高等代数选讲之多项式理论演示文稿
高等代数第1章多项式

三、整除的性质
• 1、若f(x)g(x)且g(x)f(x),则 存在常数 c0,使 f(x)=cg(x),. • 2、若f(x)g(x)且g(x)h(x), 则 f(x)h(x) (传递性) • 3、若f(x)g1(x)且f(x)g2(x),则 f(x)g1(x)g2(x). • 4、若f(x)g1(x)且f(x)g2(x),则u(x),v(x), f(x)u(x)g1(x)+v(x)g2(x).
f(x)-g(x)q1(x)=f1(x) deg f1(x)n-1 f1(x)-g(x)q2(x)=f2(x) deg f2(x)n-2 fk(x)-g(x)qk+1(x)=fk+1(x) f1(x), f2(x),, fk(x)的次数渐减,直到小于g(x)的次数
上式可改写为 f(x) = f1(x) + g(x)q1(x) f1(x)= f2(x) +g(x)q2(x) +) fk(x)=fk+1(x)+g(x)qk+1(x) . f(x)=fk+1(x)+g(x)[q1(x)+q2(x)++qk+1(x)] 于是,令q(x)=[q1(x)+q2(x)++qk+1(x)], r(x)=fk+1(x), deg r(x)<deg g(x)或r(x)=0. 唯一性 假设另有q1(x)和r1(x),满足 f(x) = q1(x)g(x) + r1(x) 其中deg(r1(x))<deg(g(x))或者r1(x)=0
一些性质
• 1、数域P上的两个多项式经过加、减、乘运 算后,所得的结果仍然是数域P上的多项式 • 2、deg(f(x)g(x))max(deg f(x),deg g(x)) deg(f(x)g(x))=deg f(x)+deg g(x) • 3、若f(x)0,g(x)0,则f(x)g(x)0,而且f(x)g(x)的 首项就等于f(x)的首项与g(x)的首项之积; f(x)g(x)的首项系数等于f(x)的首项系数与g(x) 的首项系数之积.
多项式课件教程文件

多项式也被广泛应用于物理领域,如力学、电磁 学等。
工程领域
多项式在工程领域中也有着广泛的应用,如结构 分析、热传导等。
02
多项式的运算规则
加法与乘法
01
02
总结词:多项式中,加法与乘 法是最基本的运算,也是多项 式变形的基础。
详细描述
03
04
1. 加法:将多项式中相同字母 的系数相加,作为新的系数, 字母不变。例如, (2x+3)+(4x+5)=6x+8。
详细描述
2. 除法:在多项式中,除法实际上是乘以一个倒 数
幂运算
详细描述
2. 运算法则:幂运算有特殊的运算法则,如 2^3 x 3^2=(2 x 3)^3=6^3=216。
总结词:幂运算是一种特殊的运算方式,用 于表示相同因子的多次重复。
1. 定义:幂运算是由底数和指数构成的,表 示为a^n,其中a是底数,n是指数。例如, 2^3表示2重复三次。
算法的实现与应用
多项式求值的算法
多项式求值的算法主要有两种,一种是基于泰勒展开的算法,另一种是基于霍纳 规则的算法。泰勒展开算法适用于小规模的多项式求值,而霍纳规则算法适用于 大规模的多项式求值。例如:使用泰勒展开算法求解$e^x$近似值。
多项式求导的算法
多项式求导的算法基于多项式的导数定义和求导公式。例如:对于多项式$f(x) = x^3 + 2x^2 + x + 1$,根据导数定义得到$f'(x) = 3x^2 + 4x + 1$。
。
因式分解方法
包括提公因式法、公式法、分组 分解法等。
因式分解应用
在解决高次方程和求根等问题时, 因式分解具有重要应用价值。
《高等代数》第一章 多项式

§1 数域关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P 就称为一个数域.显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来代表.全体整数组成的集合就不是数域.如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.例1 所有具有形式2b a +的数(其中b a ,是任何有理数),构成一个数域.通常用)2(Q 来表示这个数域.例2 所有可以表成形式m m nn b b b a a a ππππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.例 3 所有奇数组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的.性质:所有的数域都包含有理数域作为它的一部分.一、一元多项式定义2 设n 是一非负整数,形式表达式111a x a x a x a n n n n ++++-- ,(1) 其中n a a a ,,,10 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.在多项式(1)以后用 ),(),(x g x f 或 ,,g f 等来表示多项式.注意:这里定义的多项式是符号或文字的形式表达式.定义3 如果在多项式)(x f 与)(x g 中,除去系数为零的项外,同次项的系数全相等)()(x g x f =.系数全为零的多项式称为零多项式,记为0.在(1)中,如果0≠n a n a 称为首项系数,n 称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式)(x f二、多项式的运算设0111)(a x a x a x a x f n n n n ++++=--0111)(b x b x b x b x g m m m m ++++=--是数域P 上两个多项式,那么可以写成∑==ni i i x a x f 0)(∑==mj j j x b x g 0)(在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b ,那么)(x f 与)(x g 的和为∑=---+=++++++++=+n i i i i n n n n n n xb a b a x b a x b a x b a x g x f 00011111)()()()()()()(而)(x f 与)(x g 的乘积为其中s 次项的系数是∑=+--=++++s j i j i s s s sb a b a b a b a b a 011110所以)(x f )(x g 可表成显然,数域P 上的两个多项式经过加、减、乘运算后,所得结果仍然是数域P 上的多项式.对于多项式的加减法,不难看出对于多项式的乘法,可以证明,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且由以上证明看出,多项式乘积的首项系数就等于因子首项系数的乘积.显然上面的结果都可以推广到多个多项式的情形.多项式的运算满足以下的一些规律:1. 加法交换律:)()()()(x f x g x g x f +=+.2. 加法结合律:))()(()()())()((x h x g x f x h x g x f ++=++3. 乘法交换律:. )()()()(x f x g x g x f =4. 乘法结合律:))()()(()())()((x h x g x f x h x g x f =5. 乘法对加法的分配律:)()()()())()()((x h x f x g x f x h x g x f +=+6. 乘法消去律:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.定义4 所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为][x P ,P 称为][x P 的系数域.§3 整除的概念在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法—并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.一、整除的概念带余除法 对于][x P 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有][x P 中的多项式)(),(x r x q 存在,使(1))(),(x r x q 是唯一决定的.带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,)(x r 称为)(x g 除)(x f 的余式.定义5 数域P 上的多项式)(x g 称为整除)(x f ,如果有数域P 上的多项式)(x h 使等式成立.用表示)(x g 整除)(x f ,用“)(|)(x f x g /”表示)(x g 不能整除)(x f .当)(|)(x f x g 时,)(x g 就称为)(x f 的因式,)(x f 称为)(x g 的倍式.当0)(≠x g 时,带余除法给出了整除性的一个判别条件.定理1 对于数域P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.带余除法中)(x g 必须不为零.但)(|)(x f x g 中,)(x g 可以为零.这时0)(0)()()(=⋅=⋅=x h x h x g x f .当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用)()(x g x f 来表示.二、整除的性质1. 任一多项式)(x f 一定整除它自身.2. 任一多项式)(x f 都能整除零多项式.3. 零次多项式,即非零常数,能整除任一个多项式.4. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.5. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).6. 若r i x g x f i ,,2,1),(|)( =,则))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++ ,其中)(x u i 是数域P 上任意的多项式.通常,)()()()()()(2211x g x u x g x u x g x u r r +++ 称为)(,),(),(21x g x g x g r 的最后,两个多项式之间的整除关系不因系数域的扩大而改变.即若)(x f ,)(x g 是][x P 中两个多项式,P 是包含P 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是][x P 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是][x P 中或者是][x P 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在][x P 中)(x g 不能整除)(x f ,则在][x P 中,)(x g 也不能整除)(x f .例1 证明若)()(|)(),()(|)(2121x f x f x g x f x f x g -+,则)(|)(),(|)(21x f x g x f x g例2 求l k ,,使1|32++++kx x l x x .例3 若)(|)(),(|)(x h x g x f x g /,则)()(|)(x h x f x g +/.§4 多项式的最大公因式一 、多项式的最大公因式如果多项式)(x ϕ既是)(x f 的因式,又是)(x g 的因式,那么)(x ϕ就称为)(x f 与)(x g 的一个公因式.定义 6 设)(x f 与)(x g 是][x P 中两个多项式. ][x P 中多项式)(x d 称为)(x f ,)(x g 的一个公因式,如果它满足下面两个条件:1))(x d 是)(x f 与)(x g 的公因式;2))(x f ,)(x g 的公因式全是)(x d 的因式.例如,对于任意多项式)(x f ,)(x f 就是)(x f 与0的一个最大公因式.特别地,根据定义,两个零多项式的最大公因式就是0.引理 如果有等式)()()()(x r x g x q x f += (1)成立,那么)(x f ,)(x g 和)(x g ,)(x r 有相同的公因式.定理2 对于][x P 的任意两个多项式)(x f ,)(x g ,在][x P 中存在一个最大公因式)(x d ,且)(x d 可以表成)(x f ,)(x g 的一个组合,即有][x P 中多项式)(),(x v x u 使由最大公因式的定义不难看出,如果)(),(21x d x d 是)(x f ,)(x g 的两个最大公因式,那么一定有)(|)(21x d x d 与)(|)(12x d x d ,也就是说0),()(21≠=c x cd x d .这就是说,两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的.两个不全为零的多项式的最大公因式总是一个非零多项式.在这个情形,我们约定,用来表示首项系数是1的那个最大公因式.定理证明中用来求最大公因式的方法通常称为辗转相除法(division algorithm).例 设343)(234---+=x x x x x f32103)(23-++=x x x x g求()(x f ,)(x g ),并求)(),(x v x u 使)()()()()(x g x v x f x u x d +=.注:定理2的逆不成立.例如令1)(,)(+==x x g x x f ,则122)1)(1()2(2-+=-+++x x x x x x .但1222-+x x 显然不是)(x f 与)(x g 的最大公因式.但是当(2)式成立,而)(x d 是)(x f 与)(x g 的一个公因式,则)(x d 一定是)(x f 与)(x g 的一个最大公因式.二、多项式互素定义7 ][x P 中两个多项式)(x f ,)(x g 称为互素(也称为互质)的,如果显然,两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.定理3 ][x P 中两个多项式)(x f ,)(x g 互素的充要条件是有][x P 中多项式)(),(x v x u 使推论2 如果1))(),((1=x g x f ,1))(),((2=x g x f ,那么1))(),()((21=x g x f x f 推广:对于任意多个多项式)2)((,),(),(21≥s x f x f x f s ,)(x d 称为)2)((,),(),(21≥s x f x f x f s 的一个最大公因式,如果)(x d 具有下面的性质:1)s i x f x d i ,,2,1),(|)( =;2)如果s i x f x i ,,2,1),(|)( =ϕ,那么)(|)(x d x ϕ.我们仍用))(,),(),((21x f x f x f s 符号来表示首项系数为1的最大公因式.不难证明)(,),(),(21x f x f x f s 的最大公因式存在,而且当)(,),(),(21x f x f x f s 全不为零时,))()),(,),(),(((121x f x f x f x f s s -就是)(,),(),(21x f x f x f s 的最大公因式,即))(,),(),((21x f x f x f s =))()),(,),(),(((121x f x f x f x f s s -同样,利用以上这个关系可以证明,存在多项式s i x u i ,,2,1),( =,使))(,),(),(()()()()()()(212211x f x f x f x f x u x f x u x f x u s s s =+++如果1))(,),(),((21=x f x f x f s ,那么)(,),(),(21x f x f x f s 就称为互素的.同样有类似定理3的结论.注意 1)当一个多项式整除两个多项式之积时,若没有互素的条件,这个多项式一般不能整除积的因式之一.例如222)1()1(|1-+-x x x ,但22)1(|1+/-x x ,且22)1(|1-/-x x .2) 推论1中没有互素的条件,则不成立.如1)(2-=x x g ,1)(1+=x x f , )1)(1()(2-+=x x x f ,则)(|)(),(|)(21x g x f x g x f ,但)(|)()(21x g x f x f .注意:s )2(≥s 个多项式)(,),(),(21x f x f x f s 互素时,它们并不一定两两互素.例如,多项式34)(,65)(,23)(232221+-=+-=+-=x x x f x x x f x x x f是互素的,但2))(),((21-=x x f x f . 令P 是含P 的一个数域, )(x d 是][x P 的多项式)(x f 与)(x g 在][x P 中的首项系数为1的最大公因式,而)(x d 是)(x f 与)(x g 在][X P 中首项系数为1的最大公因式,那么)()(x d x d =.即从数域P 过渡到数域P 时, )(x f 与)(x g 的最大公因式本质上没有改变. 互素多项式的性质可以推广到多个多项式的情形:1)若多项式),()()(|)(21x f x f x f x h s )(x h 与)(,),(),(,),(111x f x f x f x f s i i +- 互素,则)1)((|)(s i x f x h i ≤≤.2) 若多项式)(,),(),(21x f x f x f s 都整除)(x h ,且)(,),(),(21x f x f x f s 两两互素,则)(|)()()(21x h x f x f x f s .3) 若多项式)(,),(),(21x f x f x f s 都与)(x h 互素,则1))(),()()((21=x h x f x f x f s .§5 因式分解定理一、不可约多项式Con i x i x x x R on x x x Q on x x x )2)(2)(2)(2()2)(2)(2()2)(2(42224+-+-=++-=+-=-. 定义8 数域P 上次数1≥的多项式)(x p 称为域P 上的不可约多项式(irreducible polynomical),如果它不能表成数域P 上的两个次数比)(x p 的次数低的多项式的乘积.根据定义,一次多项式总是不可约多项式.一个多项式是否可约是依赖于系数域的.显然,不可约多项式)(x p 的因式只有非零常数与它自身的非零常数倍)0)((≠c x cp 这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.推广:如果不可约多项式)(x p 整除一些多项式)(,),(),(21x f x f x f s 的乘积)()()(21x f x f x f s ,那么)(x p 一定整除这些多项式之中的一个.二、因式分解定理因式分解及唯一性定理 数域P 上次数1≥的多项式)(x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ==,那么必有t s =,并且适当排列因式的次序后有s i x q c x p i i i ,,2,1,)()( ==.其中),,2,1(s i c i =是一些非零常数.应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.实际上,对于一般的情形,普遍可行的分解多项式的方法是不存在的.在多项式)(x f 的分解式中,可以把每一个不可约因式的首项系数提出来,使它们成为首项系数为1的多项式,再把相同的不可约因式合并.于是)(x f 的分解式成为)()()()(2121x p x p x cp x f s r s r r =,其中c 是)(x f 的首项系数,)(,),(),(21x p x p x p s 是不同的首项系数为1的不可约多项式,而s r r r ,,,21 是正整数.这种分解式称为标准分解式.如果已经有了两个多项式的标准分解,就可以直接写出两个多项式的最大公因式.多项式)(x f 与)(x g 的最大公因式)(x d 就是那些同时在)(x f 与)(x g 的标准分解式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在)(x f 与)(x g 中所带的方幂中较小的一个.由以上讨论可以看出,带余除法是一元多项式因式分解理论的基础.若)(x f 与)(x g 的标准分解式中没有共同的不可约多项式,则)(x f 与)(x g 互素.注意:上述求最大公因式的方法不能代替辗转相除法,因为在一般情况下,没有实际分解多项式为不可约多项式的乘积的方法,即使要判断数域P 上一个多项式是否可约一般都是很困难的.例 在有理数域上分解多项式22)(23--+=x x x x f 为不可约多项式的乘积.§6 重因式一、重因式的定义定义9 不可约多项式)(x p 称为多项式)(x f 的k 重因式,如果)(|)(x f x p k ,但)(|)(1x f x p k /+.如果0=k ,那么)(x p 根本不是)(x f 的因式;如果1=k ,那么)(x p 称为)(x f 的单因式;如果1>k ,那么)(x p 称为)(x f 的重因式.注意. k 重因式和重因式是两个不同的概念,不要混淆.显然,如果)(x f 的标准分解式为)()()()(2121x p x p x cp x f s r s r r =,那么)(,),(),(21x p x p x p s 分别是)(x f 的1r 重,2r 重,… ,s r 重因式.指数1=i r 的那些不可约因式是单因式;指数1>i r 的那些不可约因式是重因式.使得)()()(x g x p x f k =,且)(|)(x g x p /.二、重因式的判别设有多项式0111)(a x a x a x a x f n n n n ++++=-- ,规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++-+='--- .通过直接验证,可以得出关于多项式微商的基本公式:).()()()()()(()())((),()())()((x g x f x g x f x g x f x f c x cf x g x f x g x f '+'=''=''+'='+)))()(())((1x f x f m x f m m '='-同样可以定义高阶微商的概念.微商)(x f '称为)(x f 的一阶微商;)(x f '的微商)(x f ''称为)(x f 的二阶微商;等等. )(x f 的k 阶微商记为)()(x f k .一个)1(≥n n 次多项式的微商是一个1-n 次多项式;它的n 阶微商是一个常数;它的1+n 阶微商等于0.定理6 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是微商)(x f '的1-k 重因式.分析: 要证)(x p 是微商)(x f '的1-k 重因式,须证)(|)(1x f x p k '-,但)(|)(x f x p k '/.注意:定理6的逆定理不成立.如333)(23++-=x x x x f , 22)1(3363)(-=+-='x x x x f ,1-x 是)(x f '的2重因式,但根本不是)(x f 是因式.当然更不是三重因式.推论 1 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是)(x f ,)(x f ',…,)()1(x f k -的因式,但不是)()(x f k 的因式.)(x f 与)(x f '的公因式.推论3 多项式)(x f 没有重因式1))(),((='⇔x f x f这个推论表明,判别一个多项式有无重因式可以通过代数运算——辗转相除法来解决,这个方法甚至是机械的.由于多项式的导数以及两个多项式互素与否的事实在由数域P 过渡到含P 的数域P 时都无改变,所以由定理6有以下结论:若多项式)(x f 在][x P 中没有重因式,那么把)(x f 看成含P 的某一数域P 上的多项式时, )(x f 也没有重因式.例1 判断多项式2795)(234+-+-=x x x x x f有无重因式三、去掉重因式的方法设)(x f 有重因式,其标准分解式为s r s r r x p x p x cp x f )()()()(2121 =.那么由定理5),()()()()(1121121x g x p x p x p x f s r s r r ---='此处)(x g 不能被任何),,2,1)((s i x p i =整除.于是11211)()()()())(),((21---=='s r s r r x p x p x p x d x f x f用)(x d 去除)(x f 所得的商为)()()()(21x p x p x cp x h s =这样得到一个没有重因式的多项式)(x h .且若不计重数, )(x h 与)(x f 含有完全相同的不可约因式.把由)(x f 找)(x h 的方法叫做去掉重因式方法.例2 求多项式16566520104)(23456++++--=x x x x x x x f的标准分解式.§7 多项式函数到目前为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表达式.在这一节,将从另一个观点,即函数的观点来考察多项式.一、多项式函数设0111)(a x a x a x a x f n n n n ++++=-- (1)是][x P 中的多项式,α是P 中的数,在(1)中用α代x 所得的数0111a a a a n n n n ++++--ααα称为)(x f 当α=x 时的值,记为)(αf .这样,多项式)(x f 就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.因为x 在与数域P 中的数进行运算时适合与数的运算相同的运算规律,所以不难看出,如果,)()()(,)()()(21x g x f x h x g x f x h =+=那么.)()()(,)()()(21ααααααg f h g f h =+=定理7(余数定理)用一次多项式去除多项式)(x f ,所得的余式是一个常数,这个常数等于函数值)(αf .如果)(x f 在α=x 时函数值0)(=αf ,那么α就称为)(x f 的一个根或零点. 由余数定理得到根与一次因式的关系.推论 α是)(x f 的根的充要条件是)(|)(x f x α-.由这个关系,可以定义重根的概念. α称为)(x f 的k 重根,如果)(α-x 是)(x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理8 ][x P 中n 次多项式)0(≥n 在数域P 中的根不可能多于n 个,重根按重数计算.二、多项式相等与多项式函数相等的关系在上面看到,每个多项式函数都可以由一个多项式来定义.不同的多项式会不会定义出相同的函数呢?这就是问,是否可能有)()(x g x f ≠,而对于P 中所有的数α都有)()(ααg f =?由定理8不难对这个问题给出一个否定的回答.定理9 如果多项式)(x f ,)(x g 的次数都不超过n ,而它们对n+1个不同的数有相同的值即)()(i i g f αα=,1,,2,1+=n i ,那么)(x f =)(x g .因为数域中有无穷多个数,所以定理9说明了,不同的多项式定义的函数也不相同.如果两个多项式定义相同的函数,就称为恒等,上面结论表明,多项式的恒等与多项式相等实际上是一致的.换句话说,数域P 上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.但是应该指出,考虑到今后的应用与推广,多项式看成形式表达式要方便些.三、综合除法根据余数定理,要求)(x f 当c x =时的值,只需用带余除法求出用c x -除)(x f 所得的余式.但是还有一个更简便的方法,叫做综合除法.设n n n n n a x a x a x a x a x f +++++=---122110)(并且设r x q c x x f +-=)()()(. (2)其中.)(12322110-----+++++=n n n n n b x b x b x b x b x q比较等式(2)中两端同次项的系数.得到.,,,,121112201100-----=-=-=-==n n n n n cb r a cb b a cb b a cb b a b a⇒ .,,,,112121210100n n n n n a cb r a cb b a cb b a cb b a b +=+=+=+==---- 这样,欲求系数k b ,只要把前一系数1-k b 乘以c 再加上对应系数k a ,而余式r 也可以按照类似的规律求出.因此按照下表所指出的算法就可以很快地陆续求出商式的系数和余式:rb b b b cb cb cb cb a a a a ac n n n n n |)|12101210121---------------------------------+ 表中的加号通常略去不写.例1 用3+x 除94)(24-++=x x x x f .例2 求k 使355)(234+++-=kx x x x x f 能被3-x 整除注意 :若)(x f 缺少某一项,在作综合除法时该项系数的位置要补上零.四、拉格朗日插值公式已知次数n ≤的多项式)(x f 在)1,,2,1(+==n i c x i 的值)1,,,2,1()(+==n i b c f i i .设∑+=++-----=111111)())(()()(n i n i i i c x c x c x c x k x f依次令c x =代入)(x f ,得)())(()(1111++-----=n i i i i i i i i c c c c c c c c b k ∑+=++-++---------=1111111111)())(()()())(()()(n i n i i i i i i n i i i c c c c c c c c c x c x c x c x b x f 这个公式叫做拉格朗日(Lagrange)插值公式.例3 求次数小于3的多项式)(x f ,使3)2(,3)1(,1)1(==-=f f f .下面介绍将一个多项式表成一次多项式α-x 的方幂和的方法.所谓n 次多项式)(x f 表成α-x 的方幂和,就是把)(x f 表示成0111)()()()(b x b x b x b x f n n n n +-++-+-=--ααα的形式.如何求系数011,,,,b b b b n n -,把上式改写成01211)]()()([)(b x b x b x b x f n n n n +-++-+-=---ααα ,就可看出0b 就是)(x f 被α-x 除所得的余数,而12111)()()(b x b x b x q n n n n ++-+-=--- αα就是)(x f 被α-x 除所得的商式.又因为123121)]()()([)(b x b x b x b x q n n n n +-++-+-=---ααα .又可看出1b 是商式)(1x q 被α-x 除所得的余式,而233122)()()()(b x b x b x b x q n n n n +-++-+-=---ααα .就是)(1x q 被α-x 除所得商式.这样逐次用α-x 除所得的商式,那么所得的余数就是n n b b b b ,,,,110- .例4 将5)2()2(3)2(2)2()(234+-+---+-=x x x x x f 展开成x 的多项式. 解 令2-=x y ,则2+=y x .于是532)2(234++-+=+y y y y y f .问题变为把多项式532234++-+y y y y 表成2+y (即x )的方幂和,-2 | 1 2 -3 1 5+) -2 0 6 -14--------------------------------------------------------2 | 1 0 -3 7 | -9+) -2 4 -2-------------------------------------------------------2 | 1 -2 1 | 5+) -2 8------------------------------------------------2 | 1 -4 | 9+) -2----------------------------------1 | -6所以9596)(234-++-=x x x x x f .注意:将)(x f 表成α-x 的方幂和,把α写在综合除法的左边,将α-x 的方幂和展开成x 的多项式,那么相当于将)(x f 表成c c x +-)(的方幂和,要把c -写在综合除法的左边.§8 复系数和实系数多项式的因式分解一、 复系数多项式因式分解定理代数基本定理 每个次数1≥的复系数多项式在复数域中有一个根.利用根与一次因式的关系,代数基本定理可以等价地叙述为:每个次数1≥的复系数多项式在复数域上一定有一个一次因式.由此可知,在复数域上所有次数大于1的多项式都是可约的.换句话说,不可约多项式只有一次多项式.于是,因式分解定理在复数域上可以叙述成:复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.因此,复系数多项式具有标准分解式s l s l l n x x x a x f )()()()(2121ααα---=其中s ααα,,,21 是不同的复数,s l l l ,,,21 是正整数.标准分解式说明了每个n 次复系数多项式恰有n 个复根(重根按重数计算).二、实系数多项式因式分解定理对于实系数多项式,以下事实是基本的:如果α是实系数多项式)(x f 的复根,那么α的共轭数α也是)(x f 的根,并且α与α有同一重数.即实系数多项式的非实的复数根两两成对.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与含一对非实共轭复数根的二次因式的乘积.实数域上不可约多项式,除一次多项式外,只有含非实共轭复数根的二次多项式.因此,实系数多项式具有标准分解式r s k r r k l s l l n q x p x q x p x c x c x c x a x f )()()()()()(211221121++++---= 其中r r s q q p p c c ,,,,,,,,111 全是实数,s l l l ,,,21 ,r k k ,,1 是正整数,并且),,2,1(2r i q x p x i i =++是不可约的,也就是适合条件r i q p i i ,,2,1,042 =<-..代数基本定理虽然肯定了n 次方程有n 个复根,但是并没有给出根的一个具体的求法.高次方程求根的问题还远远没有解决.特别是应用方面,方程求根是一个重要的问题,这个问题是相当复杂的,它构成了计算数学的一个分支.三、n 次多项式的根与系数的关系.令.)(11n n n a x a x x f +++=- (1)是一个n (>0)次多项式,那么在复数域C 中)(x f 有n 个根,,,,21n ααα 因而在][x C 中)(x f 完全分解为一次因式的乘积:).())(()(21n x x x x f ααα---=展开这一等式右端的括号,合并同次项,然后比较所得出的系数与(1)式右端的系数,得到根与系数的关系.,)1(),()1(),(),),(21323112111124213213131212211n n n n n n n n n n n n n n a a a a a αααααααααααααααααααααααααααααα-=+++-=+++-=+++=+++-=------(其中第),,2,1(n k k =个等式的右端是一切可能的k 个根的乘积之和,乘以k )1(-.若多项式 n n n a x a x a x f +++=- 110)(的首项系数,10≠a 那么应用根与系数的关系时须先用0a 除所有的系数,这样做多项式的根并无改变.这时根与系数的关系取以下形式:.)1(,),(21013121022101n n n n n n a a a a a a αααααααααααα-=+++=+++-=-利用根与系数的关系容易求出有已知根的多项式.例1 求出有单根5与-2,有二重根3的四次多项式.例2. 分别在复数域和实数域上分解1-n x 为标准分解式.§9 有理系数多项式作为因式分解定理的一个特殊情形,有每个次数≥1的有理系数多项式都能分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的.在这一节主要是指出有理系数多项式的两个重要事实:第一,有理系数多项式的因式分解的问题,可以归结为整(数)系数多项式的因式分解问题,并进而解决求有理系数多项式的有理根的问题.第二,在有理系数多项式环中有任意次数的不可约多项式.一、有理系数多项式的有理根设011)(a x a x a x f n n n n +++=--是一个有理系数多项式.选取适当的整数c 乘)(x f ,总可以使)(x cf 是一个整系数多项式.如果)(x cf 的各项系数有公因子,就可以提出来,得到)()(x dg x cf =,也就是)()(x g cd x f = 其中)(x g 是整系数多项式,且各项系数没有异于±1的公因子.如果一个非零的整系数多项式011)(b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于±1的公因子,也就是说它们是互素的,它就称为一个本原多项式.上面的分析表明,任何一个非零的有理系数多项式)(x f 都可以表示成一个有理数r 与一个本原多项式)(x g 的乘积,即)()(x rg x f =.可以证明,这种表示法除了差一个正负号是唯一的.亦即,如果)()()(11x g r x rg x f ==,其中)(),(1x g x g 都是本原多项式,那么必有)()(,11x g x g r r ±=±=因为)(x f 与)(x g 只差一个常数倍,所以)(x f 的因式分解问题,可以归结为本原多项式)(x g 的因式分解问题.下面进一步指出,一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.定理10(Gauss 引理) 两个本原多项式的乘积还是本原多项式.定理11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定可以分解两个次数较低的整系数多项式的乘积.以上定理把有理系数多项式在有理数域上是否可约的问题归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.推论 设)(x f ,)(x g 是整系数多项式,且)(x g 是本原多项式,如果)()()(x h x g x f =,其中)(x h 是有理系数多项式,那么)(x h 一定是整系数多项式.这个推论提供了一个求整系数多项式的全部有理根的方法. 定理12 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.而sr是它的一个有理根,其中s r ,互素,那么(1) 0|,|a r a s n ;特别如果)(x f 的首项系数1=n a ,那么)(x f 的有理根都是整根,而且是0a 的因子.(2) ),()()(x q srx x f -= 其中)(x q 是一个整系数多项式.给了一个整系数多项式)(x f ,设它的最高次项系数的因数是k v v v ,,,21 ,常数项的因数是.,,,21l u u u 那么根据定理12,欲求)(x f 的有理根,只需对有限个有理数ji v u 用综合除法来进行试验.当有理数jiv u 的个数很多时,对它们逐个进行试验还是比较麻烦的.下面的讨论能够简化计算.首先,1和-1永远在有理数jiv u 中出现,而计算)1(f 与)1(-f 并不困难.另一方面,若有理数)1(±≠a 是)(x f 的根,那么由定理12,)()()(x q x x f α-=而)(x q 也是一个整系数多项式.因此商)1(1)1(),1(1)1(--=+-=-q af q af 都应该是整数.这样只需对那些使商a f a f +--1)1(1)1(与都是整数的ji v u来进行试验.(我们可以假定)1(f 与)1(-f 都不等于零.否则可以用1-x 或1+x 除)(x f 而考虑所得的商.)例1 求多项式2553)(234-+++=x x x x x f的有理根.例2 证明15)(3+-=x x x f在有理数域上不可约.二、有理数域上多项式的可约性定理13 (艾森斯坦(Eisenstein)判别法) 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.若有一个素数p ,使得1. n a p |/;2. 021,,,|a a a p n n --;3. 02|a p /.则多项式)(x f 在有理数域上不可约.由艾森斯坦判断法得到:有理数域上存在任意次的不可约多项式.例如2)(+=n x x f .,其中n 是任意正整数.艾森斯坦判别法的条件只是一个充分条件.有时对于某一个多项式)(x f ,艾森斯坦判断法不能直接应用,但把)(x f 适当变形后,就可以应用这个判断法.例3 设p 是一个素数,多项式1)(21++++=--x x x x f p p叫做一个分圆多项式,证明)(x f 在][x Q 中不可约.证明:令1+=y x ,则由于1)()1(-=-p x x f x ,yCyC y y y yf p pp ppp 1111)1()1(--+++=-+=+ ,令)1()(+=y f y g ,于是1211)(---+++=p p p p p C yC y y g ,由艾森斯坦判断法,)(y g 在有理数域上不可约,)(x f 也在有理数域上不可约.第一章 多项式(小结)一元多项式理论,主要讨论了三个问题:整除性理论(整除,最大公因式,互素);因式分解理论(不可约多项式,典型分解式,重因式);根的理论(多项式函数,根的个数).其中整除性是基础,因式分解是核心.一、基本概念.1.一元多项式(零多项式),多项式的次数.多项式的相等,多项式的运算,一元多项式环.2.基本结论:(1) 多项式的加法,减法和乘法满足一些运算规律.(3) 多项式乘积的常数项(最高次项系数)等于因子的常数项(最高次项系数)的乘积.二、整除性理论1.整除的概念及其基本性质.2.带余除法. (1) 带余除法定理.(2) 设1)()()()(|)(,0)(][)(),(=⇔≠∈x r x f x g x f x g x g x F x g x f 的余式除,. 因此多项式的整除性不因数域的扩大而改变.3. 最大公因式和互素. (1) 最大公因式,互素的概念.(2) 最大公因式的存在性和求法------辗转相除法.(3) 设)(x d 是)(x f 与)(x g 的最大公因式,反之不然.三、 因式分解理论 1.不可约多项式(1) 不可约多项式的概念.(2) 不可约多项式p(x)有下列性质:(4) 艾森斯坦判断法. 2.因式分解的有关结果: (1) 因式分解及唯一性定理.(2) 次数大于零的复系数多项式都可以分解成一次因式的乘积.(3) 次数大于零的实系数多项式都可以分解成一次因式和二次不可约因式的乘积.3.重因式(1) 重因式的概念.(2) 若不可约多项式)(x p 是)(x f 的k 重因式)1(≥k ,则)(x p 是)(x f 的1-k 重因式.(4) 消去重因式的方法:))(),(()(x f x f x f '是一个没有重因式的多项式,它与)(x f 具有完全相同的不可约因式.四、多项式根的理论1.多项式函数,根和重根的概念.2.余数定理.c x -去除)(x f 所得的余式为)(x f ,则.0)()(|=⇔-c f x f c x3.有理系数多项式的有理根的求法.4.实系数多项式虚根成对定理.5.代数基本定理.每个)1(≥n n 次复系数多项式在复数域中至少有一个根.因而n 次复系数多项式恰有n 个复根(重根按重数计算).6.韦达定理.。
高代选讲第1章、多项式

第一章多项式(讲授7课时)一、教学目的:1、掌握数域的定义,会判定一个代数系统是否是多项式;2、正确理解数域p上的一元多项式的定义,多项式相乘,次数,一元多项式环等概念。
3、掌握多项式的运算及规律。
4、掌握整除的定义,熟练掌握带余除法及整除的性质。
5、正确理解和掌握两个(或者若干个)多项式的最大公因式,互素等概念及性质。
能用辗转相除法求两个多项式的最大公因式。
6、正确理解和掌握不可约多项式的定义与性质及判定。
7、正确理解和掌握k重因式的定义。
8、掌握余数定理,多项式的根及性质。
9、理解代数基本定理,熟练掌握复系数多项式分解定理及标准分解式。
二、教学内容:1、数域、一元多项式、多项式根、多项式整除。
2、最大公因式、不可约多项式、重因式、复系数与实系数多项式的因式分解。
三、教学重点:多项式整除及性质、多项式互素、最大公因式、重因式、不可约多项式判定及多项式的标准分解四、教学难点:多项式互素、最大公因式、不可约多项式及多项式分解五、教学方法:启发讲授六、教学过程:(一)、多项式整除基本知识点1、定义:设(),()[]f x gxhxg x f x。
=,则称()|()∃∈,使()()()hx Pxf xg x P x∈,若()[]2、带余除法定理:(),()[],()0∃∈,有q x r x P x∈≠,则(),()[]f xg x P x g x=+f xg x q x r x()()()()其中()0∂<∂。
r x=,或(())(())r x g x3、整除的性质:(1)、()|(),()|()()()⇒=;f xg x g x f x f x cg x(2)、()|(),()|()()|()f x g x g x h x f x h x ⇒; (3)、11()|(),1,,()|(()()()())i n n f x g x i n f x u x f x u x f x =⇒++;(4)、整除与系数域大小无关;(5)、()|()()g x f x g x ⇔的所有根都是()f x 的根(含重根)常见的n 次单位根。
《高等代数》第一章多项式讲稿

《高等代数》第一章多项式讲稿本章教学目的及要求:1.理解和掌握数域,多项式,整除,最大公因式,互素,不可约多项式,本原多项式,重因式,重根等概念;2.掌握多项式的运算性质,带余除法,辗转相除法,会求最大公因式,会将对称多项式化为初等对称多项式的多项式;3.掌握多项式的重因式和重根的判别;4.理解因式分解及唯一性定理及其应用;实系数多项式因式分解定理,复系数多项式因式分解定理。
5.掌握有理系数多项式因式分解与整系数多项式因式分解的关系,掌握整系数多项式有理根的性质,会用艾森斯坦(Eisenstein)判别法判别整系数多项式的不可约性。
本章基本教学内容:§1 数域[本节的教学目的及要求]1.理解数域的定义;2.会用定义证明给定数集是否是数域。
[本节基本教学内容]1.数域的基本概念数是数学的一个最基本的概念。
我们的讨论就从这里开始,在历史上,数的概念经历了一个长期发展的过程,大体上看,是自然数到整数、有理数、然后是实数、再到复数。
这个过程反映了人们对客观世界认识的不断深入。
按照所研究的问题,我们常常需要明确规定所考虑的数的范围。
譬如说,在解决一个实际问题中列出了一个二次方程,这个方程有没有解就与未知量所代表的对象有关,也就是与未知量所允许的取值范围有关。
又如,任意两个整数的商不一定是整数,这就是说,限制在整数的范围内,除法不是普遍可以做的,而在有理数范围内,除法总是可以做的。
因此,在数的不同的范围内同一个问题的回答可能是不同的。
我们经常会遇到的数的范围有全体有理数、全体实数以及全体复数,它们显然具有一些不同的性质,当然,它们也有很多共同的性质,在代数中经常是将有共同性质的对象统一进行讨论。
关于数的加、减、乘、除等运算的性质通常称为数的代数性质。
代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的。
有时我们还会碰到一些其它的数的范围,为了方便起见,当我们把这些数当作一个整体来考虑时,常称它为一个数的集合,简称数集。
多项式课件

高次多项式
总结词
复杂函数关系
详细描述
高次多项式的一般形式为 a_nx^n+a_(n-1)x^(n1)+...+a_1x+a_0,其中 n>2。它描 述的函数关系比一次和二次多项式更 为复杂,可以表示各种不同的数学关 系和物理现象。
04
多项式的因式分解
因式分解的定义与性质
总结词
理解因式分解的概念和性质是掌握因 式分解方法的基础。
02
多项式的表示方法
代数表示法
代数表示法是用字母和数字的组合来表示多项式,例如: $P(x) = ax^3 + bx^2 + cx + d$。这种表示方法可以清晰 地展示多项式的各项系数和指数,方便进行代数运算和解析 。
代数表示法的优点是简洁明了,易于理解和计算。它适用于 需要精确表达多项式数学关系的情况,如数学公式、定理证 明等。
表格表示法是将多项式的系数以表格的形式呈现出来,方便进行对比和查找。这 种表示方法适用于需要展示多项式系数的详细情况,如数据统计、表格报告等。
表格表示法的优点是详细全面,能够清晰地展示多项式的各项系数。它适用于需 要精确记录多项式系数的情况,如科学实验、工程设计等。
03
多项式的分类
一次多项式
总结词:线性关系
应用数学
在应用数学中,求根公式广泛 应用于物理、工程等领域。
06
多项式的应用
在数学中的应用
代数方程
多项式是代数方程的基本 组成部分,用于表示和解 决各种数学问题。
函数
多项式可以用来表示连续 函数,有助于理解函数的 性质和图像。
微积分
多项式在微积分中用于近 似复杂函数的积分和导数 。
高等数学高教版第一章多项式第八节课件

)
代数根本定理显然可以等价地表达为:
每个次数 1 的复系数多项式,在复数域上一 定有一个一次因式.
由此可知,在复数域上所有次数大于 1 的多项 式全是可约的. 换句话说,不可约多项式只有一次 多项式. 于是,因式分解定理在复数域上可以表达 成:
二、复系数多项式因式分解定理
每个次数 1 的复系数多项式在复数域上都可 以唯一地分解成一次因式的乘积.
代数根本定理 每个次数 式在复多数域项中有一根.
1 的复系数
这个定理的证明在本课程中不讲,将来利用复
变函数论中的结论,可以很简单地证明.
利用根与一次因式的关系(
定 定 理 理 7 7 及 及 推 推 论 论
定 定 理 理 7 7 (( 余 余 数 数 定 定 理 理 ))
用 用 一 一 次 次 多 多 项 项 式 式 x x -- 去 去 除 除
其中 c1 , … , cs , p1 , … , pr , q1 , … , qr 全是实数, l1 , … , ls , k1 , … , kr 是正整数,并且
x2 + pi x + qi ( i = 1 , 2 , … , r ) 是不可约的,也就是适合条件
pi2 - 4 qi < 0, i = 1 , 2 , … , r .
数二次不可约多项式.
从而 f2(x) 是 n - 2 次实系数
多项式. 由归纳法假设, f1(x) 或 f2(x) 可以分解成
一次与二次不可约多项式的乘积,因而 f (x) 也可以
如此分解.
证毕
因此,实系数多项式具有标准分解式
f(x)a n(xc1)l1 (xcs)ls(x2p 1xq 1)k1 (x2p rxq r)kr ,
高等代数课件(北大三版)--第二章--多项式

定义 1
令f x 和 gx是F [x]的两个多项式,若是F [x]的一 个多项式 hx同时整除 f x和 gx ,那么hx 叫做
f x与 gx的一个公因式.
定义 2
设dx是多项式 f x 与 gx的一个公因式.若是 dx 能被 f x 与 gx的每一个公因式整除,那么 dx叫做 f x与gx的一个最大公因式.
(3)乘法交换律: f xgx gx f x (4)乘法结合律: f xgxhx f xgxhx
(5)乘法对加法的分配律: f xgx hx f xgx f xhx
注意:要把一个多项式按“降幂”书写
an x n an1x n1 a1x a0 当 an 0 时,an xn叫做多项式的首项.
那么由上面定理的证明得 f xgx 0
推论2 f xgx f xhx, f x 0 gx hx
证 由 f xgx f xhx得 f xgx hx 。但 f x 0
所以由推论1必有 gx hx 0 ,即
gx hx
惠州学院数学系
例 当 a,b, c 是什么数时,多项式
f x ax3 bx2 c b x3 x2
这里当m < n 时,bm1 bn 0
惠州学院数学系
多项式的乘法
给定数环R上两个多项式
f x a0 a1x a2 x2 an xn gx b0 b1x b2 x2 bm xm
f (x) 和g (x) 的乘法定义为
f xgx c0 c1x c2 x2 cnn xnm
2.1.1 认识多项式
多项式
令R是一个含有数1的数环.R上一个文字x的多项式或
一元多项式指的是形式表达式
a0 a1x a2 x2 an xn
高等代数ppt课件北大版第一章多项式.ppt

q1( x) c1 p1( x), c1 0 (1)两边消去 q1( x), 即得
p2( x) ps ( x) c11q2( x) qt ( x)
由归纳假设有 s 1 t 1, s t.
§1.5 2024/9/27 因式分解定理
数学与计算科学学院
2. 标准分解式: 对 f ( x) P[x], f ( x) 1,
实际上,对于一般的情形普通可行的分解多项 式的方法是不存在的.而且在有理数域上,多项 式的可约性的判定都是非常复杂的.
§1.5 2024/9/27 因式分解定理
数学与计算科学学院
2 设对次数低于n的多项式结论成立.
下证 f ( x) n 的情形.
若 f ( x)是不可约多项式. 结论显然成立.
若 f ( x)不是不可约多项式,则存在 f1( x), f2( x),
且 ( fi ( x)) n, i 1,2 使 f ( x) f1( x) f2( x)
由归纳假设 f1( x), f2( x)皆可分解成不可约多项式的积.
例如,若 f ( x), g( x)的标准分解式分别为
f
(
x
)
ap1r1
(
x)
p r2 2
(
x
)
g(
x
)
bp1l1
(
x)
p l2 2
(
x)
psrs ( x), ri 0 psls ( x), li 0
则有
f ( x), g( x) p11 ( x) p22 ( x) pss ( x),
i min ri ,li , i 1,2, , s
f ( x) 总可表成
f
(
x)
cp1r1
高等代数课件(北大三版)--第二章--多项式

2.2.4 系数所在范围对整除性旳影响
二、教学目旳
1.掌握一元多项式整除旳概念及其性质。
2.熟练利用带余除法。
三、要点、难点
多项式旳整除概念,带余除法定理
2.2.1 多项式旳整除概念
设F是一种数域. F [x]是F上一元多项式环.
2.2.2 多项式整除性旳某些基本性质
证 设f (x) = g (x) 那么它们有完全相同旳项, 因而对R旳任何c都有f (c) = g (c)这就是说, f (x) 和g (x)所拟定旳函数相等.反过来设f (x) 和g (x)所拟定旳函数相等.令 u (x) = f (x) – g (x)那么对R旳任何c都有u (c) = f (c) – g (c) = 0这就是说, R中旳每一种数都是多项式u (x)旳根. 但R有无穷多种数, 所以u (x)有无穷多种根.根据定理2.6.3只有零多项式才有这个性质.所以有 u (x) = f (x) – g (x) = 0 , f (x) = g (x) .
f (c)与它相应. 于是就得到R到R旳一种映射. 这个映射是由多项式f (x)所拟定旳,叫做R上一种多项式函数.
综合除法
由此得出
表中旳加号一般略去不写.
例1
用x + 3除
作综合除法:
所以商式是
而余式是
证
假如f (x)是零次多项式,那么f (x)是R中一种不等于零旳数, 所以没有根. 所以定理对于n = 0成立.于是我们能够对n作数学归纳法来证明这一定理.设c∈R是f (x)旳一种根.那么 f (x) = (x – c) g (x)这里g (x) ∈R [x]是一种n – 1次多项式.假如d∈R是f (x)另一种根, d≠c那么 0 = f (d) = (d – c) g (d)因为d – c≠0 , 所以g (d) = 0. 因为g (x)旳次数是 n – 1 ,由归纳法假设, g (x)在R内至多有n – 1个不同旳根.所以f (x)在R中至多有n个不同旳根.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1
两式相乘得 x102 1 x2 1 f x
由于x102 1与 x2 1 无奇次项,从而 f x不可能有奇
次项,故其奇次项系数之和等于零。
法2 因为 f x f x,所以 f x是偶函数,于 是 f x的奇次项系数全为零。故其奇次项系数之和等
于零。
例2、设 f x 为一多项式,若 f x y f x f y
高等代数选讲之多项 式理论演示文稿
(优选)第一讲高等
代数选讲之多项式理 论
重点、难点解读
这部分内容对多项式理论作了较深入、系统、全面 地论述,内容可分为一元多项式与多元多项式两大部分, 以一元多项式理论为主。可归纳为以下四个方面:
(1)一般理论:包括一元多项式的概念、运算、多 项式相等、导数等基本性质。
对于多元多项式,则要理解 n 元多项式、对称多项 式等有关概念,掌握对称多项式表成初等对称多项式的 多项式的方法。
一、数域的判定
1、数域的概念
设P是至少含有两个数(或包含0与1)的数集,如果 P中任意两个数的和、差、积、商(除数不为零)仍是P 中的数,则称P为一个数域。
2、数域的有关结论 (1)所有的数域都包含有理数域,即有理数域是最
(3)零次多项式能整除任一多项式;
(4)零次多项式只能被零次多项式整除; (5)零多项式只能整除零多项式;
(6)如果 g x f x ,则 kg x lf x ,其中 k 为非零
常数, l 为常数;
(7)如果 f x g x ,且 g x h x ,则 f x hx;
注 多项式的整除性是 Px 中元素间的一种关系,
不是多项式的运算。整除概念与带余除法有密切的联系, 我们不能用带余除法来定义整除,因为这样定义整除,将 会遗漏零多项式整除零多项式的情形。
4、整除的性质
(1)任一多项式 f x一定整除它自身,即 f x f x; (2)f x 0; 任意多项式都整除零多项式。
a,b P, 若 a, b 中有一个为零,则 ab 0 P.
若
ab 0,则 ab
a 1
P.
从而P对乘法封闭。
b
综上所述,P关于加法、减法、乘法、除法都封闭,所 以P是一个数域。
例2、证明:实数域与复数域之间不存在其他的数域。
证 设P是任意一个包含R且不同于R的数域,且P还
包含至少一个复数 a bi b 0 。
f x qxgxrx
其中r x 0 或 r x g x.
2、整除的概念
设 f x, g xPx ,如果存在多项式 hxPx, 使 f x hx g x ,则称 g x整除 f x。
3、整除的充分必要条件
如果 g x 0,则 g x f x的充分必要条件是用 g x
除 f x 所得的余式r x 0.
由于P是一个数域,所以 i a bi a P. 但 R P,
b
从而对任意实数 a, b 都有 a bi P ,即P包含了全体复数。 故P=C。
二、一元多项式的概念
1、一元多项式的概念
形式表达式
f x anxn an1xn1 a1x a0
称为数域P上文字 x 的一元多项式,其中 a0 , a1, , an P,
(2)整除理论:包括带余除法、整除、最大公因式、 互素的概念与性质。
(3)因式分解理论:包括不可约多项式、因式分解、 重因式、实系数与复系数多项式的因式分解、有理系数多 项式不可约的判定等。
(4)根的理论:包括多项式函数、多项式的根、代 数基本定理、有理系数多项式的有理根求法、根与系数 的关系等。
一元多项式的内容十分丰富,重点是整除与因式分 解的理论,最基本的结论是带余除法定理、最大公因式 存在定理、因式分解唯一性定理。在学习的过程中,如 能把握这两个重点和三大基本定理,就能够整体把握一 元多项式的理论。
6、注意零多项式和另次多项式的区别。
例1、令
x50 x49 x 1
求 f x 的奇次项系数之和。
解 法1 由于
x51 1 x 1 x50 x49 x48 x47
x51 1 x 1 x50 x49 x 1
P31.4
例3设 f (x)是非零实系数多项式,k 是一个 正整数,且 f ( f (x) f k (x) ,则 f (x) 为零次 多项式或者 f (x) xk 。
三、多项式的带余除法及整除
1、带余除法
定理(带余除法)设 f x, g xPx, g x 0,
则存在唯一的多项式 qx,r xPx, 使
n 是非负整数。当 an 0 时,称多项式 f x的次数为 n.
记为 f x n.
2、多项式的相等关系 设
f x anxn an1xn1 a1x a0
g x bnxn bn1xn1 b1x b0
则
f x g x ai bi i 0,1,2, ,n
3、次数公式
小的数域。
(2)在有理数域与实数域之间存在无穷多个数域; 在实数域与复数域之间不存在其他的数域。
例1、设P是一个数集,有非零数 a P ,且P关于减
法、除法(除数不为零)封闭,证明P是一个数域。
证 因为 a P ,所以 0 a a P,1 a P. a
a,b P, 有 a b a 0 b P, 即P对加法封闭。
(1) f x g x maxf x,g x; (2) f x g x f x g x.
4、一元多项式环 所有系数在数域P中的一元多项式全体称为数域P
上的一元多项式环,记为 Px ,称P为 Px 的系数域。
5、一元多项式环的有关结论
多项式的加、减、乘运算对Px 封闭,且多项式的
加法、乘法均满足交换律与结合律,乘法对加法满足分 配率,乘法还满足消去律。
则 f x 0 或 f x 1. 证 若 f x 0 ,则证毕。若 f x 0 ,由于 f 2x f x x f x f x f 2 x
所以 f x只能是零次多项式。令 f x A 0 ,又因为 A f 0 f 0 0 f 2 0 A2
所以 A 1,此即 f x 1.