏泵系统工作在)、较理想的工况,而且叉,于任何日照,都要发挥光伏阵列输出功率的最大潜力,这就要有一个适配器,使电肋负载之间能达至和、皆、高效、稳定的工作状态。
适配器的内容主要是最大功率点跟踪器、逆变器以及一些保护设施等。
1.2.1最大功率点跟踪器(MPPT)由光伏阵列伏安特性曲线可知,光伏阵列在不同太阳辐照度下输出最大功率点位置并不固定,而且当环境温度发生变化时,相应于同一辐照度的最大功率点位置也将变化。
为了实现最大功率点跟踪以获取当前日照下最多的能量,MPPT通常做成两种形式,以下分别予以介绍。
middot;恒定电压式最大功率点跟踪器(CVT式MPPT)。
仔细观察图:中表示最大功率输出的圆黑点一一最大功率点的位置,它们都坐落在Umax=const,的直线附近,特别是日射比较强时离Umax=const更近,同时考虑至仗阳电他具有以下温度特优良陷温度升高时,在同一日射条件下其开路电压UOC将减小,短路电流Isc将伴有微小增大,再考虑到日射高时一般都具有较高环境温度,而日射低时环璋温度一般都要低一些的特特点,结合太阳电他的温度特性,它们刚好都有利于使一日内最大功率点的轨迹更逼近于一根垂直线Umax=const,这就是说,在工程上允许人们把最大功率,点出现的轨迹近似地处理为一根垂直线Umax=const,这就构成TcvT式MPPT的理论根据。
陕西光伏扬水系统光伏汇流箱原理
陕西光伏扬水系统光伏汇流箱原理一、引言随着能源需求的增加和环境保护意识的提高,光伏发电作为一种清洁、可再生的能源形式,得到了广泛的关注和应用。
而光伏扬水系统作为光伏发电的一种创新形式,在解决水利供水需求的同时,也有效利用了太阳能资源。
光伏汇流箱作为光伏扬水系统中的重要组成部分,起到了汇集电能和保护安全的作用。
本文将详细探讨陕西光伏扬水系统中光伏汇流箱的原理。
二、光伏扬水系统的基本原理光伏扬水系统是利用太阳能光伏发电技术直接驱动水泵将地下水或河水抽升至需要的地方。
其基本原理是太阳能光伏电池板将太阳辐射能转换为直流电能,通过逆变器将直流电转换为交流电,驱动水泵工作,最终将水提升到所需的位置。
三、光伏汇流箱的作用光伏汇流箱作为光伏扬水系统的重要组成部分,具有以下作用:1.汇集电能:光伏汇流箱将光伏电池板发出的多个直流电能汇聚到主电路上,确保电能能够有效传输和利用。
2.保护安全:光伏汇流箱具备防雷、短路、过流等多重保护功能,保证系统运行时的安全性和稳定性。
3.监测控制:光伏汇流箱可以对系统中的光伏电池板、逆变器、水泵等进行监测和控制,实现对系统的远程操作和管理。
4.检修维护:光伏汇流箱的设计考虑了检修维护的方便性,能够快速检修和更换故障部件。
四、光伏汇流箱的组成光伏汇流箱主要由以下几个部分组成:1. 光伏电池板接口光伏电池板接口是将光伏电池板的输出电能连接到汇流箱的接口,通常采用带有防水、抗紫外线和耐高温等特性的连接器,确保电能传输的可靠性和安全性。
2. 汇流箱主体汇流箱主体是光伏汇流箱的核心部分,用于汇集电能和保护安全。
通常包括直流输入端子、直流输出端子、交流输入端子、交流输出端子等,通过配备的保险丝、熔断器、避雷器等电气元件,实现对电能的汇聚和保护。
3. 监测控制系统监测控制系统是光伏汇流箱的重要组成部分,通过采集光伏电池板、逆变器、水泵等的数据,并通过通信系统将数据传输到监控中心。
监测控制系统通常包括数据采集模块、通信模块、监控模块等。
太阳能光伏水泵系统组成及工作原理
光伏水泵系统组成及工作原理光伏水泵系统组成及工作原理系统组成及工作原理1.1 光伏水泵系统的结构图由图1可知,系统利用太阳电池阵列将太阳能直接转变成电能。
经过DC/DC升压,和具有TMPPT功能的变频器后输出三相交流电压驱动交流异步电机和水泵负载,完成向水塔储水功能。
其中主要包括4部分:太阳电池阵列;具有TMPPT功能的变频器;水泵负载;储水装置。
1.2 变频器主电路及硬件构成本系统所采用的主电路及硬件控制框图如图2所示。
主电路DC/DC部分采用性能优越的推挽正激式电路进行升压;DC/AC部分采用三相桥式逆变电路。
主功率器件采用ASIPM(一体化智能功率模块)PS12036,系统控制核心由16位数字信号控制器dsPIC30F2010构成。
外围控制电路包括阵列母线电压检测和水位打干检测电路。
系统首先通过初始设置的工作方式和PI参数工作,然后由MPPT子程序实时搜索出的电压值作为内环CVT的给定,通过PI调节得到工作频率值,计算出PWM信号的占空比,实现光伏阵列的真正最大功率跟踪(TMPPT),并保持异步电机的V/f比为恒值。
系统将MPPT和逆变器相结合,利用ASIPM模块自带的故障检测功能进行检测和保护,结构简单,控制方便。
1.2.1 DC/DC升压电路简述1.2.1.1主电路选择对于中小功率的光伏水泵来说,光伏阵列电压大都是低压(24v、36v、48V),对于升压主电路的选择,人们一般选择推挽电路,因为推挽电路变压器原边工作电压就是直流侧输入电压,同时驱动不需隔离,因此比较适合输入电压较低的场合。
但是偏磁问题是制约其应用的一大不利因素,功率管的参数差异和变压器的绕制工艺都有可能使推挽电路工作在一种不稳定状态。
基于诸多因素的考虑,本系统采用了结构新颖的推挽正激电路,此电路拓扑不仅克服了偏磁问题,而且闭环控制也比较容易(二阶系统)。
1.2.l.2推挽正激电路简单分析推挽正激电路如图2所示,由功率管S1及S2,电容C8和变压器T组成,变压器T原边绕组N1及N2具有相同的匝数,同名端如图2所示。
太阳能光伏提水系统简介
前言我国是世界上最大的能源生产国和消费国,形成了煤炭、电力、石油、天然气、新能源、可再生能源全面发展的能源供给体系。
尽管我国能源发展取得了巨大成绩,但也面临着能源需求压力大、能源供给制约较多、能源生产和消费对生态环境损害严重、能源技术水平总体落后等挑战。
必须从可持续发展的战略的高度,为未来清洁能源找到出路。
概况农村能源相对与城镇及工业能源而言,其能源结构的短板是农村电力系统及设施。
造成这种现象的原因是农村及农业产业用电总量需求小。
而分布的比较散,在电网覆盖范围内缺乏高载能产业的支撑,使得农村电网在运营中,空耗大、投入的建设费、运营中的维护费与电费收入到挂,严重制约了农村电网的建设与发展。
概况自从人类文明产生以来,人们逐水而居,并产生了农耕文化,水资源被视为人类赖以生存的重要资源。
随着人口的急剧增长,环境恶化,水资源匮乏。
干旱缺水正在不同程度的困扰着我们。
节水及合理地利用开发水资源,是迫切需要解决的问题。
例如:我国西北干早地区现有耕地1330万公顷,若包括可开发土地在内,总耕地可达到2200万公顷。
在目前湿润地区农业产量己渐近极限。
如国家将农业开发的重点放在西北干早地区,将对21世纪,6亿人口的粮食供给起重要作用,而且将会带来极为明显的环境效益。
由于缺水,我国西部和西北地区的国土正以每年2500平方公里的速度被沙化,那里的人民往往不得不放弃家园向东迁移。
相关的水资源材料表明,其实我国广大西部地区并非完全没有水资源。
西北内陆河流域年河川径流总量为,1219亿立方米,地下水1006亿立方米。
柴达木盆地地表水为38.807亿立方米,r地下水18.148亿立方米,仅我国新疆地区水资源的蕴藏量就达到1150亿立方米(大部分是地下水),这相当于两条黄河的径流量,合理并可持续地开采、利用这些水资源就有可能重绿那片国土,非但丝毫无损那里的生态平衡,而且必定会带来巨大的生态和经济效益,必定会逐步良性地改变那里的面貌。
太阳能、地能热泵采暖供热系统原理图
太阳能、地能热泵采暖供热系统原理图太阳能、地能热泵采暖供热系统原理图采暖供热原理:如图一所示,热泵主要由制冷压缩机、冷凝器、膨胀阀、蒸发器等组成制冷回路,在制冷回路内充注制冷剂。
制冷压缩机通入三相交流电高速旋转,将低温低压制冷剂气体吸入压缩机,经压缩后变成高压高温气体,该高温高压气体经冷凝器被冷却水冷却,变成中压中温制冷剂液体,制冷剂液体经过膨胀阀节流减压后送入蒸发器,由于蒸发器连接在压缩机的吸气口上,压缩机不停的吸入蒸发器的制冷剂气体,使得进入蒸发器的大量制冷剂压力减低,制冷剂进一步大量蒸发。
由于蒸发器另一侧与地下水中水泵连接,所以当地下水大量流过蒸发器时,被蒸发的制冷剂带走大量的地下水中的热量(因为制冷剂蒸发过程,也就是制冷剂吸热的过程)。
地下水中含有大量的地球浅层土壤低温热量,这些低温热量通过地下水媒介被蒸发器中蒸发的制冷剂吸收提取变成制冷剂热量,被源源不断地吸入制冷压缩机。
经压缩机压缩之后,又变成为80-90℃ 的高温气体,这个高温气体在被冷凝器冷却的过程中,将大量的高温热量传给了冷凝器另一侧的采暖系统,80-90℃ 高温制冷剂气体被冷却的过程,也可以看作是将这些高温热量传递给冷却系统的过程,或者说是对采暖系统的加热过程,维持采暖系统水温在50-60℃, 通过风机盘管或暖气片负荷向空调房间供热。
综上所述,热泵机组是将电能通入压缩机,压缩机将电能变为高速旋转的机械能,机械能又通过压缩机将机械能变成为热能,压缩机输出的总热能=压缩机电功率+压缩机向地下水吸收的热能,而向井水中吸取的热能远远大于压缩机的电功率。
一般从井水中提取的热能是压缩机电功率产生热能的 4-5倍,所以热泵机组的能效比=输出热能(kw)/输入电功率 (kw)≈4.5左右。
而电锅炉的能效比=输出热能(kw)/输入功率(kw)≈0.9~0.98左右,从上面的对比可以看出热泵机组是节能环保设备,与电锅炉相比也同样是电采暖设备,只不过热泵比电锅炉更节省运行费用,理应得到电力部门大力推广的设备,最终受益的首先是电力部门,然后是用户,对环保、对电力部门、对全社会都是有很大好处的事。
太阳能热水器工作原理图
太阳能热水器工作原理图一、吸热过程太阳辐射透过玻璃盖板,被集热板吸收后沿肋片和管壁传递到吸热管内的水。
吸热管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统.随着热水的不断上移并储存在储水箱上部,同时通过下循环管不断补充温度较低的水,如此循环往复,最终整箱水都升高至一定的温度。
现有的平板式集热器,基本上都采用结合良好的多管组合方式,如滚压或压延方法等,其中走水管子与吸热板之间的热阻几乎可以忽略。
影响平板式集热器板芯性能的主要因素,一是结构设计,二是表面吸收涂层。
设计良好的集热器的板芯肋片效率应该在93%以上。
集热器的板芯肋片效率与板芯结构、表面处理以及集热器整体结构有关。
集热器整体结构的影响可以用总传热系数来描述,其影响程度与自身的几何尺寸(肋片厚度、材质)是一样。
也就是说,在同等效率的情况下,集热器热损小时板芯可以薄一些。
选择性吸收表面可以提高集热效率,但是市面上这类产品为了提高经济效益,往往肋片较薄。
用于热水器场合时,这类产品的实际集热效果与选择性差一些(甚至没有选择性)但肋片厚一些的集热器不会有太大的区别。
二、循环家用太阳能热水器通常按自然循环方式工作,没有外在的动力,设计良好的系统只要有5~6℃以上的温差就可以循环很好.水循环管路管径及管路分布的合理性直接影响到集热器的热交换效率。
多数情况下,自然循环家用热水器系统管路中的流态都可以视为层流。
集热器内管路系统的阻力主要来自沿程阻力,局部阻力的影响要小得多,其中支管的沿程阻力又比主管要大得多。
当水温升高后,由于运动粘度减小,沿程阻力变小,局部阻力的影响变大。
在一定范围内,当主管管径不变时,加大支管管径,不仅沿程阻力迅速减小,而且局部阻力也将跟着减小。
一般地,支管的水力半径应在10mm以上。
当主管管径达到一定值以后,增加主管管径对减小系统阻力意义不大。
三、顶水式使用过程家用太阳能热水器的用水方式分为落水式和顶水式。
光伏水泵系统
太阳能光电工程学院《光伏综合实践》课程设计报告书题目:光伏水泵系统姓名:专业:准考证号:设计成绩:指导教师:摘要有人把太阳能水泵比作是农家的“及时雨”,这并不夸张。
因为每当酷暑热浪席卷大地之时,正是它大显身手之际。
它能为濒于干枯的禾苗,及时送来甘露。
光伏水泵亦称太阳能水泵,主要由光伏扬水逆变器和水泵组成。
具体应用时,再根据不同扬程和日用水量的需求配以相应功率的太阳能电池阵列,统称为光伏扬水系统。
目前, 太阳能泵主要有两种类型。
一种是光热水泵即把太阳能转换为热能例如热管技术, 使水或氟里昂变成压力蒸汽, 并使其做功, 例如美国的OASTS泵与MONDESH泵, 靠水蒸汽利用双隔膜泵来抽水。
而德国的太阳能泵则是利用氟里昂作为介质推动类似蒸气机的装置来抽水。
这类水泵的缺点是效率低,且对环境有污染。
另一种便是光伏水泵, 它具有无污染、全自动、运行成本低等优点。
本文主要阐述了光伏水泵的系统组成,以及各个组件在系统中的作用。
关键词系统组成水泵作用目录绪言 (2)1. 光伏水泵系统 (3)1.1概述 (3)1.1系统的基本构成 (4)1.2光伏阵列 (5)1.3控制器 (5)1.4最大功率点跟踪器 (6)1.5变频逆变器 (7)1.6电机和水泵 (8)2.光伏水泵的技术特点 (9)2.1要求平均效率有最大值 (9)2.2关死点功率越小越好 (9)2.3要求平均流最有最大值 (9)3.应用前景 (9)参考文献 (11)绪言光伏水泵系统的基本工作原理是利用太阳能电池将太阳能直接转化为电能,然后通过控制器驱动电机带动光伏水泵运行。
光伏水泵系统可广泛用于无电地区的人畜用水、农业灌溉以及边防、海岛哨所等高度分散点的用水。
目前, 太阳能泵主要有两种类型。
一种是光热水泵以, 即把太阳能转换为热能 例如热管技术, 使水或氟里昂变成压力蒸汽, 并使其做功, 例如美国的OASTS泵与MONDESH泵, 靠水蒸汽利用双隔膜泵来抽水。
光伏泵水系统
适用领域
适用于生活用水 农业灌溉、林业浇 灌 沙漠治理 草原畜牧 海岛供水 水处理工程 近年来,随着对新 能源利用的不断提 升,在市政工程、 城市广场、公园游 览、旅游胜地、宾 馆饭店以及住宅社 区的景观及喷水系 统中,得到了越来 越多的应用。
系统构成示意简图
多机系统优化示意简图
光伏泵水系统优势
可靠:光伏电源很少用到运动部件,尤其以其可靠性而备受 关注 安全无噪声,无其他公害,不产生任何液体、固体和气体等 有害物质,环保 安装维护简单,无需人工看守,运行成本低等 不耗化石能源和电能,太阳能随处都有,适用范围广,累计 时日,极大节约了成本 兼容性好,光伏能源可与其他能源配合使用,也可根据需要 使光伏系统方便扩容,多机并联扩容等 国际应用范围广,大量订单意向表明,此高技术产品的国际 市场前景令人十分鼓舞,太阳能利用为大势所趋
系统功能和特点
全自动运行,无需人工值守,节约劳力和人工成本 省掉蓄电池等高昂价格和维护困难的储能设备,以蓄水代替 蓄电,直接驱动水泵扬水 光伏泵水逆变器对系统的运行实施控制和调节,实现最大功 率定跟踪(MPPT),当日照不足时,自动降低运行频率,确 保太阳能电池电力的充分利用 洁净能源来源,节油节电节money 若要昼夜不停抽水或灌溉,有市电地区可配市电辅助功能, 作为后备方式为系统供电。 泵水逆变器主电路采用智能化功率模块,可靠性高,转换效 率高达98%
太阳能光伏自动泵水系统
概览
太阳能光伏自动泵水系统简介 适用领域 系统构成示意简图 多机系统优化示意简图 系统功能和特点 光伏泵水系统优势 系统选型参考列表 案例展示——缅甸总统农场灌溉详情 国内国际应用案例情况
太阳能热水系统控制及原理解析
太阳能热水系统控制及原理一、智能型太阳能、热泵互补热水系统原理说明:注:进水在集热器入口,集热循环水泵出口,集热水箱底部出水供用户使用。
太阳能供水系统原理说明新能源太阳能中央热水器由以下四大部分组成:太阳能集热器:吸收太阳能,将光能转化为热能,使冷水在集热器内被加热;保温水箱:储存热水,可保温3天,内胆为不锈钢,外包8厘米保温层,最外层是铝合金外壳;热泵辅助加热系统:用于阴雨天辅助加热:供热水管道:将经过增压泵加压后的热水引向各用水点,主管道有保温层,未端有回水管。
晴天,当太阳能把集热器内的冷水加热至55C时(该温度可调),冷水管上的电磁阀门自动打开,冷水被自来水压力压入集热器内,集热器内的热水被挤出,然后进入到保温水箱中储存待用,当冷水到达集热器出口处的温度探头时,探头温度底于55r,电磁阀门就立刻关闭,冷水停留在集热器内继续被太阳能加热,2-5分钟后,水温又达到55°C时,电磁阀门再次打开,集热器内的热水又被挤到保温水箱中,按此规律,一次又一次的产生热水进入水箱,水箱内热水逐渐增加,一直增加到水箱水满为止。
水箱水满后,就停止进水,如果还有太阳,为了充分利用太阳能,循环泵会自动启动,把水箱内55 C的热水抽出来,经过太阳能集热器循环加热,使水温进一步升高至60-70 C,当水温达到70C时,就停止循环加热,限制水温不要超过70 C,以免烫伤人,又可防止结水垢(产生水垢的温度条件是水温超过80C)。
热泵加热系统只有在太阳能光照不足时才启动,为最大限度地利用太阳能,减少电能的消耗,我们将设定3个时间段检测保温水箱的水位。
在上午10: 30〜11: 30,如果保温水箱内热水水位还不到40%勺位置,则自动启动热泵加热系统,往保温水箱补充50C的热水,如果水位达到设定值,则热泵系统停止工作。
同样,在中午12: 30〜1: 30,系统自动检测保温水箱70%勺水位,在下午3: 30〜6: 30,系统自动检测保温水箱100%勺水位。
太阳能光伏发电工作原理课件PPT
控制器 蓄电池组
DC-AC 逆变器
k1
直流 负载
k2
交流 负载
(c) 交直流光伏系统
二、太阳能光伏发电系统的组成
气象条件
太阳能 电池方阵
过充电 放电器
控制器
蓄电池组
后备能源
逆变器
交流负载
(d) 有后备能源和放电器的光伏系统
二、太阳能光伏发电系统的组成
1、独立太阳能光伏发电系统
1.1 太阳能电池方阵
太阳能光伏发电技术及其应用
太阳能光伏发电工作原理、运行方式及系统组成
1.太阳能光伏发电的运行方式
一、太阳能光伏发电的运行方式
1)按供电类型分:
直流供电系统 交直流供电系统
2)按供电特点分:
独立光伏发电系统 并网光伏发电系统
葡萄牙南部阿马雷莱雅拍摄的莫拉太阳能发电厂安装的太阳能电池板。
二、太阳能光伏发电系统的组成
2、并网太阳能光伏发电系统
住宅用并网光伏系统
根据联网光伏系统是否配置储能装置,分为有储能装置和无储能装置 联网光伏发电系统。
二、太阳能光伏发电系统的组成
2、并网太阳能光伏发电系统
住宅用并网光伏系统
太阳能电池方阵 防雷系统 控制器
联网逆变器
蓄电池
有储能(带蓄电池)系统
交流电网
二、太阳能光伏发电系统的组成
1、独立太阳能光伏发电系统
1.3 蓄电池组
其作用是贮存太阳能电池方阵受光照时所发出的电能并可随时向负载供电。
基本要求:
①自放电率低 ③深放电能力强 ⑤少维护或免维护 ⑦价格低廉
②使用寿命长 ④充电效率高 ⑥工作温度范围宽
二、太阳能光伏发电系统的组成
太阳能热水器的工作原理图解与结构图解
太阳能热水器的工作原理图解与结构图解太阳能热水器具有安装使用方便、节能效果明显的优点,可以吸收太阳能辐射能,并且把能量转换成热能,从而产生热水的一种设备。
在家庭用热水、商业用热水、工业制造用热水等方面都有广泛的应用,下面小编就为大家介绍一下太阳能热水器的工作原理与结构图解。
太阳能热水器工作原理太阳能热水器工作原理图1、吸热过程真空管式太阳能热水器:太阳辐射透过真空管的外管,然后被集热镀膜吸收后沿内管壁传递到管内的水,此时水受热而温度逐渐升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。
随着热水的不断上移并储存在储水箱上部,同时温度较低的水沿管的另一侧不断补充如此循环往复,最终整箱水都升高至一定的温度。
平板式太阳能热水器:其中介质在集热板内因热虹吸自然循环,随后将太阳辐热量及时传送到水箱内,介质也可通过泵循环实现热量传递,因此就有源源不断的人能来保持水温的稳定。
2、循环管路直插式结构的真空管式太阳能热水器,热水是因为通过重力的作用而提供动力;然而平板式则通过自来水的压力提供动力。
不过这两种太阳能集中供热系统均采用泵循环。
由于太阳能热水器集热面积不大,考虑到热能损失,一般不采用管道循环。
太阳能热水器自然循环集热原理示意图3、系统工作1)温差控制集热循环集热器温测器和水温感应器置入在太阳能热水地暖系统中,能够很好地吸收太阳能辐射后,促使集热管温度上升,然后当集热器温度和水箱温度水温差到达△t设定值时,通过检测系统发出指令,循环泵将中央热水器中的冷水输入集热器中,然而水被加热后又再次回到水箱中,使水箱内的水达到设定的温度。
2)地暖管道循环系统这个系统是增加热水循环泵作为不同点,然后通过控制器更好得控制地暖管道循环为工作原理。
然后再通过当水温达到设定温度时,自动启动地暖循环泵,使高温水通过地暖盘管在室内循环,从而使室内温度不断提高。
如果水箱水温开始低于某一设定值时,应当将地暖管道循环泵进行自动停止为最好的方式。
太阳能热水器工作原理图
:一、吸热过程太阳辐射透过玻璃盖板,被集热板吸收后沿肋片和管壁传递到吸热管内的水。
吸热管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。
随着热水的不断上移并储存在储水箱上部,同时通过下循环管不断补充温度较低的水,如此循环往复,最终整箱水都升高至一定的温度。
现有的平板式集热器,基本上都采用结合良好的多管组合方式,如滚压或压延方法等,其中走水管子与吸热板之间的热阻几乎可以忽略。
影响平板式集热器板芯性能的主要因素,一是结构设计,二是表面吸收涂层。
设计良好的集热器的板芯肋片效率应该在93%以上。
集热器的板芯肋片效率与板芯结构、表面处理以及集热器整体结构有关。
集热器整体结构的影响可以用总传热系数来描述,其影响程度与自身的几何尺寸(肋片厚度、材质)是一样。
也就是说,在同等效率的情况下,集热器热损小时板芯可以薄一些。
选择性吸收表面可以提高集热效率,但是市面上这类产品为了提高经济效益,往往肋片较薄。
用于热水器场合时,这类产品的实际集热效果与选择性差一些(甚至没有选择性)但肋片厚一些的集热器不会有太大的区别。
二、循环管路家用太阳能热水器通常按自然循环方式工作,没有外在的动力,设计良好的系统只要有5~6℃以上的温差就可以循环很好。
水循环管路管径及管路分布的合理性直接影响到集热器的热交换效率。
多数情况下,自然循环家用热水器系统管路中的流态都可以视为层流。
集热器内管路系统的阻力主要来自沿程阻力,局部阻力的影响要小得多,其中支管的沿程阻力又比主管要大得多。
当水温升高后,由于运动粘度减小,沿程阻力变小,局部阻力的影响变大。
在一定范围内,当主管管径不变时,加大支管管径,不仅沿程阻力迅速减小,而且局部阻力也将跟着减小。
一般地,支管的水力半径应在10mm以上。
当主管管径达到一定值以后,增加主管管径对减小系统阻力意义不大。
三、顶水式使用过程家用太阳能热水器的用水方式分为落水式和顶水式。
落水使用方式不受自来水供水影响,其缺点是使用过程中水温先低后高,掌握不好的话容易造成突然缺水的尴尬。
光伏提水设计方案
光伏提水设计方案
其中一种光伏提水设计方案是使用太阳能光伏电池板将太阳能转化为电能,然后通过电泵将水从较低的位置抽升到较高的位置。
具体设计方案如下:
1. 安装光伏电池板:选择适当的位置安装太阳能光伏电池板,确保能够充分接收到阳光。
调整光伏电池板的角度,以便最大化吸收太阳能。
2. 连接光伏电池板和电泵:将光伏电池板的输出与电泵连接起来。
通过充电控制器将电能从光伏电池板导入电泵,以供电泵运行。
3. 使用适当的电泵:选择一款适合的电泵,能够满足水的提升需求。
考虑到太阳能供电可能会有波动,建议选择具有较低起动电流和较高效率的电泵。
4. 储水和输水系统:设计一个合适的储水和输水系统,确保从较低位置抽升的水能够顺利输送到较高位置。
这可能包括使用水箱、管道和阀门等设备。
5. 借助控制系统:安装一个控制系统,监测光伏电池板的输出电压和电流,以及电泵的运行状态。
根据实时数据,控制系统可以自动打开或关闭电泵,以最大化太阳能的利用效率。
需要注意的是,光伏提水系统的设计还应考虑到地理和气候条
件、水需求量和水源可靠性等因素。
同时,还需要合理安排并确保系统的安全和可靠性,以及定期维护和保养。
太阳能热水器工作原理图
太阳能热水器工作原理图太阳能热水器是一种利用太阳能将水加热的装置,其工作原理图如下所示。
1. 太阳能收集器太阳能收集器是太阳能热水器的核心部件,它负责将太阳能转化为热能。
太阳能收集器通常由一系列黑色吸热板组成,这些吸热板可以吸收太阳辐射的能量,并将其转化为热能。
2. 热水贮存装置热水贮存装置是太阳能热水器中用于储存热水的部件。
当太阳能收集器吸收到太阳能并将其转化为热能时,热水贮存装置会将热能传递给其中的水,使其升温。
热水贮存装置通常由一个绝热的水箱构成,以防止热能的散失。
3. 管道系统管道系统是太阳能热水器中用于传输热能的部件。
它连接太阳能收集器和热水贮存装置,将从太阳能收集器中吸收到的热能传递给热水贮存装置中的水。
管道系统通常由耐高温材料制成,以确保热能的传输效率。
4. 控制装置控制装置是太阳能热水器中用于控制热水温度和供水的部件。
它通常由温度传感器和电控开关组成。
温度传感器可以感知热水的温度,并将这些信息传递给电控开关。
电控开关根据温度传感器的反馈信号,控制水泵的运行和停止,以确保热水的温度在设定的范围内。
太阳能热水器的工作原理可以简单概括为以下几个步骤:1. 吸收太阳能当太阳能热水器暴露在阳光下时,太阳能收集器会吸收太阳辐射的能量,将其转化为热能。
2. 传递热能吸热板中的热能会通过管道系统传递给热水贮存装置中的水。
热水贮存装置中的水会因此而升温。
3. 控制供水控制装置会根据热水的温度来控制水泵的运行和停止。
当热水温度低于设定值时,水泵会启动,将热水供应给使用者。
当热水温度达到设定值时,水泵会停止供水。
太阳能热水器的工作原理图展示了太阳能的利用过程,通过吸热板的吸热和热能传递,将太阳能转化为热水供应。
这种利用太阳能的方式不仅环保,还可以降低能源消耗和经济成本。
因此,太阳能热水器在现代家庭和一些工业领域中得到了广泛应用。
虽然太阳能热水器的工作原理图看起来相对简单,但其中涉及的热传导、温度控制等原理和技术并不简单。
太阳能光伏提水系统在内蒙古农牧区的应用
太阳能光伏提水系统在内蒙古农牧区的应用发布时间:2021-09-06T15:32:16.353Z 来源:《科学与技术》2021年第12期4月作者:赵恺、赵博文、郝嘉伟、杨茂荣[导读] 本文介绍了太阳能光伏提水系统的构成、工作原理及特点,列出了太阳能光伏提水系统赵恺、赵博文、郝嘉伟、杨茂荣内蒙古华德新技术有限公司 010020 内蒙古自治区呼和浩特市【摘要】本文介绍了太阳能光伏提水系统的构成、工作原理及特点,列出了太阳能光伏提水系统设备的选择要求,分析了太阳能光伏提水系统的经济性、安全可靠性、智能化全自动控制的便捷性。
并将该系统在内蒙古某地(坐标为北纬43°20′,东经110°21′)进行了应用。
实践证明太阳能光伏提水系统的可行性,为解决广大缺水地区农牧民生产、生活用水提供了新的有效途径。
【关键字】太阳能提水随着人类经济、社会的高速发展,人们对饮水的安全问题重视极深。
但边境牧区草场面积大、牧户居住分散、人均投资成本高,加之受地下水资源匮乏、水源水质不达标、净化水设备投入成本高等问题的制约,部分地区的人、畜饮水问题还没有得到解决。
为从根本上解决这一问题,太阳能光伏提水系统越来越得到人们的广泛认可。
太阳能光伏提水系统的构成、工作原理及特点一、太阳能光伏提水系统的构成、工作原理太阳能光伏提水系统主要由光伏组件、智能型控制器、蓄电池、水泵、饮水槽、液位计及融冰器构成。
其工作原理是利用光伏组件将太阳能转换为电能,驱动储水窖内的水泵提水至饮水槽供牲畜饮水,同时电能在智能型控制器的有效控制下为蓄电池充电,以便在无阳光的情况下控制器能够利用蓄电池中存储的电能驱动水泵进行提水作业。
系统构成如图1所示:二、太阳能光伏提水系统的特点太阳能光伏提水系统是经济、环保型供水装置,没有能耗,灵活便捷,可无人值守,全自动完成提水作业。
在提水成本上与发电机提水和电力提水相比是最经济的提水方法。
其系统结构整体设计稳固耐用、安全可靠、因地制宜、操作简便。