论Storm分布式实时计算工具

合集下载

dstorm原理

dstorm原理

dstorm原理
DSTORM(Distributed Storm System)是一种分布式实时计算系统,
它允许用户在多个计算节点上运行多个并行任务,并且能够有效地处
理大量数据流。

DSTORM 的原理主要包括以下几个方面:
1. 分布式架构:DSTORM 是一个分布式系统,它可以将计算任务分布
在多个计算节点上,从而提高计算能力和可扩展性。

DSTORM 使用Apache Zookeeper 或类似工具来协调和管理各个节点的状态和任务分配。

2. 流处理:DSTORM 是一种流处理平台,它能够实时处理大量数据流。

与传统的批量处理系统不同,DSTORM 允许数据在进入系统时直接被处理,而不需要将数据存储在本地或远程存储系统中的批量数据集。

3. 容错和恢复:DSTORM 提供了强大的容错和恢复功能,以确保系统
的高可用性和可靠性。

当一个节点出现故障时,DSTORM 可以自动重新
分配任务到其他健康的节点,从而保持系统的正常运行。

此外,DSTORM 还提供了快照恢复功能,以便在系统发生故障时能够快速恢复
到之前的状态。

4. 模块化设计:DSTORM 采用模块化设计,将不同的功能划分为不同
的模块,并允许用户根据需要选择和组合不同的模块。

这种设计使得DSTORM 更加灵活和可定制,能够适应不同的应用场景和需求。

总之,DSTORM 的原理是基于分布式架构、流处理、容错和恢复以及模
块化设计,旨在提供一种高效、可靠、可扩展的实时计算平台,适用
于各种大规模数据流处理应用场景。

stormproxies的使用方法

stormproxies的使用方法

stormproxies的使用方法(实用版3篇)目录(篇1)1.引言2.StormProxies 的概念和背景3.StormProxies 的使用方法3.1 创建 StormProxies 实例3.2 配置 StormProxies3.3 启动 StormProxies3.4 关闭 StormProxies4.StormProxies 的应用场景5.总结正文(篇1)一、引言随着互联网的发展,数据挖掘和分析的需求越来越大。

在大数据时代,分布式计算框架应运而生,其中 Storm 是一种实时的大数据处理系统。

为了使 Storm 处理速度更快,StormProxies 应运而生。

本文将介绍StormProxies 的使用方法。

二、StormProxies 的概念和背景StormProxies 是 Netflix 开发的一个用于加速 Storm 计算的代理应用。

它可以在 Storm 集群中代替 Nimbus 和 Supervisor,从而提高整个集群的性能。

StormProxies 通过代理 Nimbus 和 Supervisor 的通信,减少了集群中的网络延迟和负载,使得 Storm 处理速度更快。

三、StormProxies 的使用方法1.创建 StormProxies 实例要使用 StormProxies,首先需要创建一个 StormProxies 实例。

可以通过以下命令创建一个 StormProxies 实例:```java -jar stormproxies.jar```2.配置 StormProxies在创建 StormProxies 实例后,需要对其进行配置。

可以通过修改stormproxies.jar 中的 resources 文件夹下的配置文件进行配置。

配置文件名为 stormproxies.conf。

以下是一个配置示例:```imbus.host="localhost"imbus.port=6627supervisor.host="localhost"supervisor.port=10808```其中,nimbus.host 和 nimbus.port 分别表示 Nimbus 的 IP 地址和端口,supervisor.host 和 supervisor.port 分别表示 Supervisor 的 IP 地址和端口。

storm的用法

storm的用法

storm的用法一、了解Storm大数据处理框架Storm是一个用于实时流数据处理的分布式计算框架。

它由Twitter公司开发,并于2011年发布。

作为一个开源项目,Storm主要用于处理实时数据,比如实时分析、实时计算、流式ETL等任务。

二、Storm的基本概念及特点1. 拓扑(Topology):拓扑是Storm中最重要的概念之一。

它代表了整个计算任务的结构和流程。

拓扑由一系列组件组成,包括数据源(Spout)、数据处理节点(Bolt)以及它们之间的连接关系。

2. 数据源(Spout):Spout负责从外部数据源获取数据,并将其发送给Bolt进行处理。

在拓扑中,通常会有一个或多个Spout进行数据输入。

3. 数据处理节点(Bolt):Bolt是对数据进行实际处理的模块。

在Bolt中可以进行各种自定义的操作,如过滤、转换、聚合等,根据业务需求不同而定。

4. 流组(Stream Grouping):Stream Grouping决定了从一个Bolt到下一个Bolt 之间的任务调度方式。

Storm提供了多种Stream Grouping策略,包括随机分组、字段分组、全局分组等。

5. 可靠性与容错性:Storm具有高可靠性和容错性的特点。

它通过对任务状态进行追踪、失败重试机制和数据备份等方式,确保了整个计算过程的稳定性。

6. 水平扩展:Storm可以很方便地进行水平扩展。

通过增加计算节点和调整拓扑结构,可以实现对处理能力的无缝提升。

三、Storm的应用场景1. 实时分析与计算:Storm适用于需要对大规模实时数据进行即时分析和计算的场景。

比如金融领域中的实时交易监控、电商平台中用户行为分析等。

2. 流式ETL:Storm可以实现流式ETL(Extract-Transform-Load)操作,将源数据进行抽取、转换和加载到目标系统中,并实时更新数据。

3. 实时推荐系统:通过结合Storm和机器学习算法,可以构建快速响应的实时推荐系统。

JStorm—实时流式计算框架入门介绍

JStorm—实时流式计算框架入门介绍

JStorm—实时流式计算框架⼊门介绍JStorm介绍 JStorm是参考storm基于Java语⾔重写的实时流式计算系统框架,做了很多改进。

如解决了之前的Storm nimbus节点的单点问题。

JStorm类似于Hadoop MapReduce系统,⽤户按照指定的接⼝去实现⼀个任务,任务提交给JStorm进⾏运⾏,且这种运⾏是不间断的,因为如果期间有worker发⽣故障,调度器会分配⼀个新的worker去替换这个故障worker。

从应⽤的⾓度来看,JStorm是⼀种分布式应⽤;从系统框架层⾯来看,JStorm⼜是⼀种类似于Hadoop MapReduce的调度系统;从数据层⾯来看,JStorm⼜是⼀种流式的实时计算⽅案。

JStorm优势1. 易开发性: JStomr接⼝简易,只需按照Spout、Bolt及Topology编程规范进⾏应⽤开发即可;2. 扩展性:可以线性的扩展性能,配置并发数即可;3. 容错性:出现故障worker时,调度器会分配⼀个新的worker去代替;4. 数据精准性:JStorm内置ACK机制,确保数据不丢失。

还可以采⽤事务机制确保进⼀步的精准度;5. 实时性:JStorm不间断运⾏任务,且实时计算。

JStorm应⽤场景1. 实时计算:可实时数据统计,实时监控;2. 消息转移:流处理完消息后,可以定向的将结果存储到其他消息中间件中;3. rpc请求:提交任务就是⼀次rpc请求过程;典型的场景:⽤于⽇志分析,rpc请求提交任务,从收集的⽇志中,统计出特定的数据结果,并将统计后的结果持久化到外部存储中,这是⼀种信息流处理⽅式,可聚合,可分析。

JStorm架构组件介绍UI:JStorm web界⾯。

Nimbus:调度者,是主控制节点,主要功能为提交任务、分配集群任务、集群监控等。

Supervisor:负责接收Nimbus分配的任务,管理⾃⼰的所属Worker进程,supervisor节点是整个集群中实际运⾏的topology节点。

storm 面试题

storm 面试题

storm 面试题Storm面试题1. Introduction to StormStorm是一个开源的分布式实时计算系统,用于处理大规模实时数据流。

它是一个可靠和高效的系统,可以将海量数据在分布式集群上进行并行处理,实现实时分析和计算。

本文将介绍Storm的工作原理、应用场景以及面试常见问题。

2. Storm的工作原理Storm使用了一种称为"Topology"的数据处理模型,其中包含多个组件,包括Spout、Bolt和Stream。

Spout负责数据源的读取和发送,Bolt负责数据转换和处理,Stream用于在Spout和Bolt之间传递数据。

Storm的工作流程如下:(1) 数据流入系统,由Spout接收数据并发送给Bolt。

(2) Bolt对接收到的数据进行处理和计算。

(3) 处理完成后,Bolt可以发送数据到其他Bolt,形成数据流的连续处理。

(4) 最后,数据可以被存储到数据库、文件系统或其他外部系统中。

Storm的分布式架构使得它能够处理大规模数据流,并实现高可用性和容错性。

它将工作负载分散到集群中的多台计算机上,并通过消息传递机制实现组件间的通信。

3. Storm的应用场景Storm在实时数据分析和处理方面具有广泛的应用场景,包括但不限于以下几个方面:(1) 金融领域:Storm可以用于实时风险管理、交易监控和欺诈检测。

它能够对流式数据进行复杂计算和规则验证,以实现实时预警和决策支持。

(2) 电信领域:Storm可以用于网络监控和故障诊断,实时分析和处理大量网络数据。

它可以帮助运营商及时发现并解决网络问题,提高网络运行的稳定性和可靠性。

(3) 电商领域:Storm可以用于实时推荐系统、广告投放和用户行为分析。

它能够根据用户的实时行为和偏好生成个性化推荐,提高用户购物体验和销售转化率。

(4) 物联网领域:Storm可以用于实时监测和分析传感器数据,实现设备状态监控和异常检测。

storm的5个主要术语

storm的5个主要术语

Storm的5个主要术语Storm是一个开源分布式实时计算系统,它被广泛应用于大规模数据处理和实时分析。

在Storm中,有一些主要的术语被用来描述其核心概念和工作原理。

本文将详细介绍Storm的5个主要术语,包括拓扑(Topology)、流(Stream)、Spout、Bolt和任务(Task)。

1. 拓扑(Topology)拓扑是Storm中最基本的概念之一。

它表示了一个实时计算任务的结构和流程。

拓扑由多个组件(Component)组成,每个组件负责特定的数据处理任务。

组件之间通过流进行连接,形成了一个有向无环图。

拓扑可以看作是一个数据处理的蓝图,它定义了数据从输入到输出的整个计算过程。

在拓扑中,每个组件都可以并行执行,并且可以在不同节点上进行分布式部署。

通过合理设计拓扑结构,可以实现高效的数据处理和并行计算。

2. 流(Stream)流是Storm中用来传递数据的基本单位。

它代表了一系列具有相同类型的数据项,在拓扑中从一个组件流向另一个组件。

流可以包含多个字段,每个字段都有特定的类型和含义。

在拓扑中,流可以被分为多个分支,每个分支可以由不同的组件处理。

这种方式使得数据可以以不同的路径进行处理,从而实现更灵活和高效的计算。

同时,流还支持多种操作,如过滤、聚合、转换等,可以对数据进行各种形式的处理和加工。

3. SpoutSpout是Storm中用于数据输入的组件。

它负责从外部数据源读取数据,并将其发送到拓扑中的下一个组件。

Spout可以读取各种不同类型的数据源,如消息队列、文件系统、数据库等。

在拓扑中,Spout通常是数据流的起点。

它以一定的速率产生数据,并通过流发送给下一个组件进行处理。

Spout还可以实现可靠性保证机制,确保数据不会丢失或重复发送。

通过合理配置Spout的并行度和任务数,可以实现高吞吐量和低延迟的数据输入。

4. BoltBolt是Storm中用于数据处理和计算的组件。

它接收来自上游组件(如Spout或其他Bolt)传递过来的数据流,并对其进行加工、过滤、聚合等操作。

基于STORM分布式计算的海量数据统计系统设计方法研究

基于STORM分布式计算的海量数据统计系统设计方法研究

基于STORM分布式计算的海量数据统计系统设计方法研究陈 波(携程旅游信息技术(上海)有限公司,上海 200050)摘 要:笔者运用STORM分布式系统的强大计算能力以及高性能的KAFKA分布式消息系统来实现海量数据实时统计系统。

该系统通过KAFKA发送、存储、接收接口将计算的原始数据实时传递给STORM。

STORM通过Spout作为KAFKA的Consumer接收数据,将数据转发给内部组件Bolt,通过Bolt分布在多台机器进行数据计算,最后又将计算后的数据返回给KAFKA供第三方应用。

STORM支持数据重发,通过ACK机制保证数据计算的可靠性。

最后通过电商订单统计系统实例,给出海量数据实时统计系统详细的设计方法。

关键词:STORM;KAFKA;分布式系统;大数据;实时计算中图分类号:TP311.52 文献标识码:A 文章编号:1003-9767(2017)04-122-04Research on Design Method of Massive Data Statistic System based onSTORM Distributed ComputingChen Bo(Ctrip Tourism Information Technology (Shanghai) Co., Ltd., Shanghai 200050, China) Abstract: The author uses the powerful computing power of STORM distributed system and the high performance KAFKA distributed message system to realize the real-time statistical system of massive data. The system transmits the stored raw data to STORM in real time by sending, storing and receiving the interface through KAFKA. STORM through Spout as KAFKA the Consumer receive data, the data forwarded to the internal component Bolt, through the Bolt distribution in multiple machines for data calculation, and finally return the calculated data to KAFKA for third-party applications. STORM supports data retransmission, through the ACK mechanism to ensure the reliability of data calculation. Finally, the author gives the detailed design method of the real-time statistical system of massive data through the example of electricity quotient system.Key words: STORM; KAFKA; distributed system; big data; real-time calculation随着互联网技术的应用不断深入,各类应用系统产生的业务数据越来越多,基于业务数据的计算应用越来越重要。

分布式实时(流)计算框架

分布式实时(流)计算框架
19
MZ案例介02—GN平台采集
从2个GN平台采集Gn原始数据, 将原始数据的文档合并,上限 为50个文档。每个文档的大小 约为200MB,合并后的文档上 限为10GB。合并后的文档上传 至HDFS平台。 上传的HDFS目录分别是 /tmp/gn/1和 /tmp/gn/2, 再 根据上传的时间点建立新的目 录.
RDMS
整个数据处理流程包括四部分: 第一部分是数据接入层,该部分从前端业务系统获取数据; 第二部分是最重要的storm实时处理部分,数据从接入层接入,经过实时处理后传入 数据落地层; 第三部分为数据落地层,该部分指定了数据的落地方式; 第四部分元数据管理器。
7
Storm实时计算业务接口
8
Storm实时计算具体业务需求
(1) 条件过滤
这是Storm最基本的处理方式,对符合条件的数据进行实时过滤,将符合条件的数据保存下来,
这种实时查询的业务需求在实际应用中是很常见的。
(2) 中间计算
我们需要改变数据中某一个字段(例如是数值),我们需要利用一个中间值经过计算(值比 较、求和、求平均等等)后改变该值,然后将数据重新输出。
(3) 求TopN
相信大家对TopN类的业务需求也是比较熟悉的,在规定时间窗口内,统计数据出现的TopN, 该类处理在购物及电商业务需求中,比较常见。
(4) 推荐系统
正如我架构图中画的那样,有时候在实时处理时会从mysql及hadoop中获取数据库中的信息, 例如在电影推荐系统中,传入数据为用户当前点播电影信息,从数据库中获取的是该用户之前的 一些点播电影信息统计,例如点播最多的电影类型、最近点播的电影类型,及其社交关系中点播
13
MediationZone--集中控制,分布执行

storm原理

storm原理

storm原理Storm是一个分布式实时计算系统,它可以处理海量的实时数据流,并且能够在毫秒级别内对数据进行处理和分析。

Storm的原理是基于流处理模型,它将数据流分成一系列的小批次,然后对每个小批次进行处理和分析,最终将结果输出到目标系统中。

Storm的核心组件是Nimbus和Supervisor。

Nimbus是Storm的主节点,它负责管理整个集群的拓扑结构和任务分配。

Supervisor是Storm的工作节点,它负责接收Nimbus分配的任务,并且在本地执行任务。

Storm的数据流模型是基于DAG(有向无环图)的,每个节点代表一个数据处理单元,节点之间的边代表数据流。

Storm的拓扑结构是由Spout和Bolt组成的。

Spout是数据源,它从外部数据源中读取数据,并将数据发送到Bolt中进行处理。

Bolt是数据处理单元,它接收Spout发送的数据,并且对数据进行处理和分析,最终将结果输出到目标系统中。

Storm的数据流模型是基于流处理模型的,它可以实现实时数据处理和分析。

Storm的数据流模型是基于DAG的,它可以实现高效的数据处理和分析。

Storm的拓扑结构是由Spout和Bolt组成的,它可以实现灵活的数据处理和分析。

Storm的优点是可以实现实时数据处理和分析,它可以处理海量的实时数据流,并且能够在毫秒级别内对数据进行处理和分析。

Storm的缺点是需要一定的技术水平才能使用,而且需要一定的硬件资源才能支持。

总之,Storm是一个非常强大的分布式实时计算系统,它可以处理海量的实时数据流,并且能够在毫秒级别内对数据进行处理和分析。

Storm的原理是基于流处理模型,它将数据流分成一系列的小批次,然后对每个小批次进行处理和分析,最终将结果输出到目标系统中。

Storm的优点是可以实现实时数据处理和分析,它可以处理海量的实时数据流,并且能够在毫秒级别内对数据进行处理和分析。

Storm的缺点是需要一定的技术水平才能使用,而且需要一定的硬件资源才能支持。

《云计算与大数据技术应用》Strom——基于拓扑的流数据实时计算框架

《云计算与大数据技术应用》Strom——基于拓扑的流数据实时计算框架

Storm-Yarn体系架构
Storm-Yarn体系架构
Storm-Yarn首先向Yarn Resource Manager发出请求启动一个Storm Master应用,如图中 第①步操作。
然后Storm Master在本地启动Storm Nimbus Server和Storm UI Server,如图中第②和第 ③步操作。
Flink介绍及与Storm对比
THANKS
在Topology中产生数据源的组件。通常Spout获取数据源的数据,再调用nextTuple函数,发送 数据供Bolt消费
在Topology中接收Spout的数据,再执行处理的组件。Bolt可以执行过滤、函数操作、合并、写 数据库等操作。Bolt接收到消息后调用execute函数,用户可以在其中执行相应的操作
Strom
Storm简介
Storm 是一个开源的、实时的计算平台 Storm 是非常有发展潜力的流处理系统,出现不久便在许多公司中得到使用
Storm核心组件
组件 Topology Nimbus Supervisor Worker Executor
T分组
概念
一个实时计算应用程序逻辑上被封装在Topology对象中,类似于Hadoop中的作业。与作业不同 的是,Topology会一直运行到该进程结束
负责资源分配和任务调度,类似于Hadoop中的JobTracker
负责接收Nimbus分配的任务,启动和停止管理的Worker进程,类似于Hadoop中的TaskTracker
使用Zookeeper Server维护Storm-Yarn集群中Nimbus和Supervisor之间的主从关系,如图 中第④和第⑤步操作。其中Nimbus和Supervisor分别运行在Yarn Resource Manager为其 分配的各个单独的资源容器中(Yarn Container)。

storm的原理及应用发展

storm的原理及应用发展

Storm的原理及应用发展1. 简介Storm是一种开源的分布式实时计算系统,也被称为“流处理框架”。

它最初由Twitter开发,目前已经成为Apache软件基金会的顶级项目之一。

Storm的设计目标是提供一个高效且可靠的实时流处理框架,能够处理海量的数据并保证低延迟。

本文将介绍Storm的原理以及其应用发展的情况。

2. 原理Storm基于分布式消息驱动的编程模型,主要由三个核心组件组成:Spout、Bolt和Topology。

Spout用于从数据源获取数据并将其发送给Bolt进行处理,Bolt负责对数据进行处理和转换,而Topology则将Spout和Bolt组织成一个有向无环图(DAG),定义了数据处理的流程和数据流向。

SpoutSpout是Storm的数据源组件,可以从各种数据源中读取数据,如消息队列、数据库、文件系统等。

Spout可以以多线程的方式并行读取数据,并将读取到的数据发送给Bolt进行处理。

Spout还可以设置可靠性语义,保证数据的可靠处理。

BoltBolt是Storm的处理组件,可以对Spout发送过来的数据进行处理和转换。

Bolt可以进行计算、过滤、聚合等操作,并将处理结果发送给下一个Bolt或最终存储系统。

Bolt也可以以多线程的方式并行处理数据,提高数据处理的吞吐量。

TopologyTopology是Storm的数据处理流程描述,由多个Spout和Bolt组成的有向无环图(DAG)。

Topology定义了数据处理的流程和数据流向,可以灵活地组织数据处理逻辑。

通过调整Topology中的组件之间的关系和并发度,可以实现不同的数据处理需求。

3. 应用发展Storm作为一种高效且可靠的实时计算系统,已经在许多大规模数据处理场景中得到了广泛应用。

以下是一些Storm应用的典型案例:实时流处理Storm可以处理实时流数据,对于需要在数据到达时立即进行处理和分析的场景非常适用。

例如,电商平台可以利用Storm来实时分析用户的购买行为、即时推送个性化的推荐信息,从而提升用户体验和销售效果。

storm成像原理

storm成像原理

storm成像原理Storm是一个开源的分布式实时计算系统,最初由Twitter开发。

它被设计用于处理大规模的流式数据,并以其高吞吐量、低延迟和可扩展性而闻名。

Storm的成像原理是基于流式数据处理的。

在传统的批处理系统中,数据是按照批次进行处理的,而流式数据则是实时产生的,需要即时处理。

Storm采用了一种称为“拓扑”的抽象模型来处理流式数据。

拓扑是由多个组件组成的有向图,每个组件可以是数据源、数据处理器或数据存储器。

在Storm中,数据通过一个叫做“流”的概念进行传递。

流是一系列无限的元组,每个元组包含一个或多个字段。

拓扑中的每个组件都可以接收和发送流,通过定义输入和输出流来实现数据的传递。

每个组件可以进行各种数据处理操作,例如过滤、转换、聚合等。

Storm的成像原理可以类比为一个水流的过程。

数据源相当于水的源头,数据处理器相当于水流经过的各个加工设备,数据存储器相当于最终的目的地。

数据源将数据源源不断地产生,并通过流的方式传递给数据处理器。

数据处理器对数据进行加工处理,然后将处理结果发送给下一个组件。

最后,数据存储器将处理结果保存下来,供后续使用。

为了实现高吞吐量和低延迟,Storm采用了分布式架构。

拓扑可以在多台机器上运行,每个组件可以分布在不同的机器上。

这样可以利用集群的计算能力来并行处理数据,并且通过数据的分片和复制来实现容错性。

Storm还提供了动态的负载均衡和故障恢复机制,保证系统的稳定性和可靠性。

除了高吞吐量和低延迟,Storm还具有良好的可扩展性。

拓扑可以根据需要进行水平扩展,增加机器和组件的数量来处理更多的数据。

Storm还支持动态的调优和配置,可以根据实际情况进行参数的调整,以达到最佳的性能和资源利用率。

Storm的成像原理是基于流式数据处理的分布式实时计算系统。

它通过拓扑的方式将数据源、数据处理器和数据存储器连接起来,实现数据的实时处理和分布式计算。

通过高吞吐量、低延迟和可扩展性,Storm在处理大规模流式数据方面具有重要的应用价值。

智慧树知到大数据工具应用章节测试答案

智慧树知到大数据工具应用章节测试答案

智慧树知到大数据工具应用章节测试答案第一题:大数据工具是指用于处理大规模数据的软件和技术工具。

它们能够帮助用户快速、高效地处理和分析海量数据,从而发现数据中隐藏的规律和价值。

大数据工具的应用范围非常广泛,包括数据清洗、数据存储、数据分析、数据可视化等方面。

第二题:Hadoop是一种分布式计算框架,主要用于存储和处理大规模数据。

它由Hadoop分布式文件系统(HDFS)和Hadoop分布式计算框架(MapReduce)两部分组成。

HDFS用于将数据分布式存储在多台机器上,而MapReduce则用于将数据分布式处理和计算。

Hadoop具有高可靠性、高扩展性和高容错性的特点,适用于处理大规模数据。

第三题:Hive是一种基于Hadoop的数据仓库工具,它提供了类似于SQL的查询语言,可以将结构化数据映射到Hadoop集群上进行查询和分析。

Hive将查询语句转化为MapReduce任务,在Hadoop集群上执行。

Hive适用于处理结构化数据,如日志数据、用户行为数据等。

它提供了丰富的数据处理函数和数据转换功能,能够满足大部分数据分析的需求。

第四题:Spark是一种快速、通用的大数据处理引擎,它可以在内存中高效地处理大规模数据。

Spark提供了丰富的API,支持多种编程语言,如Java、Scala和Python。

Spark的核心概念是弹性分布式数据集(RDD),它是一种抽象的数据结构,可以在集群中并行处理和计算。

Spark具有高速、易用和可扩展的特点,适用于各种大数据处理场景。

第五题:Flink是一种流式处理框架,它能够实时处理和分析数据流。

Flink提供了流处理和批处理两种模式,可以处理无界数据流和有界数据集。

Flink具有低延迟、高吞吐量和容错性的特点,适用于实时数据处理和流式计算。

Flink支持多种数据源和数据接收器,可以与其他大数据工具无缝集成。

第六题:Kafka是一种分布式消息队列系统,用于高吞吐量的发布/订阅消息传输。

storm原理

storm原理

Storm原理一、什么是StormStorm是一种开源的、分布式的实时计算系统。

它可以在大规模的集群环境下处理数据流,并提供了可靠的容错机制。

Storm具有高度可伸缩性和可编程性,使用户能够灵活地处理实时数据。

二、Storm的基本概念在深入探讨Storm的原理之前,我们需要先了解一些Storm的基本概念。

1. Topology(拓扑)在Storm中,拓扑(Topology)是指实时计算的一个任务或应用程序。

拓扑由多个组件组成,每个组件负责一部分计算任务。

拓扑中的组件可以是数据源、数据处理器、数据存储器等。

拓扑可以包含多个层次和多个任务,形成一个复杂的计算图。

2. Spout(喷口)Spout是拓扑中的数据源组件,它从外部数据源接收数据,并将数据发送给下游的Bolt组件。

Spout可以从文件、消息队列、Socket等数据源中读取数据,并实时地将数据发送给Bolt进行处理。

3. Bolt(螺栓)Bolt是拓扑中的数据处理组件,它接收Spout发送的数据,并对数据进行处理。

Bolt可以执行各种计算任务,例如过滤、聚合、计数等。

Bolt可以有多个实例,每个实例只处理一部分数据,并可以进行并行计算。

4. Tuple(元组)在Storm中,数据以Tuple的形式在组件之间传递。

Tuple是一个数据结构,可以包含多个字段。

每个Tuple都有一个唯一的ID和标识符,用于在拓扑中进行传递和追踪。

5. Stream(数据流)Stream是由一系列Tuple组成的序列。

在拓扑中,数据流用于将数据在组件之间传递。

每个数据流都有一个唯一的ID和标识符,用于在拓扑中进行传递和追踪。

三、Storm的工作原理Storm的工作原理可以分为两个阶段:拓扑发布和拓扑执行。

1. 拓扑发布拓扑发布是指将编写好的拓扑提交到Storm的集群环境中运行的过程。

在拓扑发布阶段,Storm会将拓扑的代码、配置信息等发布到集群的各个节点上,并启动拓扑的执行。

storm的用法和搭配

storm的用法和搭配

storm的用法和搭配Storm 是一个开源的、分布式的实时计算系统,具有高容错性、可伸缩性和低延迟的特点。

它在处理大规模数据流的实时计算任务中得到了广泛应用。

本文将介绍 Storm 的用法和搭配,包括 Storm 的基本概念、组件及其相互关系,并阐述Storm 与其他相关技术的结合。

一、Storm 简介与基本概念1.1 Storm 简介Storm 是一个开源分布式实时大数据处理框架,由 Twitter 公司开发并于 2011年开源发布。

它是一种高度可靠且可伸缩的实时流处理系统,可以在大规模数据集上执行复杂计算任务。

1.2 Storm 组成部分Storm 主要由以下几个组件组成:- Nimbus:负责资源分配和任务调度,是整个 Storm 集群的主节点。

- Supervisor:运行在集群工作节点上,负责启动和监控工作进程(Worker),并向 Nimbus 汇报状态信息。

- ZooKeeper:提供协调服务,用于管理Nimbus 和Supervisor 节点之间的通信。

- Topology:描述 Storm 的计算任务模型,包含多个 Spout 和 Bolt 组件构成的有向无环图。

二、Storm 的使用方法2.1 创建 Topology创建一个 Storm Topology 需要以下步骤:- 定义 Spout:Spout 是数据源,可以从消息队列、日志文件等地方获取实时数据流并发送给下游的 Bolt。

通常,你需要实现一个自定义的 Spout 类来满足应用的需求。

- 定义 Bolt:Bolt 是对接收到的数据流进行处理和转换的组件。

在 Bolt 中,你可以执行计算、过滤和聚合等操作,并将处理后的结果发送给其他 Bolt 或外部存储系统。

- 连接 Spout 和 Bolt:通过指定 Spout 和 Bolt 之间的连接关系,形成有向无环图。

2.2 配置 Topology在创建 Topology 时,还需要进行相关配置。

storm 知识点

storm 知识点

Storm 知识点Storm 是一款开源的分布式实时计算系统,它能够处理海量的实时数据,并以高效、可靠的方式进行大规模的实时数据处理。

本文将从基础概念、架构、使用场景和案例等方面逐步介绍 Storm 的知识点。

1. Storm 简介Storm 是由 Twitter 公司开发并开源的一款分布式实时计算系统,它提供了高性能的数据流处理能力。

Storm 的设计目标是处理实时数据流,并能够保证数据的低延迟和高可靠性。

2. Storm 架构Storm 的架构中包含以下几个核心组件:2.1 NimbusNimbus 是 Storm 集群的主节点,它负责协调集群中的各个组件,并进行任务的分配和调度。

Nimbus 还负责监控集群的状态,并处理故障恢复等操作。

2.2 SupervisorSupervisor 是 Storm 集群的工作节点,它负责运行实际的计算任务,并按照Nimbus 的指示进行数据的处理和传输。

每个 Supervisor 节点可以运行多个Worker 进程,每个 Worker 进程负责一个具体的计算任务。

2.3 TopologyTopology 是 Storm 中的一个概念,它表示实际的数据处理流程。

Topology 中包含了 Spout 和 Bolt 两种组件,Spout 负责数据的输入,Bolt 负责对输入数据进行处理和转换。

2.4 ZooKeeperZooKeeper 是一个分布式协调服务,Storm 使用 ZooKeeper 来管理集群中的各个组件。

ZooKeeper 负责维护集群的状态信息,并提供分布式锁等功能,用于实现Storm 的高可靠性和容错能力。

3. Storm 使用场景Storm 在实时数据处理领域有着广泛的应用场景,以下是一些常见的使用场景:3.1 实时数据分析Storm 可以对实时数据进行分析和处理,帮助企业快速了解和响应数据的变化。

例如,可以利用 Storm 进行实时的用户行为分析,及时发现用户的偏好和趋势,并根据分析结果做出相应的调整。

flink vs storm 原理

flink vs storm 原理

Flink vs Storm 原理比较1. 引言Flink和Storm是当前流式计算领域最受欢迎的两个开源框架。

它们都提供了高效、可扩展的流处理能力,但在实现原理和设计理念上有一些区别。

本文将对两者进行详细比较,以便更好地理解它们的原理和特点。

2. FlinkFlink是一个分布式流处理框架,旨在提供高吞吐量、低延迟的实时数据处理。

它的核心原理是基于事件时间(Event Time)的流处理模型。

2.1 流处理模型Flink的流处理模型基于有向无环图(DAG),将数据流划分为无限的事件流,将操作(算子)应用于这些事件流上。

流处理任务由一系列算子组成,每个算子接收输入事件流,经过处理后产生输出事件流。

这种模型可以实现端到端的一致性,即每个算子都能处理事件流的每个事件,保证了数据的完整性和一致性。

2.2 事件时间处理Flink的一个重要特性是对事件时间的支持。

事件时间是事件实际发生的时间,与数据产生的时间和处理的时间无关。

Flink使用事件时间来解决数据乱序、延迟等问题,并提供了一套机制来处理乱序事件流。

Flink通过水位线(Watermark)来处理乱序事件。

水位线是一种逻辑时钟,用于衡量事件时间的进展。

Flink根据水位线来判断是否可以触发窗口操作,以及何时可以将窗口中的结果输出。

2.3 状态管理Flink使用状态(State)来维护处理过程中的中间结果。

状态可以是键值对、列表、计数器等形式。

Flink提供了多种状态管理机制,包括内存状态、文件系统状态、RocksDB状态等。

Flink的状态管理机制允许在故障恢复时保持一致性。

当任务失败或发生重启时,Flink可以从检查点(Checkpoint)中恢复状态,并继续处理数据。

3. StormStorm是一个分布式实时计算系统,用于处理大规模实时数据流。

它的核心原理是基于元组(Tuple)的流处理模型。

3.1 流处理模型Storm的流处理模型是一个有向无环图,由一系列的Spout和Bolt组成。

数据处理中的数据流和实时处理平台推荐(八)

数据处理中的数据流和实时处理平台推荐(八)

数据处理中的数据流和实时处理平台推荐随着数据量的不断增长和应用场景的多样化,数据处理变得越来越重要。

在数据处理中,数据流和实时处理平台是两个关键概念。

本文将介绍数据流和实时处理平台,并推荐几个优秀的平台供读者参考。

一、数据流与实时处理的概念数据流是指数据以连续流的形式传输和处理的过程。

相对于传统的批处理方式,数据流具有实时性和连续性的特点,可以实现对数据的及时处理和分析。

实时处理是指对数据流进行实时的计算和分析,以实现对数据的实时处理。

二、数据流与实时处理的优势数据流和实时处理平台在许多应用场景中具有显著的优势。

首先,数据流可以处理实时数据,使得企业能够及时了解和响应市场变化。

其次,数据流和实时处理平台可以实现对大数据的高效处理和分析,发现其中潜在的商业机会和价值。

此外,数据流和实时处理平台还可以实现对数据的实时监控和异常检测,提高数据的质量和安全性。

三、实时处理平台推荐在众多的实时处理平台中,以下几个平台是业界公认的优秀平台,可以满足不同需求的企业和个人用户。

1. Apache Kafka:Apache Kafka是一种高吞吐量的分布式消息队列系统,被广泛应用于实时数据处理和流式计算。

它具有高可靠性、高扩展性和低延迟等特点,适合于构建大规模的实时数据流处理系统。

2. Apache Flink:Apache Flink是一个开源的流式处理框架,支持流式和批处理的统一处理模型。

它具有低延迟、高吞吐量和高容错性等特点,适用于对实时数据进行复杂的计算和分析。

3. Apache Storm:Apache Storm是一个分布式的实时计算系统,可用于处理高速数据流。

它具有高可扩展性、低延迟和容错性强等特点,被广泛应用于实时数据分析和实时应用程序的开发。

4. Spark Streaming:Spark Streaming是Apache Spark的一个模块,提供了对实时数据流进行连续计算的能力。

它具有高吞吐量、低延迟和易用性等特点,适用于对实时数据进行快速的分析和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论Storm分布式实时计算工具
作者:沈超邓彩凤
来源:《中国科技纵横》2014年第03期
【摘要】互联网的应用催生了一大批新的数据处理技术,storm分布式实时处理工具以其强大的数据处理能力、可靠性高、扩展性好等特点,在近几年得到越来越广泛的关注和应用。

【关键词】分布式实时计算流处理
1 背景及特点
互联网的应用正在越来越深入的改变人们的生活,互联网技术也在不断发展,尤其是大数据处理技术,过去的十年是大数据处理技术变革的十年,MapReduce,Hadoop以及一些相关的技术使得我们能处理的数据量比以前要大得多得多。

但是这些数据处理技术都不是实时的系统,或者说,它们设计的目的也不是为了实时计算。

没有什么办法可以简单地把hadoop变成一个实时计算系统。

实时数据处理系统和批量数据处理系统在需求上有着本质的差别。

然而大规模的实时数据处理已经越来越成为一种业务需求了,而缺少一个“实时版本的hadoop”已经成为数据处理整个生态系统的一个巨大缺失。

而storm的出现填补了这个缺失。

Storm出现之前,互联网技术人员可能需要自己手动维护一个由消息队列和消息处理者所组成的实时处理网络,消息处理者从消息队列取出一个消息进行处理,更新数据库,发送消息给其它队列等等。

不幸的是,这种方式有以下几个缺陷:
单调乏味:技术人员花费了绝大部分开发时间去配置把消息发送到哪里,部署消息处理者,部署中间消息节点—设计者的大部分时间花在设计,配置这个数据处理框架上,而真正关心的消息处理逻辑在代码里面占的比例很少。

脆弱:不够健壮,设计者要自己写代码保证所有的消息处理者和消息队列正常运行。

伸缩性差:当一个消息处理者的消息量达到阀值,需要对这些数据进行分流,配置这些新的处理者以让他们处理分流的消息。

Storm定义了一批实时计算的原语。

如同hadoop大大简化了并行批量数据处理,storm的这些原语大大简化了并行实时数据处理。

storm的一些关键特性如下:
适用场景广泛:storm可以用来处理消息和更新数据库(消息流处理),对一个数据量进行持续的查询并返回客户端(持续计算),对一个耗资源的查询作实时并行化的处理(分布式方法调用),storm的这些基础原语可以满足大量的场景。

可伸缩性高:Storm的可伸缩性可以让storm每秒可以处理的消息量达到很高。

Storm使用ZooKeeper来协调集群内的各种配置使得Storm的集群可以很容易的扩展很大。

保证无数据丢失:实时系统必须保证所有的数据被成功的处理。

那些会丢失数据的系统的适用场景非常窄,而storm保证每一条消息都会被处理,这一点和S4相比有巨大的反差。

异常健壮:不像Hadoop—出了名的难管理,storm集群非常容易管理。

容易管理是storm 的设计目标之一。

语言无关性:健壮性和可伸缩性不应该局限于一个平台。

Storm的topology和消息处理组件可以用任何语言来定义,这一点使得任何人都可以使用storm。

2 storm的关键概念
计算拓补:Topologies
一个实时计算应用程序的逻辑在storm里面被封装到topology对象里面,我把它叫做计算拓补。

Storm里面的topology相当于Hadoop里面的一个MapReduce Job,它们的关键区别是:一个MapReduce Job最终总是会结束的,然而一个storm的topoloy会一直运行—除非你显式的杀死它。

一个Topology是Spouts和Bolts组成的图状结构,而链接Spouts和Bolts的则是Streamgroupings。

消息流:Streams
消息流是storm里面的最关键的抽象。

一个消息流是一个没有边界的tuple序列,而这些tuples会被以一种分布式的方式并行地创建和处理。

对消息流的定义主要是对消息流里面的tuple的定义,我们会给tuple里的每个字段一个名字。

并且不同tuple的对应字段的类型必须一样。

也就是说:两个tuple的第一个字段的类型必须一样,第二个字段的类型必须一样,但是第一个字段和第二个字段可以有不同的类型。

在默认的情况下,tuple的字段类型可以是:integer,long,short,byte,string,double,float,boolean和bytearray。

你还可以自定义类型—只要你实现对应的序列化器。

3 storm应用及前景
根据storm的特点,大致有两个应用模式:(1)实时流处理;(2)drpc调用;前者就是通过消息队列等方式将数据源源不断的发送给storm集群来处理,而后者,类似于开启一个服务,客户端方面可以远程的发送数据给storm并同步或异步的接收到处理结果。

storm的应用场景非常广泛,具体如下:
监控系统:监控整个集群的状态,当出现异常log的时候进行分析,对异常进行分类并实时发出报警,提示运维人员来维护。

并且可以进一步考虑。

这样可以对整个系统的做一个很好的监控和反应。

安全系统:在信息安全领域中,做实时的流量分析,异常过滤、恶意攻击检测等。

实时计算:根据之前数据分析人员分析计算的数学模型,如点击量预估模型、用户付费预期计算模型、好友推荐算法,放到storm的拓扑中,通过topology来计算,可以帮助实时为用户提供服务、及时发现问题、极大的提高工作效率,而不必受制于老的计算模式,如一天计算一次、一小时计算一次等。

Storm0.7系列的版本已经在各大公司得到了广泛使用,最近发布的0.8版本中引入了State,使得其从一个纯计算框架演变成了一个包含存储和计算的实时计算新利器,还有刚才提到的Trident,提供更加友好的接口,同时可定制scheduler的特性也为其针对不同的应用场景做优化提供了更便利的手段,也有人已经在基于storm的实时ql(query language)上迈出了脚本。

在服务化方面,storm一直在朝着融入mesos框架的方向努力。

同时,storm也在实现细节上不断地优化,使用很多优秀的开源产品,包括kryo,Disruptor,curator等等。

可以想象,当storm发展到1.0版本时,一定是一款无比杰出的产品。

相关文档
最新文档