混凝土结构事故案例分析

合集下载

施工监理中的质量事故案例分析

施工监理中的质量事故案例分析

施工监理中的质量事故案例分析施工监理在工程建设过程中起着关键的监督和指导作用。

然而,由于各种原因,仍然有一些质量事故发生。

本文将通过分析几个具体案例,探讨施工监理中可能出现的质量事故,并提出相应的解决方案。

案例一:混凝土浇筑质量不达标在一次住宅小区的建设中,施工监理发现某栋楼的混凝土浇筑质量不达标,其强度不符合设计要求。

经过调查,发现施工方在混凝土配比和施工工艺方面存在问题。

监理部门立即要求施工方停工整改,并重新进行混凝土浇筑。

为了防止类似问题再次发生,我们应该加强施工方的质量管理制度,确保配比比例准确,优化施工工艺,并加强对施工方的培训和监督。

案例二:钢筋混凝土结构质量问题在某高层建筑工程中,施工监理发现钢筋混凝土结构存在安全隐患。

经过检查,发现施工方在钢筋的安装和混凝土浇筑过程中存在严重问题,导致结构不牢固。

监理部门立即要求施工方进行整改,并采取了临时支撑措施,确保了工人的人身安全。

为避免类似问题的再次发生,我们应该加强对施工方的监督和管理,确保施工方按照设计要求进行施工。

监理部门还应加强对施工工艺和工艺流程的检查,确保钢筋混凝土结构的质量和安全。

案例三:电力工程设备故障在一次电力工程建设中,施工监理发现某些设备存在故障现象。

经过调查,发现施工方在设备安装和调试过程中存在问题,导致设备无法正常运行。

监理部门要求施工方停工整改,并派遣专业人员检修设备。

为避免类似问题的再次发生,应该加强对施工方施工人员的技术培训,提高他们的操作技能和设备维护水平。

同时,监理部门在设备安装和调试过程中要增加检查频次,确保设备能够正常运行。

综上所述,施工监理中的质量事故是工程建设过程中无法完全避免的问题。

然而,通过加强施工方的管理和监督,以及提高监理部门的检查和评估水平,可以有效地减少质量事故的发生率。

同时,对于已经发生的质量事故,应该及时采取整改措施,并进行相应的技术和经验总结,以避免类似问题再次发生。

只有持续提高工程质量和安全水平,才能确保施工项目的顺利进行和工程的可持续发展。

钢筋混凝土结构质量事故分析

钢筋混凝土结构质量事故分析
【1 j I1 [l [ (l1 1l ) l l (I I I ) I H (II 【l 【) l (n1 i[ [) (n 1 ir I)
距 断 口 1 00mm 处 为 1 Omm 。断 裂 的 O O
1( .)
侧 裂 缝 (

O5 . 0 . (b ) . O7 . O5 . 0t . (5 ) .
:2 { .
混 凝 土 的 质 量 差 . 未 达 到 设 计 强 度
C30。
『 I . 0 (] ) (



5 1 .O 2 9 .5 I
底 【l f ! 裂 缝
浇 筑 的 混 凝 土 不 均 匀 .密 实 度 差 其 中距 断 口 5 0~8 0 mm 范 围 内 的 混 凝 土 0 0 是 成 型 后 所 进 行 的 修 补 ( 图 1) 见 。断 口处 肉眼 可 见 存 在 蜂 窝 、空 洞 、以及 由于 养 护 不 当造 成 的 混 凝 土 表 面 发 白的 现 象 。 回 经
断 裂
{ ) 应力 混凝 土空心 板示 意 图如 图 1 1预 ( 2)板 的 断 裂 原 因分 析 板 的 厚度 不 够而 导 致 承载 力 不够 。 经 现 场 检 测 其 厚 度 分 别 为 : 端 部 为
1 8~ 1 8m m , 口 处 为 98~ 1 m 0 1 断 02 r n.
通 裂 缝
5: {
(8 ) . ( )8 1( .) 11 . 12 . (8 ) . 10 .
08 .
0.5
通 裂 缝 拱通 裂 缝 嗵 裂缝 通 裂 缝 熨通 裂缝 封通 裂缝 贯通 裂缝
通 袈 ± §

预 应 力 混 凝 土 空 心 板 的 厚 度 未 达 到 10 2 mm 厚 设 计 值 。

混凝土火灾事故案例分析

混凝土火灾事故案例分析

混凝土火灾事故案例分析摘要:火灾是一种常见的灾害事故,经常给人们的生命和财产带来巨大的损失。

而在建筑行业中,混凝土建筑因其耐火性能较好,一度被认为是较为安全的建筑材料。

然而,实际上,混凝土建筑在面临火灾时也存在较大的风险。

本文通过对某混凝土建筑火灾事故进行案例分析,揭示了混凝土建筑在火灾中可能出现的问题和风险,以及可能的防范措施和改进方法,对相关单位和个人具有一定的参考价值。

关键词:混凝土建筑;火灾事故;案例分析;风险防范1. 案例概况某地区一家化工厂的生产车间是一栋典型的混凝土建筑,建筑结构坚固,对火灾具有一定的耐火性能。

然而,在某一天晚上,由于车间内发生了一次意外事故,导致车间内的一些化工原料发生爆炸并引发火灾。

火势瞬间蔓延,造成了严重的人员和财产损失。

经过事故原因调查,火灾发生的原因是由于化工原料的爆炸引发了火灾,而建筑本身的耐火性能对于这种意外事故并没有发挥出应有的作用。

2. 事故分析(1)混凝土建筑的耐火性能并非绝对混凝土建筑因其坚固的结构和较高的抗压性能,被认为是比较耐火的建筑材料。

然而,事实上,在面临火灾时,混凝土建筑并非绝对的安全。

根据火灾事故的调查结果,本次事故发生的原因并非是建筑结构本身的问题,而是因化工原料的爆炸引发了火灾。

由此可见,混凝土建筑在防火方面仍存在风险,需要引起重视。

(2)建筑内部物质的储存和管理在本次事故中,化工原料的爆炸是火灾发生的直接原因,因此建筑内部物质的储存和管理成为事故的关键环节。

事故发生后的调查显示,建筑内部的储存管理并不规范,化工原料的储存空间与生产区域相对较近,存在一定的安全隐患。

因此,建筑内部物质的储存和管理是防范火灾的重要环节。

(3)建筑防火措施的完善性另外,事故发生后的调查还发现,该化工厂的混凝土建筑在防火措施方面存在一定的疏漏。

虽然建筑的结构强度较高,但在火灾发生后并没有发挥出应有的作用。

建筑应急疏散通道和消防设施的完善性也成为了影响事故的重要因素。

建筑工程质量事故案例分析报告

建筑工程质量事故案例分析报告

(三)事故处理方案

剔除全部蜂窝四周的松散混凝土;用湿麻袋塞
在凿剔面上,经24h使混凝土湿透厚度至少40~
砌墙。11月初浇灌三层现浇板时,室内温度为0~
1℃,未采取保温措施。根据试验资料,混凝土在
21d后的强度只达28d理论强度值的42.5%,一个
月后才达到52%。因此混凝土早期受冻是这起质量
事故的重要原因。另外,混凝土的水泥用量偏低
(只有210kg/m3,略少于225kg/m3的最低值)也是
因素之一。
纵墙承重、灰土基础。施工后于当年10月浇灌二层
楼盖混凝土。全部主体结构于第二年1月完工。在4
月间进行装修工程时,发现各层大梁均有斜裂缝。

裂缝多为斜向,倾角50°~60°,且多发生在
300mm的钢箍间距内。近梁中部为竖向裂缝。
斜裂缝两端密集,中部稀少(值得注意的是 在纵筋截断处都有斜裂缝);其沿梁高度方向的 位置较多地在中性轴以下,个别贯通梁高。
筑混凝土就是在这种非常干燥的条件下进行的。由于
异常干燥加上强风影响,故使得混凝土在凝结后不久
即出现裂纹。根据有关资料记载:当风速为16m/s时,
混凝土的蒸发速度为无风时的4倍;当相对湿度10%
时,混凝土的蒸发速度为相对湿度90%时的9倍以上。
根据这些参数推算,本工程在上述气象条件下的蒸发
速度可达通常条件的8~10倍。
建筑工程质量事故案例剖析
钢筋混凝土结构 梁、板、柱
事故案例剖析
一、骨料中含过量杂质事故案例
(一)事故现状
河南某中学教学楼工程为三层楼砖混结构,在施 工中突然发生屋面局部倒塌事故,使工程不能正常使 用,并造成了一定人身伤害和财产损失。
(二)事故分析及原因

混凝土开裂质量事故案例

混凝土开裂质量事故案例

混凝土开裂质量事故案例英文回答:Concrete cracking is a common quality issue in construction projects. It can occur due to various reasons such as improper mix design, inadequate curing, thermal expansion and contraction, and structural overload. These cracks can significantly compromise the strength and durability of the concrete structure, leading to safety hazards and costly repairs.One example of a concrete cracking quality accident is the collapse of the Hyatt Regency walkway in Kansas City in 1981. The walkway, which was suspended from the ceiling using steel rods, failed due to a design flaw. The original design called for a single set of steel rods to support both the second and fourth-floor walkways. However, during construction, it was decided to change the design to a double set of rods for aesthetic reasons. This change created a critical flaw, as the load-bearing capacity ofthe steel rods was significantly reduced. As a result, the walkway collapsed during a crowded event, causing multiple fatalities and injuries.Another example is the cracking of the Sutong Bridge in China. This cable-stayed bridge, one of the longest in the world, experienced cracking in its concrete deck shortly after its completion. The cracking was attributed to a combination of factors, including poor construction practices and inadequate quality control. The concrete mix used for the deck was not properly designed, leading to a higher water-cement ratio and reduced strength. Additionally, the construction process did not ensure proper curing and protection of the concrete, allowing for the development of cracks. These cracks compromised the integrity of the bridge and required extensive repairs to ensure its safety and functionality.中文回答:混凝土开裂是建筑项目中常见的质量问题。

不合格的梁造成事故的案例

不合格的梁造成事故的案例

不合格的梁造成事故的案例1、梁开裂事故某工程为混合结构,屋盖采用现浇钢筋混凝土梁板,梁跨度9m,为矩形截面,高800mm,宽400mm,混凝土为C18。

配筋情况为:梁跨中受力钢筋425,支座受力钢筋218,浇筑后14d拆模,发现梁上由0.1-0.35mm宽的裂缝。

事故原因分析:规定中大于8m的梁,拆模时的强度要达到100%才可以,而现实才达到80%,于是因强度不足导致开裂。

处理措施:检验发现裂缝没有明显开裂,不会影响结构的安全使用,所以可以采用环氧胶泥涂抹表面,封闭裂缝。

2、大梁裂缝事故某车间12m钢筋混凝土屋面大梁,平卧生产,起吊后发现50%吊环附近混凝土局部压碎,吊环偏斜,混凝土裂缝。

事故原因分析:1)上翼缘裂缝:吊环安装时箍筋被碰撞发生位移,未恢复原状,因此,平卧起吊是仅有两个钢箍其作用。

2)大梁腹板裂缝:腹板侧向刚度本来很小,翼缘开裂后,上部梁的侧向刚度大为减少,所以引起腹板开裂3)吊环偏斜:两台吊车的吊环受力不均匀,受力较大的吊环,残余变形也大,因此吊环发生偏斜。

处理措施:对翼缘处的倾斜裂缝,凿去斜缝范围内的混凝土并凿成直槎,然后用C40细石混凝土重新浇筑养护。

3、腹梁裂缝事故某煅工车间跨度10m,屋盖梁采用双坡T形截面薄腹梁,共4榀,其形状,尺寸与配筋见图3-42,梁内无弯起钢筋,混凝土设计强度C18,实际试块强度为12-15N/mm2,在检查时发现梁支座附近有斜裂缝出现,并不断增加和扩大。

事故原因分析:原设计无弯起钢筋,箍筋断面及数量均不足实测混凝土强度未达到设计要求。

处理措施:由于薄腹梁的承载能力不足,必须加固,加固方案在原有的薄腹梁上加钢筋混凝土,加固后的断面见图3-43,增设箍筋来承担斜截面强度,并配置纵向构造钢筋。

混凝土事故案例分析

混凝土事故案例分析

425 中砂
1 2 洗净烘干
石子
5~25
3.5
洗净烘干
例案4、某楼建筑面积5700㎡,五层框架结构,地下 室层高4m,面积逾800㎡。该工程采用商品混凝土浇 筑,地下室墙板设计强度C30,抗渗等级S6。地下室 墙体模板拆除后,发现该墙体存在多处麻面、蜂窝、 露筋,靠近下部止水带施工缝处内外两侧存在多处孔 深为60mm、40mm的孔洞。经现场详细检测,该墙板混 凝土质量缺陷可分为3类: (1)轻微缺陷:地下室窗下多处露筋,内墙局部 蜂窝、麻面。 (2)一般缺陷:外墙内侧、孔洞、露筋。 (3)严重缺陷:外墙施工缝多处水平状露筋、孔 洞。如何处理?
加固处理原则 本工程采用的外加剂为缓凝型减水剂,在混凝土中只 是暂时阻碍了水泥水化反应的进行,延长了混凝土拌合物 的凝结时间,并未从本质上改变水泥水化反应及其产物, 对混凝土构件强度的损害并不严重,无须拆毁重建。且四 层结构柱的外观完好,混凝土具有一定承载力,宜进行加 固处理。由于本工程工期限制较严,故在制定处理方案时 充分考虑工期因素,并按照结构安全、施工可行、费用经 济的原则,决定对事故混凝土采用外包加强的处理方案。
例案2、福建省某市两幢框架结构的8层住宅楼, 总建筑面积5560㎡,主体施工至三层楼面时, 发现部分框架节点及柱身(梁底下0.5m范围内) 的砼呈疏松状。为了解已施工部分砼实际质量 情况,在现场使用超声回弹综合检测,结果表 明,外观好的砼均达到设计强度。如何处理?
临时支撑示意图
框架节点加固示意图 1-加固区 2-原梁钢筋 3-原柱钢 筋 4-下料槽 5-无缺陷砼 6-分段 装模板 7-新增柱钢筋
事故原因调查分析 (1)出现质量问题的混凝土于7月某日浇铸,当日气温24~30℃ , 排除气候因素的影响。 (2)混凝上运输过程与施工操作规范,无异常情况。 (3)事故混凝土颜色与正常混凝土无差别,可排除粉煤灰完全替 代水泥的可能性;据现场检测和厂家对该批混凝土配合比记录,该批 混凝土配合比满足要求。 (4)据施工人员回忆,该批混凝土的流动性特强,混凝土凝结缓 慢,混凝土强度发展慢,养护过程中出现异常颜色的液体。 (5)厂家反映其采用了缓凝减水外加剂,具有缓凝和减水两种效应。 根据各方专家勘察和讨论,认定由于第四层柱混凝土外加剂超量 引起了强度严重降低,柱承载能力无法满足设计要求,属于施工质量 事故,需要进行加固处理。

建筑工程质量事故案例

建筑工程质量事故案例

在该建筑物的结构设计中,对两跨连续 梁施加于柱的荷载,均是按每跨50%的全部 恒活荷载传递给柱估算的(另50%由承重墙 承受),与理论上准确的两跨连续梁传递给 柱的荷载相比,少算25%的荷重。
事故 原因 分析
柱基础和承重墙基础虽均按fk=180Kn/m2设计, 但经复核,两侧承重墙下条形基础的计算沉降估 计45mm左右,显然大于钢筋混凝土柱下基础的计 算沉降量(估计在34mm左右)。虽然,他们间的 沉降差为11mm﹤0.002l=0.002×7000=14mm,是允 许的;但是,由于支承连续梁的承重墙相对“软” (沉降量相对大)。而支承连续梁的柱相对“硬” (沉降量相对小),致使楼盖荷载往柱的方向调 整,使得中间柱实际承受的荷载比设计值大而两 侧承重墙实际承受的荷载比设计值要小。 (1)和(2)项累计,柱实际承受的荷载将比设 计值要大得多。
裂缝宽度在梁端附近约0.5~1.2mm,近跨中约 0.1~0.5mm;裂缝深度一般小于1/3,个别的两端 穿通;裂缝数量每根梁少则4根,多则22根,一般 为10~15根。
混凝 土受 冻或 养护 温度 过低 事故 案例 图片
事故 分析 及 原因
施工原因:浇灌二层梁板时,未采用专门养护 措施,浇灌后2h就在板面铺脚手板、堆放砖块 进行砌墙。11月初浇灌三层现浇板时,室内温 度为0~1°C,未采取保温措施。根据试验资料, 混凝土在21d后的强度只达28d理论强度值的 42.5%,一个月后才达到52%。因此混凝土早期 受冻是这起质量事故的重要原因。另外,混凝 土的水泥用量偏低(只有210kg/m3,略少于 225kg/m3的最低值)也是因素之一。 设计原因:其一是箍筋间距过大。《混凝土结 构设计规范》7.2.7条规定,“当梁高为500mm 且V﹥0.07fcbh0时,梁中箍筋的最大间距为 200mm。”而本工程箍筋间距却为300mm,这 就是斜裂缝多发生在箍筋之间的原因。其二是 是纵筋在梁跨中间截断。《混凝土结构设计规 范》6.1.5条规定,“纵向受拉钢筋不宜在受拉 区截断”。而本工程梁中部分纵向受拉钢筋在 跨中截断,截断处都出现斜裂缝,这说明受拉 钢筋对梁截面的抗剪能力起到一定作用,也说 明规范的规定是最适合的。 比较施工和设计原因,显然可见,施工中混凝土早期 受冻是产生本工程质量事故的 主要原因。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原因
起结果必然是箍筋在其最薄弱处断裂,此断裂 后的混凝土保护层剥落,混凝土碎块下掉。
分析
六、 钢筋 配置 不当 事故 案例
某百货大楼一层橱窗上设置有挑出 1200mm通长现浇钢筋混凝土雨篷, 如图2.36(a)。待到达混凝土设计 强度拆模时,突然发生从雨篷根部
折断的质量事故,呈门帘状如图 2.36(b)。
事故 分析
受力筋放错了位置(离模板只有20mm,如图 2.36c)所致。原来受力筋按设计布置,钢筋工 绑扎好后就离开了。打混凝土前,一些“好心
人”看到雨篷钢筋浮搁在过梁箍筋上,受力筋
又放在雨篷顶部(传统的概念总以为受力筋就
放在构件底面),就把受力筋临时改放到过梁
的箍筋里面,并贴着模板。打混凝土时,现场
由含样此 量 的可标78见准.9%,1%)过~在量3.混5的%凝游,土离且凝SSO结O33(硬﹥大化1%大后的超继占过续总规与分定水析的化 铝酸钙作用形成水化硫铝酸钙,未耗尽的石膏 也可能在混凝土硬化后继续生成水化硫铝酸钙, 而水化硫铝酸钙生成时的体积约达原体积的2.5 倍,这就是造成预制板混凝土膨胀、酥裂、破 坏乃至倒塌的主要内在原因。
柱子钢筋搭接处的设计净距太小,只 有31~37.5mm,小于设计规范规定柱 纵筋净距应≥50mm的要求。实际上有 的露筋处净距为0或10mm。
事故 处理 方案
剔除全部蜂窝四周的松散混凝土;用湿麻袋塞在 凿剔面上,经24h使混凝土湿透厚度至少40~ 50mm;按照蜂窝尺寸支以有喇叭口的模板,如图 2.19(e);灌注加有早强剂的C30(旧混凝土为 C20)豆石混凝土;养护14昼夜;拆模后将喇叭口
比较施工和设计原因,显然可见,施工中混凝土早期 受冻是产生本工程质量事故的 主要原因。
事故 加固 方案
由于梁上有大量斜裂缝,很容易发 生脆性截面破坏,引起梁的断裂, 故必须进行加固。加固方案是在原 大梁外包一U形截面梁,该梁按承 受原来梁的的全部弯矩和剪力进行 设计,并在U形截面梁的端部沿墙 设置钢筋混凝土柱和基础,作为加 固梁的支承。
第三讲:混凝土结构事故案例分析
一、 混凝 土受 冻或 养护 温度 过低 事故 案例
某工程为三层砖混结构,现浇钢筋混凝土楼盖, 纵墙承重、灰土基础(图2.13)。施工后于当年10 月浇灌二层楼盖混凝土。全部主体结构于第二年1 月完工。在4月间进行装修工程时,发现各层大梁 均有斜裂缝。
其现象: 裂缝多为斜向,倾角50°~60°,且多发生在 300mm的钢箍间距内。近梁中部为竖向裂缝
柱基础和承重墙基础虽均按fk=180Kn/m2设计, 但经复核,两侧承重墙下条形基础的计算沉降估 计45mm左右,显然大于钢筋混凝土柱下基础的计 算沉降量(估计在34mm左右)。虽然,他们间的 沉降差为11mm﹤0.002l=0.002×7000=14mm,是允 许的;但是,由于支承连续梁的承重墙相对“软” (沉降量相对大)。而支承连续梁的柱相对“硬” (沉降量相对小),致使楼盖荷载往柱的方向调 整,使得中间柱实际承受的荷载比设计值大而两 侧承重墙实际承受的荷载比设计值要小。
设计原因:其一是箍筋间距过大。《混凝土结 构设计规范》7.2.7条规定,“当梁高为500mm 且V﹥0.07fcbh0时,梁中箍筋的最大间距为 200mm。”而本工程箍筋间距却为300mm,这 就是斜裂缝多发生在箍筋之间的原因。其二是 是纵筋在梁跨中间截断。《混凝土结构设计规 范》6.1.5条规定,“纵向受拉钢筋不宜在受拉 区截断”。而本工程梁中部分纵向受拉钢筋在 跨中截断,截断处都出现斜裂缝,这说明受拉 钢筋对梁截面的抗剪能力起到一定作用,也说 明规范的规定是最适合的。
25横筋与短边3 25焊成一体,并将第二步台 阶加高500mm。加高台阶时将原基础面凿毛、 清洗、支模、浇筑提高一级的混凝土,并在新 台阶面层铺设¢6@200钢筋网一层。 原设计在柱底500mm高度内加密箍筋,现增 至1000mm。
八、 水泥 和骨 料含 有害 物质 事故 案例
山西某厂有9幢4层砖混结构住宅,均采 用预制空心楼板。该工程1984年5月开工, 同年底完成主体工程,翌年内部装修。 在1985年6月进行工程质量检查时,发现 其中一幢(12号楼)有多处预制楼板起 鼓、酥裂情况。随后,该楼楼板损坏愈 来愈严重,其它四幢(11、13、16、17号 楼)也有相继不同程度地出现破坏迹象。
三、 混凝 土
麻面 掉角 蜂窝 露筋 和
空洞 事故 案例
某剧场挑台平面和柱截面配筋如图2.19(a)、(b) 所示。在14根钢筋混凝土柱子中有13根有严重的 蜂窝现象。具体情况是:柱全部侧面面积142m2,蜂 窝面积有7.41 m2,占5.2%;其中最严重的是K4, 仅蜂窝中露筋面积就有0.56 m2。露筋位置在地面 以上1m处,正是钢筋的搭接部位(图2.19c).
上的混凝土凿除。除以上补强措施外,还应对柱 进行超声波探伤,查明是否还有隐患。
四、 混凝 土施 工缝 处理 不当 事故 案例
某会议室门厅,屋面板为预制楼板,而大梁、圈 梁、雨罩均为现浇C20钢筋混凝土构件(图2.27)。 施工时,大梁混凝土先灌筑,圈梁、雨罩混凝土 因故后浇灌,但却不适当地将施工缝留在大梁梁 端与圈梁交接处(图2.27甲),而且施工缝处的混 凝土没有妥善处理,又由于该处混凝土没有侧向 限制而无法振捣,实际上形成松散的一堆 。
斜裂缝两端密集,中部稀少(值得注意的是在纵筋 截断处都有斜裂缝);其沿梁高度方向的位置较 多地在中和轴以下,个别贯通梁高。
裂缝宽度在梁端附近约0.5~1.2mm,近跨中约 0.1~0.5mm;裂缝深度一般小于1/3,个别的两端 穿通;裂缝数量每根梁少则4根,多则22根,一般 为10~15根。
混凝 土受 冻或 养护 温度 过低 事故 案例 图片
(1)和(2)项累计,柱实际承受的荷载将比设 计值要大得多。
事故 原因 分析
柱虽按¢550圆形截面钢筋混凝土受压构件 设计,配置9根直径为22的二级钢筋纵向钢 筋,AS=3421mm2,含钢率1.44%,从截面 承载力看是足够的,但箍未按螺旋箍筋考虑,致使箍筋难以 约束纵向受压力后的侧向压屈。
事故 原因 分析
混凝土灌注高度太高。7m多高的柱子 在模板上未留灌注混凝土的洞口,倾 倒混凝土时未用串筒、留管等设施, 违反施工验收规范中关于“混凝土自 由倾落高度不宜超过2m”及“柱子分段 灌注高度不应大于3.0m”的规定,使混 凝土在灌注过程中已有离析现象。
灌注混凝土厚度太厚,捣固要求不严。 施工时未用振捣棒,而采用6m长的木 杆捣固,并且错误地规定每次灌注厚 度以一车混凝土为准(约厚40cm), 灌注后捣固30下即可。此规定违反了 施工验收规范中关于“柱子灌注厚度 不得超过20cm”的界限。
九、 混凝
土 碱
骨料 反应 事故 案例
北京某厂受热车间,建于1960年,建成后常年处 于40~50 °C的 高温环境中,后发现其混凝土墙 面上有许多网状裂纹。经查当年混凝土所用原料
为400号矿渣水泥,混凝土水泥用量410Kg/m3配 合比为水泥︰沙︰石︰水=1︰1.099︰3.58︰0.39, 粗骨料为粒径5~30mm的卵石,掺2%CaCl2(氯 盐)和2%CaSO4·2H2O(石膏)的外加剂。
因此,可以认为与大气接触的楼板上面受干燥 空气和强风的影响成为产生较多失水收缩裂纹 的主因,而曾受模板保护的楼板下面这种失水 收缩裂纹会比较少一点。经过对灌注楼板是预 留的试块和对楼板承载能力进行试验,均能达 到设计要求。
这说明具有失水收缩的混凝土初期裂纹对楼板 的承载力并无影响。但是为了建筑物的耐久性, 还应使用树脂注入法进行补强。
事故 原因 分析
施工缝留在梁端剪力最大部位;
施工缝处混凝土强度等级显然不满足设计要求, 甚至不足C10,严重影响梁端抗剪能力和粘着力 强度;
新旧混凝土无法连接。
将梁端混凝土用工小心地凿成如图2.27乙所示形状, 并将部分预制楼板,以加强梁端的抗剪能力。
事故 处理 措施
五、 混凝 土受 腐蚀 事故 案例
事故 分析 及 原因
施工原因:浇灌二层梁板时,未采用专门养护 措施,浇灌后2h就在板面铺脚手板、堆放砖块 进行砌墙。11月初浇灌三层现浇板时,室内温 度为0~1°C,未采取保温措施。根据试验资料, 混凝土在21d后的强度只达28d理论强度值的 42.5%,一个月后才达到52%。因此混凝土早期 受冻是这起质量事故的重要原因。另外,混凝 土的水泥用量偏低(只有210kg/m3,略少于 225kg/m3的最低值)也是因素之一。
北京某旅馆的某区为一6层两跨连续梁的现浇钢 筋混凝土内框架结构,上铺预应力空心楼板, 房屋四周的底层和二层为490mm厚承重砖墙, 二层以上为370mm厚承重砖墙。全楼底层5.0m 高,用作餐馆,底层以上层高3.60m,用作客房。 底层中间柱截面为圆形,直径550mm,配置9根 直径为22的二级钢筋纵向受力钢筋,¢6@200 箍筋,如图2.35所示。柱基础的底面积为 3.50m×3.50m的单柱钢筋混凝土阶梯形基础; 四周承重墙为砖砌大放脚条形基础,底部宽度 1.60m,二者均以地基承载力fk=180Kn/m2(持力 土层为粘性土),并考虑基础宽、深度修正后的 地基承载力设计值算得。
该房屋的一层钢筋混凝土工程在冬季进行施工, 为混凝土防冻而在浇筑混凝土时掺入了水泥用 量3%的氯盐。
该工程建成使用两年后,某日,突然在底层餐 厅A柱柱顶附近处,掉下一块约40mm直径的混 凝土碎块。为防止房屋倒塌,餐厅和旅馆不得 不暂时停止营业,检查事故原因。
事故 原因 分析
在该建筑物的结构设计中,对两跨连续 梁施加于柱的荷载,均是按每跨50%的全部 恒活荷载传递给柱估算的(另50%由承重墙 承受),与理论上准确的两跨连续梁传递给 柱的荷载相比,少算25%的荷重。
人员没有对受力筋位置进行检查,于是发生上 述事故。
七、 施工 时因 钢筋 位置 配置 引起 事故 案例
某工程框架柱的原设计截面及配筋如上图 a,在绑扎柱基插筋时,错误地将两排5 25变成3 25(图b)。此失误在柱基混凝土 浇筑完毕后才发现。
相关文档
最新文档