2020-2021苏州北外附属苏州湾外国语学校七年级数学上期末模拟试卷及答案

合集下载

2020-2021苏州市七年级数学上期末模拟试题及答案

2020-2021苏州市七年级数学上期末模拟试题及答案

2020-2021苏州市七年级数学上期末模拟试题及答案一、选择题1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A .B .C .D .2.方程834x ax -=-的解是3x =,则a 的值是( ). A .1 B .1- C .3- D .3 3.下列各式的值一定为正数的是( )A .(a +2)2B .|a ﹣1|C .a +1000D .a 2+14.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元 B .400元 C .450元 D .500元 5.整式23x x -的值是4,则2398x x -+的值是( ) A .20B .4C .16D .-46.下列结论正确的是( )A .c>a>bB .1b >1cC .|a|<|b|D .abc>07.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 9.下列比较两个有理数的大小正确的是( ) A .﹣3>﹣1B .1143> C .510611-<-D .7697->- 10.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③11.已知x =3是关于x 的方程:4x ﹣a =3+ax 的解,那么a 的值是( ) A .2B .94C .3D .9212.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 二、填空题13.把58°18′化成度的形式,则58°18′=______度.14.某物体质量为325000克,用科学记数法表示为_____克.15.如图,两个正方形边长分别为a 、b ,且满足a+b =10,ab =12,图中阴影部分的面积为_____.16.已知A ,B ,C 三点在同一条直线上,AB=8,BC=6,M 、N 分别是AB 、BC 的中点,则线段MN 的长是_______.17.已知一个角的补角是它余角的3倍,则这个角的度数为_____.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n19.正方体切去一块,可得到如图几何体,这个几何体有______条棱.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.已知直线AB 和CD 相交于O 点,CO ⊥OE ,OF 平分∠AOE ,∠COF=34°,求∠BOD 的度数.22.如图,数轴上A B 、两点对应的数分别为30-、16,点P 为数轴上一动点,点P 对应的数为x .(1)填空:若34x =-时,点P 到点A 、点B 的距离之和为_____________. (2)填空:若点P 到点A 、点B 的距离相等,则x =_______. (3)填空:若10BP =,则AP =_______.(4)若动点P 以每秒2个单位长度的速度从点A 向点B 运动,动点Q 以每秒3个单位长度的速度从点B 向点A 运动两动点同时运动且一动点到达终点时另一动点也停止运动,经过t 秒14PQ =,求t 的值.23.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表: 购物总金额(原价) 折扣 不超过5000元的部分九折 超过5000元且不超过10000元的部分八折超过10000元且不超过20000元的部分七折…………例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?24.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次二三四五六人数下车3610719(人)上车1210940(人)(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?25.某区运动会要印刷秩序册,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)这个区印制多少份秩序册时两个印刷厂费用是相同的;(2)当印制200份、400份秩序册时,选哪个印刷厂所付费用较少;为什么.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【详解】由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有:故选C . 【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.A解析:A 【解析】 【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可. 【详解】把3x =代入方程834x ax -=-得: 8-9=3a-4 解得:a=1 故选:A . 【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.3.D解析:D 【解析】 【分析】直接利用偶次方以及绝对值的性质分别分析得出答案. 【详解】A .(a +2)2≥0,不合题意;B .|a ﹣1|≥0,不合题意;C .a +1000,无法确定符号,不合题意;D .a 2+1一定为正数,符合题意. 故选:D . 【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.4.B解析:B 【解析】 【分析】设该服装标价为x 元,根据售价﹣进价=利润列出方程,解出即可. 【详解】设该服装标价为x 元,由题意,得0.6x ﹣200=200×20%, 解得:x=400. 故选B . 【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.A解析:A 【解析】 【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案. 【详解】解:因为x 2-3x =4, 所以3x 2-9x =12, 所以3x 2-9x +8=12+8=20. 故选A . 【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.6.B解析:B 【解析】 【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案. 【详解】解:由图可知1,01,1a b c <-<<> ∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B . 【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.7.A解析:A【解析】【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.8.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.9.D解析:D【解析】【分析】根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.【详解】A.﹣3<﹣1,所以A选项错误;B.14<13,所以B选项错误;C.﹣56>﹣1011,所以C选项错误;D.﹣79>﹣67,所以D选项正确.故选D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.10.D解析:D 【解析】 【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③. 【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠, ∴APA BPB ''∠=∠, 故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补, 故②正确;∵12APB APA ''∠=∠,∴=272APA A PB '''∠∠=︒, ∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′, ∴射线PA '经过刻度45. 故③正确. 故选D . 【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.11.B解析:B 【解析】将x=3代入方程4x-a=3+ax 得12-a=3+3a ,解得x=94;故选B. 12.D解析:D 【解析】解:A .B 、C 的变形均符合等式的基本性质,D 项a 不能为0,不一定成立.故选D .二、填空题13.3【解析】【分析】【详解】解:58°18′=58°+(18÷60)°=583°故答案为583 解析:3【解析】【分析】【详解】解:58°18′=58°+(18÷60)°=58.3°.故答案为58.3.14.25×105【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正解析:25×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积求出即可【详解】∵a+b=10ab=12∴S阴影=a2+b2-a2-b(a+b)=(a2+b2-ab)=(a+b)2-3ab解析:32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积,求出即可.【详解】∵a+b=10,ab=12,∴S阴影=a2+b2-12a2-12b(a+b)=12(a2+b2-ab)=12[(a+b)2-3ab]=32,故答案为:32.【点睛】此题考查了整式混合运算的应用,弄清图形中的关系是解本题的关键.16.1或7【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况讨论根据线段中点的定义利用线段的和差关系求出MN的长即可得答案【详解】①如图当点C在线段AB上时∵MN分别是ABBC的中点A解析:1或7【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况讨论,根据线段中点的定义,利用线段的和差关系求出MN的长即可得答案.【详解】①如图,当点C在线段AB上时,∵M、N分别是AB、BC的中点,AB=8,BC=6,∴BM=12AB=4,BN=12BC=3,∴MN=BM-BN=1,②如图,当点C在线段AB的延长线上时,∵M、N分别是AB、BC的中点,AB=8,BC=6,∴BM=12AB=4,BN=12BC=3,∴MN=BM+BN=7∴MN的长是1或7,故答案为:1或7【点睛】本题考查线段中点的定义及线段的计算,熟练掌握中点的定义并灵活运用分类讨论的思想是解题关键.17.45°【解析】【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.18.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:故剪n次时共有4+3(n-1)=3n+1考点:规律型:图形的变化类解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.19.12【解析】【分析】通过观察图形即可得到答案【详解】如图把正方体截去一个角后得到的几何体有12条棱故答案为:12【点睛】此题主要考查了认识正方体关键是看正方体切的位置解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.20.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM为∠CBE的平分线∴∠EBM=∠CBE=×75°=375°∵BN为∠DBE的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM为∠CBE的平分线,∴∠EBM=12∠CBE =12×75°=37.5°,∵BN为∠DBE的平分线,∴∠EBN=12∠EBD=12×60°=30°,∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 三、解答题21.22°【解析】【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF ,再根据角平分线的定义求出∠AOF ,然后根据∠AOC=∠AOF-∠COF 求出∠AOC ,再根据对顶角相等解答.【详解】∵∠COE=90°,∠COF=34°,∴∠EOF=90°-34°=56°. ∵OF 平分∠AOE ,∴∠AOE=∠EOF=56°. ∴∠AOC=∠AOF-∠COF=56°-34°=22°. ∵∠AOC=∠BOD(对顶角相等),∴∠BOD=22°. 22.(1)54;(2)7-;(3)56或36;(4)t 的值为325或12 【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)根据数轴上两点的中点公式即可求解;(3)根据10BP =求出P 点表示的数,故可得到AP 的长;(4)根据P,Q 的运动速度及14PQ =分P ,Q 相遇前和相遇后分别列方程求解.【详解】(1) 34x =-时,点P 到点A 、点B 的距离之和为16(34)30(34)--+---=54 故答案为:54;(2)若点P 到点A 、点B 的距离相等,则x=16(30)2+-=-7 故答案为:7-;(3)∵10BP =∴P 点表示的数为:6或26则AP =6-(-30)=36或26-(-30)=56即AP=36或56故答案为:56或36;(4)解:∵16(30)46AB =-=当P ,Q 相遇前,得234614t t +=-解得325t = 当P ,Q 相遇后,得234614t t +=+时解得12t =t ∴的值为325或12. 【点睛】此题主要考查数轴与一元一次方程的应用,解题的关键是根据题意找到等量关系列式求解.23.(1)张老师实际付款6900元.(2)①该品牌电脑的原价是6500元/台.②这种品牌电脑的进价为5000元/台.【解析】【分析】(1)用不超过5000元的乘以九折加上超过5000元不到10000元的部分乘以八折,计算即可;(2)①设该品牌电脑的原价为x 元/台,由实际付费可知,商品的原价应在5000元-10000元之间,根据题意列出方程解答即可;②设该电器的进价为m 元/台,根据“进价⨯(1+利润率)=售价”列出方程,求解即可.【详解】(1)5000×910+(8000﹣5000)×810=6900(元) 答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x 元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x <10000依题意有:5000×910+(x ﹣5000)×810=5700 4500+0.8x ﹣4000=5700 24.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【解析】【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键. 25.(1)250份;(2)当印制200份秩序册时,选乙印刷厂所付费用较少;当印制400份秩序册时选甲印刷厂所付费用较少,理由见解析.【解析】【分析】(1)设要印制x份节目单,则甲厂的收费为500+6×0.8x元,乙厂的收费为6x+500×0.4元,根据费用相同列方程即可解答;(2)把x=200分别代入甲厂费用500+6×0.8x和乙厂费用6x+500×0.4,比较得出答案. 同样再把x=400分别代入计算比较.【详解】解:(1)设这个区要印制x份秩序册时费用是相同的,根据题意得,500+6×0.8x=6x+500×0.4,解得x=250,答:要印制250份秩序册时费用是相同的.(2)当印制200份秩序册时:甲厂费用需:0.8×6×200+500=1460(元),乙厂费用需:6×200+500×0.4=1400(元),因为1400<1460,故选乙印刷厂所付费用较少.当印制400份秩序册时:甲厂费用需:0.8×6×400+500=2420(元),乙厂费用需:6×400+500×0.4=2600(元),因为2420<2600,故选甲印刷厂所付费用较少.【点睛】本题考查了列一元一次方程解决实际问题,一般步骤是:①审题,找出已知量和未知量;②设未知数,并用含未知数的代数式表示其它未知量;③找等量关系,列方程;④解方程;⑤检验方程的解是否符合题意并写出答案.。

苏州北外附属苏州湾外国语学校初一上学期数学期末试卷带答案

苏州北外附属苏州湾外国语学校初一上学期数学期末试卷带答案
A. B. C. D.
10.已知 ,则 的补角等于()
A. B. C. D.
11.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )
A.3cmB.6cmC.11cmD.14cm
12.下列计算正确的是( )
A.3a+2b=5abB.4m2n-2mn2=2mn
苏州北外附属苏州湾外国语学校初一上学期数学期末试卷带答案
一、选择题
1.以下选项中比-2小的是()
A.0B.1C.-1.5D.-2.5
2.直线 与 相交得如图所示的5个角,其中互为对顶角的是()
A. 和 B. 和 C. 和 D. 和
3.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程( )
A. + =1B. + =1C. + =1D. + =1
4.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )
A.(-1)n-1x2n-1B.(-1)nx2n-1
C.(-1)n-1x2n+1D.(-1)nx2n+1
5.﹣2020的倒数是( )
A.﹣2020B.﹣ C.2020D.
6.点 在第 象限.
A.第一象限B.第二象限C.第三象限D.第四象限
7.如果代数式﹣3a2mb与ab是同类项,那么m的值是( )
A.0B.1C. D.3
8.下列方程的变形正确的有()
A. ,变形为 B. ,变形为
C. ,变形为 D. ,变形为
9.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为( )吨.

2021年苏州市七年级数学上期末第一次模拟试卷及答案

2021年苏州市七年级数学上期末第一次模拟试卷及答案

一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .32.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个3.如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )A .8cmB .6cmC .4cmD .2cm 4.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30° B .60°C .120°D .150°5.下列变形中,正确的是( )A .变形为B .变形为C .变形为D .变形为6.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x =7.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯= B . 2.75%21100x x += C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=8.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( ) A .80元B .200元C .120元D .160元9.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数10.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个11.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道A .1道B .2道C .3道D .4道12.-1+2-3+4-5+6+…-2011+2012的值等于 A .1B .-1C .2012D .1006二、填空题13.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________.14.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)15.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.16.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.17.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______. 18.在多项式422315x x x x 中,同类项有_________________;19.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].20.给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________.三、解答题21.如图,OC 是∠AOB 的平分线,∠AOD 比∠BOD 大30°,则∠COD 的度数为________.22.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒. (1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.23.如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数; (2)如果点A ,C 表示的数互为相反数,求点B 表示的数;(3)在(1)的条件之下,若小虫P 从点B 出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q 恰好从点C 出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D 相遇,点D 表示的数是多少?24.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人? 25.计算: (1)157(36)2612⎛⎫--⨯-⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭26.已知a+b =2,ab =2,求32231122a b a b ab ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将图1折成正方体,然后判断出A 、B 在正方体中的位置关系,从而可得到AB 之间的距离. 【详解】解:将图1折成正方体后点A 和点B 为同一条棱的两个端点,得出AB=1, 则小虫从点A 沿着正方体的棱长爬行到点B 的长度为1. 故选B . 【点睛】本题主要考查的是展开图折成几何体,判断出点A 和点B 在几何体中的位置是解题的关键.2.A解析:A 【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D . 【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.3.A解析:A【分析】先根据点M是AB中点求出AM=BM=6cm,再根据MC:CB=1:2求出MC即可得到答案.【详解】∵点M是AB中点,∴AM=BM=6cm,∵MC:CB=1:2,∴MC=2cm,∴AC=AM+MC=6cm+2cm=8cm,故选:A.【点睛】此题考查线段的中点性质,线段的和差计算,正确理解图形中线段之间的数量关系是解题的关键.4.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.∵∠1的余角是∠2, ∴∠1+∠2=90°, ∵∠1=2∠2, ∴2∠2+∠2=90°, ∴∠2=30°, ∴∠1=60°,∴∠1的补角为180°﹣60°=120°. 故选:C . 【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.5.B解析:B 【解析】 【分析】利用等式的性质对每个等式进行变形即可找出答案. 【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x ;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.6.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误; D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D .本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.7.C解析:C 【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论. 【详解】 解:根据题意得: x+2×2.75%x=21100; 故选:C . 【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.8.B解析:B 【分析】利用公式:标价=(1+利润率)×进价,列出方程,求解即可. 【详解】 设进价为x 元.标价=(1+利润率)×进价根据题意,列方程:(180%)360x += 解得200x = 故选B. 【点睛】本题考查了一元一次方程的应用,属于典型题,熟练掌握价格公式是解题关键.9.C解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误.【点睛】此题主要考查列代数式,注意掌握代数式的意义.10.A解析:A 【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦. 【详解】字母可以表示任意数,当a <0时,-a >0,故①错误; 0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误; 若a=1,b=-2,a b >,但是22a b <,故④错误;235x y的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.11.A解析:A 【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断. 【详解】①2018(1)1-=,故本小题错误; ②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题. 故选A . 【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键.12.D解析:D解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.二、填空题13.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查 解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可. 【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y = 将2x =,4y =代入x y -中 原式242=-=- 故答案为:2-. 【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.14.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体解析:12π或16π 【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可. 【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=,②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=,故答案为:12π或16π. 【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论.15.-33【分析】先设第一个空填m 则第二个空就填-m 最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m 则第二个空就填-m ∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3 【分析】先设第一个空填m ,则第二个空就填-m ,最后形成一个方程,接着解出方程进一步求出答案即可. 【详解】设第一个空填m ,则第二个空就填-m , ∴2315m m +=-, 解得:3m =-, ∴3m -=. 故答案为:3-,3. 【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键.16.50【解析】【分析】据题意可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数设外国邮票x 张把未知数和相关数据代入等量关系式进行解答即可得到答案【详解】解:设外国邮票x 张2x-5=145-x3x解析:50 【解析】 【分析】据题意,可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数,设外国邮票x 张,把未知数和相关数据代入等量关系式进行解答即可得到答案. 【详解】解:设外国邮票x 张, 2x-5=145-x 3x=150 x=50中国邮票:145-50=95答:中国邮票95张,外国邮票有50张. 【点睛】解答此题的关键是确定等量关系式,然后再列方程解答即可.17.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008 【解析】a 2=−|a 1+1|=−|0+1|=−1, a 3=−|a 2+2|=−|−1+2|=−1, a 4=−|a 3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n-;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.18.-2x5x【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x与5x是同类项;故答案为:-2x5x【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.19.【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.20.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b )+c=a+(b+c )依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a ;结合律(a+b )+c=a+(b+c ).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.三、解答题21.15°【分析】设∠BOD =x ,分别表示出∠AOD =x +30°,∠AOC= x +15°,即可求出∠COD .【详解】解:设∠BOD =x ,则∠AOD =x +30°,所以∠AOB =2x +30°.因为OC 是∠AOB 的平分线,所以∠AOC =12∠AOB= x +15°, 所以∠COD=∠AOD-∠AOC =15°.故答案为:15°【点睛】本题考查了角平分线的定义,角的和差等知识,理解角平分线的定义,并用含x 的式子表示是解题关键.22.(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.23.(1)点B 表示的数为4-,点C 表示的数为3;(2)点B 表示的数为 5.5-;(3)1【分析】(1)根据数轴上两点间的距离公式,分别求出B 、C 表示的数.(2)根据相反数的定义求解即可.(3)根据题意列出方程求解即可.【详解】(1)若点A 表示的数为0,因为044-=-,所以点B 表示的数为4-.因为473-+=,所以点C 表示的数为3.(2)若点A ,C 表示的数互为相反数,因为743AC =-=,所以点A 表示的数为 1.5-.因为 1.54 5.5--=-,所以点B 表示的数为 5.5-.(3)设小虫P 与小虫Q 的运动时间为t .依题意得0.50.27t t +=,解得10t =,则点D 表示的数是0.51041⨯-=.【点睛】本题考查了数轴的综合问题,掌握数轴两点的距离公式、相反数的性质、解一元一次方程的方法是解题的关键.24.七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.4【分析】根据因式分解,首先将整式提取公因式12ab,在采用完全平方公式合,在代入计算即可.【详解】解:原式=12a3b+a2b2+12ab3=12ab(a2+2ab+b2)=12ab(a+b)2,∵a+b=2,ab=2,∴原式=12×2×4=4.【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.。

苏州国际外语学校七年级上册数学期末试卷

苏州国际外语学校七年级上册数学期末试卷

苏州国际外语学校七年级上册数学期末试卷一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式 3.﹣3的相反数是( ) A .13-B .13C .3-D .34.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77 D .1395.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .56.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃7.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =18.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6 D .3(x +1)﹣2×2x ﹣1=69.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =10.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 15.单项式﹣22πa b的系数是_____,次数是_____.16.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 17.16的算术平方根是 .18.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 20.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.21.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.22.3.6=_____________________′23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集.26.解方程:(1)()43203x x --= (2)23211510x x -+-= 27.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 28.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).29.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.30.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.四、压轴题31.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.32.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.33.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.3.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.4.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.5.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.6.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.7.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.8.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.A解析:A 【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1. 故选A .考点:解一元一次方程.10.B解析:B 【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.11.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.-3【解析】【分析】根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】x=-代入方程即可得到关于a,b的代数式,变形即可得出答案.根据题意将1【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.15.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 16.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy -=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入17.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 18.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.19.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.20.72【解析】【分析】用360度乘以C 等级的百分比即可得.观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 21.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14022.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.23.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.24.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x 2m+6y 3与2x 4y n 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、解答题25.-4<x ≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232x x x +≤⎧⎪⎨+>-⎪⎩①②, 由①得:x ≤2,由②得:x>-4,所以不等式组的解集为:-4<x ≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可;(2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110x x ---=,217x =,8.5x =.27.(1)﹣x 2+9xy+2y 2,﹣20;(2)k =4.【解析】【分析】(1)根据|x ﹣2|+(y+1)2=0可以求得x 、y 的值,然后将题目中所求式子化简,再将x 、y 的值代入化简后的式子即可解答本题.(2)利用多项式的值与x 无关,得出x 的系数和为0,即可得出k 的值,进而求出答案.【详解】解:(1)∵(x ﹣2)2+|y+1|=0,∴x =2、y =﹣1,则原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy+6y 2=﹣x 2+9xy+2y 2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x 2+2x ﹣kx 2+3x 2﹣2x+1=(4﹣k )x 2+1∵代数式的值与x 无关,∴k =4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.29.(1)50;(2)补图见解析;(3)72°;(4)672人.【解析】【分析】(1)画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;(2)根据总学生数,求出踢毽子与其他的人数,补全条形统计图即可(3)根据其他占的百分比乘以360°即可得到结果(4)由立定跳远的百分比,乘以2100即可得到结果【详解】(1)根据题意得:15÷30%=50(名)则共抽取50名学生(2)根据题意得:踢毽子人数为50×18%=9(名),其他人数为50×(1-30%-18%-32%)=10名,补全条形统计图,如图所示(3)根据题意得:360°×20%=72°则“其他"部分对应的圆心角的度数是72°;(4)根据题意得'立定跳远"部分的学生有2100×32%=672(名)【点睛】此题考查条形统计图,用样本估计总体和扇形统计图,看懂图中数据是解题关键30.﹣8.【解析】【分析】根据去括号、合并同类项,可化简整式,把未知数的值代入,可得答案.【详解】解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=(2﹣2)x2y+(2﹣2)xy2+2x﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣8.考点:整式的加减—化简求值.四、压轴题31.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.32.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.33.(1)10,(a+b);(2)①60个单位长度;②10-3t ,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A 、B 两点表示的数,即可得出结论;(2) ①点P 运动的时间与A 、B 相遇所用时间相等,根据路程=速度×时间即可求得;②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的;③点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,不存在PA=PB 的时候.【详解】解:(1)∵A 、B 所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P 是AB 的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.。

苏州市期末模拟A卷-2020-2021学年七年级数学上学期期末考试全真模拟卷(解析版)

苏州市期末模拟A卷-2020-2021学年七年级数学上学期期末考试全真模拟卷(解析版)

2020—2021学年苏州市七年级第一学期数学期末模拟卷A一.选择题(共10小题,满分30分,每小题3分)1.(3分)设x为有理数,若|x|=x,则()A.x为正数B.x为负数C.x为非正数D.x为非负数【分析】直接利用绝对值的性质得出答案.【解答】解:设x为有理数,若|x|=x,则x≥0,即x为非负数.故选:D.【点评】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.2.(3分)在下列几何体中,从正面看到为三角形的是()A.B.C.D.【分析】主视图是从物体前面看,所得到的图形,再进行判断即可.【解答】解:A、圆柱的主视图是长方形,故本选项不合题意;B、三棱柱的主视图是长方形,故本选项不合题意;C、正方体的主视图是正方形,故本选项不合题意;D、圆锥的主视图是三角形,故本选项符合题意;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)近年来,我国5G发展取得明显成效,截至2020年2月底,全国建设开通5G基站达16.4万个,将数据16.4万用科学记数法表示为()A.164×103B.16.4×104C.1.64×105D.0.164×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:16.4万=164000=1.64×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列运算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣0.25ab+14ab=0【分析】根据合并同类项法则逐一判断即可.【解答】解:A.2a+3a=5a,故本选项不合题意;B.3a﹣a=2a,故本选项不合题意;C.2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+14ab=0,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,在合并同类项时,系数相加减,字母及其指数不变.5.(3分)如果x=25是关于x的方程5x﹣2m=6的解,则m的值是()A.﹣2B.﹣1C.1D.2【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=25代入方程得:2﹣2m=6,解得:m=﹣2,故选:A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(3分)如图是一个正方体的展开图,则“心”字的对面的字是()A.核B.数C.素D.养【分析】根据正方体的展开图的特征进行判断即可.【解答】解:根据正方体展开图的特征“相间、Z端是对面”可知,“心”的对面是“素”,故选:C.【点评】本题考查正方体的展开图的特征,掌握展开图的特征是正确解答的关键.7.(3分)甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km【分析】首先作出甲与乙的位置示意图,然后可以直接写出.【解答】解:如图:∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.【点评】本题考查了方向角的定义,理解定义是解题的关键.8.(3分)如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条【分析】直接利用点到直线的距离的定义分析得出答案.【解答】解:∵线段AD表示点A到BD的距离,线段AB表示点A到BC的距离,CD表示点C到BD 的距离,BC表示点C到AB的距离,BD表示点B到AC的距离,∴能表示点到直线的距离的线段共有5条,故选:D.【点评】本题主要考查了点到直线的距离,正确把握定义是解题关键.9.(3分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.x13−x+6012=10D.x+6012−x13=10【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系.10.(3分)在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0B.a+b<0C.ab>0D.|a|>|b|【分析】由数轴可知,a>0,b<0,|a|<|b|,排除D,再由有理数加法法则和乘法法则排除A、C.【解答】解:由数轴可知,a为正数,b为负数,且|a|<|b|,∴a+b应该是负数,即a+b<0,又∵a>0,b<0,ab<0,故答案A、C、D错误.故选:B.【点评】掌握数轴的有关知识以及有理数加法法则和乘法法则.二.填空题(共8小题,满分24分,每小题3分)11.(3分)比较大小:﹣π<﹣3.14;﹣|﹣6|<﹣(﹣6).【分析】利用π>3.14可判断﹣π与﹣3.14的大小;利用绝对值和相反数的意义得到﹣|﹣6|=6,﹣(﹣6)=﹣6,则可通过正数大于一切负数得到﹣|﹣6|与﹣(﹣6)的大小关系.【解答】解:∵π>3.14,∴﹣π<﹣3.14;∵﹣|﹣6|=6,﹣(﹣6)=﹣6,∴﹣|﹣6|<﹣(﹣6).故答案为<,<.【点评】本题考查了有理数大小比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.12.(3分)若∠α的余角是23°28′,则∠α=66°32′.【分析】根据互余的意义,用90°﹣23°28′即可.【解答】解:∠α=90°﹣23°28′=66°32′,故答案为:66°32′.【点评】考查互为余角的意义,度、分、秒的计算,正确度、分、秒的进率是正确计算的前提.13.(3分)已知|a+2|+(b﹣1)2=0,则a+b=﹣1.【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式中即可.【解答】解:依题意得:a+2=0,b﹣1=0,∴a=﹣2,b=1.∴a+b=﹣2+1=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.(3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD=13CB,则DB的长度为20.【分析】根据线段中点的定义可得BC=12AB,再求出AD,然后根据DB=AB﹣AD代入数据计算即可得解.【解答】解:∵AB=24,点C为AB的中点,∴CB=12AB=12×24=12,∵AD=13CB,∴AD=13×12=4,∴DB=AB﹣AD=24﹣4=20.故答案为:20.【点评】本题考查了两点间的距离.掌握线段中点的定义、灵活运用数形结合思想是解题的关键.15.(3分)已知∠AOB=80°,在∠AOB内部作射线OC,若射线OM平分∠AOC,射线ON平分∠BOC,则∠MON的度数为40°.【分析】根据角平分线的定义可得∠MOC=12∠AOC,∠NOC=12∠BOC,由∠MON=∠MOC+∠NOC,结合∠AOB的度数可求解.【解答】解:如图,∵射线OM平分∠AOC,射线ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∵∠AOC+∠BOC=∠AOB=80°,∴∠MOC+∠NOC=12(∠AOC+∠BOC)=12∠AOB=40°,∵∠MON=∠MOC+∠NOC,∴∠MON=40°.故答案为40°.【点评】本题主要考查角平分线的定义,掌握角平分线的定义是解题的关键.16.(3分)已知有理数a在数轴上的位置如图,则a+|a+1|=﹣1.【分析】先根据数轴上各点的位置判断出a的符号及绝对值的大小,再根据绝对值的性质进行解答即可.【解答】解:∵由数轴上a点的位置可知,a<0,|a|>1,∴a+1<0,∴原式=a﹣a﹣1=﹣1.故答案为:﹣1【点评】本题考查的是整式的加减法及绝对值的性质,先根据a 点在数轴上的位置判断出a 的符号及绝对值的大小是解答此题的关键.17.(3分)如果∠A 和∠B 互补,且∠A >∠B ,给出下列四个式子:其中表示∠B 余角的式子有①②③ .(填序号)①90°﹣∠B ;②∠A ﹣90°;③12(∠A ﹣∠B ); ④12(∠A +∠B ).【分析】根据互补角和互余的性质进行推理计算便可.【解答】解:①根据互余角定义知,∠B 的余角为:90°﹣∠B ,此题结论正确;②∵∠A 和∠B 互补,∴∠B =180°﹣∠A ,∴90°﹣∠B =90°﹣180°+∠A =∠A ﹣90°,故此题结论正确;③∵∠A 和∠B 互补,∴∠A +∠B =180°,∴90°﹣∠B =12(∠A +∠B )﹣∠B =12∠A +12∠B −∠B =12(∠A −∠B),故此题结论正确; ④∵∠A 和∠B 互补,∴∠A +∠B =180°,∴12(∠A +∠B)=90°,不是∠B 的余角,故此题结论错误. 故答案为:①②③.【点评】本题主要考查了互补角和互余角的性质,掌握这些性质是解题的关键.18.(3分)已知a +b =1,b +c =3,a +c =6,则a +b +c = 5 .【分析】已知等式左右两边相加,即可求出所求.【解答】解:∵a +b =1,b +c =3,a +c =6,∴a +b +b +c +a +c =1+3+6,即2(a +b +c )=10,则a +b +c =5,故答案为:5【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共10小题,满分76分)19.(8分)计算:(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020=16÷(﹣8)−12+1=﹣2−12+1 =−32;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1−12×13×(2﹣9)=﹣1−16×(﹣7)=16.【点评】本题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(6分)解方程3x−12=4x+25−1【分析】根据解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1进行解答.【解答】解:去分母得:5(3x ﹣1)=2(4x +2)﹣10去括号得:15x ﹣5=8x +4﹣10移项得:15x ﹣8x =4﹣10+5合并同类项得:7x =﹣1系数化为得:x =−17.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.21.(8分)如图,在7×7正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,点A 、B 、C 都为格点,且点A (1,2),请分别仅用一把无刻度的直尺画图;(1)过点C 画一条线段AB 的平行线段CD ,直接写出格点D 的坐标;(2)过点C画一条线段AB的垂直线段CE,直接写出格点E的坐标;(3)作∠DCE的角平分线CF,直接写出格点F的坐标;(4)作∠ABM,使∠ABM=45°,直接写出格点M的坐标;【分析】(1)线段AB是1×4格的对角线,即可画出平行线段CD;(2)根据线段AB的平行线段CD,即可画线段AB的垂直线段CE;(3)作∠DCE的角平分线CF,点F在格点即可;(4)根据(3)的画法即可画出∠ABM=45°.【解答】解:如图:根据画图可知:(1)D(6,2);(2)因为AB∥CD,CE⊥CD,所以CE⊥AB,所以E(3,﹣3);(3)F(7,﹣2);(4)M(2,﹣2).【点评】本题考查了作图、应用与设计作图,解决本题的关键是建立平面直角坐标系.22.(6分)先化简,再求值:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy,其中x=3,y=−13.【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式=3x 2y ﹣2xy 2+2xy ﹣3x 2y +3xy 2﹣xy =xy 2+xy ,当x =3,y =−13时,原式=13−1=−23.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(8分)A 、B 两种型号的机器生产同一种产品,已知7台A 型机器一天生产的产品装满8箱后还剩2个,5台B 型机器一天生产的产品装满6箱后还剩8个.每台A 型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?【分析】设每箱装x 个产品,根据每台A 型机器比每台B 型机器一天少生产2个产品,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设每箱装x 个产品,根据题意得:8x+27+2=6x+85, 解得:x =12.答:每箱装12个产品.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(6分)一个几何体是由大小相同的棱长为1的小立方体搭建而成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方体的个数(1)画出该几何体的主视图和左视图;(2)求该几何体的体积和表面积.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,1;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形;(2)根据体积、表面积的定义求解即可.【解答】解:(1)如图所示:;(2)体积:1×1×1×(2+2+3+1)=8;表面积:1×1×(6×2+4×2+5×2)=30.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.25.(6分)如图,已知∠AOC=∠BOD=70°,∠BOC=31°,求∠AOD的度数.【分析】根据∠AOC=∠BOD=70°,∠BOC=31°,可以求得∠COD的度数,从而可以求得∠AOD 的度数.【解答】解:∵∠AOC=70°,∠BOC=31°,∴∠AOB=∠AOC﹣∠BOC=70°﹣31°=39°.又∵∠BOD=70°,∴∠AOD=∠AOB+∠BOD=39°+70°=109°.【点评】本题考查角的计算,解答本题的关键是明确题意,求出相应的角的度数,利用数形结合的思想解答.26.(8分)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=3:5,OF 平分∠BOE.(1)若∠BOD=72°,求∠BOE.(2)若∠BOF=2∠AOE+15°,求∠COF.【分析】(1)根据对顶角相等,可得∠AOC的度数,根据∠AOE:∠EOC=3:5,可得∠AOE,根据邻补角,可得答案;(2)根据角平分线的定义,可得∠BOE=2∠BOF=4∠AOE+30°,根据邻补角的关系,可得关于∠AOE 的方程,求出∠AOE的度数,可得答案.【解答】解:(1)由对顶角相等,得∠AOC=∠BOD=72°,由OE把∠AOC分成两部分且∠AOE:∠EOC=3:5,得∠AOE=∠AOC×38=27°,由邻补角,得∠BOE=180°﹣∠AOE=180°﹣27°=153°;(2)由OF平分∠BOE,得∠BOE=2∠BOF=4∠AOE+30°.由邻补角,得∠BOE+∠AOE=180°,即4∠AOE+30°+∠AOE=180°,解得∠AOE=30°.∴∠EOC=50°,∠EOF=∠BOF=75°,∴∠COF=75°﹣50°=25°.【点评】本题考查了对顶角、邻补角,(1)利用了对顶角相等,邻补角互补,(2)利用了角平分线的定义,邻补角互补的性质,角的和差.27.(8分)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.【解答】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)∵关于x的一元一次方程6x=m+2是差解方程,∴m+2﹣6=m+2 6,解得:m=26 5.【点评】本题考查了一元一次方程的解得应用,能理解差解方程的意义是解此题的关键.28.(12分)如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a 、b 满足|a +2|+(b +2a )2=0(1)求点C 表示的数;(2)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前,求证:2BM ﹣BP 为定值(3)点P 从A 点以每秒2个单位的速度向右运动,点Q 同时从B 点出发以每秒1个单位的速度向左运动,若AP +BQ =2PQ ,求时间t .【分析】(1)先根据非负数的性质求出a ,b 的值,再根据中点的定义得出点C 表示的数即可;(2)先根据题意得到P A +PB =AB ,BM =PB +AP 2即可得出结论; (3)先用t 表示出AP ,BQ 及PQ 的值,再根据AP +BQ =2PQ 列出关于t 的方程,求出t 的值即可.【解答】解:(1)∵|a +2|+(b +2a )2=0,∴a +2=0,b +2a =0,解得a =﹣2,b =4,∴−2+42=1,∴点C 表示的数是1;(2)∵BM =PB +AP2,∴2BM =2PB +AP ,∴2BM ﹣BP =PB +AP =AB =6.(3)∵AB =2+4=6,点P 从A 点以每秒2个单位的速度向右运动,点Q 同时从B 点出发以每秒1个单位的速度向左运动,∴AP =2t ,BQ =t ,PQ =6﹣3t .∵AP +BQ =2PQ ,∴2t +t =12﹣6t ,解得t =43;还有一种情况,当P 运动到Q 的左边时,PQ =3t ﹣6,方程变为2t +t =2(3t ﹣6),解得t =4. 故时间t 为43或4秒. 【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.。

七年级上册苏州苏州外国语学校数学期末试卷测试卷(解析版)

七年级上册苏州苏州外国语学校数学期末试卷测试卷(解析版)

七年级上册苏州苏州外国语学校数学期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(含解析)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(含解析)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下面关于有理数的说法正确的是()A. 0只能表示没有B. 符号不同的两个数互为相反数C. 一个数不是正数,就是负数D. 没有最小的有理数2.聪聪同学在“百度”搜索引擎中输入“圆”,能搜索到与之相关的结果个数约为100000000,这个数用科学记数法表示为()A. 1×107B. 1×108C. 10×107D. 10×1083.下列计算正确的是()A. a3+a3=2a6B. a2×a3=a6C. (a3)2=a5D. a3÷a2=a4.下列方程中,解为x=4的方程是()A. 4x=1B. 4x−1=3x+3C. 2(x−1)=10D. 2x+1=75.下图可以折叠成的几何体是A. 三棱柱B. 圆柱C. 四棱柱D. 圆锥6.下列计算正确的是()A. 3a−a=3B. a2+a2=a4C. (3a)−(2a)=6aD. (a2)3=a6(m−x)=2x的解,则关于y的方程(2)m(y−3)−2= 7.若x=1是方程(1)2−13m(2y−5)的解是()D. 4A. −10B. 0C. 438.下列条件中能确定点C是线段AB的中点的是()A. AC=BCB. AB=BCAB D. AC+BC=ABC. AC=BC=129. 5.甲乙二人分别从相聚20千米的A.B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米?()A. −5B. −5或4C. 4D. 610.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A. 1B. 32C. 2 D. 52二、填空题(本大题共8小题,共24.0分)11.按照神舟号飞船环境控制与生命保障系统的设计指标,“神舟”九号飞船返回舱的温度为21°C±4°C,该返回舱的最高温度为_________°C.12.若(a+b)2加上一个单项式后等于(a−b)2,则这个单项式为______.13.某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x每增加1千克,弹簧长度y增加0.5厘米.用含x的代数式表示y=______.14.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有______个.15.已知:如图,直线AB、CD相交于点O,∠COE=90°,∠BOD:∠BOC=1:5,过点O作OF⊥AB,则∠EOF的度数为______.16.在时钟的钟面上,三点半时的分针与时针夹角是______度.17.一件商品售价为7.2元,利润率是20%,如果把利润率提高到30%,那么需提高售价______ 元.18.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有__________根小棒;第3个图案中有________根小棒,...;(2)第n个图案中有__________根小棒;(3)第2016个图案中有____________根小棒;(4)如果图案有2016根小棒,那么是第__________个图案.三、解答题(本大题共10小题,共76.0分)19.计算已知11×2=1−12,12×3=12−13,13×4=13−14.则(1)11×2+12×3+13×4+14×5+⋯+19×10=______.(2)根据上面提示则13+115+135+163+199=______.(3)请计算15+145+1117+⋯+12021×2025的值.20.解方程:2x(x+1)−(3x−2)x+2x2=x2+121.(1)化简:a−(5a−3b)+2(a−2b)(2)先化简,再求值:2(x2−2xy)−2(x2+2xy),其中x=1,y=−1.222.我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1).探索下列问题:(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.CD,AB=35cm,23.①如图,点C在线段AB上,点D是AC的中点,如果CB=32试求BC的长.②如图,已知直线AB和CD相交于O点,∠DOE=90°,OF平分∠AOE,且∠AOE=118°,求∠COF的度数.24.【阅读材料】关于x的方程ax=b在不同条件下解的情况如下:(1)当a≠0时,有唯一解;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.反过来,若关于x的方程ax=b有唯一解,则a≠0;若这个方程有无数解,则a=0,b=0;若这个方程无解,则a=0,b≠0.【尝试应用】(1)若a>3,则关于x的方程ax−8=2x的解的情况是________(选填“有唯一解”“有无数解”或“无解”).(2)已知关于x的方程无解,求a的值.【拓展延伸】(3)当a≠2时,解关于x的方程ax+1=3+2x,并求出当a取哪些整数时,该方程的解也是整数.25.如图,在同一个平面内有四个点A、B、C、D,按要求作图.(1)作射线CD;(2)作直线AD;(3)连接AB;(4)作直线BD与直线AC相交于点O.26.今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?27.如图,已知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.求∠AEC的度数.28.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合思想回答下列问题:(1)数轴上表示−2和1的两点之间的距离是______.(2)数轴上表示x和−1的两点之间的距离表示为______.(3)在数轴上点A表示数a,点B表示数b,点C表示数c,且满足|a+2|+(c−7)2+|b−1|=0,若P是数轴上任意一点,点P表示的数是x,当PA+PB+PC=11时,x的值为多少?答案和解析1.【答案】D【解析】解:A、由有理数的定义可知A错误;B、只有符号不同的两个数叫做互为相反数,故B错误;C、有理数包括:正数、负数和零,故C错误;D、没有最小的有理数,故D正确.故选:D.依据有理数的定义可对A、C、D作出判断;依据相反数的定义可对B作出判断.本题主要考查的是相反数的定义以及有理数的分类,掌握有理数的分类是解题的关键.2.【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将100000000用科学记数法表示为:1×108.故选:B.3.【答案】D【解析】解:A、a3+a3=2a3,故此选项错误;B、a2×a3=a5,故此选项错误;C、(a3)2=a6,故此选项错误;D、a3÷a2=a,正确.故选:D.直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.【答案】B,【解析】解:A.解方程4x=1得:x=14B.解方程4x−1=3x+3得:x=4,C.解方程2(x−1)=10得:x=6,D.解方程2x+1=7得:x=3,故选:B.根据解一元一次方程的方法,依次解各个选项的方程,选出解为x=4的选项即可.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【答案】A【解析】【分析】本题考查图形的折叠以及三棱柱的基本性质,掌握好基本性质即可.由平面图形的折叠及三棱柱的展开图解题.【分析】解:两个三角形和三个矩形可围成一个三棱柱.故选A.6.【答案】D【解析】解:∵3a−a=2a,∴选项A不正确;∵a2+a2=2a2,∴选项B不正确;∵(3a)−(2a)=a,∴选项C不正确;∵(a2)3=a6,∴选项D正确.故选:D.A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.D:幂的乘方,底数不变,指数相乘.此题主要考查了幂的乘方与积的乘方、合并同类项的方法,熟练掌握运算性质和法则是解题的关键.7.【答案】B【解析】试题分析:先把x=1代入方程(1),求出m的值,再把m的值代入方程(2)求解.先把x=1代入方程(1)得:(m−1)=2×1,2−13解得:m=1,把m=1代入方程(2)得:1×(y−3)−2=1×(2y−5),解得:y=0.故选B.8.【答案】C【解析】解:A.当A,B,C不在同一条直线上时,AC=BC,则C不是AB的中点;B.当AB=BC时,C不是AB的中点;AB时,能确定点C是线段AB的中点;C.当AC=BC=12D.当AC+BC=AB时,点C是线段AB上的任意一点,故点C不一定是AB的中点;故选:C.依据中点的概念进行判断,即可得出结论.本题考查了对线段中点定义的应用,注意:如果一个点把一条线段分成相等的两条线段,那么这个点就叫作这条线段的中点.9.【答案】C【解析】此问题时行程问题,因为刚开始两人是以相同的速度同时同向而行,所以相遇时是在中点,即都走了20千米的一半也就是10千米,剩余的路程也相等,只不过甲的速度发生了变化,比原来多走一千米。

苏州北外附属苏州湾外国语学校初一上学期数学期末试卷带答案

苏州北外附属苏州湾外国语学校初一上学期数学期末试卷带答案

苏州北外附属苏州湾外国语学校初一上学期数学期末试卷带答案一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x =3.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=4.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 325.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+6.21(2)0x y -+=,则2015()x y +等于( ) A .-1 B .1C .20143D .20143-7.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对8.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105C .3.31×106D .3.31×1079.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -10.下列计算正确的是( ) A .-1+2=1 B .-1-1=0C .(-1)2=-1D .-12=111.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.|-3|=_________;18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 19.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.20.方程x +5=12(x +3)的解是________. 21.8点30分时刻,钟表上时针与分针所组成的角为_____度.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______. 24.已知7635a ∠=︒',则a ∠的补角为______°______′. 三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集.26.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表: 站次 人数 二三四五六下车(人) 3 6 10 7 19上车(人)12 10 9 4 0(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入? 27.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|; (2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 28.计算题(1)()()()7410-+--- (2)11312344⎛⎫⎛⎫-÷-⨯⎪ ⎪⎝⎭⎝⎭ (3)()()()()75901531-⨯--÷-+⨯- (4)()22112442⎛⎫-⨯---⨯ ⎪⎝⎭29.解方程:4x ﹣3(20﹣x )+4=030.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43;(3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.四、压轴题31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.32.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.33.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max}2,x x 的定义分情况讨论即可求解.【详解】 解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.A解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.3.B解析:B 【解析】 【分析】根据整式的加减法法则即可得答案. 【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意, 故选:B.本题考查整式的加减,熟练掌握合并同类项法则是解题关键.4.C解析:C 【解析】 【分析】把64代入转换器,根据要求计算,得到输出的数值即可. 【详解】,是有理数, ∴继续转换,,是有理数, ∴继续转换,∵2,是无理数,∴输出, 故选:C. 【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.5.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.6.A解析:A 【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1. 故选A解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.【点睛】本题考查了线段中点的性质,找到MC 与AC ,CN 与CB 关系,是本题的关键二、填空题13.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元 解析:(23)a b【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.80° 【解析】 【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答. 【详解】解:根据轴对称的性质得:∠B′OG=∠BOG 又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80° 【解析】 【分析】由轴对称的性质可得∠B ′OG =∠BOG ,再结合已知条件即可解答. 【详解】解:根据轴对称的性质得:∠B ′OG =∠BOG 又∠AOB ′=20°,可得∠B ′OG +∠BOG =160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a +b =0,c =﹣13,m =2或﹣2, 当m =2时,原式=2(a +b )﹣3c +2m =1+4=5; 当m =﹣2时,原式=2(a +b )﹣3c +2m =1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.18.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题19.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.20.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.21.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m 的值.【详解】把1x =代入方程,得141m ⨯-=∴5m =故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.-4<x ≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232x x x +≤⎧⎪⎨+>-⎪⎩①②, 由①得:x ≤2,由②得:x>-4,所以不等式组的解集为:-4<x≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【解析】【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键.27.(1)﹣2;(2)19°10′;(3)x=47.【解析】【分析】(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.【详解】解:(1)原式=﹣9+9﹣6+4,=﹣2;(2)原式=48°96′68″﹣30°27′8″,=18°69′60″,=19°10′;(3)3(4﹣x)﹣2(2x+1)=6,12﹣3x﹣4x﹣2=6,﹣7x=﹣4,x=47.【点睛】本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键.28.(1)-1;(2)49;(3)38;(4)7【解析】【分析】(1)利用去括号的原则先去括号,再进行加减运算即可;(2)将带分数化为假分数,变除为乘,利用乘法运算法则进行约分即可;(3)由题意利用加减乘除运算的法则对式子进行运算;(4)先计算乘方,再计算乘法最后加减运算即可.【详解】(1) 解:原式=7410--+=1-(2) 解:原式=443 394⨯⨯=4 9(3) 解:原式=3563+-=38(4) 解:原式=11416 42-⨯+⨯=18-+=7【点睛】本题考查有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号. 29.x=8【解析】【分析】按照去括号、移项、合并同类项、系数化为1的步骤进行解答即可.【详解】解:4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8.【点睛】本题考查了一元一次方程的解法,其一般步骤为去分母、去括号、移项、合并同类项、系数化为1.30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇,由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=---,∴53z=,表示的数是:57323-+⨯=-,答:在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.四、压轴题31.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.32.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s 【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。

七年级上册苏州苏州国际外语学校数学期末试卷中考真题汇编[解析版]

七年级上册苏州苏州国际外语学校数学期末试卷中考真题汇编[解析版]

七年级上册苏州苏州国际外语学校数学期末试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。

(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。

2.已知:,点,分别在,上,点为,之间的一点,连接, .(1)如图1,求证:;(2)如图2,,,,分别为,,,的角平分线,求证与互补;【答案】(1)证明:过C点作CG∥MN,∵,∴,∴∠MAC=∠ACG,∠PBC=∠GCB,∵∠ACB=∠ACG+∠GCB,∴∠ACB=∠MAC+∠PBC(2)证明:由(1)同理可知,∵,,,分别为,,,的角平分线,∴∠DAE=∠DBE= =90°,∴∠D+∠E=360°-(∠DAE+∠DBE)=180°,∴与互补.【解析】【分析】(1)过C点作CG∥MN,再根据两直线平行,内错角相等即可证明;(2)由(1)可知,,再根据角平分线的性质与平角的性质知∠DAE=∠DBE=90°,即可证得 + =180°.3.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE 和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = ________°;(2)如图②,若∠BEC=140°,求∠BE1C的度数;(3)猜想:若∠BEC=α度,则∠BE n C = ________ °.【答案】(1)75(2)解:如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;∵∠BEC=140°,∴∠BE1C=70°;(3)【解析】【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE=75°;故答案为:75;( 3 )如图2,∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2= ∠ABE1+ ∠DCE1= ∠CE1B= ∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3= ∠ABE2+ ∠DCE2= ∠CE2B= ∠BEC;…以此类推,∠E n= ∠BEC,∴当∠BEC=α度时,∠BE n C等于 °.故答案为: .【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE=75°;(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;(3)根据∠ABE1和∠DCE1的平分线,交点为E2,得出∠BE2C= ∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C= ∠BEC;…据此得到规律∠E n= ∠BEC,最后求得∠BE n C的度数.4.以直线上点为端点作射线,使,将直角的直角顶点放在点处.(1)若直角的边在射线上(图①),求的度数;(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得(图③),求的度数.【答案】(1)解:∵,又∵,∴ .(2)解:∵平分,∴,∵,∴,,∴,∴所在直线是的平分线.(3)解:设,则,∵,,①若∠COD在∠BOC的外部,∴,解得x=10,∴∠COD=10°,∴∠BOD=60°+10°=70°;②若∠COD在∠BOC的内部,,解得x=30,∴∠COD=30°,∴∠BOD=60°-30°=30°;即或,∴或 .【解析】【分析】(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;(3)要分情况讨论,一种是∠COD在∠BOC的内部,另一种是∠COD在∠BOC的外部,再根据平角等于180°可通过列方程求出即可.5.已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°)(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒①当时,试确定∠BOM与∠AON的数量关系;②当且时,若,则t=________.【答案】(1)解:设又 OM平分,ON平分(2)解:①由题意将t分为以下两段:当时,此时有当时,此时有综上,所求的与的数量关系为:② 或或 .【解析】【解答】(2)②根据图中的角均小于,需作以下几方面的讨论:当OC恰好转到OA的位置时,;当OC与OD恰好转到共线的位置时,,即;当OC与OD转到使OM与ON恰好共线的位置时,,即;当OC与OD恰好重合时,,即,下面据此将t的取值范围逐一分段:1)当时,代入得:解得2)当时,代入得:解得(舍)3)当时,代入得:解得(舍)或4)当时,代入得:解得(舍)5)当时,代入得:解得综上,所求的t的值为:或或 .【分析】(1)设,则可得和,根据角平分线的定义得和,再根据即可得;(2)①当时,由题意可得,可以发现当时,大于,因此需要将t分成和两段,分别计算,以保证其符合题意小于,从而确定在两段内和的数量关系;②根据图中的角均小于,首先要分OC是否转过OA;再分OC与OD是否转到共线的位置;然后分角平分线OM与ON是否共线,即是否大于;最后分OC与OD是否重合;计算各个情形的下和,代入即可计算出t的值.6.如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转。

2020-2021苏州北外附属苏州湾外国语学校七年级数学上期末模拟试卷及答案

2020-2021苏州北外附属苏州湾外国语学校七年级数学上期末模拟试卷及答案

2020-2021苏州北外附属苏州湾外国语学校七年级数学上期末模拟试卷及答案一、选择题1.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<02.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a3.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .5.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( )A .18B .36C .16或24D .18或366.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .7.下列结论正确的是( )A .c>a>bB .1b >1c C .|a|<|b|D .abc>08.-4的绝对值是( ) A .4B .C .-4D .9.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯ B .62.410⨯ C .52.410⨯ D .42410⨯ 10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或312.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )64的展开式中第三项的系数为( ) A .2016B .2017C .2018D .2019二、填空题13.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.14.若25113m n a b -+与-3ab 3-n 的和为单项式,则m+n=_________. 15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.17.若代数式213k--的值是1,则k= _________. 18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).19.化简:()()423a b a b ---=_________.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.先化简,再求值:5(3a 2b ﹣ab 2﹣1)﹣(ab 2+3a 2b ﹣5),其中a =﹣12,b =13.22.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值 (单位:千克) -1 -0.5 0 0.5 1 1.5 箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?23.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O按每秒15°的速度沿逆时针方向旋转一周的情况,在旋转的过程中,第t秒时,三条射线OA、OC、OM构成两个相等的角,求此时的t值(3)将图1中的三角板绕点O顺时针旋转至图3(使ON在∠AOC的外部),图4(使ON在∠AOC的内部)请分别探究∠AOM与∠NOC之间的数量关系,并说明理由.24.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;商场优惠方案甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?25.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a−c|=|a|+c,故C正确;ab>0 ,故D错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.2.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.D解析:D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.4.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.5.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C 是线段AB 上的三等分点, 所以AB =36.综合上述可得AB=18或AB=36. 故选:D. 【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.6.D解析:D 【解析】 【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1. 【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++=1.故答案选:D. 【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.7.B解析:B 【解析】 【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案. 【详解】解:由图可知1,01,1a b c <-<<> ∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B . 【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.8.A解析:A 【解析】 【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.) 【详解】根据绝对值的概念可得-4的绝对值为4. 【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.9.B解析:B 【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.D解析:D 【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.A解析:A【解析】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n−2)+(n−1),∴(a+b)64第三项系数为1+2+3+…+63=2016,故选A.点睛:此题考查了规律型-数字的变化类,考查学生通过观察、分析、归纳发现其中的规律,并应用发现的规律解决实际问题的能力.二、填空题13.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒据此可得答案【详解】∵图①中火柴数量为5=1+4×1图②中火柴数量为9=1+ 4×2图③中火柴数量为13=1+4×3……∴摆第n解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1, 图②中火柴数量为9=1+4×2, 图③中火柴数量为13=1+4×3, ……∴摆第n 个图案需要火柴棒(4n+1)根, 故答案为(4n+1). 【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.14.4【解析】【分析】若与-3ab3-n 的和为单项式a2m-5bn+1与ab3-n 是同类项根据同类项的定义列出方程求出nm 的值再代入代数式计算【详解】∵与-3ab3-n 的和为单项式∴a2m -5bn+1与解析:4 【解析】 【分析】 若25113m n a b -+与-3ab 3-n 的和为单项式,a 2m-5 b n+1 与ab 3-n 是同类项,根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算. 【详解】∵25113m n a b -+与-3ab 3-n 的和为单项式, ∴a 2m-5 b n+1 与ab 3-n 是同类项, ∴2m-5=1,n+1=3-n , ∴m=3,n=1.∴m+n=4. 故答案为4. 【点睛】本题考查的知识点是同类项的定义,解题关键是熟记同类项定义中的两个“相同”: (1)所含字母相同; (2)相同字母的指数相同.15.122【解析】【分析】根据题意可以分别求得a1a2a3a4从而可以发现这组数据的特点三个一循环从而可以求得a2019的值【详解】解:由题意可得a1=52+1=26a2=(2+6)2+1=65a3=(解析:122 【解析】 【分析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值. 【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=122,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019= a3=122,故答案为:122.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.16.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案【详解】解:如图所示:x的值为2故答案为:2【点睛】此题主要考查了有理数的加法正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.17.-4【解析】【分析】【详解】由=1解得解析:-4【解析】【分析】【详解】由213k--=1,解得4k=-.18.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.2a-b 【解析】【分析】直接利用整式的加减运算法则计算得出答案【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b 故答案为:2a-b 【点睛】本题考查整式的加减运算正确掌握相关运解析:2a-b .【解析】【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为: 2a-b .【点睛】本题考查整式的加减运算,正确掌握相关运算法则是解题关键.20.5°【解析】∵∠CBE=180°-∠ABC -∠DBE=180°-45°-60°=75°BM 为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN 为∠DBE 的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°, ∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°,∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 三、解答题21.原式=12a 2b ﹣6ab 2=43. 【解析】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式2222155535,a b ab ab a b =----+ 22126.a b ab =- 当1123a b =-=,时,原式1111141261.432933⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭ 22.(1)2.5;(2)1216【解析】【分析】(1)最重的一箱苹果比标准质量重1.5千克,最轻的一箱苹果比标准质量轻1千克,则两箱相差2.5千克;(2)先求得15箱苹果的总质量,再乘以4元即可.【详解】解:(1)1.5﹣(﹣1)=2.5(千克).答:最重的一箱比最轻的一箱多重2.5千克;(2)(﹣1×1)+(﹣0.5×3)+0×4+0.5×3+1×2+1.5×2=﹣1﹣1.5+0+1.5+2+3=4(千克).20×15+4=304(千克)304×4=1216(元).答:这15箱苹果可卖1216元.【点睛】本题考查了正负数和有理数的加减混合运算,理解正负数的意义是解答此题的关键.23.(1)150°;(2)t 为4,16,10或22秒;(3)ON 在∠AOC 的外部时,∠NOC -∠AOM=30°;ON 在∠AOC 的内部时,∠AOM-∠NOC=30°,理由见解析【解析】【分析】(1)根据角的和差即可得到结论;(2)在图2中,分四种情况讨论:①当∠COM 为60°时,②当∠AOM 为60°时,③当OM 可平分∠AOC 时,④当OM 反向延长线平分∠AOC 时,根据角的和差即可得到结论; (3)ON 在∠AOC 的外部时和当ON 在∠AOC 内部时,分别根据角的和差即可得到结论.【详解】(1)已知∠AOC=60°,MO ⊥ON ,∴∠AON=90°,∴∠CON=∠AON+∠AOC=150°;(2)∵∠AOC=60°,①当∠COM 为60°时,旋转前∠COM 为120°,故三角板MON 逆时针旋转了60°,旋转了6015=4秒;②当∠AOM 为60°时,旋转前∠AOM 为180°,OM 不与OC 重合,故三角板MON 逆时针旋转了240°,旋转了24015=16秒; ③当OM 可平分∠AOC 时,∠MOB=180°-30°=150°,故三角板MON 逆时针旋转了150°,旋转了15015=10秒; ④当OM 反向延长线平分∠AOC 时,18030150COM AOM ∠=︒-︒=︒=∠'',故三角板MON 逆时针旋转了180150︒+︒=330°,旋转了33015=22秒, 综上t 为:4,16,10或22秒;(3) ∵∠MON=90°,∠AOC=60°,当旋转到如图,ON 在∠AOC 的外部时,∴∠AOM=60°+∠COM,∠NOC=90°+∠COM,∴∠NOC -∠AOM=30°;当旋转到如图,ON在∠AOC的内部时,∴∠AOM=90°-∠AON,∠NOC=60°-∠AON,∴∠AOM-∠NOC=30°.【点睛】本题主要考查了角的计算以及角平分线的定义的运用,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.24.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元);乙商场实际付款:290﹣2×50+270﹣2×50=360(元);故答案为:336,360;(2)设这条裤子的标价是x元,由题意得:(380+x)×60%=380﹣3×50+x﹣3×50,解得:x=370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.25.(1)该校参加社会实践活动有225人;(2)该校租用60座客车更合算.【解析】【分析】(1)设该校参加旅游有x 人,根据租用客车的数量关系建立方程求出其解即可;(2)分别计算出租用两种客车的数量,就可以求出租用费用,再比较大小就可以求出结论.【详解】解:(1)设该校参加旅游有x 人,根据题意,得:15_14560x x +=, 解得:x=225,答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆), 需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×250=1250(元), 租用60座客车需:4×300=1200(元), ∵1250>1200,∴该校租用60座客车更合算.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小的比较的运用,解答时租用不同客车的数量关系建立方程是关键.。

苏州外国语学校七年级上学期数学期末试卷及答案-百度文库

苏州外国语学校七年级上学期数学期末试卷及答案-百度文库

苏州外国语学校七年级上学期数学期末试卷及答案-百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107C .6.5×108D .65×1062.4 =( ) A .1 B .2 C .3 D .4 3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒4.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 325.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+67.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个8.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能 9.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣110.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .111.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离12.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .2二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 17.化简:2xy xy +=__________. 18.单项式﹣22πa b的系数是_____,次数是_____.19.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 20.计算7a 2b ﹣5ba 2=_____.21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题25.计算: (1)()7.532-⨯-(2(383+3233--26.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x 2+(P+q)x+pq 得 x 2+(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子x 2+3+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2所以 x 2+3x+2=x 2+(1+2)x+1×2,x 2+3x+2=(x+1)(x+2) 请仿照上面的方法,解答下列问题 (1)分解因式:x 2+6x-27(2)若x 2+px+8可分解为两个一次因式的积,则整数p 的所有可能值是____ (3)利用因式分解法解方程:x 2-4x-12=027.光明中学组织学生到距离学校 9 千米的博物馆参观,学生小华因有事未能赶上包车,于是准备在学校门口直接乘出租车去博物 馆,出租车的收费标准如下: 里 程收费(元) 3 千米以内(含 3 千米) 10.00 3 千米以外,每增加 1 千米2.40(1)写出小华乘出租车的里程数为 x 千米(x ≥3)时,所付车费为多少元(用含 x 的代 数式表示);(2)如果小华同学身上仅有 25 元钱,由学校乘出租车到博物馆钱够不够?请说明理由. 28.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2. 29.先化简,再求值:﹣3(a 2﹣2b )+5(3b +a 2),其中a =﹣2,13b =-. 30.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A .1.5小时以上;B .1~1.5小时;C .0.5~1小时;D .0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题: (1)本次一共调查了多少名学生? (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.四、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.5.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.7.D解析:D 【解析】 【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断 【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x ax x a =⎧⎨=-⎩解得:a=20,本选项正确 ③若x=y,则有-225x ax a =⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确④方程组解得25-15x ay a =⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确 则正确的选项有四个 故选D 【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键8.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.9.A解析:A【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.10.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.11.A解析:A【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.12.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.【解析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.18.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 19.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.20.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.21.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.22.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.(1)13.5;(2)9.【解析】【分析】(1)根据有理数的四则混合运算解答;(2)根号二次根式的四则运算进行解答.【详解】解:(1) ()7.532-⨯-=7.56+=13.5;(3--=(23⨯-=3+=9.【点睛】本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.26.(1)(x+9)(x-3);(2)±9,±6;(3)x=6或-2【解析】【分析】(1)利用十字相乘法分解因式即可:(2)找出所求满足题意p 的值即可(3)方程利用因式分解法求出解即可【详解】(1)x 2+6x-27=(x+9)(x-3)故答案为:(x+9)(x-3);(2)∵8=1×8;8=-8×(-1);8=-2×(-4);8=4×2则p 的可能值为-1+(-8)=-9;8+1=9;-2+(-4)=-6;4+2=6∴整数p 的所有可能值是±9,±6故答案为:±9,±6;(3)∵方程分解得:(x-6)(x+2)=0可得x-6=0或x+2=0解得:x=6或x=-2【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则27.(1)(2.4x+2.8);(2)小华由学校乘出租车到博物馆钱够了.【解析】(1)根据3千米以内收费10元,超过3千米,每增加1千米收费2.4元,列代数式即可;(2)求出到达博物馆所需的钱数,然后判断25元钱是否能够到达博物馆.【详解】(1)由题意得,所付车费为:2.4(x-3)+10(x≥3);(2)将x=9代入得:2.4×6+10=24.4元<25元,所以小华由学校乘出租车到博物馆钱够了.【点睛】本题考查了列代数式和代数式求值,关键是读懂题意,根据题意列出代数式.28.-4.【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.【点睛】考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.29.2a2+21b,1.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=﹣3a2+6b+15b+5a2=2a2+21b,当a=﹣2,b=﹣13时,原式=8﹣7=1.【点睛】本题考查的是整式的加减−−化简求值,掌握整式的混合运算法则是解题的关键. 30.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.【解析】【分析】(1)根据A类人数和占比即可求出总人数;(2)用总人数减去A类,C类,D类的人数得到B类人数,即可补全图形;(3)用3000乘以C、D类人数占比即可得出答案.解:(1)读图可得:A 类有60人,占30%;则本次一共调查了60÷30%=200人;(2)“B”有200﹣60﹣30﹣10=100人,如图所示;(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%; 则3000×(15%+5%)=3000×20%=600人.因此学校有600人平均每天参加体育锻炼在1小时以下. 【点睛】本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.四、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.。

苏州外国语学校七年级上学期数学期末试卷及答案-百度文库

苏州外国语学校七年级上学期数学期末试卷及答案-百度文库

苏州外国语学校七年级上学期数学期末试卷及答案-百度文库 一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×1062.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q3.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 4.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .45.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.6.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 7.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )2 8.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >09.下列图形中,哪一个是正方体的展开图( )A .B .C .D .10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯ 11.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7 12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.15. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.16.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.17.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算-5⊗[3⊗(-2)]=___.18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.21.3.6=_____________________′22.当12点20分时,钟表上时针和分针所成的角度是___________.23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.单项式()26a bc -的系数为______,次数为______. 三、压轴题25.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.28.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.29.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.30.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.3.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.4.B解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键. 5.C解析:C【解析】试题解析:A ∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .6.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A 、方程x 1x 10.20.5--=化成10x 1010x 25--=1,错误; B 、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C 、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D 、方程23t 32=,系数化为1,得:t=94,错误; 所以答案选C.【点睛】 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.8.C解析:C【解析】【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |,∴a +b <0,ab <0,a ﹣b <0,a ÷b <0.故选:C .9.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.10.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.11.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.12.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31a -,因为无解,所以a ﹣1=0,即a=1. 故选A . 点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.解:把x=5代入方程ax ﹣8=20+a得:5a ﹣8=20+a ,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.解:把x=5代入方程ax ﹣8=20+a得:5a ﹣8=20+a ,解得:a=7.故答案为7.考点:方程的解.14.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.15.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.16.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.17.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面21.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此 解析:16- 【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc -的系数为16-;次数为2+1+1=4; 故答案为16-;4. 【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.三、压轴题25.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.26.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11,∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.27.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.28.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:。

2020-2021苏州苏州国际外语学校七年级数学上期末试卷(附答案)

2020-2021苏州苏州国际外语学校七年级数学上期末试卷(附答案)

2020-2021苏州苏州国际外语学校七年级数学上期末试卷(附答案)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( ) A .不赔不赚 B .赚9元 C .赔18元 D .赚18元 3.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 5.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是06.下列运算结果正确的是( ) A .5x ﹣x=5B .2x 2+2x 3=4x 5C .﹣4b+b=﹣3bD .a 2b ﹣ab 2=07.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20158.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( ) A .﹣1007 B .﹣1008 C .﹣1009 D .﹣2018 9.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( ) A .2.897×106 B .28.94×105 C .2.897×108 D .0.2897×107 10.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙)A .75︒B .105︒C .120︒D .125︒11.下列说法: ①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则ba=﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a . 其中正确的个数有( )A .1个B .2个C .3个D .4个12.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题13.把58°18′化成度的形式,则58°18′=______度. 14.对于正数x ,规定()1f x x x =+,例如:()221223f==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.15.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.16.观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+=L L若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来: 17.如图,若输入的值为3-,则输出的结果为____________.18.若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是______. 19.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).20.点A 、B 、C 在同一条数轴上,且点A 表示的数为﹣18,点B 表示的数为﹣2.若BC =14AB ,则点C 表示的数为_____. 三、解答题21.2020年元旦,某商场将甲种商品降价40%,乙种商品降价20%,开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)求甲、乙两种商品原销售单价各是多少元?(2)若商场在这一次促销活动中,甲种商品亏损25%,乙种商品盈利25%.那么,商场在这次促销活动中,是盈利还是亏损了?如果是盈利件盈利了多少元?如果是亏损,亏损了多少元?22.某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入。

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的相反数是()A. −2B. 2C. −12D. 122.若a>b,则则下列不等式一定成立的是()A. a>b+2B. a+1>b+1C. −a>−bD. |a|>|b|3.下列运算正确的是()A. 5a2−3a2=2B. 2x2+3x2=5x4C. 3a+2b=5abD. 7ab−6ba=ab4.当前,手机移动支付已经成为新型的消费方式,中国正在向无现金社会发展.下表是妈妈元旦当天的微信零钱支付明细:则元旦当天,妈妈微信零钱最终的收支情况是()微信转账−60.00扫二维码付款−105.00微信红包.+88.00便民菜站−23.00A. 收入88元B. 支出100元C. 收入100元D. 支出188元5.下列选项中说法错误的是()A. −a的次数与系数都是1B. 单项式−23ab的系数是−23C. 数字0是单项式D. 多项式x2+xyz2+y2的次数是46.如图,在立定跳远中,体育老师是这样测量运动员成绩的:用一块直角三角板的一边紧贴在起跳线上,另一边与拉直的皮尺重合.这样做的理由是()A. 过一点可以作无数条直线B. 过两点有且只有一条直线C. 两点之间,线段最短D. 直线外一点与直线上各点连接的所有线段中,垂线段最短7.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A. 8x−3=7x+4B. 8x+3=7x+4C. 8x−3=7x−4D. 8x+3=7x−48.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A. 12∠2−∠1 B. 12∠2−32∠1 C. 12(∠2−∠1) D. 13(∠1+∠2)9.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…按照此规律下去,数字“2021”应落在()A. 射线OB上B. 射线OC上C. 射线OD上D. 射线OE上10.已知AB=2a(a>0),下面四个选项中:①AC+BC=2a,②AB=2AC,③AC=BC,④AC=BC=a,能确定点C是线段AB中点的选项个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11.网红和明星直播“带货”,成为当下重要的营销方式,数据显示,今年在淘宝“双十二”期间,全国共有60多个产业带的商家开启了超过一万场直播,直播成交商品超过8100000件.8100000这个数用科学记数法可表示为______.12.若∠α=35°,则∠α的补角为______度.13.已知代数式x−2y的值为5,则代数式14−x+2y的值为______.14.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则化简|a−b|−|c−a|=______.15.不等式4(x−1)<3x−2的正整数解为______ .16.长方体纸盒的展开图如图所示,根据图中表示的数据,可知长方体的体积为______cm3.17.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF=______°.18.如图所示,点A,B,C是数轴上的三个点,其中AB=12,如果点P以每秒1个单位的速度从点A出发向右运动,那么经过______秒时,PC=2PB.三、解答题(本大题共10小题,共76.0分)19.计算:(1)8+(−10)+(−2)−(−5);(2)(−2)÷1×(−3)+(−3)3.320.解方程:(1)9−3y=5y+5;(2)2x+13−x−24=1.21.解不等式组:{x−2(x−1)≥1x+13<x+3,并将其解集在数轴上表示出来.22.先化简再求值:4ab−[(a2+5ab−b2)−(a2+3ab−2b2)],其中a、b满足|a+1|+(b−2)2=0.23.在如图所示的方格纸中,A,B,C为3个格点,点C在直线AB外,(1)借助格点,过C点画出AB的垂线m和平行线n;(2)指出(1)中直线m、n的位置关系为______.(3)连接AC和BC,若图中每个最小正方形的边长为1,则三角形ABC的面积是______.24.如图是由一些大小相同的5个小正方体组合成的简单几何体.(1)请在方格纸中用实线画出它的三个视图.(2)保持小正方体的个数不变,只改变小正方体的位置,摆放一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有______种不同的摆放方法.25.补全下面的解题过程:如图,已知OC是∠AOB内部的一条射线,OD是∠AOB的平分线,∠AOC=2∠BOC,且∠BOC=40°,求∠COD的度数.解:∵∠AOC=2∠BOC,∠BOC=40°,∴∠AOC=______°.∴∠AOB=∠AOC+∠______=______°.∵OD平分∠AOB,∠______=______°.∴∠AOD=12∴∠COD=∠______−∠AOD=20°.26.如图,已知点C在直线AB上,点D、E分别是线段AC、CB的中点.(1)若点C在线段AB上,AC=6,CB=10.则线段DE的长度是______;(2)若点C为线段AB上任意一点,满足AC+CB=a,你能猜想出DE的长度吗?并说明理由.(3)若点C为线段AB外任意一点,AC=m,CB=n,则线段DE的长度是______.27.某学校要举办一次数学文化节活动,要求准备普通口罩、医用口罩、专业口罩三种口罩共1000个(每种口罩都要有),其中医用口罩的单价比普通口罩的单价贵0.2元,买5个医用口罩和8个普通口罩共需要6.2元.(1)问医用口罩和普通口罩的单价分别是多少元?(2)若专业口罩市场上有三个级别,学校只能从中选择一个级别.价格如下表:现在学校用3480元去购买这三种口罩,且普通口罩和专业口罩的数量是相同的,应该选择哪种级别的专业口罩比较合适?购买方案是什么?请说明理由.(3)若要求购买专业口罩的数量是普通口罩的一半,普通口罩和医用口罩单价不变,其中专业口罩单价为a元,在总数量不变的前提之下,无论这三种口罩的数量如何分配,总费用始终不变.求此时a的值和总费用.28.【阅读新知】如图①,射线OC在∠AOB内,图中共有三个角∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角的度数的2倍,则称射线OC是∠AOB的“巧线”.【理解运用】(1)∠AOB的角平分线______这个角的“巧线”;(填“是”或“不是”)(2)若∠AOB=90°,射线OC是∠AOB的“巧线”,则∠AOC的度数是______.【拓展提升】如图②,一副三角板如图所示摆放在量角器上,边PD与量角器0°刻度线重合,边AP 与量角器180°刻度线重合,将三角板ABP绕量角器中心点P以每秒5°的速度顺时针方向旋转,当边PB与0°刻度线重合时停止运动,设三角板ABP的运动时间为t秒.(3)求t何值时,射线PB是∠CPD的“巧线”?(4)若三角板ABP按照原来方向旋转的同时,三角板PCD也绕点P以每秒2°的速度逆时针方向旋转,此时三角板ABP绕点P旋转的速度比原来每秒快了3°.当三角板ABP 停止旋转时,三角板PCD也停止旋转,问:在旋转过程中,是否存在某一时刻t,使三条射线PB、PC、PD中,其中一条恰好是以另两条组成的角的“巧线”?若存在,请直接写出t的值.若不存在,请说明理由.答案和解析1.【答案】B【解析】解:−2的相反数是:−(−2)=2,故选:B.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】B【解析】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.利用不等式的基本性质判断即可.解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则−a<−b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.3.【答案】D【解析】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.4.【答案】B【解析】解:−60−105+88−23=−100,所以元旦当天,妈妈微信零钱最终的收支情况是支出100元.故选:B.根据正数和负数表示相反意义的量,可得答案.本题考查了正数和负数,确定相反意义的量是解题关键.5.【答案】A【解析】解:A、−a的系数为−1、次数为1,原说法错误,此选项符合题意;B、单项式−23ab的系数是−23,原说法正确,此选项不符合题意;C、数字0是单项式,原说法正确,此选项不符合题意;D、多项式x2+xyz2+y2的次数是1+1+2=4,原说法正确,此选项不符合题意;故选:A.根据单项式及其相关的概念、多项数的相关概念逐一判断可得.本题主要考查单项式、多项式,解题的关键是掌握单项式、多项式及有关概念.6.【答案】D【解析】解:他的跳远成绩是垂线段AB的长度.这样做的理由是直线外一点与直线上各点连接的所有线段中,垂线段最短.故选:D.由点到直线的距离的定义及跳远比赛的规则作出分析和判断.本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.7.【答案】A【解析】解:由题意可得,设有x人,可列方程为:8x−3=7x+4.故选:A.根据题意可以找出题目中的等量关系,列出相应的方程,就可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.8.【答案】C【解析】解:由图知:∠1+∠2=180°;∴12(∠1+∠2)=90°;∴90°−∠1=12(∠1+∠2)−∠1=12(∠2−∠1).故选:C.由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°;而∠1的余角为90°−∠1,可将上式代入90°−∠1中,即可求得结果.此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.9.【答案】D【解析】解:由题可知,6个数字循环一次,∵2021÷6=336…5,∴2021落在OE上,故选:D.由题可知,6个数字循环一次,再由2021÷6=336…5,即可判断2021的位置.本题考查数字的变化规律,根据题意,找到数字的循环规律是解题的关键.10.【答案】A【解析】解:①AC+BC=2a,如图,∴点C不一定是AB中点;②AB=2AC,如图,点C可能在线段AB外,故不一定;③AC=BC,如图,可能三点不共线,故不一定;④AC=BC=a,如图,点C一定是AB中点,故选:A.先画出图形,再根据线段中点定义判断即可.本题考查了对线段中点定义的应用,注意:如果一个点把一条线段分成相等的两条线段,那么这个点就叫作这条线段的中点.11.【答案】8.1×106【解析】解:8100000=8.1×106.故答案为:8.1×106.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.【答案】145【解析】解:180°−35°=145°,则∠α的补角为145°,故答案为:145.根据两个角的和等于180°,则这两个角互补计算即可.本题考查的是余角和补角,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.13.【答案】9【解析】解:∵代数式x−2y的值为5,∴x−2y=5.∴14−x+2y=14−(x−2y)=14−5=9.故答案为:9.将代数式适当变形,利用整体代入的方法解答即可得出结论.本题主要考查了求代数式的值,将代数式适当变形利用整体代入的方法解答是解题的关键.14.【答案】b−c【解析】解:由数轴得,c>0,a<b<0,因而a−b<0,c−a>0,∴|a−b|−|c−a=b−a−c+a=b−c.故答案为:b−c.由数轴可知:c>0,a<b<0,所以可知:a−b<0,c−a>0,根据负数的绝对值是它的相反数,正数的绝对值是它本身可求值.此题考查了整式的加减运算,数轴,以及绝对值的意义,根据数轴提取有用的信息是解本题的关键.15.【答案】1【解析】解:不等式的解集是x<2,故不等式4(x−1)<3x−2的正整数解为1.故答案为:1.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.【答案】192【解析】解:由题意得:长方体的长为8cm.宽为6cm,∴长方体的高=26−6−2×8=4cm,∴长方体的体积=6×8×4=192立方厘米,故答案为:192.根据长方体的平面展开图求出长方体的高,然后再根据长方体的体积公式计算即可.本题考查了列代数式,几何体的展开图,根据题目的已知并结合图形求出长方体的高是解题的关键.17.【答案】28.5【解析】解:∵∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=12∠BOD=12×82°=41°.∴∠COE=180°−∠DOE=180°−41°=139°,∵OF平分∠COE,∴∠EOF=12∠COE=12×139°=69.5°,∴∠BOF=∠EOF−∠BOF=69.5°−41°=28.5°.故答案是:28.5.根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF−∠BOF求解.本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.18.【答案】20或383【解析】解:设经过t秒PC=2PB,由已知,经过t秒,点P在数轴上表示的数是−6+t.∴PC=|−6+t+2|=|t−4|,PB=|−6+t−6|=|t−12|.∵PC=2PB.∴|t−4|=2|t−12|.,解得:t=20或383.故答案为:20或383设经过t秒PC=2PB.由已知,经过t秒,点P在数轴上表示的数是−6+t.根据两点之间距离公式即可求出答案.本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.19.【答案】解:(1)原式=8−10−2+5=(8+5)+(−10−2)=13−12=1;(2)原式=−6×(−3)−27=18−27=−9.【解析】(1)减法转化为加法,再进一步计算即可;(2)先计算除法和后面的乘方,再计算乘法,最后计算减法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.【答案】解:(1)移项,可得:−3y−5y=5−9,合并同类项,可得:−8y=−4,系数化为1,可得:y=0.5.(2)去分母,可得:4(2x+1)−3(x−2)=12,去括号,可得:8x+4−3x+6=12,移项,可得:8x−3x=12−4−6,合并同类项,可得:5x=2,系数化为1,可得:x=0.4.【解析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.【答案】解:由x−2(x−1)≥1,得:x≤1,<x+3,得:x>−4,由x+13则不等式组的解集为−4<x≤1,将解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:原式=4ab−(a2+5ab−b2)+(a2+3ab−2b2)=4ab−a2−5ab+b2+a2+3ab−2b2=2ab−b2,∵|a+1|+(b−2)2=0,∴a+1=0,b−2=0,∴a=−1,b=2.∴原式=2×(−1)×2−22=−4−4=−8.【解析】原式去括号合并得到最简结果,根据绝对值和偶次幂的非负性求出a和b的值,再把a与b的值代入计算即可求出值.本题考查了整式的加减−化简求值,涉及去括号法则,同类项的定义,合并同类项法则等知识,熟练掌握运算法则是解本题的关键.本题可先去小括号,也可先去中括号.23.【答案】m⊥n6【解析】解:(1)如图,直线m,直线n即为所求;(2)∵m⊥AB,n//AB,∴m⊥n,故答案为:m⊥n;×4×3=6,(3)S△ABC=12故答案为:6.(1)利用数形结合的思想以及垂线,平行线的定义作出图形即可;(2)利用垂线的判定方法解决问题;(3)根据三角形面积公式求解即可.本题考查作图−应用与设计作图,平行线的判定和性质,三角形的面积等知识,解题的关键是掌握垂线,平行线的定义,属于中考常考题型.24.【答案】2【解析】解:(1)这个组合体的三视图如图所示:(2)重新摆放,使其左视图、俯视图与(1)中的相同,因此摆放的“第2个小正方体”可以在俯视图第一行的三个位置的其中之一,因此还有2种摆放,故答案为:2.(1)根据简单的组合体的三视图的画法,画出相应的图形即可;(2)在俯视图上相应的位置摆放“第2个”,结合左视图进行判断即可.本题考查简单组合体的三视图,掌握视图的定义,掌握简单组合体三视图的画法是解决问题的关键.25.【答案】80BOC120AOB60AOC【解析】解:∵∠AOC=2∠BOC,∠BOC=40°,∴∠AOC=80°,∴∠AOB=∠AOC+∠BOC=120°,∵OD平分∠AOB,∴∠AOD=12∠AOB=60°,∴∠COD=∠AOC−∠AOD=20°,故答案为:80,BOC,120,AOB,60,AOC.根据题目的已知条件先求出∠AOC,进而求出∠AOB,再根据角平分线的定义求出∠AOD 即可解答.本题考查了角的计算,角平分线的定义,根据题目的已知条件并结合图形去分析是解题的关键.26.【答案】812(n−m)或12(m−n)【解析】解:(1)∵点D、E分别是AC、BC的中点,∴DC=12AC=12×6=3,CE=12BC=12×10=5,∴DE=DC+CE=3+5=8,故答案为:8;(2)DE=12a.理由如下:∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=DC+CE=12(AC+CB)=12a;当C在BA的延长线上时,∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=CE−CD=12(BC−AC)=12(n−m);当C在AB的延长线上时,∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=CD−CE=12(AC−BC)=12(m−n),综上,DE=12(n−m)或12(m−n).故答案为:12(n−m)或12(m−n).(1)根据线段中点的定义得到DC=12AC=3,CE=12BC=5,然后利用DE=DC+CE进行计算;(2)根据线段中点的定义得到DC=12AC,CE=12BC,然后利用DE=DC+CE得到答案;(3)分两种情况:当C在BA的延长线上和当C在AB的延长线上,再根据线段中点的定义可得答案.本题考查了两点间的距离,利用线段的和差和线段中点的定义是解题关键.27.【答案】解:(1)设普通口罩单价为x元,医用口罩单价为(x+0.2)元,由题意得:5(x+0.2)+8x=6.2,解得:x=0.4,∴x+0.2=0.6,答:普通口罩单价为0.4元,医用口罩单价为0.6元;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1000−2y)个,①当选Ⅰ级口罩购买时,则0.4y+0.6(1000−2y)+2y=3480,解得:y=2400>1000,不合题意;②当选Ⅱ级口罩购买时,则0.4y+0.6(1000−2y)+5y=3480,则1000−2y=1000−2×686=−372<0,不合题意,当选Ⅲ级口罩购买时,则0.4y+0.6(1000−2y)+8y=3480,解得:y=400,1000−2y=1000−800=200,符合题意,∴购买普通口罩和专用口罩个400个,医用口罩200个;(3)设购买m个专业口罩,则购买普通口罩2m个,医用口罩(1000−3m)个,总费用为T 元,由题意得:T=0.4×2m+0.6(1000−3m)+am=0.8m+600−1.8m+am=(0.8+a−1.8)m+600,T与m无关,则0.8+a−1.8=0,解得:a=1,T=600,答:此时a的值为1,总费用为600元.【解析】(1)设普通口罩单价为x元,医用口罩单价为(x+0.2)元,根据买5个医用口罩和8个普通口罩共需要6.2元列出方程求解即可;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1000−2y)个,然后分购买Ⅰ级、Ⅱ级、Ⅲ级口罩的总费用=3480列方程,解方程取符合题意的值即可;(3)设购买m个专业口罩,则购买普通口罩2m个,医用口罩(1000−3m)个,总费用为T 元,由题意列出方程,根据总费用始终不变,求出a和T的值即可.本题考查一元一次方程的应用,关键是找出等量关系列出方程.28.【答案】是30°或45°或60°【解析】解:(1)如图,∵OC是∠AOB的平分线,∴∠AOB=2∠AOC,∴OC是∠AOB的“巧线”,故答案为:是;(2)∵∠AOB=90°,射线OC是∠AOB的“巧线”,∴∠AOC=13∠AOB,即∠AOC=30°,∠AOC=12∠AOB,即∠AOC=45°,∠AOC=23∠AOB,即∠AOC=60°,综上,∠AOC的度数是30°或45°或60°,故答案为:30°或45°或60°;(3)如图,由题意得,0≤t≤27,∠CPB=5t−75°,∠CPD=60°,∵射线PB是∠CPD的“巧线“,∴∠CPB=13∠CPD,即5t−75=20,t=19,∠CPB=12∠CPD,即5t−75=30,t=21,∠CPB=23∠CPD,即5t−75=40,t=23,综上,t的值是19或21或23;(4)由题意得0≤t≤1678,分三种情况:①PC在∠BPD内部,PC是∠BPD的巧线,∠BPC=75−10t,∠BPD=135−10t,故这种情况不存在;②PB在∠CPD内部,PB是∠CPD的巧线,∠BPC=10t−75,∠CPD=60°,∴∠BPC=13∠CPD,10t−75=20,t=9.5,∠BPC=12∠CPD,10t−75=30,t=10.5,∠BPC=23∠CPD,10t−75=40,t=11.5;③PD在∠CPB内部,PD是∠BPC的巧线,∠BPC=10t−75,∠CPD=60°,∴∠CPD=13∠BPC,60=13(10t−75),t=25.5(舍去),第21页,共22页∠CPD=12∠BPC,60=12(10t−75),t=19.5(舍去),∠CPD=23∠BPC,60=23(10t−75),t=16.5;综上,t的值是9.5或10.5或11.5或16.5.(1)根据巧线的定义直接判断即可;(2)分三种情况计算即可;(3)用含t的式子表示∠CPD,再分三种情况计算即可;(4)由(3)的思路分情况解答即可.本题考查角的计算,根据题意列出方程是解题关键.第22页,共22页。

2020-2021苏州市七年级数学上期末模拟试题(含答案)

2020-2021苏州市七年级数学上期末模拟试题(含答案)
C、7x=96,解得:x= 96 ,不能求得这 7 个数; 7
D、7x=105,解得:x=15,能求得这 7 个数. 故选:C. 【点睛】 此题考查一元一次方程的实际运用,掌握“H”型框中的 7 个数的数字的排列规律是解决问 题的关键.
12.B
解析:B 【解析】 【分析】 根据数轴上的两数位置得到 a>0、b<0,b 距离远点距离比 a 远,所以|b|>|a|,再挨个选项 判断即可求出答案. 【详解】 A. a+b<0 故此项错误; B. ab<0 故此项正确; C. |a|<|b| 故此项错误; D. a+b<0, a﹣b>0,所以 a+b<a﹣b, 故此项错误. 故选 B. 【点睛】 本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.
烛,来电后同时熄灭,发现粗烛的长是细烛的 2 倍,则停电的时间为( )
A.2 小时
B.2 小时 20 分
C.2 小时 24 分
D.2 小时 40 分
11.如图,表中给出的是某月的月历,任意选取“ H ”型框中的 7 个数(如阴影部分所示).请
你运用所学的数学知识来研究,则这 7 个数的和不可能是( )
2
5
25.探索练习:某文艺团体为“希望工程”募捐组织了一场义演,共售出 1000 张票,其中
成人票是每张 8 元,学生票是每张 5 元,筹得票款 6950 元.问成人票与学生票各售出多少
张?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】 (1)根据线段的性质即可求解; (2)根据直线的性质即可求解; (3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大 90°; (4)根据两点间的距离的定义即可求解. 【详解】 (1)两点之间线段最短是正确的; (2)两点确定一条直线是正确的;

2020-2021北京外国语大学附属外国语学校七年级数学上期末试卷(及答案)

2020-2021北京外国语大学附属外国语学校七年级数学上期末试卷(及答案)
(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?
(2)若汽车每千米耗油0.4升,则8:00~9:15汽车共耗油多少升?
(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?
23.解方程
解析:②、③、④
【解析】
【分析】
由平面图形的折叠及正方体的表面展开图的特点解题.
【详解】
将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
将图1的正方形放在图2中的②③④的位置均能围成正方体,
故答案为②③④.
【点睛】
本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
故选:A.
【点睛】
本题考查一元一次方程的应用——应用一元一次方程解决销售问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.
10.C
解析:C
【解析】
【分析】
由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
【详解】
解:根据给出的3个图形可以知道:
2.下列计算中:
① ;② ;③ ;④ ;⑤若 ,错误的个数有()
A.1个B.2个C.3个D.4个
3.已知长方形的周长是45cm,一边长是acm,则这个长方形的面积是()
A. cm2B.a( )cm2
C. cm2D.( )cm2
4.方程 的解是 ,则 的值是().
A.1B. C. D.3
5.若﹣x3ya与xby是同类项,则a+b的值为()
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021苏州北外附属苏州湾外国语学校七年级数学上期末模拟试卷及答案一、选择题1.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<02.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a3.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .5.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( )A .18B .36C .16或24D .18或366.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .7.下列结论正确的是( )A .c>a>bB .1b >1c C .|a|<|b|D .abc>08.-4的绝对值是( ) A .4B .C .-4D .9.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯ B .62.410⨯ C .52.410⨯ D .42410⨯ 10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或312.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )64的展开式中第三项的系数为( ) A .2016B .2017C .2018D .2019二、填空题13.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.14.若25113m n a b -+与-3ab 3-n 的和为单项式,则m+n=_________. 15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.17.若代数式213k--的值是1,则k= _________. 18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).19.化简:()()423a b a b ---=_________.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.先化简,再求值:5(3a 2b ﹣ab 2﹣1)﹣(ab 2+3a 2b ﹣5),其中a =﹣12,b =13.22.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值 (单位:千克) -1 -0.5 0 0.5 1 1.5 箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?23.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O按每秒15°的速度沿逆时针方向旋转一周的情况,在旋转的过程中,第t秒时,三条射线OA、OC、OM构成两个相等的角,求此时的t值(3)将图1中的三角板绕点O顺时针旋转至图3(使ON在∠AOC的外部),图4(使ON在∠AOC的内部)请分别探究∠AOM与∠NOC之间的数量关系,并说明理由.24.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;商场优惠方案甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?25.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a−c|=|a|+c,故C正确;ab>0 ,故D错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.2.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.D解析:D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.4.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.5.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C 是线段AB 上的三等分点, 所以AB =36.综合上述可得AB=18或AB=36. 故选:D. 【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.6.D解析:D 【解析】 【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1. 【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++=1.故答案选:D. 【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.7.B解析:B 【解析】 【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案. 【详解】解:由图可知1,01,1a b c <-<<> ∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B . 【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.8.A解析:A 【解析】 【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.) 【详解】根据绝对值的概念可得-4的绝对值为4. 【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.9.B解析:B 【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.D解析:D 【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.A解析:A【解析】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n−2)+(n−1),∴(a+b)64第三项系数为1+2+3+…+63=2016,故选A.点睛:此题考查了规律型-数字的变化类,考查学生通过观察、分析、归纳发现其中的规律,并应用发现的规律解决实际问题的能力.二、填空题13.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒据此可得答案【详解】∵图①中火柴数量为5=1+4×1图②中火柴数量为9=1+ 4×2图③中火柴数量为13=1+4×3……∴摆第n解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1, 图②中火柴数量为9=1+4×2, 图③中火柴数量为13=1+4×3, ……∴摆第n 个图案需要火柴棒(4n+1)根, 故答案为(4n+1). 【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.14.4【解析】【分析】若与-3ab3-n 的和为单项式a2m-5bn+1与ab3-n 是同类项根据同类项的定义列出方程求出nm 的值再代入代数式计算【详解】∵与-3ab3-n 的和为单项式∴a2m -5bn+1与解析:4 【解析】 【分析】 若25113m n a b -+与-3ab 3-n 的和为单项式,a 2m-5 b n+1 与ab 3-n 是同类项,根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算. 【详解】∵25113m n a b -+与-3ab 3-n 的和为单项式, ∴a 2m-5 b n+1 与ab 3-n 是同类项, ∴2m-5=1,n+1=3-n , ∴m=3,n=1.∴m+n=4. 故答案为4. 【点睛】本题考查的知识点是同类项的定义,解题关键是熟记同类项定义中的两个“相同”: (1)所含字母相同; (2)相同字母的指数相同.15.122【解析】【分析】根据题意可以分别求得a1a2a3a4从而可以发现这组数据的特点三个一循环从而可以求得a2019的值【详解】解:由题意可得a1=52+1=26a2=(2+6)2+1=65a3=(解析:122 【解析】 【分析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值. 【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=122,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019= a3=122,故答案为:122.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.16.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案【详解】解:如图所示:x的值为2故答案为:2【点睛】此题主要考查了有理数的加法正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.17.-4【解析】【分析】【详解】由=1解得解析:-4【解析】【分析】【详解】由213k--=1,解得4k=-.18.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.2a-b 【解析】【分析】直接利用整式的加减运算法则计算得出答案【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b 故答案为:2a-b 【点睛】本题考查整式的加减运算正确掌握相关运解析:2a-b .【解析】【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为: 2a-b .【点睛】本题考查整式的加减运算,正确掌握相关运算法则是解题关键.20.5°【解析】∵∠CBE=180°-∠ABC -∠DBE=180°-45°-60°=75°BM 为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN 为∠DBE 的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°, ∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°,∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 三、解答题21.原式=12a 2b ﹣6ab 2=43. 【解析】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式2222155535,a b ab ab a b =----+ 22126.a b ab =- 当1123a b =-=,时,原式1111141261.432933⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭ 22.(1)2.5;(2)1216【解析】【分析】(1)最重的一箱苹果比标准质量重1.5千克,最轻的一箱苹果比标准质量轻1千克,则两箱相差2.5千克;(2)先求得15箱苹果的总质量,再乘以4元即可.【详解】解:(1)1.5﹣(﹣1)=2.5(千克).答:最重的一箱比最轻的一箱多重2.5千克;(2)(﹣1×1)+(﹣0.5×3)+0×4+0.5×3+1×2+1.5×2=﹣1﹣1.5+0+1.5+2+3=4(千克).20×15+4=304(千克)304×4=1216(元).答:这15箱苹果可卖1216元.【点睛】本题考查了正负数和有理数的加减混合运算,理解正负数的意义是解答此题的关键.23.(1)150°;(2)t 为4,16,10或22秒;(3)ON 在∠AOC 的外部时,∠NOC -∠AOM=30°;ON 在∠AOC 的内部时,∠AOM-∠NOC=30°,理由见解析【解析】【分析】(1)根据角的和差即可得到结论;(2)在图2中,分四种情况讨论:①当∠COM 为60°时,②当∠AOM 为60°时,③当OM 可平分∠AOC 时,④当OM 反向延长线平分∠AOC 时,根据角的和差即可得到结论; (3)ON 在∠AOC 的外部时和当ON 在∠AOC 内部时,分别根据角的和差即可得到结论.【详解】(1)已知∠AOC=60°,MO ⊥ON ,∴∠AON=90°,∴∠CON=∠AON+∠AOC=150°;(2)∵∠AOC=60°,①当∠COM 为60°时,旋转前∠COM 为120°,故三角板MON 逆时针旋转了60°,旋转了6015=4秒;②当∠AOM 为60°时,旋转前∠AOM 为180°,OM 不与OC 重合,故三角板MON 逆时针旋转了240°,旋转了24015=16秒; ③当OM 可平分∠AOC 时,∠MOB=180°-30°=150°,故三角板MON 逆时针旋转了150°,旋转了15015=10秒; ④当OM 反向延长线平分∠AOC 时,18030150COM AOM ∠=︒-︒=︒=∠'',故三角板MON 逆时针旋转了180150︒+︒=330°,旋转了33015=22秒, 综上t 为:4,16,10或22秒;(3) ∵∠MON=90°,∠AOC=60°,当旋转到如图,ON 在∠AOC 的外部时,∴∠AOM=60°+∠COM,∠NOC=90°+∠COM,∴∠NOC -∠AOM=30°;当旋转到如图,ON在∠AOC的内部时,∴∠AOM=90°-∠AON,∠NOC=60°-∠AON,∴∠AOM-∠NOC=30°.【点睛】本题主要考查了角的计算以及角平分线的定义的运用,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.24.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元);乙商场实际付款:290﹣2×50+270﹣2×50=360(元);故答案为:336,360;(2)设这条裤子的标价是x元,由题意得:(380+x)×60%=380﹣3×50+x﹣3×50,解得:x=370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.25.(1)该校参加社会实践活动有225人;(2)该校租用60座客车更合算.【解析】【分析】(1)设该校参加旅游有x 人,根据租用客车的数量关系建立方程求出其解即可;(2)分别计算出租用两种客车的数量,就可以求出租用费用,再比较大小就可以求出结论.【详解】解:(1)设该校参加旅游有x 人,根据题意,得:15_14560x x +=, 解得:x=225,答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆), 需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×250=1250(元), 租用60座客车需:4×300=1200(元), ∵1250>1200,∴该校租用60座客车更合算.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小的比较的运用,解答时租用不同客车的数量关系建立方程是关键.。

相关文档
最新文档