解一元一次方程去括号与去分母
5.2.2用去括号与去分母解一元一次方程 考点梳理(课件)人教版(2024)数学七年级上册
![5.2.2用去括号与去分母解一元一次方程 考点梳理(课件)人教版(2024)数学七年级上册](https://img.taocdn.com/s3/m/2f06cb8d3086bceb19e8b8f67c1cfad6185fe94f.png)
,得 7x=-9,系数化为 1,得 x=- .
思路点拨
根据整式之间的相等(互为相反数)的关系
构造出一元一次方程,再把得出的方程解出来即可得到答
案.
解题通法
解决本题的关键是抓住“相等”和“互为相
反数”两个关键性词语,进而根据题意正确列出方程.
■题型二
例 2
一元一次方程的错解问题
小明在对方程
+
;
(2)去括号,得 2x+2=1-x-3,移项,得 2x+x=1-3-2,
合并同类项,得3x=-4,系数化为 1,得 x=-
.
■考点二
利用去分母解一元一次方程
定义
依据
方程的两边同时乘各分母的
去分母 最小公倍数,将分母去掉的
等式的性质 2
过程叫作去分母
注意
事项
去分母时,如果分子是一个多项式,去掉分母后
续表
合并
把方程化为 ax=b
同类项 (a≠0)的形式
合并同类
项法则
(1)系数相加减;
(2)字母及其指
数不变
在方程 ax=b
(a≠0)的两边都
系数
除以未知数的系数 等式的
化为 1 a,得到方程的解 性质 2
为x= (a≠0)
(1)除数不为 0;
(2)不要把分子、
分母弄颠倒
归纳总结
(1)解一元一次方程的步骤不是固定不变的,有时可以
)-6,去括号,得 2x+4=3x-3-6,移项、合并同类项,得x=-13,系数化为 1,得 x=13.
变式衍生
小华在解方程 2x-k=5-x 时,把-x 看成+x
《解一元一次方程》去括号与去分母
![《解一元一次方程》去括号与去分母](https://img.taocdn.com/s3/m/1ddcfb26f4335a8102d276a20029bd64793e6265.png)
方程两边同乘最简公分母
用方程两边的代数式分别乘以最简公分母
得到一个等式
特殊情况的处理
分母是小数时,需 要将小数化为分数
分子是多项式时, 需要分解因式
分母是负数时,需 要将负号提到分子 的位置
03
去括号与去分母的结合
先去括号,再去找最简公分母
先去括号
在解一元一次方程时,首先需要去掉方程中的括号。根据括 号前系数的正负,采取不同的去括号法则。
04
注意事项
注意符号问题
去括号时注意符号变化
在解一元一次方程的过程中,去括号时需 要注意括号前面是负号时,去掉括号后括 号内的各项都要变号。
避免粗心导致错误
有些学生在去括号时容易忽略符号问题, 导致解题错误,因此需要特别注意。
注意不改变原方程
不能随意去掉分母
在解一元一次方程时,不能随意去掉分母, 只有在确定分母为0时才能进行化简。
括号前是正号,去掉括号和正号,各项不变号
总结词
去掉括号和正号后,各项符号不发生改变。
详细描述
当一元一次方程中的括号前出现正号时,去掉括号和正号后,括号内的各项符号 保持不变。例如,$2(x+3)$ 可以化简为 $2x + 6$。
括号前有数字,要看清数字和符号的关系
总结词
括号前的数字和符号必须同时去除。
注意符号和增根问题
注意符号
在去括号和去分母的过程中,要特别留意 符号的变化。特别是当括号前系数为负数 时,需要将括号内的每一项都变号。
VS
增根问题
在去分母的过程中,可能会引入增根。增 根是方程的解在实际情况下无意义,但在 数学上却是有效的根。为了解决增根问题 ,通常需要在方程的两边同时除以同一个 不为零的数,以确保方程的解是有效的。
一元一次方程去括号 去分母 移项
![一元一次方程去括号 去分母 移项](https://img.taocdn.com/s3/m/4de79750876fb84ae45c3b3567ec102de2bddf88.png)
一、概述在数学学习中,一元一次方程是基础而重要的内容。
解一元一次方程时,常常需要进行去括号、去分母和移项等操作。
这些操作对于我们解题有着重要的作用,我们有必要深入理解和掌握这些操作的方法和技巧。
本文将就一元一次方程去括号、去分母和移项进行详细讲解,以帮助读者更好地掌握解题技巧。
二、一元一次方程去括号1、定律当一元一次方程中有括号时,应根据分配律原则展开括号,并进行合并同类项的操作。
对于方程3(x+2)=5x-1,我们首先要将括号内的式子展开,得到3x+6=5x-1。
2、实例分析以方程3(x+2)=5x-1为例,展开括号后得到3x+6=5x-1。
我们可以将方程中的x移至一侧,将常数项移到另一侧,最终可得到x=7。
这就是利用去括号的方法解一元一次方程的过程。
三、一元一次方程去分母1、原理当一元一次方程中含有分数形式时,应首先进行去分母的操作。
去分母的方法是将方程两侧乘以分母的最小公倍数,使分母消失,从而化简方程。
对于方程2x-3/4=5,我们可以将两端同乘4,即得到8x-3=20。
2、举例说明以方程2x-3/4=5为例,我们可以通过将两端同乘4的方式,将方程化简为8x-3=20。
接下来,我们只需按照移项和合并同类项的原则,即可解得x=23/8。
四、一元一次方程移项1、步骤在解一元一次方程时,移项是一个基本的操作。
具体来说,就是将方程中的未知数移到一个侧,将常数项移到另一个侧。
对于方程2x+5=3x-7,我们可以将3x移到等号左侧,将5移到右侧,得到2x-3x=-7-5,即-x=-12。
2、案例演练以方程2x+5=3x-7为例,我们可以通过移项的方法得到-x=-12。
解得x=12。
五、总结在解一元一次方程时,去括号、去分母和移项是三个基本而重要的操作。
通过本文的讲解,我们可以发现,针对这些操作,我们需要掌握一些基本的数学技巧和规律,例如利用分配律等原则,以及合并同类项的方法。
通过不断练习和实践,我们可以更加熟练地运用这些技巧,解出更多更复杂的一元一次方程。
3.3解一元一次方程去括号与去分母教案
![3.3解一元一次方程去括号与去分母教案](https://img.taocdn.com/s3/m/01322d34a55177232f60ddccda38376baf1fe027.png)
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.掌握数学基本运算规则,提高运算能力,特别是在解一元一次方程过程中,熟练运用分配律和最小公倍数,提升解决问题的效率。
2.培养逻辑思维和推理能力,使学生能够理解方程去括号和去分母的算理,从而更好地把握方程的本质和解题思路。
此外,我发现学生在小组讨论中表现出较高的积极性,他们能够主动提出问题、分析问题并解决问题。这让我深感欣慰,也说明我们的教学方法得到了学生的认可。但在讨论过程中,我也注意到有些学生过于依赖同伴,缺乏独立思考。因此,在今后的教学中,我要注意引导学生培养独立思考的能力,提高他们的自主学习能力。
在总结回顾环节,我强调了去括号和去分母在实际问题中的应用,希望同学们能够将所学知识运用到日常生活中。从学生的反馈来看,他们对这一章节的知识点有了较为清晰的认识。然而,我也意识到,仅仅依靠课堂讲解和讨论还不足以让学生完全掌握这些知识点。因此,我计划在课后布置一些具有挑战性的习题,让学生在练习中巩固所学,提高解题能力。
-难点三:含有多项式的去括号和去分母
-当方程中含有多项式时,学生可能不清楚如何同时处理多项式和分数。
-例如:解方程(3x + 2)/4 + (x - 1)/3 = 7/12,难点在于将多项式和分数结合,并找到合适的方法解决。
在教学过程中,教师应通过具体例子的讲解和反复练习,帮助学生透彻理解这些重点和难点,确保学生能够独立完成类似问题的解答。同时,教师应鼓励学生通过小组讨论和互助学习,共同克服解题过程中的困难。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解去括号和去分母的基本概念。去括号是指将方程中的括号通过分配律去除,简化方程形式。去分母是指通过乘以分母的最小公倍数,将方程中的分数消去,使方程变为整数形式。这两个步骤对于解一元一次方程至关重要。
3.3解一元一次方程一一去括号与去分母(教案)
![3.3解一元一次方程一一去括号与去分母(教案)](https://img.taocdn.com/s3/m/d0479a1a68eae009581b6bd97f1922791688bef8.png)
在课后,我会认真批改学生的作业,了解他们在去括号与去分母方面的掌握情况,并对他们在课堂上遇到的问题进行总结。针对这些问题,我将设计更具针对性的练习题,以巩固所学知识。
(2)在去分母过程中,正确找到各分母的最小公倍数;
难点解析:学生在找最小公倍数时可能不够熟练,导致去分母后方程仍然存在分数。
(3)将实际问题转化为数学方程,理解方程背后的实际意义;
难点解析:学生在分析题目时可能难以抓住关键信息,不能将实际问题抽象为一元一次方程。
(4)在解题过程中,灵活运用已学知识,如乘法分配律、最小公倍数的求法等;
3.重点难点解析:在讲授过程中,我会特别强调去括号法则与去分母法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何正确去括号和去分母。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示如何去括号与去分母解方程。
具体内容包括:
1.去括号法则:a(x+b)=ax+ab;
2.去分母法则:将方程两边同时乘以各分母的最小公倍数,使方程转化为整数方程;
3.举例说明去括号与去分母在解一元一次方程中的应用;
4.练习:解以下方程:
(1)2(x-3)+4x=10
(2)3/4x+1=5/6x-1/2
(3)5(2x-1)-3(3x+2)=8
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
5.2解一元一次方程+——去括号与去分母+课件++2024-2025学年人教版数学七年级上册
![5.2解一元一次方程+——去括号与去分母+课件++2024-2025学年人教版数学七年级上册](https://img.taocdn.com/s3/m/8ecc93b732d4b14e852458fb770bf78a65293af8.png)
(等式性质2)
巩 固 练 习
解方程:
解:整理,得
去分母(两边乘30),得 去括号,得
合并同类项,得 移项,得
合并同类项,得 系数化为1,得
(分数的基本性质)
(等式性质2) (去括号法则) (乘法分配律逆用) (等式性质1) (乘法分配律逆用)
解:整理,得
去括号,得 移项,得
合并同类项,得 系数化为1,得
(分数的基本性质)
(乘法分配律)
(分数的基本性质) (去括号法则) (等式性质1) (乘法分配律逆用) (等式性质2)
巩 固 练 习
解方程:
解:整理,得
去分母(两边乘30),得 去括号,得 移项,得
合并同类项,得 系数化为1,得
(分数的基本性质)
(等式性质2)
例 题 解 析
解方程:
找分母的最 小公倍数?
0.6和4的最小公倍数是12
直接去分母:两边同乘12
去分母(两边乘12),得
小 结 一
当解系数中分母含有小数的方程时:
(1)可将小数利用分数的基本性质 化成整数,然后再按照解方程的一 般步骤去解; (2)也可直接去分母.
解方程:
变 式 练 习
一级技工 8x-50 二级技工 10x+40
一天3名一级技工粉刷量 比= 8个房间粉刷面积少- 50m2
有一些相同的房间需要粉刷墙面.一天3名一级技工去
粉刷8个房间,结果其中有50m2墙面未未来来得得及及粉粉刷刷;同
样时间内5名二级技工粉刷了10个房间之外,还多粉
刷了另外40m2墙面.每名一级技工比二= 级技工一天多 粉+ 刷10m2墙面,求每个房间需要粉刷的墙面面积.
人教版七年级数学上册解一元一次方程(二)——去括号与去分母课件
![人教版七年级数学上册解一元一次方程(二)——去括号与去分母课件](https://img.taocdn.com/s3/m/6531db90db38376baf1ffc4ffe4733687e21fcfc.png)
3
5
解方程:
解: 去分母(方程两边乘15),得
15 − 5( − 1) = 105 − 3( + 3).
15 − 5 + 5 = 105 − 3 − 9.
去括号,得
移项,得
15 − 5 + 3 = 105 − 5 − 9.
合并同类项,得
系数化1,得
13 = 91.
= 7.
2 − 1
.
2 3 +
=3−
2
3
解:去分母(方程两边乘 6),得
−1
2 − 1
6 3 +
=6 3−
. 不漏乘
2
3
18 + 3( − 1) = 18 − 2(2 − 1).
去括号,得
18 + 3 − 3 = 18 − 4 + 2.
18 + 3 + 4 = 18 + 2 + 3.
2
3
3
2
1
− − 2 − = 1.
2 6
3
解法二: 去括号,得
去分母(两边同乘6),得
3 − − 12 − 2 = 6.
移项,得
合并同类项,得
系数化1,得
− − 2 = 6 − 3 + 12.
−3 = 15.
= −5.
课 堂 小 结
一、解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化1.
拓展练习
1
2
解方程:
1− − 3+
= 1.
2
3
3
2
1
解一元一次方程-去括号与去分母(教案)-2020年秋人教版七年级数学上册
![解一元一次方程-去括号与去分母(教案)-2020年秋人教版七年级数学上册](https://img.taocdn.com/s3/m/5e00853359fafab069dc5022aaea998fcc22402a.png)
一、教学内容
本节课选自2020年秋人教版七年级数学上册第三章《一元一次方程》的3.4节“解一元一次方程-去括号与去分母”。教学内容主要包括以下两个方面:
1.去括号法则:在解一元一次方程过程中,当方程中存在括号时,运用去括号法则将方程简化。具体内容包括:
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或解决比例问题的情况?”(例如:分糖果给小朋友)。这个问题与我们将要学习的内容密切相关。通过这个问题方程来解决问题。
(3)将实际问题抽象成一元一次方程:学生在面对实际问题时,可能难以将其转化为数学语言,即一元一次方程。
举例:在解决上述提到的实际问题“某数加上其一半等于12”时,学生可能不知道如何将“一半”表示为数学式子$\frac{1}{2}x$。
在教学过程中,教师应针对这些重点和难点内容,通过讲解、示范、练习和反馈等方式,帮助学生理解和掌握核心知识,确保学生能够透彻理解并灵活运用所学知识。
3.培养学生的数学建模能力:通过解决实际生活中的问题,引导学生运用一元一次方程建立数学模型,培养学生将现实问题转化为数学问题的能力,激发学生的创新意识和实践能力。
本节课将紧扣核心素养目标,注重培养学生的数学思维能力,提高学生解决实际问题的综合素养。
三、教学难点与重点
1.教学重点
(1)掌握去括号法则:在解一元一次方程时,能够正确运用去括号法则,包括同号括号相乘和异号括号相乘的情况,确保在简化方程过程中各项符号的正确性。
其次,去分母法则对学生来说是个难点。找最小公倍数这个过程让学生们感到有些困难,导致消去分母时出现错误。针对这个问题,我考虑在下一节课中,先带领学生们复习最小公倍数的概念和求解方法,然后再进行去分母的练习。
《解一元一次方程》去括号与去分母
![《解一元一次方程》去括号与去分母](https://img.taocdn.com/s3/m/e883da2426d3240c844769eae009581b6ad9bd69.png)
括号前是正号,去掉括号和正号,各项不变号
总结词
当括号前为正号时,去掉括号和正号后,括号内的各项符号 不发生改变。
详细描述
例如,$+(2x + 3) = 2x + 3$。去掉括号和正号后,$2x$和 $3$的符号都不发生改变。
括号前有数字,要看清数字和括号有没有乘除关系
总结词
当括号前有数字时,需要看清数字和括号之间是否存在乘除关系。
去括号时要注意符号问题
括号前面是负号,去掉括号和负号 ,括号内的每一项都要变号。
VS
括号前面是正号,去掉括号和正号 ,括号内的每一项都不变号。
去分母时要注意找最小公倍数
把方程中的分母分解因数,找 到各因数的最小公倍数。
把最小公倍数与方程中的分母 约分,得到最简公分母。
把最简公分母作为方程的系数 ,与方程的每一项相乘,得到
去括号练习题
详细描述 1. 括号前面是负号,去掉括号后各项变号。例如:`-3(x+5) = -3x - 15`。
2. 括号前面是正号,去掉括号后各项不变。例如:`3(x+5) = 3x + 15`。
去括号练习题
• 括号前有乘方,去掉括号后各项需乘方。例如:2(x^2 + 3) = 2x^2 + 6。
详细描述
如果存在乘除关系,那么去掉括号后,括号内的各项都需要乘以或除以这个数字。例如,$2(2x + 3) = 4x + 6$。如果数字为分数,则需要先把分数化简,再进行计算。例如,$\frac{1}{2}(2x + 3) = x + \frac{3}{2}$。
02
去分母
方程两边同乘各分母的最小公倍数
解一元一次方程(二)去括号与去分母课件
![解一元一次方程(二)去括号与去分母课件](https://img.taocdn.com/s3/m/938d0f45bb1aa8114431b90d6c85ec3a87c28bf3.png)
x = 0。
去分母的案例解析
1 2 3
案例三 解方程 $frac{x + 1}{3} = frac{2x - 1}{2}$
解析 为了去分母,找到两个分母的最小公倍数,这里 是6。两边乘以6,得到 2(x + 1) = 3(2x - 1)。
解 展开并整理,得到 -4x + 3 = 0。
去分母的案例解析
解一元一次方程(二)去括号与 去分母课件
• 去括号的方法与技巧 • 去分母的方法与技巧 • 实际应用案例解析 • 练习题与答案 • 总结与回顾
01
去括号的方法与技巧
括号前是加号的情况
总结词
直接去掉括号
详细描述
当括号前是加号时,直接去掉括号,括号内的各项符号不变。例如:$x + (y z) = x + y - z$。
去分母的案例解析
解
展开并整理,得到 -15 = 0。
解得
此方程无解。
04
练习题与答案
练习题
练习1
练习2
练习3
练习4
解方程 $frac{x + 1}{2} frac{2x - 3}{3} = 1$
解方程 $3(x - 2) - 4(x 5) = 7$
解方程 $2x - frac{x}{2} = 5$
解方程 $frac{x + 1}{3} + frac{x - 2}{6} = frac{x + 3}{2}$
答案解析
练习1解析
练习2解析
练习3解析
练习4解析
首先去分母,得到方程 $3(x + 1) - 2(2x - 3) = 6$,然后 去括号,得到 $3x + 3 - 4x + 6 = 6$,移项合并同类项, 得到 $-x = -3$,最后系数化
3.3解一元一次方程去括号与去分母(教案)
![3.3解一元一次方程去括号与去分母(教案)](https://img.taocdn.com/s3/m/b12dc49ed4bbfd0a79563c1ec5da50e2534dd119.png)
-学生可能会在去括号时忘记改变括号内各项的符号,或者在分配时漏项。
-教学方法:通过对比练习,强调分配律的正确应用,提供变式题目让学生多加练习。
-难点二:最小公倍数的寻找
2.去分母法则:在解一元一次方程时,需要将方程两边的分母消去,使方程变为整数形式。具体内容包括:
-找到方程两边分母的最小公倍数;
-将方程两边同时乘以最小公倍数,消去分母;
-按照乘法分配律展开并简化方程。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过解一元一次方程去括号与去分母的过程,让学生掌握运用分配律和找最小公倍数的逻辑推理方法,提高他们分析问题和解决问题的能力。
-学生可能会在寻找最小公倍数时感到困惑,特别是在涉及多个分母时。
-教学方法:提供寻找最小公倍数的技巧和方法,如质因数分解法,并通过例题进行演示。
-难点三:方程化简过程中的代数运算
-学生在进行去括号与去分母的过程中,可能会出现运算错误。
-教学方法:强调每一步的运算规则,鼓励学生逐步展示解题过程,及时检查和纠正错误。
-难点四:从实际问题中建立方程模型
-学生在将实际问题转化为方程模型时可能会感到困难。
-教学方法:通过实际案例,引导学生如何提取问题中的数量关系,并建立方程。例如,通过购物时总价和单价的关系来建立方程。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.3解一元一次方程去括号与去分母”这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过方程中含有括号和分数的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何解这类方程的奥秘。
一元一次方程(去括号、去分母)
![一元一次方程(去括号、去分母)](https://img.taocdn.com/s3/m/b90ba82baf45b307e871976b.png)
一元一次方程2(去分母、去括号)回顾:什么是等式?等式的性质,什么是方程?和解方程的步骤知识梳理:一、去分母1解方程解:去分母,得5(x-50)= 3(x+70)移项, 得5x-3x = 210+250合并, 得2x = 460系数化为1 ,得x = 2302解:去括号,得2x-1=x+2-1 解:去括号,得2x-1-x+2=12-x 移项,得2x-x=2-1+1 移项,得2x-x+x=12+1-2合并,得x=2 合并,得2x=11系数化为1,得x=3 探究:解方程:212(1)133x x-+=-124(2)362x x x-+--=112归纳:去分母的方法是方程两边同乘各分母的最小公倍数注意:不要漏乘不含分母的项,注意分数线的括号作用.570350+=-xx二、去括号例 1:解方程:(1) 3(x +1)-(5+x)=18-2(x -1). (2) 2(x -1)-(x +2)=3(4-x);(3) 2(x -2)-3(4x -1)=9(1-x).三、列方程解应用题1. 一项工程,甲单独做要6天,乙单独做要3天,两人合做要多少天?(1)一项工程,甲单独做需6天,乙单独做需12天,把总工作量看作1,两人合做1天完成的工作量是, 两人合做3天完成的工作量是 , 两人合做 天完成.(2)一项工程,甲单独做需12天,乙单独做需18天,两人合做要多少天完成?一件工作甲单独做12天完成,甲的工作效率为 , 一件工作3人12天完成,平均每人每天完成。
2.一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲单独做4小时,剩余的部分由甲、乙合作,需要几小时完成? 例2:解方程:x -44-2x -16=1.探究:解方程: 【易错警示】去括号法则的依据是乘法分配律,在使用乘法分配律时,不要漏乘括号里的项.11612+14=3441121312⨯每人每单位时间完成的工作量人均效率:归纳:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号________;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号________.解:设剩余部分需要x 小时完成,根据题意得:去分母,得 移项,得 合并,得系数化为1,得 x= 答:3 某单位开展植树活动,由一个人植树要80小时完成,现由一部分人先植树5小时,由于单位有紧急事情,在增加2人,且必须在4小时之内完成植树任务,这些人的工作效率相同,应先安排多少人植树? 解:设应安排x 人植树,依题意得去分母,得 去括号,得 移项,得 合并,得系数化为1,得 x= 答:用一元一次方程分析和解决实际问题的基本过程如下:11220204=++x x54(2)18080x x ++=数学问题的解 (x=a)数学问题(一元一次方程)实际问题检验实际问题的答案列方程解方程练习题1. 解下列方程:(1) (2)(3) 3x-7(x-1)=3-2(x+3) (4) 2(x -1)-(x +2)=3(4-x)(5) 2(x -2)-3(4x -1)=9(1-x) (6)(7) (8) -1=2.合并下列各式:(1)x +3x -5x =____________;(2)y +y +2y =____________.3.把方程 2x -5=3x +1 变形为 2x -3x =1+5,称为( )A .移项B .去分母C .去括号D .系数化为 14.解方程 5(x -1)-2(2x +1)=8,去括号,得( )A .1-x -3=3xB .6-x -3=3xC .6-x +3=3xD .1-x +3=3xA .去分母B .移项C .合并同类项D .系数化为 16 列方程解应用题(1)某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万221412=+-+x x 2233534--+=+-+y y y y 514x -312x +23x -322x +214x -215x +314y -576y -5.解方程x +22+3=x -23+4的过程中,不需要进行下列哪个步骤( )度,这个工厂去年上半年每月平均用电多少度?(2)甲、乙两列火车的长度分别为 144 m 和 180 m,甲车比乙车每秒多行驶 4 m,两列车相向行驶,从相遇到全部错开需9 s,问:两列车的速度各是多少?。
解一元一次方程去括号与去分母
![解一元一次方程去括号与去分母](https://img.taocdn.com/s3/m/18b520d550e79b89680203d8ce2f0066f433645e.png)
Part
05
解题策略与注意事项
审题与思路分析
仔细阅读题目,明确方程 的形式和求解要求。
分析方程中的括号和分母, 确定解题策略。
根据方程特点,选择合适 的去括号或去分母方法。
计算过程中的注意事项
STEP 02
STEP 01
在去括号时,注意括号前 的符号,正确应用去括号 法则。
STEP 03
计算过程中保持细心,避 免计算错误。
求解未知数
通过简化后的方程求解未知数。
合并同类项
将去括号后得到的式子中的同类 项合并,使方程简化。
移项与合并
将含未知数的项移到等式的一边, 常数项移到等式的另一边,进一 步合并同类项。
含分母的一元一次方程解法
找公分母 观察方程中的分母,找出 1
所有分母的最小公倍数作 为公分母。
求解未知数 4
通过整理后的方程求解未 知数。
在去分母时,确保分子与 分母无公因式,避免约分 错误。
检查结果与答案验证
将求解结果代入原方 程进行验证,确保答 案正确。
总结解题经验,提高 解题速度和准确性。
检查计算过程,确保 步骤合理、无遗漏。
Part
06
总结与展望
解一元一次方程的重要性
01
02
03
基础知识
解一元一次方程是数学中 的基础知识,对于后续学 习代数、函数等内容具有 重要意义。
一元一次方程的定义
一元一次方程的概念
只含有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。
一元一次方程的一般形式
ax + b = 0(a ≠ 0),其中a、b为已知数,x为未知数。
解一元一次方程的意义
求解实际问题
解一元一次方程去括号与去分母教学课公开课一等奖课件省赛课获奖课件
![解一元一次方程去括号与去分母教学课公开课一等奖课件省赛课获奖课件](https://img.taocdn.com/s3/m/f8964aab9f3143323968011ca300a6c30d22f115.png)
(2) 12 (x 4) =
8x ;
(3) 3x 7(x 1) = 4x 7 ;
(4) 2(x 4) 3(x 1)=
5x 11;
(一)提出问题,建立模型
问题1: 某工厂加强节能方法,去年下六个月与上六 个月
相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上六个月每月平 均
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量.
用电是1.多题少目?中涉及了哪些量? 2.题目中的相等关系是什么?
上六个月的用电量+下六个月的用电量=全年的用电 量月平均用电量×n(月数)=n个月用电量
分析: 设上六个月每月平均用电量列出方程x kW·h,则 下 六个月每月平均用电为(x-2000) kW·h. 上六个月共用电为:6x kW·h; 上六个月共用电为:6(x-2000) kW·h.
列方程错
题目:一种两位数,个位上的数是2,十位
上的数是x,把2和x对调,新两位数的2倍
还比原两位数小18,你能想出x是几吗?
去括号错
小方: 解:(10x+2)-2( x+20)=18 移项错
去括号,得 10x+2-2x--420=18
移项,得 10x-2x=18++420+—2
合并同类项,得 系数化为1,得
x=13500
(三)熟悉解法,思考辨析
例题 解下列方程:
(1) 2x-( x+10)=5x+2( x-1)
去括号
解: 2x-x-10=5x+2x-2.
移项
2 x-x-5 x-2 x=-2+10.
合并同类项
6 x=8
系数化为1
x=- 4 3
(三)熟悉解法,思考辨析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h.
由题意得
x - x = 40 . 9 45 60
解得
x=7.5
答:目的地距学校7.5 km.
(二ห้องสมุดไป่ตู้巩固训练,巩固方法
一通讯员骑自行车把信送往某地.如果每小时 行15 km,就比预定时间少用24分钟;如果每小 时行12 km,就比预定时间多用15分钟,那么预 定时间是多少小时?他去某地的路程是多少km?
学习目标: 1.弄清行程问题背景,分析数量关系,正确找出列方
程的所依据的主要相等关系; 2.通过行程问题的探究,进一步体验一元一次方程与
实际生活的联系,熟悉解一元一次方程的基本步骤.
学习重点: 弄清题意、准确列出方程,正确地解方程.
学习难点: 准确把握行程问题的相等关系,正确列出方程.
(一)复习回顾,巩固解法
从A地到B地所用的时间表示为:x h和 x h. 70 60
根据题意,得
x - x =1 60 70
去分母,得
70x- 60x= 4200
合并同类项,得
10x=4 200
系数化为1,得 x=420.
答:A,B两地间的路程是420 km.
问题2 回顾本题列方程的过程,计算行程问题时 常用的数量关系是什么?
1.解一元一次方程的一般步骤是什么?
2.解下列方程:
(1) x 1-2= x;
2
4
(2)3x+ 2- 1=2x- 1-2x+ 1.
2
45
解:(1)去分母(方程两边乘4),得
2(x+1)-8=x 去括号,得 2x+2-8=x
移项,得 2x- x= 8- 2
合并同类项,得 x= 6 .
解:(1)去分母(方程两边乘20),得
系数化为1,得 x = 9 . 28
(二)提出问题,尝试解决
问题1(章前引言问题) 一辆客车和一辆卡车同时从A地出发沿同一公
路同方向行驶,客车的行驶速度是70 km/h,卡车 的行驶速度是60 km/h,客车比卡车早1 h经过B地. A,B两地间的路程是多少?
解:设A,B两地间的路程为x km,则客车和卡车
路程=速度×时间
(二)巩固训练,巩固方法
某中学组织团员到校外参加义务植树活动,一 部分团员骑自行车先走,速度为 9 km/h,40分钟后 其余团员乘汽车出发,速度为 45 km/h,结果他们 同时到达目的地,则目的地距学校多少km?
解:设目的地距学校 x km,则骑自行车所用
时间为 x 9
x h,乘汽车所用时间为 4 5
解:设预定时间为x小时
根据题意,得
15(x-24)= 12(x+15) .
60
60
解得 x= 3.
所以 15(3-24)=39. 60
答:预定时间为3 h,路程为39 km.
(三)归纳总结,布置作业
通过本节课的研究你有何收获?
作业
教科书习题3.3 第5题,第6题,第10题.
1 0 ( 3 x + 2 ) - 2 0 = 5 ( 2 x - 1 ) - 4 ( 2 x + 1 )
去括号,得 3 0 x + 2 0 - 2 0 = 1 0 x - 5 - 8 x - 4
移项,得 3 0 x - 1 0 x + 8 x = - 2 0 + 2 0 - 5 - 4
合并同类项,得 28x=9