四边形存在性问题解析

合集下载

【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

平行四边形存在性问题【知识储备】①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: 类型一 几何背景下的平行四边形存在性问题【典题练习】1.(2023•河北二模)如图,在四边形ABCD 中,∠A =∠B =90°,AD =8cm ,BC =6cm ,点P 从点D 出发,以1cm /s 的速度向点A 运动,点M 从点B 同时出发,以相同的速度向点C 运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P 的运动时间为t (单位:s ),下列结论正确的是( )A .当t =3s 时,四边形ABMP 为矩形B .当t =4s 时,四边形CDPM 为平行四边形C .当CD =PM 时,t =3sD .当CD =PM 时,t =3s 或5s【分析】根据题意,表示出DP ,BM ,AP 和CM 的长,当四边形ABMP 为矩形时,根据AP =BM ,列方程求解即可;当四边形CDPM 为平行四边形,根据DP =CM ,列方程求解即可;当CD =PM 时,分两种情况:①四边形CDPM 是平行四边形,②四边形CDPM 是等腰梯形,分别列方程求解即可.【解答】解:根据题意,可得DP =t cm ,BM =t cm ,∵AD =8cm ,BC =6cm ,∴AP =(8﹣t )cm ,CM =(6﹣t )cm ,当四边形ABMP 为矩形时,AP =BM ,即8﹣t =t ,解得t =4,故A 选项不符合题意;当四边形CDPM 为平行四边形,DP =CM ,)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若即t=6﹣t,解得t=3,故B选项不符合题意;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,此时CM=PD,即6﹣t=t,解得t=3,②四边形CDPM是等腰梯形,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:则∠MGP=∠CHD=90°,∵PM=CD,GM=HC,∴△MGP≌△CHD(HL),∴GP=HD,∵AG=AP+GP=8﹣t+,又∵BM=t,∴8﹣t+=t,解得t=5,综上,当CD=PM时,t=3s或5s,故C选项不符合题意,D选项符合题意,故选:D.2.(2023春•盱眙县期末)如图,在▱ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动.点Q在BC边上以每秒4cm的速度从点C出发,在CB之间往返运动.两个点同时出发,当点P到达点D时停止(同时点Q也停止运动),设运动时间为t秒.当5<t<10时,运动时间t为何值时,以P、D、Q、B为顶点的四边形是平行四边形()A.B.8C.4或D.或8【分析】根据P的速度为每秒1cm,可得AP=t cm,从而得到PD=(10﹣t)cm,由四边形ABCD为平行四边形可得出PD∥BQ,结合平行四边形的判定定理可得出当PD=BQ时以P、D、Q、B四点组成的四边形为平行四边形,当5<t<10时,分两种情况考虑,在每种情况中由PD=BQ即可列出关于t的一元一次方程,解之即可得出结论.【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则PD=BQ.当5<t≤时,AP=t cm,PD=(10﹣t)cm,CQ=(4t﹣20)cm,BQ=(30﹣4t)cm,∴10﹣t=30﹣4t,解得:t=;当<t≤10时,AP=t cm,PD=(10﹣t)cm,BQ=(4t﹣30)cm,∴10﹣t=4t﹣30,解得:t=8综上所述:当运动时间为秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选:D.3.(2022春•曹县期中)如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F 运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q 也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或5【分析】由平行四边形的性质可得AD∥BC,AD=BC,由平行线的性质可得BF=DF=12cm,可得AD =AF+DF=18cm=BC,由平行四边形的性质可得PF=EQ,列出方程可求解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.4.(2023春•大竹县校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.若点E,F同时运动,设运动时间为t秒,当t=时,四边形AECF是平行四边形.【分析】先根据平行四边形的性质求出OB的长,从而得到OE的长,再由平行四边形的性质得到OE=OF进而得到关于t的方程,解方程即可.【解答】解:由题意得OE=OB﹣BE=OB﹣t,OF=2t,∵四边形ABCD是平行四边形,BD=12cm,∴OB=OD=6cm,∴OE=6﹣t,∵四边形AECF是平行四边形,∴OE=OF,∴6﹣t=2t,∴t=2,∴当t=2时,四边形AECF是平行四边形,故答案为:2.5.(2023秋•红山区校级月考)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度向点C运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点P运动到点C时,点Q随之停止运动,设运动的时间t(秒).(1)求DQ、PC的代数表达式;(2)当t为何值时,四边形PQDC是平行四边形;(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.【分析】(1)根据题意,写出代数表达式即可;(2)根据平行四边形的性质知DQ=CP,分当P从B运动到C时,当P从C运动到B时,两种情况进行求解即可;(3)分PQ=QD、PQ=PD、QD=PD三种情况讨论求出t值即可.【解答】解:(1)根据题意,DQ=(16﹣t)cm,PC=(21﹣2t)cm;(2)∵四边形PQDC是平行四边形,∴DQ=CP,当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t,∴16﹣t=21﹣2t,解得:t=5,∴当t=5秒时,四边形PQDC是平行四边形;(3)当PQ=PD时,作PH⊥AD于H,则HQ=HD,∵cm,AH=BP,∴,∴.当PQ=QD时,QH=AH﹣AQ=BP﹣AQ=2t﹣t=t cm,QD=(16﹣t)cm,∵QD2=PQ2=t2+122,∴(16﹣t)2=122+t2,解得.当QD=PD时,DH=AD﹣AH=AD﹣BP=16﹣2t,∵QD2=PD2=PH2+HD2=122+16﹣2t)2,∴(16﹣t)2=122+(16﹣2t)2,即3t2﹣32t+144=0,∵Δ=(﹣32)2﹣4×3×144=﹣704<0,∴方程无实根,综上可知,当秒或秒时,△PQD是等腰三角形.6.(2023春•和平区校级月考)已知▱ABCD中,一动点P在AD边上,以每秒1cm的速度从点A向点D 运动.(1)如图1,运动过程中,若BP平分∠ABC,且满足AB=BP,求∠ABC的度数.(2)如图2,在(1)的条件下,连结CP并延长,与AB的延长线交于点F,连结DF,若CD=2cm,直接写出:△DPF的面积为cm2.(3)如图3,另一动点Q在BC边上,以每秒4cm的速度从点C出发,在BC间往返运动,两个点同时出发,当点P停止运动时Q点也停止,设运动时间为t(t>0),若AD=12cm,则t=秒时,以P、D、Q、B为顶点的四边形是平行四边形.【分析】(1)可证AB=AP,从而可证AB=BP=AP,即可求解;(2)设边CD上的高为h1,边BC上的高为h2,,可得S△DPF=S△P AB,即可求解;(3)当PD=BQ时,四边形PDBQ是平行四边形,进行分类讨论:①当12﹣t=12﹣4t时,②当12﹣t =24﹣4t时,③当12﹣t=4t﹣12时,④当12﹣t=4t﹣24时,⑤当12﹣t=36﹣4t时,⑥当12﹣t=4t﹣36时,即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠APB=∠CBP,∵BP平分∠ABC,∴∠ABP=∠CBP,∴∠ABP=∠APB,∴AB=AP,∵AB=BP,∴AB=BP=AP,∴△ABP是等边三角形,∴∠ABP=60°,∴∠ABC=120°.(2)如图,设边CD上的高为h1,边BC上的高为h2,,∵四边形ABCD是平行四边形,∴S△CDF=•CD=S▱ABCD,S△PBC=h2•BC=S▱ABCD,∴S△PBC=S△CDF=S▱ABCD,∴S△PCD+S△DPF=S▱ABCD,∴S△P AB+S△PCD=S▱ABCD,∴S△PCD+S△DPF=S△P AB+S△PCD,∴S△DPF=S△P AB,∵△ABP是等边三角形,∴S△DPF=S△P AB==3,故答案为:;(3)∵PD∥BQ,∴当PD=BQ时,四边形PDBQ是平行四边形,∵(s),∴0≤t<12,①当12﹣t=12﹣4t时,解得:t=0(不合题意,舍去);此时当P与A重合,Q与C重合;②当12﹣t=24﹣4t时,解得:t=4;③当12﹣t=4t﹣12时,解得:t=4.8;④当12﹣t=4t﹣24时,解得:t=7.2;⑤当12﹣t=36﹣4t时,解得:t=8;⑥当12﹣t=4t﹣36时,解得:t=9.6;综上所述:t为4秒或4.8秒或7.2秒或8秒或9.6秒.类型二“三定一动”求平行四边形的顶点坐标当平面直角坐标系中有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A、B、C三点,在平面内找第4个点,构成平行四边形;【典题练习】7.(2022春•西双版纳期末)在平面直角坐标系中,点A、B、C的坐标分别是A(0,1),B(1,0),C(3,1),若以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(4,0);②AB为对角线时,点D的坐标为(﹣2,0)③AC为对角线时,点D的坐标为(2,2)综上所述,点D的坐标是(﹣2,0)或(4,0)或(2,2);故答案为:(4,0)或(﹣2,0)或(2,2).8.(2018春•大邑县期末)如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;(2)在图中作出△ABC关于y轴的对称图形△A2B2C2;(3)若以点A,B,C,D为顶点的四边形为平行四边形时,请直接写出满足条件的点D的坐标.【分析】(1)根据关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)根据关于y轴对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)分别以AB、BC、AC为对角线画平行四边形可得到D点坐标.【解答】解:(1)如图,△A11C1为所作;(2如图,△A2B2C2为所作;(3)满足条件的点D的坐标为(2,2)或(﹣4,﹣2)或(﹣6,4).9.(2023春•凤山县期末)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,且OA,OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C,过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求直线AB的解析式;(2)若△ABC的面积为15,求点C的坐标;(3)在(2)的条件下,在坐标平面内是否存在点P,使以O,C,E,P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据绝对值和完全平方式的非负性得出OA和OB的值,然后确定A点和B点的坐标,用待定系数法求出直线AB的解析式即可;(2)根据△ABC的面积为15,得出AC的长,确定C点的坐标即可;(3)分情况根据平行四边形的性质分别求出P点的坐标即可.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,∴A(﹣8,0),B(0,6),设直线AB的解析式为y=kx+b,代入A点和B点的坐标得,解得,∴直线AB的解析式为y=;(2)∵△ABC的面积为15,∴AC•OB=15,即AC×6=15,∴AC=5,∵OA=8,∴OC=OA﹣AC=8﹣5=3,即C(﹣3,0);(3)存在,∵D点在直线AB上,设D(a,a+6),∵BC平分∠ABO,∴CD=OC,即=3,解得a=﹣,∴D(﹣,),设直线DE的解析式为y=sx+t,∴,解得,∴直线DE的解析式为y=﹣x﹣4,∴E(0,﹣4),设点P的坐标为(m,n),①以CE为对角线时,此时以O,C,E,P为顶点的四边形是矩形,∵O(0,0),C(﹣3,0),E(0,﹣4),∴P(﹣3,﹣4);②以OE为对角线时,由平行四边形对角线互相平分可知,,解得,即P'(3,﹣4);③以OC为对角线时,由平行四边形对角线互相平分可知,,解得,即P''(﹣3,4);综上所述,符合条件的P点坐标为(﹣3,﹣4)或(3,﹣4)或(﹣3,4).类型三“两定两动”求平行四边形的顶点坐标当坐标系中有2个定点,且另外两个动点均在特殊的位置上时,方法策略同类型二。

坐标平行四边形存在性问题

坐标平行四边形存在性问题

坐标平行四边形存在性问题在数学中,我们经常遇到各种几何形状的问题。

平行四边形是一种常见的四边形,其对边平行。

然而,在坐标系中,我们会面临一个关于平行四边形存在性的问题:对于给定的四个点,它们能否构成一个平行四边形?问题描述假设我们有坐标系中的四个点,分别为\(A(x_1, y_1)\),\(B(x_2, y_2)\),\(C(x_3, y_3)\)和\(D(x_4, y_4)\)。

我们需要判断这四个点是否能够构成一个平行四边形。

判断条件为了判断这四个点能否构成平行四边形,我们可以利用向量的性质来求解。

首先,我们求出向量\(\overrightarrow{AB}\)和\(\overrightarrow{DC}\)的坐标表示:\[ \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) \]\[ \overrightarrow{DC} = (x_4 - x_3, y_4 - y_3) \]然后,我们求出向量\(\overrightarrow{AD}\)和\(\overrightarrow{BC}\)的坐标表示:\[ \overrightarrow{AD} = (x_4 - x_1, y_4 - y_1) \]\[ \overrightarrow{BC} = (x_3 - x_2, y_3 - y_2) \]接着,我们利用向量的性质来判断这四个点是否可以构成平行四边形。

两组对角线向量\(\overrightarrow{AB}\)和\(\overrightarrow{DC}\)、\(\overrightarrow{AD}\)和\(\overrightarrow{BC}\)平行的充分必要条件是它们的方向相同,也就是说,两组向量的比例相等。

具体来说,我们可以计算两组向量之间的比例关系:\[ \frac{\overrightarrow{AB_x}}{\overrightarrow{DC_x}} =\frac{\overrightarrow{AB_y}}{\overrightarrow{DC_y}} \]\[ \frac{\overrightarrow{AD_x}}{\overrightarrow{BC_x}} =\frac{\overrightarrow{AD_y}}{\overrightarrow{BC_y}} \]如果上述两个比例关系成立,那么这四个点构成一个平行四边形;否则,不能构成。

平行四边形的存在性问题

平行四边形的存在性问题

平行四边形的存在性问题专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.灵活运用向量和中心对称的性质,可以使得解题简便.针对训练1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标.解析、由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4,得A(-3,0),B(1,0),C(0,3),P(-1,4).如图,过△PAC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M.①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1.因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1).②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2.因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1).③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3.因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7).2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.解析.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB 的中点(1,0)对称,所以点M的横坐标为2.当x =2时,y =-x 2+2x +3=3.此时点M 的坐标为(2,3).②如图2,图3,当AB 是平行四边形的边时,PM //AB ,PM =AB =4. 所以点M 的横坐标为4或-4. 如图2,当x =4时,y =-x 2+2x +3=-5.此时点M 的坐标为(4,-5).如图3,当x =-4时,y =-x 2+2x +3=-21.此时点M 的坐标为(-4,-21).第2题图1 第2题图2 第2题图33.将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2,如图所示. 现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.解析、抛物线c 1:233y x =-+与x 轴的两个交点为(-1,0)、(1,0),顶点为(0,3). 抛物线c 1向左平移m 个单位长度后,顶点M 的坐标为(,3)m -,与x 轴的两个交点为(1,0)A m --、(1,0)B m -,AB =2.抛物线c 2在平移的过程中,与抛物线c 1关于原点对称.所以四边形AMEN 是平行四边形.如果以点四边形AMEN 是矩形,那么AE =MN .所以OA =OM .而OM 2=m 2+3,所以(1+m )2=m 2+3.解得m =1(如图).第3题图[另解]探求矩形ANEM ,也可以用几何说理的方法:在等腰三角形ABM 中,因为AB =2,AB 3ABM 是等边三角形.同理△DEN 是等边三角形. 当四边形ANEM 是矩形时,B 、D 两点重合.因为起始位置时BD =2,所以平移的距离m =1.4.已知平面直角坐标系xOy (如图),一次函数334y x =+的图像与y 轴交于点A ,点M在正比例函数32y x=的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长; (2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.解析、(1)当x =0时,3334y x =+=,所以点A 的坐标为(0,3),OA =3. 如图1,因为MO =MA ,所以点M 在OA 的垂直平分线上,点M 的纵坐标为32. 将32y =代入32y x =,得x =1.所以点M 的坐标为3(1,)2.因此13AM =. (2)因为抛物线y =x 2+bx +c 经过A (0,3)、M 3(1,)2,所以3,31.2c b c =⎧⎪⎨++=⎪⎩ 解得52b =-,3c =.所以二次函数的解析式为2532y x x =-+. (3)如图2,设四边形ABCD 为菱形,过点A 作AE ⊥CD ,垂足为E .在Rt △ADE 中,设AE =4m ,DE =3m ,那么AD =5m . 因此点C 的坐标可以表示为(4m ,3-2m ). 将点C(4m ,3-2m )代入2532y x x =-+,得23216103m m m -=-+. 解得12m =或者m =0(舍去). 因此点C 的坐标为(2,2).5.如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.解析.(1)QB =8-2t ,PD =43t . (2)当点Q 的速度为每秒2个单位长度时,四边形PDBQ 不可能为菱形.说理如下: 在Rt △ABC 中,AC =6,BC =8,所以AB =10.已知PD //BC ,当PQ//AB 时,四边形PDBQ 为平行四边形. 所以CQ CP CB CA =,即2686t t -=.解得125t =. 此时在Rt△CPQ 中,245CQ =,2456sin 54CQ PQ CPQ ==⨯=∠. 所以2416855BQ CB CQ =-=-=,6BD PQ ==. 因此BQ ≠BD .所以四边形PDBQ 不是菱形.如图1,作∠ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形. 过点P 作PE ⊥AB ,垂足为E ,那么BE =BC =8. 在Rt △APE 中,23cos 5AE A AP t ===,所以103t =. 当PQ //AB 时,CQ CP CB CA =,即106386CQ -=.解得329CQ =. 所以点Q 的运动速度为3210169315÷=. 第5题图1 (3)以C 为原点建立直角坐标系.如图2,当t =0时,PQ 的中点就是AC 的中点E (3,0).如图3,当t =4时,PQ 的中点就是PB 的中点F (1,4).直线EF 的解析式是y =-2x +6. 如图4,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上. 所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.第5题图2 第5题图3 第5题图4[另解]第(3)题求点M 的运动路径还有一种通用的方法是设二次函数:当t =2时,PQ 的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),得930,4,42 2.a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+6.6.如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|∶|OB|=1∶5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为72?若存在,求出点M的坐标;若不存在,请说明理由.解析(1)设OA的长为m,那么OB=OC=5m.由△ABC的面积S△ABC=15,得m=5.所以点A、B、C的坐标分别为(-1,0)、(5,0)、(0,-5).设抛物线的解析式为y=a(x+1) (x-5),代入点C(0,-5),得a=1.所以抛物线的解析式为y=(x+1) (x-5)=x2-4 x-5.(2)抛物线的对称轴为直线x=2,设点E在对称轴右侧,坐标为(x,x2-4 x-5).①如图1,当E在x轴上方时,EF=2(x-2),EH=x2-4 x-5.解方程2(x-2)=x2-4 x-5,得310x=+或310x=-(舍去).此时正方形的边长为2210+.②如图2,当E在x轴下方时,EF=2(x-2),EH=-(x2-4 x-5).解方程2(x-2)=-(x2-4 x-5),得110x=+或110x=-(舍去).此时正方形的边长为210.第6题图1 第6题图2 第6题图3(3)如图3,因为点B、C的坐标分别为(5,0)、(0,-5),所以BC与x轴正半轴的夹角为45°.过点B作BM⊥BC,且使得BM=72过点M 作x 轴的垂线,垂足为N ,那么△BMN 是等腰直角三角形.在Rt △BMN 中,斜边BM =72,所以BN =MN =7. 因此点M 的坐标为(-2,7)或(12,-7).经检验,点(-2,7)在抛物线y =(x +1) (x -5)上;点(12,-7)不在这条抛物线上.所以点M 的坐标是(-2,7).[另解]第(3)题也可以这样思考:设抛物线上存在点M ,设点M 的坐标为(x ,x 2-4 x -5).由于△BMN 是等腰直角三角形,BN =MN ,所以5-x =x 2-4 x -5.解得x =-2或x =5(与点B 重合,舍去). 所以点M 的坐标是(-2,7).这种解法不需要分情况讨论点M 的位置,这是因为:当M 在点B 的右侧时,方程为x -5=-(x 2-4 x -5),这个方程和点M 在点B 的左侧时的方程是同一个方程.7.如图1,在平面直角坐标系中,抛物线y =ax 2+bx -3a 经过A (-1,0)、B (0,3)两点,与x 轴交于另一点C ,顶点为D .(1)求该抛物线的解析式及点C 、D 的坐标;(2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标;(3)如图2,P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标.图1 图2解析.(1)抛物线的解析式为y =-x 2+2x +3,C (3,0),顶点D (1,4).(2)如图1,直线BD 为y =x +3,E (-3,0).过△ABE 的三个顶点,分别作对边的平行线,三条直线两两相交,得到三个点F .① 点E (-3,0)向左平移2个单位得到点A (-1,0),那么点B (0,3) 向左平移2个单位得到点F 1(2,3).经验证,F 1(2,3)在抛物线上.② F 2不在抛物线上.③由B (0,3)先向下平移3个单位,再向左平移3个单位得到点E (-3,0),那么点A (-1,0) 先向下平移3个单位,再向左平移3个单位得到点F 3(-4,-3).经验证,F 3(-4,-3)不在抛物线上.(3)如图2,直线AP 的解析式为y =x +1.过点Q 作y 轴的平行线交AP 于H .设Q (x , -x 2+2x +3),那么H (x , x +1).因此S △APQ =S △AQH +S △PQH =211()(2)322P A QH x x x x -=-++⨯23127()228x =--+. 所以当12x =时,△APQ 的最大面积为827.此时Q )415,21(.第7题图1 第7题图28.已知抛物线2(2)y a x b =-+ (0)ab <的顶点为A ,与x 轴的交点为B ,C (点B 在点C 的左侧).(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;(3)若D 为抛物线对称轴上一点,则以A 、B 、C 、D 为顶点的四边形能否为正方形?若能,请求出a ,b 满足的关系式;若不能,说明理由.解析(1)抛物线对称轴是直线x =2. (2)点B (0,0)关于对称轴x =2对称的点C 为(4,0),设抛物线的解析式为y =ax (x -4).当△ABC 为直角三角形时,△ABC 为等腰直角三角形,AB =AC ,∠BAC =90°.所以点A 的坐标为(2,2)或(2,-2).①将A (2,2)代入y =ax (x -4),得12a =-.于是211(4)222y x x x x =--=-+.因此2b =. ②当A (2,-2)代入y =ax (x -4),得12a =.于是211(4)222y x x x x =-=-.因此2b =-. (3)如果四边形ABDC 是正方形,那么A 、D 关于BC (x 轴)对称且△ABC 为等腰直角三角形.由A (2,b ),得B(2+b ,0)、C(2-b ,0).于是可得抛物线的解析式为y =a (x -2-b )(x -2+b ).代入A (2,b ),得b =-ab 2.所以1ab =-.9.如图,已知双曲线6y x=与直线AB 交于A 、B 两点,与直线CD 交于C 、D 两点. (1)求证四边形ACBD 是平行四边形;(2)四边形ACBD 可能是矩形吗?可能是正方形吗?(3)如果点A 的横坐标为3,点C 的横坐标为m (m >0),四边形ACBD 的面积为S ,求S 与m 的之间的关系式.解析.(1)因为A 、B 关于原点O 对称,C 、D 关于原点O 对称,所以OA =OB ,OC =OD .所以四边形ACBD 是平行四边形.(2)如图1,当直线AB 与直线CD 关于直线y =x 对称时,OA =OB =OC =OD ,所以四边形ACBD 可以成为矩形.因为x ≠0,y ≠0,所以点A 、B 、C 、D 不可能落在坐标轴上,因此直线AB 与CD 不可能垂直,即平行四边形ACBD 的对角线不可能互相垂直,所以四边形ACBD 不可能成为正方形.(3)如图2,作AE ⊥x 轴于E ,CF ⊥x 轴于F ,那么S △AOE =S △COF .①如图2,当点C 在点A 上方时,设OA 与CF 交于点M ,那么S 四边形AEFM =S △COM . 因此S △AOC =S 梯形AEFC =169(2)(3)2m m m m+-=-. 所以S =S 平行四边形ACBD =4S △AOC 364m m=-. ②如图3,当点C 在点A 下方时,S △AOC =S 梯形AEFC =169(2)(3)2m m m m+-=-. 所以S =S 平行四边形ACBD =4S △AOC 364m m=-.第9题图1 第9题图2 第9题图3。

39 四边形的存在性问题

39 四边形的存在性问题

四边形的存在性问题例题精讲【例1】如图1,四边形ABC D 中,//AD BC ,90AD C ∠=︒,8AD =,6BC =,点M 从点D 出发,以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP AD ⊥于点P ,连接AC 交NP 于点Q ,连接MQ .设运动时间为t 秒.(1)A M =,A P =.(用含t 的代数式表示)(2)当四边形AN C P 为平行四边形时,求t 的值(3)如图2,将AQM ∆沿A D 翻折,得A K M ∆,是否存在某时刻t ,①使四边形AQMK 为为菱形,若存在,求出t 的值;若不存在,请说明理由②使四边形AQMK 为正方形,则A C =.【解答】解:(1)如图1.82AM AD D M t ∴=-=-.在直角梯形ABC D 中,//AD BC ,90AD C ∠=︒,NP AD ⊥于点P ,∴四边形C N PD 为矩形,6DP CN BC BN t ∴==-=-,8(6)2AP AD DP t t ∴=-=--=+;故答案为:82t -,2t +.(2)四边形AN C P 为平行四边形时,C N A P =,68(6)t t ∴-=--,解得:2t =,(3)①存在时刻1t =,使四边形AQMK 为菱形.理由如下:N P A D ⊥,QP PK =,∴当P M P A =时有四边形AQMK 为菱形,628(6)t t t ∴--=--,解得1t =,②要使四边形AQMK 为正方形.90AD C ∠=︒,45C AD ∴∠=︒.∴四边形AQMK 为正方形,则CD AD =,8A D =,AC ∴=.故答案为:.【变式训练1】在矩形ABC D 中,3A B =,4BC =,E 、F 是对角线AC 上的两个动点,分别从A ,C 同时出发相向而行,速度均为每秒1个单位长度,运动时间为t 秒,其中05t .(1)若G ,H 分别是A B ,DC 中点,求证:四边形E G F H 是平行四边形(E 、F 相遇时除外).(2)在(1)条件下,若四边形E G F H 为矩形,求t 的值.(3)若G ,H 分别是折线A B C --,C D A --上的动点,与E ,F 相同的速度同时出发,若四边形E G F H 为菱形,求t 的值.【解答】(1)证明:四边形ABC D 是矩形,AB CD ∴=,//AB CD ,//AD BC ,90B ∠=︒,5AC ∴==,G A F H C E ∠=∠,G ,H 分别是A B ,DC 中点,A GB G ∴=,CH D H =,AG CH ∴=,AE CF =,AF CE ∴=,在A F G ∆和C E H ∆中,AG CH GAF HCE AF CE =⎧⎪∠=∠⎨⎪=⎩,()AFG CEH SAS ∴∆≅∆,G F H E ∴=,同理:GE HF =,∴四边形E G F H 是平行四边形;(2)解:由(1)得:BG CH =,//BG CH ,∴四边形B C H G 是平行四边形,4G H BC ∴==,当4EF GH ==时,平行四边形E G F H 是矩形,分两种情况:①AE CF t ==,524E F t =-=,解得:0.5t =;②AE CF t ==,52(5)4EF t =--=,解得: 4.5t =;综上所述:当t 为0.5s 或4.5s 时,四边形E G F H 为矩形;(3)解:连接AG 、CH ,如图所示:四边形E G F H 为菱形,GH EF ∴⊥,OG OH =,O E O F =,O A O C ∴=,AG AH =,∴四边形AGCH 是菱形,A G C G ∴=,设AG CG x ==,则4BG x =-,由勾股定理得:222AB BG AG +=,即2223(4)x x +-=,解得,258x =,257488BG ∴=-=,731388AB BG ∴+=+=,t ∴为318时,四边形E G F H 为菱形.【变式训练2】在矩形ABC D 中,6A B =,8B C =,点E 为BC 延长线上一点,且B D B E =,连接D E ,Q 为D E 的中点,有一动点P 从B 点出发,沿BC 以每秒1个单位的速度向E 点运动,运动时间为t 秒.(1)如图1,连接D P 、PQ ,则DPQ S ∆=(用含t 的式子表示);(2)如图2,M 、N 分别为A B 、A D 的中点,当t 为何值时,四边形MNQP 为平行四边形?请说明理由;【解答】解:(1)四边形ABC D 是矩形,6A B =,8B C =,8B C ∴=,6CD =,10BD ∴==10BD BE ∴==Q 为D E 的中点,12DPQ DPE S S ∆∆∴=,11113()(6106)1522222DPQ BED BDP S S S t t ∆∆∆∴=-=⨯⨯-⨯⨯=-故答案为:3152t-(2)当5t =时,四边形MNQP 为平行四边形,理由如下:M 、N 分别为A B 、A D 的中点,//MN BD ∴,152MN BD ==,5t =时,152BP BE ∴==,且点Q 是D E 的中点,//PQ BD ∴,152PQ BD ==//MN PQ ∴,MN PQ=∴四边形MNQP 是平行四边形最新模拟题1.如图,在矩形ABCD 中,3CD cm =,4BC cm =,连接BD ,并过点C 作CN BD ⊥,垂足为N ,直线l 垂直BC ,分别交BD 、BC 于点P 、Q .直线l 从AB 出发,以每秒1cm 的速度沿BC 方向匀速运动到CD 为止;点M 沿线段DA 以每秒1cm 的速度由点D 向点A 匀速运动,到点A 为止,直线1与点M 同时出发,设运动时间为t 秒(0)t >.(1)线段CN =125;(2)连接PM 和QN ,当四边形MPQN 为平行四边形时,求t 的值;(3)在整个运动过程中,当t 为何值时PMN ∆的面积取得最大值,最大值是多少?【解答】解:(1)四边形ABCD 是矩形4BC AD cm ∴==,90BCD A ∠=︒=∠,225BD BC CD cm ∴=+,1122BCD S BC CD BD CN ∆=⨯=⨯⨯125CN ∴=故答案为:125(2)在Rt CDN ∆中,2295DN CD CN =-四边形MPQN 为平行四边形时//PQ MN ∴,且PQ BC ⊥,//AD BCMN AD∴⊥//MN AB∴DMN DAB∴∆∆∽∴DM DN AD BD=即9545DM =3625DM cm ∴=3625t s ∴=(3)5BD =,95DN =165BN ∴=如图,过点M 作MH BD ⊥于点H ,sin sin AB MH MDH BDA BD MD ∠=∠==∴35MD t =35MH t ∴=当64025t <<BQ t =,45BP t ∴=,9416555554PN BD BP DN t t ∴=--=--=-2113165324()22554825PMN S PN MH t t t t ∆∴=⨯⨯=⨯⨯-=-+∴当3225t s =时,PMN S ∆有最大值,且最大值为384625,当6425t s =时,点P 与点N 重合,点P ,点N ,点M 不构成三角形;当64425t < 时,如图,51645PN BP BN t ∴=-=-2113516324()22545825PMN S PN MH t t t t ∆∴=⨯⨯=⨯⨯-=-当64425t < 时,PMN S ∆随t 的增大而增大,∴当4t =时,PMN S ∆最大值为5425,5438425625>∴综上所述:4t =时,PMN ∆的面积取得最大值,最大值为5425.2.如图,平行四边形ABCD 中,8AB cm =,12BC cm =,60B ∠=︒,G 是CD 的中点,E是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF .(1)求证:四边形CEDF 是平行四边形;(2)①AE =cm 时,四边形CEDF 是矩形,请写出判定矩形的依据(一条即可);②AE =cm 时,四边形CEDF 是菱形,请写出判定菱形的依据(一条即可).【解答】(1)证明:四边形ABCD 是平行四边形,//AD BC ∴,DEG CFG ∴∠=∠,GDE GCF ∠=∠.G 是CD 的中点,DG CG ∴=,在EDG ∆和FCG ∆中,DEG CFG GDE GCF DG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EDG FCG AAS ∴∆≅∆.ED FC ∴=.//ED CF ,∴四边形CEDF 是平行四边形.(2)解:①当8AE cm =时,四边形CEDF 是矩形.理由如下:作AP BC ⊥于P ,如图所示:8AB cm =,60B ∠=︒,30BAP ∴∠=︒,142BP AB cm ∴==,四边形ABCD 是平行四边形,60CDE B ∴∠=∠=︒,8DC AB cm ==,12AD BC cm ==,8AE cm =,4DE cm BP ∴==,在ABP ∆和CDE ∆中,AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩,()ABP CDE SAS ∴∆≅∆,90CED APB ∴∠=∠=︒,∴平行四边形CEDF 是矩形(有一个角是直角的平行四边形是矩形),故当8AE cm =时,四边形CEDF 是矩形;故答案为:8.②当4AE cm =时,四边形CEDF 是菱形.理由如下:4AE cm =,12AD cm =.8DE cm ∴=.8DC cm =,60CDE B ∠=∠=︒.CDE ∴∆是等边三角形.DE CE ∴=.∴平行四边形CEDF 是菱形(有一组邻边相等的平行四边形是菱形).故当4AE cm =时,四边形CEDF 是菱形;故答案为:4.3.如图,在ABC ∆中,点O 是边AC 上一个动点,过点O 作直线//EF BC 分别交ACB ∠、外角ACD ∠的平分线于点E 、F .(1)猜想与证明,试猜想线段OE 与OF 的关系,并说明理由.(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)若AC边上存在一点O,使四边形AECF是正方形,猜想ABC∆的形状并证明你的结论.【解答】(1)证明:CE平分ACB∠,∠,CF平分ACD∠=∠,ACE ECB∴∠=∠,ACF DCFEF BC,//∠=∠,∴∠=∠,F DCFECB OEC∴∠=∠,ACF F∠=∠,ACE OEC∴=,OC OF=,OE OC∴=;OE OF(2)解:如图,当O在AC的中点时,四边形AECF是矩形,理由如下:当O为AC中点时,则有OA OC OE OF===,=,∴四边形AECF为平行四边形,AC EF∴四边形AECF为矩形.(3)解:当点O在边AC上运动到AC中点时,使四边形AECF是正方形,ABC∆是直角三角形(90)∠=︒.理由如下:ACB由(2)可得点O在边AC上运动到AC中点时,平行四边形AECF是矩形,∠=︒,ACB90∴∠=︒ACE45平行四边形AECF是矩形,∴=,EO COOEC ACE∴∠=∠=︒,45EOC∴∠=︒,90∴⊥,AC EF∴四边形AECF是正方形.4.如图,矩形ABCD 中,点P 是线段AD 上的一个动点,O 为BD 的中点,PO 的延长线交BC 于Q .(1)求证:OP OQ =;(2)若8AD cm =,6AB cm =,点P 从点A 出发,以1/cm s 的速度向点D 运动(不与D 重合).设点P 运动的时间为t 秒,请用t 表示PD 的长;(3)当t 为何值时,四边形PBQD是菱形?【解答】解:(1)四边形ABCD 是矩形,//AD BC ∴,PDO QBO ∴∠=∠,O 为BD 的中点,DO BO ∴=,在PDO ∆和QBO ∆中,PDO QBO DO BO POD QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PDO QBO ASA ∴∆≅∆,OP OQ ∴=;(2)由题意知:8AD cm =,AP tcm =,8PD t ∴=-,(3)PB PD =,22PB PD ∴=,即222AB AP PD +=,2226(8)t t ∴+=-,解得74t =,∴当74t =时,PB PD =.。

专题21 四边形中的存在性问题(解析版)

专题21 四边形中的存在性问题(解析版)

专题21四边形中的存在性问题
1、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),
以AD为边做正方形ADEF,连接CF.
(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.
(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;
(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;
若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.
解:(1)∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,。

平行四边形的存在性问题

平行四边形的存在性问题

平行四边形存在性问题【知识概括】确定平行四边形:对于A 、B 、C 三点固定,若存在点D 使得四边形ABCD 是平行四边形,则点D 只有一种情况,如图①;若存在点D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 有三种情况,如图②。

图 ① 图 ②【方法思路分析】一、必须明确以下情况:①、四边形ABCD 是平行四边形,AC 、BD 一定是对角线,即明确字母顺序,那么对角线就确定了;②、以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,对角线不确定,则需要分类讨论。

二、有关解析法的知识:①两点之间的距离公式:若A ) ,(11y x ,B ) ,(22y x ,则|AB|=特别地,若AB ∥x 轴,则||AB = ,若AB ∥y 轴,则||AB = ②中点坐标公式:若A ) ,(11y x ,B ) ,(22y x ,则A 、B 的中点M 为 ③①ABCD①,设四个顶点坐标分别是) (A A y x A ,,) (B B y x B ,,) (C C y x C ,,) (D D y x D ,,则满足:【方法运用】一、三定一动,探究平行四边形存在性1、已知)3 ,1(A ,)4 ,6(B ,)6 ,4(C ,在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形。

二、两定两动,探究平行四边形存在性2、已知)1 ,1(A 、)2 ,3(B ,点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,求D C 、的坐标。

【解题步骤要点总结】先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标). 再画出以三点为顶点的平行四边形,根据性质写出第四个顶点的坐标.最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性.三、拓展延伸已知A 为(0,3),B 为(4,2),点C 在x 轴上,D 是平面直角坐标系内一点,(1)若以A 、B 、C 、D 四点为顶点的四边形是矩形,求点D 的坐标。

中考第二轮复习:四边形存在性问题解析

中考第二轮复习:四边形存在性问题解析

四边形存在性问题解析1.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,C的坐标为(-18,0)。

(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。

【考点】一次函数综合题,等腰直角三角形判定和性质,相似三角形判定和性质,待定系数法,直线上点的坐标与方程的关系,菱形的判定和性质。

【分析】(1)构造等腰直角三角形BCF,求出BF、CF的长度,即可求出B点坐标。

(2)已知E点坐标,欲求直线DE的解析式,需要求出D点的坐标.构造△ODG ∽△OBA,由线段比例关系求出D点坐标,从而可以求出直线DE的解析式。

(3)如图所示,符合题意的点Q有4个:设直线y=-x+4分别与x轴、y轴交于点E、点F,则E(0,4),F(4,0),OE=OF=4,。

①菱形OEP1Q1,此时OE为菱形一边。

则有P1E=P1Q1=OE=4,P1F=EF-P14。

易知△P1NF为等腰直角三角形,∴P11F=4-设P1Q1交x轴于点N,则NQ1=P1Q1-P1N=4-(4-。

又ON=OF-Q1(,-。

②菱形OEP2Q2,此时OE为菱形一边。

此时Q2与Q1关于原点对称,∴Q2(-2。

③菱形OEQ3P3,此时OE为菱形一边。

此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4)。

④菱形OP4EQ4,此时OE为菱形对角线。

由菱形性质可知,P4Q4为OE的垂直平分线,由OE=4,得P4纵坐标为2,代入直线解析式y=-x+4得横坐标为2,则P4(2,2)。

由菱形性质可知,P4、Q4关于OE或y轴对称,∴Q4(-2,2)。

二次函数中考压轴题四边形的存在性问题解析

二次函数中考压轴题四边形的存在性问题解析

二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。

∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。

当x=0时,y=3。

∴C 点的坐标为(0,3)。

设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。

∴直线AC 的解析式为y=3x+3。

∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。

(2)抛物线上有三个这样的点Q 。

如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。

综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。

(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。

过点B′作B′E ⊥x 轴于点E 。

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略
平行四边形存在性问题是一个常见的几何问题,即给定4条线段,判断它们是否可以构成一个平行四边形。

虽然这个问题看起来很简单,但是解决起来却并不容易。

解决平行四边形存在性问题的第一步是要判断这四条线段是否为平行线段。

根据对称性,可以把这四条线段分成两组,分别是AB和CD,那么AB两条线段是否平行,与CD两条线段是否平行,就可以用一般平行线段的性质来判断,即两条平行线段之间的角度是180°。

若AB和CD两组线段都是平行线段,则说明这四条线段可能构成平行四边形,接下来就要判断对角线的关系。

可以用向量的性质来判断,即对角线的夹角是90°,判断时要将AB和CD两组线段的终点向量相加,若其夹角为90°,则说明这四条线段可以构成平行四边形。

另外,若AB两条线段不是平行线段,则这四条线段一定不能构成平行四边形。

因为平行四边形的4条边都是平行线段,而AB两条线段不是平行线段,则说明这四条线段不可能构成平行四边形。

总之,解决平行四边形存在性问题的关键是要判断四条线段之间的关系,即AB两条线段是否平行,以及AB两条线段的终点向量之和的夹角是否为90°。

只有当这两个条件都满足时,这四条线段才能构成平行四边形。

中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

专题17 函数动点问题中平行四边形存在性类型一、平行四边形存在性结论:A C B DA CB Dx x x xy y y y+=+⎧⎨+=+⎩类型二、特殊平行四边形存在性1. 矩形存在性常用解题思路:构造一线三直角(借助相似或三角函数求解);利用矩形对角线相等(直角三角形斜边的中线等于斜边的一半)借助勾股定理求解等.2. 菱形存在性常用解题思路:利用菱形四条边相等,对角线互相垂直,借助勾股定理等求解.3. 正方形存在性常用解题思路:兼具矩形和菱形二者.【例1】(2018·郑州预测卷)如图,直线y=334x-+与x轴交于点C,与y轴交于点B,抛物线y= 234ax x c++经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一个动点,当△BEC的面积最大时,求出点E的坐标和最大值;(3)在(2)条件下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使以点P、Q、A、M为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵直线y =334x -+与x 轴交于点C ,与y 轴交于点B ,∴B (0,3),C (4,0),将B (0,3),C (4,0)代入y = 234ax x c ++得: 16303a c c ++=⎧⎨=⎩,解得:383a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为:233384y x x =-++.(2)过点E 作EF ⊥x 轴于F ,交BC 于M ,设E (x ,233384x x -++),则M (x ,334x -+),∴ME =233384x x -++-(334x -+)=23382x x -+∴S △BEC =12×EM ×OC =2EM=2(23382x x -+)=()23234x --+,∴当x =2时,△BEC 的面积取最大值3,此时E (2,3).(3)由题意得:M (2,32),抛物线对称轴为:x =1,A (-2,0),设P (m ,y ),y =233384m m -++,Q (1,n )①当四边形APQM 为平行四边形时,有:212m -+=+,解得:m =-3, 即P (-3,218-); ②当四边形AMPQ 为平行四边形时,有:-2+m =2+1,即m =5 即P (5, 218-); ③当四边形AQMP 为平行四边形时,有:2-2=1+m ,得:m =-1, 即P (-1,158); 综上所述,抛物线上存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标为:(-3,218-),(5, 218-),(-1,158).【变式1-1】(2018·河师大附中模拟)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的解析式与顶点M 的坐标; (2)求△BCM 的面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以点A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请直接写出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (-1,0),B (3,0), C (0,-3)代入y =ax 2+bx +c ,得:9303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得:a =1,b =-2,c =-3,即抛物线的解析式为:y=x2-2x-3,顶点M的坐标为:(1,-4);(2)连接BC,BM,CM,过M作MD⊥x轴于D,如图所示,S△BCM=S梯形ODMC+S△BDM-S△BOC=3,S△ACB=6,∴S△BCM:S△ACB=1:2;(3)存在.①当点Q在x轴上方时,过Q作QF⊥x轴于F,如图所示,∵四边形ACPQ为平行四边形,∴QP∥AC,QP=AC∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x或x=1,∴Q,3)或(1,3);②当点Q在x轴下方时,过Q作QE⊥x轴于E,如图所示,同理,得:△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得:x=2或x=0(与C点重合,舍去),∴Q(2,﹣3);综上所述,点Q的坐标为:,3)或(1,3)或(2,﹣3).【例2】(2018·郑州三模)如图所示,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2所示,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别交于点F、G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(3)点M是(1)中所求抛物线对称轴上一动点,点N是反比例函数y=kx图象上一点,若以点B、C、M、N为动点的四边形是矩形,请直接写出满足条件的k的值.【答案】见解析.【解析】解:(1)将A (-1,0),B (5,0)代入y =ax 2+bx -5得:5025550a b a b --=⎧⎨+-=⎩,解得:14a b =⎧⎨=-⎩, 即抛物线的解析式为:y =x 2-4x -5.(2)在y =x 2-4x -5中,当x =0时,y =-5,即C (0,-5), ∵CE ∥x 轴,则C 、E 关于直线x =2对称, ∴E (4,-5), CE =4,由B (5,0), C (0,-5)得直线BC 的解析式为:y =x -5, 设H (m ,m 2-4m -5), ∵FH ⊥CE , ∴F (m ,m -5),∴FH = m -5-(m 2-4m -5)= -m 2+5m , S 四边形CHEF =12·FH ·CE =12(-m 2+5m )×4 =-2(m -52)2+252,当m =52时,四边形CHEF 的面积取最大值252,此时H (52,354-).(3)设M (2,m ),N (n ,kn),B (5,0),C (0,-5), ①当BC 为矩形对角线时,此时:2+n =5+0,m +kn=0-5,即n =3,设BC 与MN 交于点H ,则H (52,52-),MH =12BC =2,∴222552222m ⎛⎛⎫⎛⎫-++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 解得:m =1或m =-6,当m =1时,k =-18;m =-6时,k =3, ②当BC 为矩形边时,分两种情况讨论:(i )当点M 在直线BC 下方时,即四边形BCMN 为矩形,则∠BCM=90°,2+5=n+0,m=kn-5,过M作MH⊥y轴于H,则由OB=OC知,∠OCB=45°,∴∠MCH=∠CMH=45°,即CH=MH,∴-5-m=2,解得:m=-7,n=7,k=-14;(ii)当点M在直线BC上方时,即四边形BCNM为矩形,则∠CBM=90°,n+5=2,kn=m-5,设对称轴与x轴交于点H,同理可得:BH=MH,∴3=m,n=-3,k=6;综上所述,k的值为:-18,3,-14或6.【变式2-1】(2019·驻马店二模)如图,抛物线y=-x2+bx+c经过A(-1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式.(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N 为直线 PF 上一动点,当以 F ,M ,G ,N 为顶点的四边形是正方形时,请求出点 M 的坐标.【答案】见解析.【解析】解:(1)∵抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,即抛物线的解析式为:y =-x 2+2x +3.(2)由y =-x 2+2x +3知,C (0,3),E (1,0),D (1,4), 可得直线BD 的解析式为:y =-2x +6,设P (m ,-2m +6),由勾股定理得:PE 2=()()22126m m -+-+,PC 2=()22263m m +-+-, 由PE =PC ,得:()()22126m m -+-+=()22263m m +-+-, 解得:m =2,即P (2,2).(3)∵M 在x 轴上,N 在直线PF 上, ∴∠NFM =90°,由四边形MFNG 是正方形,知MF =MG , 设M (n ,0),则G (n ,-n 2+2n +3), MG =|-n 2+2n +3|,MF =|n -2|, ∴|-n 2+2n +3|=|n -2|,解得:n n n n ,故点M 的坐标为:0),0),(12,0),(12-,0).【变式2-2】(2019·大联考)如图1,抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线上,且在x 轴的上方,点P 的横坐标记为t .(1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值.(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C 、D 、E 、P 为顶点的四边形是菱形?若存在,请直接写出菱形的面积.图1 图2【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),∴301640c a b c a b c =⎧⎪++=⎨⎪-+=⎩,解得:39434c b a ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,即抛物线的解析式为:y =34-x 294-x +3. (2)由A (-4,0),C (0,3)得直线AC 的解析式为:y =334x +, ∵点P 的横坐标为t , ∴M (t ,334t +), ∵PN ∥y 轴, ∴∠PMC =∠MCO , ∵MC 平分∠PMO , ∴∠PMC =∠OMC , ∴∠MCO =∠OMC , 即OM =OC =3,∴OM 2=9,即223394t t ⎛⎫++= ⎪⎝⎭,解得:t =0(舍)或t =7225,∴当MC 平分∠PMO 时,t =7225. (3)设P (t , 34-t 294-t +3), ①当CE 为菱形的边时,四边形CEPD 为菱形,则PD ∥y 轴,CD =PD ,则D (t ,334t +),∴PD =34-t 294-t +3-(334t +)=34-t 23-t , 由勾股定理得:CD =54t -,∴34-t 23-t =54t -,解得:t =0(舍)或t =73-, 即PD =3512,菱形面积为:3512×73=24536; ②当CE 为菱形的对角线时,此时P 与D 点关于y 轴对称,则D (-t , 34-t 294-t +3),将D 点坐标代入y =334x +,得: 34-t 294-t +3=()334t -+,解得:t =0(舍)或t =-2, PD =4,CE =3,菱形的面积为:12×4×3=6;综上所述,菱形的面积为:24536或6.1.(2019·南阳毕业测试)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵矩形OBDC 的边CD =1, ∴OB =1,由AB =4,得OA =3, ∴A (﹣3,0),B (1,0),∵抛物线y =ax 2+bx +2与x 轴交于A ,B 两点, ∴a +b +2=0,9a -3b +2=0, 解得:a =23-,b =43-, ∴抛物线解析式为y =23-x 243-x +2; (2)以AC 为边或对角线分类讨论: A (﹣3,0),C (0,2),抛物线y =23-x 243-x +2的对称轴为x =﹣1, 设M (m , y M ),N (-1,n ),y M =23-m 243-m +2 ①当四边形ACMN 为平行四边形时,有:312Mm y n -+=-⎧⎨=+⎩,解得:m =2,y M =103-,即M (2,103-); ②当四边形ACNM 为平行四边形时,有:312Mmy n --=⎧⎨+=⎩,解得:m =-4,y M =103-,即M (-4,103-); ③当四边形AMCN 为平行四边形时,有:312Mm y n -=-⎧⎨=+⎩,解得:m =-2,y M =2,即M (-2,2); 综上所述,点M 的坐标为(2,103-)或(﹣4,103-)或(﹣2,2). 2.(2019·开封模拟)如图,直线y =﹣x +4与抛物线y =﹣12x 2+bx +c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式;(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)在y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,即点A、B的坐标分别为(0,4)、(4,0),将(0,4)、(4,0),代入二次函数表达式,并解得:b=1,c=4,抛物线的解析式为:y=﹣12x2+x+4;(2)∵OA=OB=4,∴∠ABO=45°,∵∠ABP=90°,则∠PBO=45°,若直线PB交y轴于点M,则OM=OB=4,可得直线BP的解析式为:y=x-4,联立:y=x-4,y=﹣12x2+x+4,得:x=4,y=0(即B点);x=-4,y=-8,即P(-4,-8).(3)存在;由y=﹣12x2+x+4知抛物线的对称轴为:x=1,设E(1,m),F(n,﹣12n2+n+4),O(0,0),B(4,0),①当四边形OBEF是平行四边形时,有:EF=4,∴n-1=-4,即n=-3,F点坐标为(-3,72 -);②当四边形OBFE是平行四边形时,有:EF=4,n-1=4,即n=5,F点坐标为(5,72 -);③当四边形OFBE 是平行四边形时,有:410Fn m y =+⎧⎨=+⎩,即n =3,F 点坐标为(3,52);综上所述:点F 的坐标为(5,72-),(﹣3,72-),(3,52). 3.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC ∥x 轴.(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M ,若以M ,A ,C ,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC ∥x 轴 ∴点E 的纵坐标为2, ∵点E 在直线y =﹣x 上, ∴点E (﹣2,2),∵将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+;(2)由224233y x x =--+知,抛物线的对称轴为x =-1,设N (-1,n ),M (m ,224233m m --+),∵A (﹣3,0),C (0,2),(1)当四边形ACNM 是平行四边形时,有:312Mm n y --=⎧⎨=+⎩,得:m =-4,y M = 103-; 即M (-4,103-). (2)当四边形ACMN 是平行四边形时,有:312Mm n y -+=-⎧⎨+=⎩,得:m =2,y M = 103-; 即M (2,103-). (3)当四边形ANCM 是平行四边形时,有:312Mmn y -=-+⎧⎨=+⎩,得:m =-2,y M = 2; 即M (-2,2).综上所述,M 点的坐标是(-4,103-),(2,103-),(-2,2). 4.(2019·名校模考)如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】见解析.【解析】解:(1)将y =0代入y =x +3,得x =﹣3.∴A(﹣3,0).∵抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,∴109310a ba b+-=⎧⎨--=⎩,解得:1323ab⎧=⎪⎪⎨⎪=⎪⎩抛物线的解析式为y=13x2+23x﹣1;(2)点G的坐标为(2,1),(﹣,﹣1),(﹣1),(﹣4,3).①当四边形DCEG是菱形时,CD=CE=EG=4,设E(m,m+3),则G(m,m+7),由C(0,-1),E(m,m+3),得:CE2=m2+(m+4)2=16,解得:m=0(舍)或m=-4,此时G(-4,3);②当四边形DCGE是菱形时,CG2=16,设E(m,m+3),则G(m,m-1),即m2+ m2=16,解得:m=m=-此时,G(1)或G(--1);③当四边形DGCE是菱形时,设E(m,m+3),则G(-m,-m-1),此时E在CD的垂直平分线上,即m+3=1,m=-2,此时G(2,1);综上所述,点G的坐标为:(-4,3)、(1)、(--1)、(2,1).5.(2019·枫杨外国语三模)(2019·枫杨外国语三模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,3),点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求抛物线的解析式;(2)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.【答案】见解析.【解析】解:(1)将(-1,0),(0,3)代入y=﹣x2+bx+c,得:-1-b+c=0,c=3,解得:b=2,c=3,即抛物线的解析式为:y=﹣x2+2x+3.(2)由y=﹣x2+2x+3知,点M(1,4),分两种情况讨论,①当四边形MAPQ是矩形时,过M作MH⊥x轴于H,则MH=4,AH=2,易证得:∠APO=∠MAH,∴tan∠APO= tan∠MAH,即OA MHOP AH=2,∴OP=12,即P(0,-12),由A(-1,0)、M(1,4),P(0,-12)得:点Q坐标为(2,72),∵点T和点Q关于AM所在直线对称,即点Q与点T关于点M(1,4)对称,∴T(0,92 );②当四边形AMPQ是矩形时,同理可得:T(0,12 -);综上所述,点T的坐标为(0,92),(0,12-).6.(2019·焦作二模)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数kyx=(x>0)的图象交于点B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数kyx=(x>0)的图象于点N,若以A,O,M,N为顶点的四边形是平行四边形,求点M的横坐标.【答案】见解析.【解析】解:(1)将A(-2,0)代入y=x+b,得:b=2,即一次函数的解析式为:y=x+2,将B(a,4)代入y=x+2,得:a=2,即B(2,4),将B(2,4)代入kyx=得:x=8,即反比例函数的解析式为:8 yx =.(2)设M(m,m+2),则N(82m+,m+2),由题意知,MN∥OA,则需MN=OA=2时,以A,O,M,N为顶点的四边形是平行四边形,∴82mm-+=2,解得:m=2或m=-2(舍)或m=m=-(舍),∴点M的坐标为:(2,+2).7.(2019·许昌月考)如图1,二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).图1 图2【答案】见解析.【解析】解:(1)∵二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴493034103b cb c⎧⨯++=⎪⎪⎨⎪⨯-+=⎪⎩,解得:834bc⎧=-⎪⎨⎪=-⎩,即抛物线的解析式为:y=43x2﹣83x﹣4;(2)过点D作DM⊥y轴于点M,y =43x 2﹣83x ﹣4 =43(x ﹣1)2﹣163, ∴点D (1,﹣163)、点C (0,﹣4), S △ACD =S 梯形AOMD ﹣S △CDM ﹣S △AOC=12×(1+3)×163﹣12×(163﹣4)×1﹣12×3×4 =4;(3)四边形APEQ 为菱形,理由如下:E 点关于PQ 与A 点对称,过点Q 作QF ⊥AP 于F ,由折叠性质知: AP =EP ,AQ =EQ ∵AP =AQ =t , ∴AP =AQ =QE =EP , ∴四边形AQEP 为菱形, ∵FQ ∥OC ,∴AF FQ AQOA OC AC ==, ∴345AF FQ t ==∴AF =35t ,FQ =45t ,Q (3﹣35t ,﹣45t ),E (3﹣35t ﹣t ,﹣45t ),∵E 在二次函数y =43x 2﹣83x ﹣4上,∴﹣45t =43(3﹣85t )2﹣83(3﹣85t )﹣4,∴t =14564或t =0(舍去), ∴E (﹣58,﹣2916).8.(2018·新乡一模)如图,一次函数122y x =-+分别交y 、x 轴于A 、B 两点,抛物线2y x bx c=-++过A ,B 两点.(1)求这个抛物线的解析式;(2)作垂直于x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N . 求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A ,M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.【答案】见解析【解析】解:(1)在122y x =-+得,当x =0时,y =2;y =0时,x =4,即A (0,2),B (4,0),把A (0,2),B (4,0)代入2y x bx c =-++,得: 21640c b c =⎧⎨++=⎩-,解得722b c ⎧=⎪⎨⎪=⎩, ∴抛物线解析式为2722y x x =-++. (2)由题意知,1(,2)2M t t -+,27(,2)2N t t t -++,∴MN =2712(2)22t t t -++--+=2(2)4t --+, ∴当t =2时,MN 有最大值4.(3)根据平行四边形的性质,得:D 点坐标为:(0,6),(0,-2)或(4,4).9.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH ⊥x 轴于点H ,再过点F 作FG ⊥x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,∴4016440a b a b -+=⎧⎨++=⎩,解得:13a b =-⎧⎨=⎩,即抛物线的解析式为:y =-x 2+3x +4. (2)∵四边形EFGH 是矩形,∴当EF =EH 时,四边形EFGH 是正方形,设E(m, -m2+3m+4),则F(3-m,-m2+3m+4),m>32,∴EF=2m-3,EH=|-m2+3m+4|,∴2m-3=|-m2+3m+4|,解得:m或m(舍)或m或m(舍)∴正方形的边长EF2,综上所述,正方形EFGH的边长为:2.10.(2019·郑州一中模拟)如图所示,平面直角坐标系中直线y=x+1交坐标轴于点A、D两点,抛物线y=ax2+bx-3经过A、C两点,点C坐标为(a,5). 点M为直线AC上一点,过点M作x轴的垂线,垂足为F,交抛物线于点N.(1)求抛物线解析式;(2)是否存在点M,使得以点D、E、M、N为顶点的四边形为平行四边形,如果有,求点M的坐标,如果没有,请说明理由.【解析】解:∵直线y =x +1交坐标轴于点A 、D 两点, ∴A (-1,0),D (0,1),∵点C (a ,5)在直线y =x +1上, ∴a =4,即C (4,5),将A (-1,0),C (4,5)代入y =ax 2+bx -3得:3016435a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩, ∴抛物线的解析式为:y =x 2-2x -3. (2)存在,E (0,-3),∴DE =4, 由题意知:DE ∥MN ,∴当DE =MN =4时,四边形DENM 是平行四边形, 设N (m , m 2-2m -3),则M (m , m +1), ∴| m +1-(m 2-2m -3)|=4,解得:m =0(舍)或m =3或m =或m = ,综上所述,点M 的坐标为:(3,4),,).11.(2019·郑州模拟)如图,已知二次函数23234y ax a x ⎛⎫=--+ ⎪⎝⎭的图象经过点A (4,0),与y 轴交于点B ,在x 轴上有一动点C (m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D .(1)求a 的值和直线AB 的解析式;(2)过点D 作DF ⊥AB 于点F ,设△ACE ,△DEF 的面积分别为S 1,S 2,若S 1=4S 2,求m 的值; (3)点H 是该二次函数图象上第一象限内的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且平行四边形DEGH 的周长取最大值时,求点G 的坐标.【答案】见解析.【解析】解:(1)将A (4,0)代入23234y ax a x ⎛⎫=--+ ⎪⎝⎭得:a =34-,∴抛物线的解析式为:239344y x x =-++,设直线AB 的解析式为:y =kx +b , ∴4k +b =0,b =3,即k =34-,b =3, ∴直线AB 的解析式为:y =34-x +3. (2)∵点C 的横坐标为m ,∴D (m , 239344m m -++),E (m , 34-m +3),AC =4-m ,DE =239344m m -++-(34-m +3)= 2334m m -+,∵BC ∥y 轴, ∴43AC OA CE OB ==,即443m CE -=, ∴CE =()344m -,AE =()544m -, ∵∠DF A =∠DCA =90°,∠DBF =∠AEC , ∴△DFE ∽△ACE , ∵S 1=4S 2, ∴AE =2DE , 即()544m -=2(2334m m -+),解得:m =4(舍)或m =56, 即m 的值为56.(3)如图,过点G 作GM ⊥DC 于M ,设G 、H 点横坐标为n ,由DE =2334m m -+,得GH =2334n n -+,2334m m -+=2334n n -+,得:m =n (舍)或n =4-m ,∴MG =4-2m ,由45MG EG =得:EG =()5424m -, ∴C 四边形DEGH =2()25342344m m m ⎡⎤--+⎢⎥⎣⎦=23102m m -++=23161236m ⎛⎫--+ ⎪⎝⎭,∴当m =13时,C 最大,此时n =113,即G (113,14),E (13,114), 由图象可知当E 、G 互换位置时满足题意,即G (13,114),E (113,14),综上所述,G 点坐标为:(13,114),(113,14).13.(2018·郑州模拟)如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB .(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m . ①当∠MBA =∠BDE 时,求点M 的坐标;②过点M 作MN ∥x 轴,与抛物线交于点N ,P 为x 轴上一点,连接PM ,PN ,将△PMN 沿着MN 翻折,得△QMN ,若四边形MPNQ 恰好为正方形,直接写出m 的值.【答案】见解析.【解析】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,并解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.顶点D(1,4).(2)①过点M作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∵DE⊥x轴,D(1,4),B(3,0),∴∠DEB=90°,DE=4,OE=1,BE=2,∵∠MBA=∠BDE,∴tan∠MBA=tan∠BDE=12,∴2233m mm-++-=12解得:m=12-或m=32-或m=3(舍)∴满足条件的点M坐标(12-,74)或(32-,94-);②∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴OP=1,由∠QPM=∠MPO=45°,得:GM=GP,即|﹣m2+2m+3|=|1﹣m|,解得:m或m或m或m即满足条件的m.14.(2017·信阳二模)如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,点O为对称中心做菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N,试探究m为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣2,0)、B(8,0)代入y=ax2+bx﹣4并解得:a=14,b=32-,即抛物线的解析式为:y=14x232-x-4.(2)由y=14x232-x-4知,C(0,-4),由菱形的性质可知:D(0,4),设直线BD的解析式为:y=kx+n,将点B(8,0)、D(0,4)代入得:k=12-,n=4,即直线BD的解析式为:y=12-x+4,由M(m,12-m+4),Q(m,14m232-m-4).当MQ=DC时,四边形CQMD为平行四边形.∴12-m+4﹣(14m232-m-4)=8,解得m=4或m=0(舍去).∴MD∥CQ,MD=CQ,M(4,2),∴M为BD的中点,∴MD=MB.∴CQ=MB,又∵MB∥CQ,∴四边形CQBM为平行四边形.。

专题06 动点与平行四边形存在性问题大视野(解析版)

专题06 动点与平行四边形存在性问题大视野(解析版)

专题06 动点与平行四边形存在性问题大视野【例题精讲】题型一、平行四边形存在性问题例1. 【2019·长沙市天心区期中】如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=3,OB=2OA,C为直线y=2x与直线AB的交点,点D在线段OC上,OD=√5.(1)求点C的坐标;(2)若P为线段AD上一动点(不与A、D重合).P的横坐标为x,△POD的面积为S,请求出S与x的函数关系式;(3)若F为直线AB上一动点,E为x轴上一点,是否存在以O、D、E、F为顶点的四边形是平行四边形?若存在,写出点F的坐标;若不存在,请说明理由.题型二、特殊平行四边形(矩形)存在性问题例1. 【2019·武汉市期中】如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s.(1)证明:当E在AO上运动,F在CO上运动,且E与F不重合时,四边形DEBF是平行四边形;(2)点E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值;如不能,请说明理由.例2. 【2019·禹城市期末】如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交△ACB的角平分线于点E,交△ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为.题型三、特殊平行四边形(菱形)存在性问题例1. 【2019·福州市晋安区期末】如图,在平面直角坐标系中,矩形ABCD的顶点A、B、D的坐标分别为(0,5)、(0,2)、(4,5),直线l的解析式为y=kx+2﹣4k(k>0).(1)当直线l经过原点O时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点C;(3)在(1)的条件下,点M为直线l上的点,平面内是否存在x轴上方的点N,使以点O、A、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标:若不存在,请说明理由.题型四、特殊平行四边形(正方形形)存在性问题例1. 【2019·华蓥市期末】如图,已知一次函数y=12x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=13 MP,MB=13OM,OE=13ON,ND=13NP.(1)b=______;(2)求证:四边形BCDE是平行四边形;(3)在直线y=12x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.【刻意练习】1. 【2019·阳江市期中】如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B 点坐标为(-2,0),C点坐标为(0,-1)(1)AC的长为______;(2)求证:AC△BC;(3)若以A、B、C及点D为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标______.2. 【2018·莆田市期中】已知:在△ABC中,AD是BC边上的中线,点E是AD的中点;过点A作AF△BC,交BE的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)填空:△当AB=AC时,四边形ADCF是______形;△当△BAC=90°时,四边形ADCF是______形.3. 【2018·琼中县期中】如图在Rt△ABC中,△ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.4. 【2019·宿迁市期末】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有______次.5. 【2019·惠州市期末】如图所示,在梯形ABCD中,AD△BC,△B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形?(2)经过多长时间,四边形PQBA 是矩形?6. 【2019·武昌期末】如图,在平面直角坐标系中,OA =OB , △OAB 的面积是2.(1)求线段OB 的中点C 的坐标.(2)连结AC ,过点O 作OE △AC 于E ,交AB 于点D ,△直接写出点E 的坐标.△连结CD ,求证:△ECO =△DCB .(3)点P 为x 轴上一动点,点Q 为平面内一点,以点A 、C 、P 、Q 为顶点作菱形,直接写出点Q 的坐标.7. 【2018·襄阳市期中】如图,矩形OABC 的边OA ,OC 分别与坐标轴重合,并且点B 的坐标为(8,).将该矩形沿OB 折叠,使得点A 落在点E 处,OE 与BC 的交点为D .(1)求证:△OBD 为等腰三角形;(2)求点E 的坐标;(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.8. 【2019·天津蓟县期中】如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若△ABC=120°,AB=BC=4,则在点E的运动过程中:△当BE= 时,四边形BECD是矩形,试说明理由;△当BE= 时,四边形BECD是菱形.专题06 动点与平行四边形存在性问题大视野【例题精讲】题型一、平行四边形存在性问题例1. 【2019·长沙市天心区期中】如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=3,OB=2OA,C为直线y=2x与直线AB的交点,点D在线段OC上,OD=√5.(1)求点C的坐标;(2)若P为线段AD上一动点(不与A、D重合).P的横坐标为x,△POD的面积为S,请求出S与x的函数关系式;(3)若F为直线AB上一动点,E为x轴上一点,是否存在以O、D、E、F为顶点的四边形是平行四边形?若存在,写出点F的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)由题意得:A(3,0),B(0,6),设直线AB解析式为:y=kx+b,△306k bb+=⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,△直线AB解析式为:y=-2x+6,联立:y=-2x+6,y=2x,解得:323xy⎧=⎪⎨⎪=⎩,△点C坐标为:(32,3).(2)过点D作DG△x轴于点G,过点P作PH△x轴于点H,设点D(m,2m)△OD=√5,△m2+(2m)2=5解得:d=1,或d=-1(舍),△D(1,2),DG=2,可得直线AD的解析式为:y=-x+3,△点P在线段AD上,且横坐标为x,△OH=x,PH=y P=-x+3,△S=S△AOD-S△AOP=12OA•DG-12OA•PH=12OA(DG-PH)=33 22 x-.(3)存在.△当OD为平行四边形的边时,△|y F|=y D=2即:|-2x+6|=2,解得:x1=2,x2=4△F(2,2)或(4,-2)△当OD为平行四边形的对角线时,△DF△x轴,y F=y D=2,△F(2,2),综上所述,点F的坐标为(2,2)或(4,-2).题型二、特殊平行四边形(矩形)存在性问题例1. 【2019·武汉市期中】如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s.(1)证明:当E在AO上运动,F在CO上运动,且E与F不重合时,四边形DEBF是平行四边形;(2)点E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值;如不能,请说明理由.【答案】见解析.【解析】解:(1)当E与F不重合时,四边形DEBF是平行四边形,理由:由题意知,AE=CF,△四边形ABCD是平行四边形,△OD=OB,OA=OC,△OA-AE=OC-CF,△OE=OF,△四边形DEBF是平行四边形;(2)当运动时间t=4或28时,以D、E、B、F为顶点的四边形是矩形,理由:分为两种情况:△△四边形DEBF是矩形,△BD=EF=12,即AE=CF=0.5t,则16-0.5t-0.5t=12,解得:t=4;△当E到F位置上,F到E位置上时,AE-AF=AC-CF,即0.5t-12+0.5t=16,解得:t=28,即当运动时间t=4s或28s时,以D、E、B、F为顶点的四边形是矩形.例2. 【2019·禹城市期末】如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交△ACB的角平分线于点E,交△ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为.【答案】见解析.【解析】(1)证明:△EF△BC,△△OEC=△BCE,△CE平分△ACB,△△BCE=△OCE,△△OEC=△OCE,△EO=CO,同理:FO=CO,△EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,△O是AC的中点,△AO=CO,△四边形CEAF是平行四边形,△EO=FO=CO,△EO=FO=AO=CO,△EF=AC,△四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,△△AEC=90°,由勾股定理得:AC5,S△ACE=12AE×EC=12×3×4=6,△122+52=132,即AB2+AC2=BC2,△△ABC是直角三角形,△BAC=90°,△S△ABC=12AB•AC=12×12×5=30,△S凹四边形ABCE=S△ABC﹣S△ACE=30﹣6=24;故答案为:24.题型三、特殊平行四边形(菱形)存在性问题例1. 【2019·福州市晋安区期末】如图,在平面直角坐标系中,矩形ABCD的顶点A、B、D的坐标分别为(0,5)、(0,2)、(4,5),直线l的解析式为y=kx+2﹣4k(k>0).(1)当直线l经过原点O时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点C;(3)在(1)的条件下,点M为直线l上的点,平面内是否存在x轴上方的点N,使以点O、A、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标:若不存在,请说明理由.【答案】见解析.【解析】解:(1)△直线l经过原点,△将点(0,0)代入y=kx+2﹣4k,得:2﹣4k=0,解得:k=12,△一次函数的解析式为:y=12 x;(2)由题意可知,点C的坐标为(4,2),当x=4时,y=4k+2﹣4k=2,△不论k为何值,直线l总经过点C;(3)设点M(x,12 x)△以OA为菱形的边,此时,OM=OA=5,则222152x x⎛⎫+=⎪⎝⎭,△x=点M的坐标为(-;△以OA为菱形的一条对角线,MN垂直平分OA,则:12x=52△x=5,则M的坐标为(5,52);综上所述,满足条件的点M为()或(-5,52).题型四、特殊平行四边形(正方形形)存在性问题例1. 【2019·华蓥市期末】如图,已知一次函数y=12-x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=13 MP,MB=13OM,OE=13ON,ND=13NP.(1)b=______;(2)求证:四边形BCDE是平行四边形;(3)在直线y=12-x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.【答案】(1)3;(2)(3)见解析.【解析】解:(1)一次函数y=12-x+b的图象过点A(0,3),3=12-×0+b,解得:b=3,故答案为:3;(2)证明:过点P分别作PM△x轴于点M,PN△y轴于点N,△△OMP=△PNO=△MON=90°,△四边形PMON是矩形,△PM=ON,OM=PN,△MPN=90°.△PC=13MP,MB=13OM,OE=13ON,ND=13NP,△PC=OE,CM=NE,ND=BM,PD=OB,△△OBE△△PDC(SAS),△BE=DC,在△MBC和△NDE中,△BM=DN,△M=△N,MC=NE,△△MBC△△NDE(SAS),△DE=BC,△BE=DC,DE=BC,△四边形BCDE是平行四边形;(3)设P点坐标(x,y),当△OBE△△MCB时,四边形BCDE为正方形,△OE=BM,当点P在第一象限时,x=y,联立y=12-x+3,y=x,解得:22xy=⎧⎨=⎩,当点P在第二象限时,联立y=12-x+3,y=-x,解得:66xy=-⎧⎨=⎩,综上所述,存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(-6,6).【刻意练习】1. 【2019·阳江市期中】如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B 点坐标为(-2,0),C点坐标为(0,-1)(1)AC的长为______;(2)求证:AC△BC;(3)若以A、B、C及点D为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标______.【答案】(1);(2)见解析;(3)(0,4),(4,2),(-4,-4).【解析】(1)解:AC=√22+42=2√5.故答案为2√5.(2)△BC2=12+22=5,AB2=32+42=25,AC2=20,△BC2+AC2=AB2,△△ABC是直角三角形,△AC△BC.(3)如图所示:D点的坐标(0,4),(4,2),(-4,-4).故答案为:(0,4),(4,2),(-4,-4).2. 【2018·莆田市期中】已知:在△ABC中,AD是BC边上的中线,点E是AD的中点;过点A作AF△BC,交BE的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)填空:△当AB=AC时,四边形ADCF是______形;△当△BAC=90°时,四边形ADCF是______形.【答案】见解析.【解析】证明:△AF△BC,△△AFE=△EBD.在△AEF和△DEB中,△△AFE=△DBE,△FEA=△BED,AE=DE,△△AEF△△DEB(AAS),△AF=BD.△AF=DC.又△AF△BC,△四边形ADCF为平行四边形;(2)△当AB=AC时,四边形ADCF是矩形;△当△BAC=90°时,四边形ADCF是菱形.故答案为矩形,菱形.3. 【2018·琼中县期中】如图在Rt△ABC中,△ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.【答案】75.【解析】解:如图,连接CE交AB于点O,在Rt△ABC中,△ACB=90°,AC=4,BC=3,△AB=5,当平行四边形CDEB为菱形时,CE△BD,OD=OB,CD=CB.△AB•OC=AC•BC,△OC=125,在Rt△BOC中,由勾股定理得,OB=95,△AD=AB﹣2OB=75.故答案为:75.4. 【2019·宿迁市期末】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有______次.【答案】3.【解析】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,则DP=BQ,△点Q的运动路线是C→B,12-4t=12-t,解得:t=0,此时不符合题意;△点Q的运动路线是C→B→C,4t-12=12-t,解得:t=4.8;△点Q的运动路线是C→B→C→B,12-(4t-24)=12-t,解得:t=8;△点Q的运动路线是C→B→C→B→C,4t-36=12-t,解得:t=9.6;△点Q的运动路线是C→B→C→B→C→B,12-(4t-48)=12-t,解得:t=16,此时P点走的路程为:1×16=16 >AD,此时不符合题意.故答案为:3.5. 【2019·惠州市期末】如图所示,在梯形ABCD中,AD△BC,△B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?【答案】见解析.【解析】解:(1)设经过xs,四边形PQCD为平行四边形即:PD=CQ24-x=3x,解得:x=6.(2)设经过y s,四边形PQBA为矩形,即AP=BQ,y=26-3y,解得:y=13 2.6. 【2019·武昌期末】如图,在平面直角坐标系中,OA=OB, △OAB的面积是2.(1)求线段OB的中点C的坐标.(2)连结AC,过点O作OE△AC于E,交AB于点D,△直接写出点E的坐标.△连结CD,求证:△ECO=△DCB.(3)点P为x轴上一动点,点Q为平面内一点,以点A、C、P、Q为顶点作菱形,直接写出点Q的坐标.【答案】见解析.【解析】解:(1)△OA=OB,S△BAO=2,△OA=OB=2,△C点是OB中点,△C(-1,0).(2)△根据C(-1,0),A(0,2),求得直线AC的解析式为:y=2x+2,△OE△AC,△直线OE的解析式为:y=-0.5x,联立y=-0.5x,y=2x+2,解得:x=45-,y=25即E点坐标为(45-,25);△过点B作BH△x轴交OD延长线于H,则△HBO=△AOC=90°,△△CAO=△BOH,△OA=OB,△△OAC△△BOH,△△ACO=△H,OC=BH=BC=1,△OA=OB,△△ABO=45°,△HBD=45°,△BD=BD,△△HBD△△CBD,△△H=△DCB,△△ECO=△DCB.(3)△当AC为边时,若四边形ACPQ为菱形,则AC=CP=QA当P(-10)时,Q(2)当P(-0)时,Q2)当P(1,0)时,Q(0,-2)△AC为对角线时,设菱形边长为x,则x2=(x-1)2+22,解得:x=52,即Q(-52,2)综上所述,点Q的坐标为:)、()、(0,-2)、(5,2 2 -).7. 【2018·襄阳市期中】如图,矩形OABC的边OA,OC分别与坐标轴重合,并且点B的坐标为(8,).将该矩形沿OB折叠,使得点A落在点E处,OE与BC的交点为D.(1)求证:△OBD为等腰三角形;(2)求点E的坐标;(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)解:由翻折得:△OBE△△OBA,△△1=△2△四边形OABC 是矩形△OA △BC△△1=△3△OD =BD△△OBD 为等腰三角形.(2)过点E 作EF △x 轴于F ,交BC 于G ,设CD =x ,则BD =8-x由(1)知OD =BD =8-x在Rt △OCD 中,由勾股定理得: 2223(8)x x +=-解得:x =3即CD =3,OD =BD =5由(1)知△OBE △△OBA△△OEB =△OAB =90°△△OCD =△BED =90°△△OCD △△BED△DE =CD =3,BE =OC =4 △1122BDE S DE BE BD EG ∆=⋅=⋅ 即1134522EG ⨯⨯=⨯ △125EG =.△在Rt DGE ∆中95DG ===,可得四边形OFGC是矩形,△OF=OG=CD+DG=245,EF=EG+GF=325△点E的坐标为(245,325).(2) F点坐标为:1612(,)55-,1612(,)55-,6452(,)55.8. 【2019·天津蓟县期中】如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若△ABC=120°,AB=BC=4,则在点E的运动过程中:△当BE= 时,四边形BECD是矩形,试说明理由;△当BE= 时,四边形BECD是菱形.【答案】见解析.【解析】解:(1)证明:△AB//CD△△CDF=△BEF,△DCF=△EBF△F是BC中点△BF=CF△△DCF△△EBF(AAS)△CD=BE△DC//BE△四边形BECD是平行四边形.(2)△BE=2时,四边形BECD是矩形.△BE=4时,四边形BECD是菱形.。

平行四边形的存在性问题的处理方法

平行四边形的存在性问题的处理方法

平行四边形的存在性问题的处理一、问题说明关于此类问题,其实已经不是考试的主流了,但是作业及期末考试偶有出现,同学们又不会进行处理,所以简单将解题思路讲解一下,同学们可以自己看看。

二、解题方法总结平行四边形的存在性问题中,已知两点,求双动点的存在性问题是比较经典的。

以这个问题为切入点,讲讲解决这类问题需要克服的两个难点:(1)分类的处理(如何找到所有存在的可能性)(2)计算技巧的处理(平移法)三、问题的演绎例1,(已知三点求一点)如图在坐标平面内再找一点D,使得点A,点B,点C,点D组成平行四边形。

(一)分类处理任意连接两个已知点,例如选择连接AC,对线段AC进行分类讨论(1)若AC是平行四边形的边,则BD一定会和AC平行,且长度等于AC,所以点D在点B的右上方或左下方(如下图)(3,0)(1,1)C1C2(3,0)C(2)若AC是平行四边形的对角线,则BD和AC相互平分,则点D位置如图综上所述存在3个点D满足要求(二)计算技巧的处理平行四边形的计算方法很多,从平移的角度去处理是非常简单的以D1为例:如红色箭头标注方向为例:∵点C(0,-1)往右平移1个单位往上平移2个单位得点A(1,1)∴点D1的坐标是点B以同样的方式平移得到,点D坐标为(4,2)同样类似的方法得到点D2的坐标为(2,-2)D3的坐标为(-2,0)D 3(3,0)2D 31例2,已知二次函数322--=x x y 上两点A(-1,0),C(2,-3),点M在X轴上运动,点N在抛物线上运动,求出所有的点M的坐标。

使得点A ,C,M,N组成平行四边形。

、解题分析:已知点A,点C,所以只需要对AC进行分类讨论,点M在X轴上运动,所以设成(a,0),点N通过点M平移得到,然后代入二次函数解析式求解即可。

设点M的坐标为(a,0)(1)若AC是边,则点N在M的左上方或者右下方当点N在左上方时,点N的坐标(a-3,3)将点N(a-3,3)代入322--=x x y 中解得724±=a 当点N在右上方时,点N的坐标(a+3,-3)将点N(a+3,-3)代入322--=x x y 中解得3-=a 或1-=a (舍)(2)若AC是对角线时,则点N的坐标为(1-a,-3)将点N(1-a,-3)代入322--=x x y 中解得1=a 或1-=a (舍)四、问题的拓展双动点的载体,可以是坐标轴,二次函数。

专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)

专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)

专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为边形CDPM 是平行四边形?若存在,直接写出点【答案】(1)22y x=-(2)①23922S t t =-+;②点P 到直线BC 的距离的最大值为(3)存在,()1,6M 【分析】(1)待定系数法求解析式即可求解;(2)①在图1中,过点P 作PF y ∥轴,交BC 于点P 的坐标为()2,23t t t -++,则点F 的坐标为(t 2139222S PF OB t t =⋅=-+;②根据二次函数的性质得出当32t =时,S 取最大值,最大值为面积法求得点P 到直线BC 的距离,进而得出P (3)如图2,连接PC ,交抛物线对称轴l 于点设直线BC 的解析式为将()3,0B 、()0,3C 代入30,3m n n +=⎧⎨=⎩,解得:∴直线BC 的解析式为∵点P 的坐标为(,t t -∴点F 的坐标为(,t -∴(223PF t t =-++-∴1322S PF OB =⋅=-②12S PF OB =⋅=-∵302-<,∴当32t =时,S 取最大值,最大值为抛物线2y x bx =-++∴抛物线的对称轴为直线 1D C x x -=,∴1P M x x -=,∴2P x =,()2,3P ∴,在223y x x =-++中,当()0,3C ∴,∴3C D y y -=,∴3M P y y -=,∴6M y =,∴点M 的坐标为()1,6;当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则 点C 的横坐标为0,点∴点P 的横坐标12t =⨯又 2P x ¹,(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.【答案】(1)()4,5C (2)315,24P ⎛⎫- ⎪⎝⎭(3)存在,点N 的坐标为:()154N -,,【详解】(1)解:在2=23y x x --中,令解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点∴2212334()PE n n n n n =+---=-++ 10-<,∴当32n =时,PE 取得最大值254,此时,(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设①BM 为对角线时,AN 的中点与BM ∴(1)3122m +-+=,04022n +-+=,解得:∴()154N -,,②AM 为对角线时,BN 的中点与AM ∴31122m +-+=,04022n +-+=,解得:(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P ,使得PA PC +值最小,求最小值;(3)点M 为x 轴上一动点,在拋物线上是否存在一点N ,使以边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =--(2)552(3)54,2⎛⎫- ⎪⎝⎭,5214,2⎛⎫+ ⎪⎝⎭,5214,2⎛⎫- ⎪⎝⎭【分析】(1)把()1,0A -,()5,0B 两点代入求出a 、b 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为()5,0,连接BC 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.拋物线的解析式为212y x =-∴其对称轴为直线2b x a =-=-当0x =时,52y =-,50,2C ⎛⎫∴- ⎪⎝⎭,又()5,0B ,∴设BC 的解析式为(y kx b =+5052k b b +=⎧⎪∴⎨=-⎪⎩,解得:12k =,52b =-,∴BC 的解析式为1522y x =-,当2x =时,1532222y =⨯-=-,①当点N 在x 轴下方时,抛物线的对称轴为2x =,0,C ⎛- ⎝154,2N ⎛⎫∴- ⎪⎝⎭,②当点N 在x 轴上方时,如图,过点在2AN D △和2M CO △中,22N AD AN N DA ∠⎧⎪⎨⎪∠⎩252N D OC ∴==,即2N 点的纵坐标为21552222x x ∴--=,解得:2x =+25214,2N ⎛⎫∴+ ⎪⎝⎭,35214,2N ⎛⎫- ⎪⎝⎭综上所述符合条件的N 的坐标有⎛ ⎝【点睛】本题考查的是二次函数综合题,式、平行四边的判定与性质、全等三角形等知识,两点间距离的求解,在解答(意进行分类讨论.(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点E 在x 轴上运动,点F 在抛物线上运动,当以点B ,C ,E ,F 为顶点的四边形是平行四边形,直接写出点E 的坐标.【答案】(1)213222y x x =-++(2)存在,3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭(3)541,02⎛⎫-+ ⎪ ⎪⎝⎭或541,02⎛⎫-- ⎪ ⎪⎝⎭或(7,0)或(1,0)【分析】(1)用待定系数法即可求解;(2)分两种情况:以C 为顶点,即CP CD =;以D 为顶点,即CD =等腰三角形的定义建立方程即可完成;(3)分三种情况:当BC 是对角线时;当BE 是对角线时;当BF 是对角线时;分别设点与F 的坐标,利用中点坐标公式即可求解.【详解】(1)解:∵点B 的坐标是(40),,点C 的坐标是(02),,∴16602a c c ++=⎧⎨=⎩,解得:122a c ⎧=-⎪⎨⎪=⎩,∴所求抛物线解析式为213222y x x =-++;(2)解:存在(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)232333y x x =-++(2)()2,33E 2039⎫⎪⎭或532,339⎛⎫⎪⎝⎭)根据待定系数法求解即可;∵232333y x x =-++()23143x =--+,∴()1,43D .令232333y x x =-++中0y =,则解得=1x -或3x =,抛物线的对称轴与x轴交于点M,过点∵四边形EFGH 是菱形,EFG ∠∴EF FG GH EG ===,∵60EFG ∠=︒,∴EFG 是等边三角形.∴60FEG EF FG ∠=︒=,,∵()2,33E ,()0,33C ,(1,4D ∴2CE CD ==,()24333-+同理可证: EFG 是等边三角形,∵CF FE =,=GE FE ,∴DG ∴CDG CEG ∆∆≌.∴DCG ∠=∴直线CG 的表达式为:33y =与抛物线表达式联立得33y y ⎧=⎪⎨⎪=-(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由【答案】(1)223y x x =-++(2)271,22⎛⎫+ ⎪ ⎪⎝⎭或271,22⎛⎫- ⎪ ⎪⎝⎭.(3)符合条件的点E 有三个,坐标为:()0,1E ,(10,132E -【分析】(1)把点()30A ,和()10B -,代入解析式求解即可;(2)由121S S -=得121S S =+从而121ABM ABM S S S S +=++ 程求解即可;(3)分类当CQ 为对角线和菱形边时,利用直线AC 与x 轴成标的方程,进而求出点的坐标.【详解】(1)把点()3,0A 和()1,0B -代入得:93330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)设(),D x y ,对于抛物线223y x x =-++,令0x =,则()0,3C ∴.121S S -= ,121S S ∴=+.∵()30A ,,()0,3C ,∴3OA OB ==,45OCA ∴∠=︒,此时四边形CEQP 是正方形.PQ EQ ∴=.设()2,23P m m m -++,则23PQ m m =-+,23m m m ∴-+=,解得m =此时32OE OC m =-=-=②当CQ 为菱形的边时,如图设()2,23P m m m -++,则∴HQ m =,2PQ m =-+作QH OC ⊥于点H ,45OCA ∠︒= ,∴22CQ HQ m ==.∴23CE PQ m m ==-+=解得:132m =-,23m =()323213OE =+-=+()10,132E ∴-,(20,1E +综上所述,符合条件的点【点睛】本题考查待定系数法求函数的解析式,二次函数的性质,二次函数与几何综合,数形结合是解题的关键.【变式训练2】如图1,在平面直角坐标系中,点(点A 在点B 左侧),与(1)求ABC 的面积;(3)解:∵抛物线212y x x =--∴()211942212y x x x =--+=-2++∵将抛物线2142y x x =--+沿着水平方向向右平移∴新抛物线为:()112y x =--2+∴原抛物线与新抛物线的交点,∴()()1111992222x x -=--22+++,∴解得:0x =,【点睛】本题考查了二次函数的图象及性质,二次函数与特殊图形,二次函数的平移规律,掌握二次函数与特殊图形的位置关系是解题的关键.类型三、矩形存在性问题(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线直线AC 于点D ,交x 轴于点E ,(3)在抛物线上是否存在点M ,对于平面内任意点一条边的四边形为矩形,若存在,请直接写出【答案】(1)2142y x x =--(2)335,28P ⎛⎫- ⎪⎝⎭;254(3)()4,8M -、()8,4N -【分析】(1)把点()4,0A 和点B a 、b 的值;(2)先用待定系数法求出直线2211,422D t t t t ⎛⎫--- ⎪⎝⎭,然后求出最大值时t 的值,即可求出点P (3)假设抛物线上是存在点M ,一条边的四边形为矩形,过点O 点A 且与OH 平行的直线解析式,经计算验证可得过点立方程可求得M 的坐标,通过平移即可求得点【详解】(1)解:把点()4,0A 和点∵()4,0A ,()0,4C -,∴OAC 为等腰直角三角形,∴点H 为AC 的中点,即(H 则OH 所在的直线方程为y =∵四边形AMNC 为矩形,∴过A 与直线AC 相垂直的直线函数解析式中的∴设AM 所在的直线解析式为∵点A 在直线AM 上,(1)求点A 、B 、C 的坐标;(2)将抛物线L 向右平移1个单位,得到新抛物线对称轴l 上是否存在点D ,使得以点D 的坐标;若不存在,请说明理由.【答案】(1)()1,0A -,()3,0B (2)存在,点D 的坐标为()2,1或【分析】(1)分别令0y =和x (2)先求得平移后的抛物线L 角线时,根据矩形的性质求解即可.【详解】(1)解:令0y =,则解得11x =-,23x =,当AD 为对角线时,连接AC ,过点 ()1,0A -,()0,1C -,∴1OA OC ==,∴45OCA ∠=︒∴45OCG ∠=︒∴1OG OC ==,∴()1,0G .设CG 所在直线解析式为y kx =+将()0,1C -,()1,0G 代入得,⎧⎨⎩解得11k b =⎧⎨=-⎩,∴CG 所在直线解析式为1y x =-当2x =时,1211y x =-=-=.∴()2,1D .当AD 为边时,同理过点A 作AC 易得AH 所在直线解析式为y =当AC 为对角线时,DE 也为对角线,∴此种情况不存在.(1)求抛物线的表达式;(2)若点P 为第一象限内抛物线上的一点,设PBC 的面积为S ,求S 坐标;(3)已知M 是抛物线对称轴上一点,在平面内是否存在点N ,使以B 的四边形是矩形?若存在,直接写出N 点坐标;若不存在,请说明理由.【答案】(1)22+3y x x =-+(2)S 最大值为278,315(,)24P (3)存在,点1(2,(317))2N +或1(2,(317))2-或(2,1)-或(4,1).【分析】(1)运用抛物线交点式解析式求解,设抛物线(1)(y a x x =+解;(2)如图,过点P 作PD AC ⊥,垂足为点D ,交BC 于点E ,设(,P m 的解析式3y x =-+,于是23PE m m =-+,从而13(22S PE OC m ==- 时,S 最大值为278,进而求得315(,)24P ;设2(,23)P m m m -++设直线BC 的解析式为y kx =033k hh =+⎧⎨=⎩,解得13k h =-⎧⎨=⎩∴3y x =-+则点(,3)E m m -+,2PE m =-∴2113(22S PE OC m ==´-+ ∴当32m =时,S 最大值为2782915233344m m -++=-++=∴315(,)24P ;(3)存在.设(1,)M p ,如图,223BC =222(13)(0)CM p p =-+-=如图,当BM 为对角线时,∠222BM CM BC =+,即26p p -+01330n p q +=+⎧⎨+=+⎩解得21n q =-⎧⎨=⎩∴点(2,1)N -如图,当CM 为对角线时,MBC ∠222BM BC CM +=,即26p p -+(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,正方形的面积.【答案】(1)32x =-(2)()51,51P --+(3)正方形AMPN 的面积为172或372【分析】(1)由4y x =+可知()4,0A -,()0,4B ,进而求得抛物线解析式为即可得抛物线的对称轴方程;(2)由题意可知PAB PBA ∠=∠,可知PA PB =,进而值OP 其与AB 交于点Q ,可得()2,2Q -,可求得OP 的解析式为则90PDM ACM ∠=∠=︒∴DPM PMD PMD ∠+∠=∠∴(AAS PDM MCA △≌△∴PD MC =,MD AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422MD AC ==-=,则90PEM ACM ∠=∠=︒∴EPM PME PME ∠+∠=∠∴(AAS PEM MCA △≌△∴PE MC =,ME AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422ME AC ==-=,则P y CE MC ME ==+=即:32P x m =-,P y m =-(1)求A ,B ,C 三点的坐标,并直接写出直线(2)在点P 的运动过程中,求使四边形(3)点N 为平面内任意一点,在(2N 为顶点的四边形是正方形?若存在,请直接写出点【答案】(1)()1,0A -,()3,0B ,C (2)32m =-(3)()1221,2Q +,2252,2Q ⎛+ ⎝【分析】(1)分别令0y =,0x =,可求出点∵()3,0B ,()0,3C ,∴3OB OC ==,∴BOC 是等腰直角三角形,∴点()221,2Q +,∴()22132322EQ =+--=-∴PE EQ =,此时点()221,2Q +使得以P ,E 如图,过点E 作EQ PM ⊥于点Q ,过点由(2)得:45BED ∠=︒,∵PM BC ∥,∴45BED DPQ ∠=∠=︒,∴PEQ ,PSQ 是等腰直角三角形,∴此时点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形;∴132222PS SE PE -===,∴点5232,12S ⎛⎫-- ⎪ ⎪⎝⎭,对于321y x =-++,当5212y =-时,222x =+,(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.【答案】(1)抛物线的解析式为2142y x x =-++;(2)4EH =;(3)点N 的坐标为()44,或7322⎛⎫- ⎪⎝⎭,.【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的解析式为4y x =-+,设2142x E x x ⎛ ⎝-++,对称性质求得21422H x x x ⎛⎫- ⎪+⎝-+⎭,,推出2122GH EF x -=-+矩形周长公式列一元二次方程计算即可求解;(3)先求得直线AC 的解析式为24y x =+,分别过点M 、E 作90OPE MQO ∠=∠=︒,90OEP ∠=︒∴OEP MOQ ≌△△,∴PE OQ =,PO MQ =,设2142m E m m ⎛⎫ ⎪⎝-++⎭,,∴PE OQ m ==-,12P m O M Q ==-∵点M 在直线AC 上,∴244212m m m -⎛⎫=+ ⎪⎝⎭-,解得m =当4m =时,()04M ,,()40E ,,即点M 与点C 重合,点E 与点B 重合时,四边形当1m =-时,512M ⎛⎫-- ⎪⎝⎭,,512E ⎛- ⎝,点O 向左平移52个单位,再向下平移则点E 向左平移52个单位,再向下平移∴551122N ⎛⎫--- ⎪⎝⎭,,即7322N ⎛⎫- ⎪⎝⎭,.课后训练(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.【答案】(1)抛物线的解析式为2=23y x x --(2)当1a =时,max ()4PM QN +=,()2,3Q -(3)()1,2E --或()5,2-或3171,2⎛⎫-- ⎪ ⎪⎝⎭或3171,2⎛⎫-+ ⎪ ⎪⎝⎭【分析】(1)直接运用待定系数法即可解答;(2)设()2,23P a a a --,则()21,4Q a a +-,进而得到(),3M a a -,(N 出222422(1)4PM QN a a a +=-++=--+,最后根据二次函数的性质即可解答;(3)分以BC 为矩形一边和对角线两种情况,分别根据等腰直角三角形的性质、平移和矩形的判定定理解答即可.【详解】(1)解:把()1,0A -和()3,0B 代入()230y ax bx a =+-≠,得309330a b a b --=⎧⎨+-=⎩,解得1a =,2b =-∴222422(1)4PM QN a a a +=-++=--+∴当1a =时,max ()4PM QN +=∴()2,3Q -.(3)解:由题意可得:()()()222=1213152x y x x x x --'---=---=-,∴y '的对称轴为2x =∵抛物线()230y ax bx a =+-≠与y 轴交于点C .∴()0,3C -,∵()3,0B ,∴3OC OB ==,45BCO CBO ∠=∠=︒;如图:当BC 为矩形一边时,且点D 在x 轴的下方,过D 作DF y ⊥轴,∵D 在y '的对称轴为2x =,∴2FD =,∴2CF FD ==,325OF =+=,即点()2,5D -,∴点C 向右平移2个单位、向下平移3个单位可得到点D ,则点B 向右平移2个单位、向下平移3个单位可得到()5,3E -;如图:当BC 为矩形一边时,且点D 在x 轴的上方,y '的对称轴为2x =与x 轴交于F ,∵D 在y '的对称轴为2x =,∴2FO =,∴321BF =-=,∵45CBO ∠=︒,即45DBO ∠=︒,∴321BF FD ==-=,即点()2,1D ,∴点B 向左平移1个单位、向上平移1个单位可得到点D ,则点C 向左平移1个单位、向上平移1个单位可得到点()1,2E --;如图:当BC 为矩形对角线时,设∴BC 的中点F 的坐标为32⎛ ⎝∴2322322m d n +⎧=⎪⎪⎨+⎪=⎪⎩,解得:m d =⎧⎨+⎩又∵DE BC =,∴()()22222133d n -+-=+联立173d n d n ⎧-=±⎪⎨+=⎪⎩,解得:∴点E 的坐标为3171,2⎛-- ⎝综上,存在()1,2E --或(5,的四边形是矩形.【点睛】本题主要考查了运用待定系数法求解析式、与几何的综合等知识点,掌握二次函数的性质和矩形的判定定理是解答本题的关键.2.如图,在平面直角坐标系中,抛物线与y 轴交于点C ,点P 为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 面积的最大值及此时点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P ,C ,E ,Q 为顶点的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.【答案】(1)2=23y x x --(2)278,315,24P ⎛⎫- ⎪⎝⎭(3)3333,2⎛⎫+- ⎪ ⎪⎝⎭;3333,2⎛⎫-- ⎪ ⎪⎝⎭;(3,3)-;(3,2)【分析】(1)用待定系数法求函数的解析式即可;(2)作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设()2,23P m m m --,则(,3)H m m -,23PH m m =-+,则2139()228BPC S t ∆=--+,当32t =时,BPC △的面积最大值为从而求出此时四边形PBDC 面积的最大值,P 点坐标;(3)设()2,23P m m m --,(,0)E n ,分四种情况画出图形,利用正方形性质求解即可.【详解】(1)解:将(1,0)A -,(3,0)B 代入23y ax bx =+-中,得309330a b a b --=⎧⎨+--⎩,解得12a b =⎧⎨=-⎩.∴该抛物线的函数表达式为2=23y x x --.(2)解:作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设直线BC 的表达式为:y kx =+得303k n n +=⎧⎨=-⎩,解得13k n =⎧⎨=-⎩,3y x ∴=-.设()2,23P m m m --,则(,H m m ∵BPC CPH BPHS S S =+△△△∴1122BPC S PH OG PH BG =⋅+⋅△∴(21322BPC S PH OB m =⨯=-+△∴28323272BPC S m ⎛⎫=-+ ⎪⎝-⎭△,∴当32m =时,BPC △面积的最大值为BC 与直线y x =平行,1122DBC OBC S S OB OC ∴==⋅=△△∴四边形PBDC 面积的最大值为当32m =时,2332322y ⎛⎫-⨯- ⎪⎝⎭=315,24P ⎛⎫∴- ⎪⎝⎭(3)解:设()2,23P m m m --,I.如图,当点E 在原点时,即点∵四边形PECQ 为正方形,∴点3(3,)Q -,II.如解图3-2,当四边形PECQ 作PI x ⊥轴,垂足为I ,作QH ⊥又∵90CEO OCE ∠+∠=︒,∴OCE PEO ∠=∠,∴(ASA)OCE PEI ≅ △∴3CO IE ==,22EO IP m ==-同理可得:3QH CO IE ===,∴3OE OI IE m =+=+,HO IO=∴2323m m m +=--,解得:m ∴3332HO IO +==,∴点)33(3,32Q +-,同理可得:PI OE CH ==,IE QH =∴3OE IE IO m =-=+,∴2233m m m =---,解得:m =∴3332HO IO -+==,∴点3,(Q -IV.如解图3-4,当四边形PECQ 为正方形时,同理可得:PI OE CH ==,EI HQ =∴2323m m m -=--,解得:m =∴2HO IO ==,∴点(3,2)Q ,综上所述:点Q 坐标为3333,2⎛+- ⎝【点睛】此题重点考查二次函数的图象与性质、数解析式、正方形性质、全等三角形的判定与性质、一元二次方程的解法、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.3.如图,抛物线212y x bx c =++与物线交于A 、D 两点,与y 轴交于点综上所述,341,22N ⎛⎫+ ⎪ ⎪⎝⎭或341,22N ⎛- ⎝【点睛】本题考查了待定系数法求解析式,面积问题,平行四边形的性质,熟练掌握是二次函数的性质解题的关键.4.在平面直角坐标系中,抛物线2y ax =(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点求出抛物线上点M 的坐标;(3)若点P 为抛物线y ax =位长度后,Q 为平移后抛物线上一动点,在(构成平行四边形?若能构成,求出【答案】(1)223y x x =-++(2)315,24⎛⎫ ⎪⎝⎭(3)1(2-,15)4或3(2-,7)4或【分析】(1)利用待定系数法,即可求出抛物线的表达式;(2)由“直线x m =与x 轴交于点的坐标,进而可得出AN 再利用二次函数的性质,即可求出(3)利用平移的性质,可得出平移后抛物线的表达式为点的坐标特征,可求出点点P 的坐标为(1,)m ,点Q 线三种情况考虑,由平行四边形的对角线互相平分,可得出关于得出n 值,再将其代入点【详解】(1)解:将(1,0)-09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:∴抛物线的表达式为y =-(2) 直线x m =与x 轴交于点∴点M 的坐标为2(,m m -。

坐标系中四边形存在性问题-解析版

坐标系中四边形存在性问题-解析版

坐标系中四边形存在性问题5题解析版一、解答题1.如图,平面直角坐标系中,四边形ABCD是平行四边形,A(﹣3,0),B(3,0),C(0,4),连接OD,点E是线段OD的中点.(1)求点E和点D的坐标;(2)平面内是否存在一点N,使以C、D、E、N为顶点的四边形是平行四边形?若存在请求出点N的坐标;若不存在,请说明理由.【答案】(1)D(-6,4),E(-3,2);(2)点N的坐标为(3,2)或(-9,2)或(-3,6)【分析】(1)根据平行四边形的性质即可得到点D的坐标,过点E作EF⊥OC于F,EH⊥C D与H,则四边形EFCH是矩形,利用矩形的性质求出点E的坐标;(2)根据平行四边形对角顶点的横、纵坐标的和分别为零求解即可.【详解】解:(1)∵A(﹣3,0),B(3,0),C(0,4),∴OA=OB=3,OC=4,CD⊥OC,∵四边形ABCD是平行四边形,∴CD=AB=6,CD∥AB,∴点D的坐标为(-6,4);过点E作EF⊥OC于F,EH⊥C D与H,则四边形EFCH是矩形,∵点E是线段OD的中点,∴CE=OE=DE,∴CH=DH=3,CF=OF=2,∴点E的坐标为(-3,2);(2)存在点N ,使以C 、D 、E 、N 为顶点的四边形是平行四边形∵C (0,4),D (-6,4),E (-3,2),∴当点N 与点D 为对角顶点时,N (3,2);当点N 与点C 为对角顶点时,N (-9,2);当点N 与点E 为对角顶点时,N (-3,6);∴点N 的坐标为(3,2)或(-9,2)或(-3,6).【点睛】此题考查了平行四边形的性质及判定,矩形的判定定理及性质定理,熟记各定理是解题的关键.2.如图,在平面直角坐标系xOy ,四边形OBCD 是正方形,()0,4D ,点E 是OB 延长线上的一点,M 是线段OB 上一动点(不包括O 、B ),作MN DM ⊥,交CBE ∠的平分线于点N .(1)直接写出C 点的坐标;(2)求证:MD MN =;(3)如图2,若()3,0M ,在OD 上找一点P ,使四边形MNCP 是平行四边形,求点N 的坐标.【答案】(1)()4,4C (2)见解析(3)点N 的坐标为()7,3【分析】(1)由正方形的性质结合点D 的坐标可得出CD y ⊥轴,CB x ⊥轴,4CD CB OD ===,进而可得出点C 的坐标;(2)在OD 上截取OH OM =,连接HM ,则DH MB =,由OH OM =可得出45OHM ∠=︒,进而可得出135DHM ∠=︒,由角平分线的定义及邻补角互补可求出135MBN ∠=︒,进而可得出DHM MBN ∠=∠,利用同角的余角相等可得出MDH NMB ∠=∠,可证出()ASA DHM MBN ≌,再利用全等三角形的性质可证MD MN =;(3)作NF x ⊥轴,垂足为点F ,易证()AAS DMO MNF ≌,利用全等三角形的性质可得出MF ,NF 的长度,进而可得出点N 的坐标.【详解】(1)解: 四边形OBCD 是正方形,()0,4D ,∴CD y ⊥轴,CB x ⊥轴,4CD CB OD ===,∴()4,4C .(2)证明:如图,在OD 上截取OH OM =,连接HM ,OBCD 是正方形,∴OD OB =,OH OM =,90HOM ∠=︒,∴OD OH OB OM -=-即DH MB =,45OHM ∠=︒,∴180135DHM OHM ∠=︒-∠=︒,BN 平分CBE ∠,18090CBE OBC ∠=︒-∠=︒,45NBE ∴∠=︒,180135MBN NBE DHM ∴∠=︒-∠=︒=∠,MN DM ⊥ ,90DMO NMB ∴∠+∠=︒,又90DMO MDH ∠+∠=︒ ,MDH NMB ∴∠=∠,在DHM △和MBN △中,MDH NMB DH MBDHM MBN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA DHM MBN ≌,∴MD MN =.(3)解:作NF x ⊥轴,垂足为点F ,90MFN =∴∠︒,90FMN MNF ∴∠+∠=︒,MN DM ⊥,90DMO FMN ∴∠+∠=︒,DMO MNF ∴∠=∠,由(2)可知DM MN =,在DMO 和MNF 中,90DOM MFN DMO MNFDM MN ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS DMO MNF ∴ ≌,()0,4D ,()3,0M ,∴4MF OD ==,3NF OM ==,437OF ∴=+=,∴点N 的坐标为()7,3.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、角平分线、余角及补角,正确作出辅助线,构造全等三角形是解题的关键.3.综合与探究如图,平行四边形ABCD 在平面直角坐标系中,点B 在x 轴负半轴上,点D 在第一象限,A ,C 两点的坐标分别为(0,4),(3,0),边AD 的长为6.。

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

中考数学微专题7 四边形存在性问题

中考数学微专题7 四边形存在性问题

(3)存在.如图 2,分两种情况:点 Q 在 x 轴上方或点 Q 在 x 轴下方. ①当点 Q 在 x 轴上方时,P 与 Q 纵坐标相等, ∴-x2-2x+3=145,
解得:x1=-12,x2=-32(舍去),
∴Q1-12,145, ②当点 Q 在 x 轴下方时,P 与 Q 纵坐标互为相反数,
∴-x2-2x+3=-145,
问题3:如图直角坐标系中有一点B,C为x轴上一点, 坐标平面内是否存在点D,使以A,B,C,D为顶点 的四边形为矩形?
①画出所有可能存在的点C的位置,使用的方法为以O, B,C三点做直角三角形的方法,即两线一圆.
②代数法 以其中一个情况为例,如图, 当我们确定 O,B,C 的位置后,可以以 OC、OB 为邻边做出矩形 OCDB,该四边形可以看作是 以 OC 为对角线的平行四边形,则可以用平行四边形存在性的方法列出两个方程,而由于矩形对 角线相等,再用两点间距离公式加入一个 OC=BD 的方程即可求解 xO+xC=xB+xD,yO+yC=yB+yD, (xO-xC)2+(yO-yC)2= (xD-xB)2+(yD-yB)2.
∴12(-4m-8)(-2-m)=12×6×6, 整理得:m2+4m-5=0,解得:m1=-5,m2=1(舍去), ∴点 D 的坐标为(-5,-1),∴点 M 的坐标为(-2,8), ∴DM= (-2+5)2+(8+1)2=3 10, 答:dm 的长为 3 10.
解法总结
1.平行四边形的存在性问题 类型一:“三定一动”型 问题:如图,已知三点A,B,C,找一点D,使以A,B,C, D为顶点的四边形为平行四边形. 作法:连接AB,AC,BC,分别过点A,B,C作对边的平行 线,三条平行线的交点即为所求点D.我们通常用直尺来代替 线段进行平移,很容易就能判断出是否存在这样的D点. 类型二:“两定两动”型

巧解二次函数中平行四边形存在性问题

巧解二次函数中平行四边形存在性问题

巧解二次函数中平行四边形存在性问题近年来,二次函数中平行四边形存在性问题一直是中考的热点问题。

这类题目需要学生综合运用多种知识和技能,因此对于学生的分析和解决问题的能力要求很高。

常规的解题方法是先画出平行四边形,然后利用“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决问题。

但是,如果考虑不周,很容易漏解。

为了解决这一问题,可以借助探究平行四边形顶点坐标公式来解决这类题。

在数学课标和现行初中数学教材中,没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式。

因此,我们可以帮助学生探究这些公式,将其作为解题的切入点。

线段的中点坐标公式可以通过平面直角坐标系中的点A和点B的坐标来计算。

具体来说,如果点A的坐标是(x1,y1),点B的坐标是(x2,y2),那么线段AB的中点坐标为((x1+x2)/2,(y1+y2)/2)。

这个公式可以通过图示来证明。

平行四边形顶点坐标公式可以通过平行四边形的对角线两端点的横坐标、纵坐标之和分别相等来计算。

具体来说,如果平行四边形ABCD的顶点坐标分别为A(xA,yA)、B(xB,yB)、C(xC,yC)、D(xD,yD),那么xA+xC=xB+xD,yA+yC=yB+yD。

这个公式可以通过图示来证明。

在解决平行四边形存在性问题时,可以先确定三个定点A、B、C,然后再找一个动点D,使得以A、B、C、D为顶点的四边形是平行四边形。

根据不同的情况,可以得到不同的答案。

这个方法可以帮助学生更好地理解平行四边形的存在性问题,提高他们的解题能力。

例1已知抛物线$y=x^2-2x+a(a<0)$与$y$轴相交于点A,顶点为M。

直线$y=\frac{1}{x-a}$分别与$x$轴、$y$轴相交于$B$、$C$两点,并且与直线$AM$相交于点N。

1) 填空:试用含$a$的代数式分别表示点$M$与$N$的坐标,则$M(1,a-1)$,$N(a,-a)$;2) 如图4,将△$NAC$沿$y$轴翻折,若点$N$的对应点$N′$恰好落在抛物线上,$AN′$与$x$轴交于点$D$,连接$CD$,求$a$的值和四边形$ADCN$的面积;3) 在抛物线$y=x^2-2x+a(a<0)$上是否存在一点$P$,使得以$P$、$A$、$C$、$N$为顶点的四边形是平行四边形?若存在,求出点$P$的坐标;若不存在,试说明理由。

存在性问题

存在性问题

(2)作 DE⊥AB1 交 AB1 于点 E,延长 DE 交 BB1 于 F,连 接 C1F,则 AB1⊥平面 C1DF,点 F 即为所求,此时点 F 恰为 B1B 的中点. 事实上,∵C1D⊥平面 AA1BB,AB1⊂平面 AA1B1B, ∴C1D⊥AB1.又 AB1⊥DF,DF∩C1D=D, ∴AB1⊥平面 C1DF.
(2)过点 E 作 EH∥FD 交 AD 于点 H, 1 则 EH∥平面 PFD 且 AH=4AD. 再过 H 作 HG∥PD 交 PA 于点 G, 1 则 GH∥平面 PFD 且 AG=4PA. 所以平面 EHG∥平面 PFD,则 EG∥平面 PFD. 1 从而点 G 满足 AG=4PA, 即 G 点的位置在 PA 上靠近 A 点的四等分点处.
如图所示,直三棱柱 ABC-A1B1C1 中,AC =BC=1,∠ACB=90° ,AA1= 2,D 是 A1B1 的中点. (1)求证:C1D⊥平面 AA1B1B; (2) 当点 F 在 BB1 上什么位置时,会使得 AB1⊥平面 C1DF?并证明你的结论.
【解析】(1)如下图所示, ∵ABC-A1B1C1 是直三棱柱, ∴A1C1=B1C1=1 且∠A1C1B1=90° . ⊥平面 A1B1C1,C1D⊂平面 A1B1C1, ∴AA1⊥C1D.∵A1B1∩AA1=A1, ∴C1D⊥平面 AA1B1B.
【例】 已知四边形 ABCD 是矩形,AD=4,AB=2,E, F 分别是线段 AB,BC 的中点,PA⊥平面 ABCD.
(1)求证:PF⊥FD; (2)设点 G 在 PA 上且 EG∥平面 PFD,试确定点 G 的位 置.
【解析】 (1)连接 AF,在矩形 ABCD 中, 因为 AD=4,AB=2,点 F 是 BC 的中点, 所以∠AFB=∠DFC=45° . 所以∠AFD=90° ,即 AF⊥FD. 又 PA⊥平面 ABCD,所以 PA⊥FD. 又 AP∩AF=A,FD⊄平面 PAF, 所以 FD⊥平面 PAF. 故 PF⊥FD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形存在性问题解析1.如图,在平面直角坐标系中,直角梯形OABC 的边OC 、OA 分别与x 轴、y 轴重合,AB∥OC ,∠AOC=90°,∠BCO=45°,,点C 的坐标为(-18,0)。

(1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且OE=4,OD=2BD ,求直线DE 的解析式;(3)若点P 是(2)中直线DE 上的一个动点,在坐标平面内是否存在点Q ,使以O 、E 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由。

【考点】一次函数综合题,等腰直角三角形判定和性质,相似三角形判定和性质,待定系数法,直线上点的坐标与方程的关系,菱形的判定和性质。

【分析】(1)构造等腰直角三角形BCF ,求出BF 、CF 的长度,即可求出B 点坐标。

(2)已知E 点坐标,欲求直线DE 的解析式,需要求出D 点的坐标.构造△ODG∽△OBA ,由线段比例关系求出D 点坐标,从而可以求出直线DE 的解析式。

(3)如图所示,符合题意的点Q 有4个:设直线y=-x+4分别与x 轴、y 轴交于点E 、点F ,则E (0,4),F (4,0),OE=OF=4,。

①菱形OEP 1Q 1,此时OE 为菱形一边。

则有P 1E=P 1Q 1=OE=4,P 1F=EF -P 1-4。

易知△P 1NF 为等腰直角三角形,∴P 121F=4-设P 1Q 1交x 轴于点N ,则NQ 1=P 1Q 1-P 1N=4-(4-)。

又ON=OF-,∴Q1(,-)。

②菱形OEP2Q2,此时OE为菱形一边。

此时Q2与Q1关于原点对称,∴Q2(-2)。

③菱形OEQ3P3,此时OE为菱形一边。

此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4)。

④菱形OP4EQ4,此时OE为菱形对角线。

由菱形性质可知,P4Q4为OE的垂直平分线,由OE=4,得P4纵坐标为2,代入直线解析式y=-x+4得横坐标为2,则P4(2,2)。

由菱形性质可知,P4、Q4关于OE或y轴对称,∴Q4(-2,2)。

综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形,点Q的坐标为:Q1(),Q2(-),Q3(4,4),Q4(-2,2)。

2.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.【考点】一次函数综合题,矩形的性质,折叠性质,勾股定理,锐角三角函数定义,特殊角的三角函数值,待定系数法,直线上点的坐标与方程的关系,平行四边形的判定和性质,全等三角形的判定和性质。

【分析】(1)根据折叠性质可知FG=AF=2,而FG=AB -AF=1,则在Rt △BFG 中,利用勾股定理求出BG 的长,从而得到CG 的长,从而得到G 点坐标。

(2)由题意,可知△AEF 为含30度角的直角三角形,从而可求出E 点坐标;又F点坐标已知,所以可利用待定系数法求出直线EF 的解析式。

(3)分FG 为平行四边形边和对角线两种情况讨论,探究可能的平行四边形的形状:若以M 、N 、F 、G 为顶点的四边形是平行四边形,则可能存在以下情形:①FG 为平行四边形的一边,且N 点在x 轴正半轴上,如图1所示。

过M 1点作M 1H ⊥x 轴于点H ,易证△M 1HN 1≌△GBF ,∴M 1,即y M1。

由直线EF 解析式y 4=+-,求出M 1x 3=。

∴M 13。

②FG 为平行四边形的一边,且N 点在x 轴负半轴上,如图2所示。

仿照与①相同的办法,可求得M 23-。

③FG 为平行四边形的对角线,如图3所示。

过M 3作FB 延长线的垂线,垂足为H .易证△M 3FH ≌△GN 3C ,则有M 3,所以M 3的纵坐标为8。

代入直线EF 解析式,得到M 33∴M 383-。

综上所述,存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形,点M 的坐标为:M 1(33-,),M 2(13-- ,),M 3(1+83- , )。

3.如图,在平面直角坐标系中,已知Rt △AOB 的两条直角边0A 、08分别在y 轴和x 轴上,并且OA 、OB 的长分别是方程x 2—7x+12=0的两根(OA<0B),动点P 从点A 开始在线段AO 上以每秒l 个单位长度的速度向点O 运动;同时,动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 运动,设点P 、Q 运动的时间为t 秒. (1)求A 、B 两点的坐标。

(2)求当t 为何值时,△APQ 与△AOB 相似,并直接写出此时点Q 的坐标.(3)当t=2时,在坐标平面内,是否存在点M ,使以A 、P 、Q 、M 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.【考点】动点问题,解一元二次方程,勾股定理,相似三角形的性质,平行四边形的判定。

【分析】(1)解出一元二次方程,结合OA <OB 即可求出A 、B 两点的坐标。

(2)分∠APQ=∠AOB 和∠AQP=∠AOB 两种情况讨论即可。

(3)当t=2时,如图,OP=2,BQ=4,∴P (0,1),Q (41255,)。

若以A 、P 、Q 、M 为顶点的四边形是平行四边形,则 ①当AQ 为对角线时,点M 1的横坐标与点Q 的横坐标相同,纵坐标为1222+2=55。

∴M 1(42255,)。

②当PQ 为对角线时,点M 2的横坐标与点Q 的横坐标相同,纵坐标为1222=55-。

∴M 2(4255,)。

③当AP 为对角线时,点Q 、M 3关于AP 的中点对称。

由A(0,3),P (0,1)得AP 的中点坐标为(0,2)。

由Q (41255,)得M 3的横坐标为4420=55⨯--,纵坐标为12822=55⨯-。

∴M 3(4855-,)。

综上所述,若以A 、P 、Q 、M 为顶点的四边形是平行四边形,则M 点的坐标为(42255,)或(4255,)或(4855-,)。

4.如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y=ax 2+bx+c 经过O ,D ,C 三点. (1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似? (3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【考点】二次函数综合题,折叠和动点问题,矩形的性质,全等三角形的判定和性质,勾股定理,曲线上点的坐标与方程的关系,相似三角形的判定和性质,平行四边形的判定和性质。

【分析】(1)根据折叠图形的轴对称性,△CED ≌△CBD ,在Rt △CEO 中求出OE 的长,从而可得到AE 的长;在Rt △AED 中,AD=AB ﹣BD 、ED=BD ,利用勾股定理可求出AD 的长.进一步能确定D 点坐标,利用待定系数法即可求出抛物线的解析式。

(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE ,若以P 、Q 、C 为顶点的三角形与△ADE 相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t 的值。

(3)假设存在符合条件的M 、N 点,分两种情况讨论:①EC 为平行四边形的对角线,由于抛物线的对称轴经过EC 中点,若四边形MENC 是平行四边形,那么M 点必为抛物线顶点。

由()22216232yxx x 43333=-+=--+得抛物线顶点,则:M (4,323)。

∵平行四边形的对角线互相平分,∴线段MN 必被EC 中点(4,3)平分,则N (4,﹣143)。

②EC 为平行四边形的边,则ECMN ,设N (4,m ),则M (4﹣8,m+6)或M (4+8,m ﹣6); 将M (﹣4,m+6)代入抛物线的解析式中,得:m=﹣38, 此时 N (4,﹣38)、M (﹣4,﹣32);将M (12,m ﹣6)代入抛物线的解析式中,得:m=﹣26, 此时 N (4,﹣26)、M (12,﹣32)。

综上所述,存在符合条件的M 、N 点,它们的坐标为:①M 1(﹣4,﹣32),N 1(4,﹣38);②M 2(12,﹣32),N 2(4,﹣26);③M 3(4,323),N 3(4,﹣143)。

5.已知二次函数y=x 2﹣(m 2﹣2)x ﹣2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足12111+=x x 2.(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点P ,使四边形PACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.【考点】二次函数综合题,二次函数与x 点问题,曲线图上点的坐标与方程的关系,一元二次方程根与系数的关系,平行四边形的性质,全等三角形的判定和性质。

【分析】(1)欲求抛物线的解析式,关键是求得m 的值.根据题中所给关系式,利用一元二次方程根与系数的关系,可以求得m 的值,从而问题得到解决。

注意:解答中求得两个m 的值,需要进行检验,把不符合题意的m 值舍去。

(2)利用平行四边形的性质构造全等三角形,根据全等关系求得P 点的纵坐标,从而得到P 点的横坐标,从而求得P 点坐标。

6.已知抛物线y=41x 2 + 1(如图所示).(1)填空:抛物线的顶点坐标是(______,______),对称轴是_____;(2)已知y 轴上一点A(0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB是等边三角形,求点P 的坐标;(3)在(2)的条件下,点M 在直线..AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有..满足条件的点N 的坐标;若不存在,请说明理由.【考点】二次函数综合题,二次函数的性质,等边三角形的性质,菱形的判定。

相关文档
最新文档