(完整版)2018普通高等学校招生全国统一考试理科数学全国卷2试题及答案解析

合集下载

2018全国高考数学二试题及答案(理科)

2018全国高考数学二试题及答案(理科)

的素数中,随机选取连个不同的数,其和等于 30 的概率是( )
A. 1 12
【答案】C
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为( )
A. 1 5
【答案】C
为了预测该地区 2018 年的环境基础设施投资额, 建立了 y 与时间变量 t 的两 个线性回归模型.根据 2000 年至 2016 年的数据(时间 变量 t 的值依次为1, 2, ,17 )建立模型①:y 30.4 13.5t ;根据 2010 年至 2016
年的数据(时间变量 t 的值依次为1, 2, ,7 )建立模型②: y 99 17.5t . (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 【解析】(1)由题意可知,用模型①预测 2018 年投资额为
(2)若 f (x) 在 (0, ) 只有一个零点,求 a .
【解析】(1)当 a 1时,f (x) ex x2 ,则 f x() e x2x .令 h(x) f (x) ex 2x ,
由 h(x) ex 2 知 h(x) 在 (0, ln 2) 上单调递减,在 (ln 2, ) 上单调递增.从而 h(x) f (x) h(ln 2) f (ln 2) 2 2ln 2 0 ,所以 f (x) 在 (0, ) 上单调递增.
S3 3a1 3d 21 3d 15 解得 d 2 .所以 an 7 2(n 1) 2n 9 . (2)由(1)可知 Sn n2 8n (n 4)2 16 .由二次函数性质可知当 n 4 时,Sn 取 得最小值 16 . 18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿 元)的折线图.

2018年高考全国卷Ⅱ理数试题+答案

2018年高考全国卷Ⅱ理数试题+答案

2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

123456.在ABC △中,cos 2C =1BC =,5AC =,则AB =( )A .BCD .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln1y x=+在点()00,处的切线方程为__________.14.若x y,满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y=+的最大值为_________.1516.SAB△17.(记nS(1(218.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至年至2016(1(219.(. (1(220.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.21.(12分)已知函数()2x f x e ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在()0+∞,只有一个零点,求a .(二)选考题:共10分。

2018年高考全国卷2理科数学真题(附含答案解析)

2018年高考全国卷2理科数学真题(附含答案解析)

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。

若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018高考全国2卷理科数学带答案

2018高考全国2卷理科数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=-A.43i55--B.43i55-+C.34i55--D.34i55-+2.已知集合22{(,)|3,,A x y x y x y=+≤∈∈Z Z},则A中元素的个数为A.9 B.8 C.5 D.43.函数2e e()x xf xx--=的图象大致为4.已知向量a,b满足||1=a,1⋅=-a b,则(2)⋅-=a a bA.4 B.3 C.2 D.05.双曲线22221(0,0)x ya ba b-=>>A.y=B.y=C.y=D.y x=6.在ABC△中,cos2C=1BC=,5AC=,则AB=A.B C7.为计算11111123499100S=-+-++-,设计了右侧的程序框图,则在空白框中应填入A.1i i=+B.2i i=+C.3i i=+D.4i i=+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

(完整word版)2018年全国2卷理科数学试卷及答案

(完整word版)2018年全国2卷理科数学试卷及答案

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

2018年高考理科数学全国卷2含答案

2018年高考理科数学全国卷2含答案

12[ f (1) f (2) f (3) f (4)] f (49) f (50)
理科数学试题 A 第 8页(共 16页)
12.【答案】D
【解析】如图,因为 PF1F2 为等腰三角形, F1F2 P 120 且 F1F2 2c ,所
以 PF1F2 30 ,则 P 的坐标为 (2c,
“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23. 在不超过 30 的素数中,随机
选取两个不同的数,其和等于 30 的概率是
A. 1 12
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3, 则异面直线 AD1 与 DB1 所
理科数学试题 A 第 5页(共 16页)
理科数学试题 A 第 6页(共 16页)
2018 年普通高等学校招生全国统一考试
理科数学答案解析
一、选择题
1.【答案】D
1
【解析】
1
2i 2i

1 2i2 1 2i1 2i


3 5
4i


3 5

4 5
i
,故选
D.
2.【答案】A
成角的余弦值为
A. 1 5
B. 5 6
C. 5 5
10.若 f (x) cos x sin x 在 a, a是减函数,则 a 的最大值是
A.
4
B.
2
C. 3 4
D. 2 2
D.
理科数学试题 A 第 2页(共 16页)
11.已知 f (x) 是定义域为 , 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则

2018年全国普通高等学校招生统一考试理科数学(新课标II卷)-附答案解析

2018年全国普通高等学校招生统一考试理科数学(新课标II卷)-附答案解析
2018年全国普通高等学校招生统一考试理科数学(新课标II卷)
学校:___________姓名:___________班级:___________考号:___________
1.
A. B. C. D.
2.已知集合 ,则 中元素的个数为
A.9B.8C.5D.4
3.函数 的图像大致为()
A. B.
C. D.
8.C
【解析】
分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.
详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为 ,选C.
(1)证明: 平面 ;
(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值.
21.已知函数 .
(1)若 ,证明:当 时, ;
(2)若 在 只有一个零点,求 的值.
22.在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数).
(1)求 和 的直角坐标方程;
(2)若曲线 截直线 所得线段的中点坐标为 ,求 的斜率.
分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.
详解:因为
所以 ,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
7.B
【解析】
分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.
A. B. C. D.
9.在长方体 中, , ,则异面直线 与 所成角的余弦值为

2018年高考理科数学全国卷2(含答案解析)

2018年高考理科数学全国卷2(含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。

2018年高考全国卷2理科数学试题与答案

2018年高考全国卷2理科数学试题与答案

2018年高考全国卷2理科数学试题与答案2018年高考全国卷2理科数学试题与答案本试卷共分为选择题和非选择题两部分,满分150分,考试时间为120分钟。

选择题:1.已知$\frac{1+2i}{1-2i}=\frac{43}{55}$,则其值为(A)$-\frac{1}{2}+\frac{43}{55}i$;(B)$-\frac{1}{2}-\frac{43}{55}i$;(C)$-\frac{34}{55}+\frac{34}{55}i$;(D)$-\frac{34}{55}-\frac{34}{55}i$。

2.已知集合 $A=\{(x,y)|x+y^2\leq3,x\in Z,y\in Z\}$,则$A$ 中元素的个数为(A)9;(B)8;(C)5;(D)4.3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为(无选项)。

4.已知向量 $\vec{a}$,$\vec{b}$ 满足 $|\vec{a}|=1$,$\vec{a}\cdot\vec{b}=-1$,则 $\vec{a}\cdot(2\vec{a}-\vec{b})=$(A)4;(B)3;(C)2;(D)$\frac{x^2}{y^2}$。

5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为3,则其渐近线方程为(A)$y=\pm2x$;(B)$y=\pm3x$;(C)$y=\pm\frac{3}{2}x$;(D)$y=\pm\frac{2}{3}x$。

6.在 $\triangle ABC$ 中,$\cos C=\frac{4}{5}$,$\cosB=\frac{3}{5}$,则 $\frac{a}{b+c}=$(A)$\frac{4}{9}$;(B)$\frac{5}{9}$;(C)$\frac{6}{11}$;(D)$\frac{7}{11}$。

2018年高考真题理科数学全国卷II含解析

2018年高考真题理科数学全国卷II含解析

适用全国卷Ⅱ(甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2018年高考全国2卷理科数学带答案解析

(word完整版)2018年高考全国2卷理科数学带答案解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国卷2理科数学真题附含答案解析

2018年高考全国卷2理科数学真题附含答案解析

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。

若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.A .B .C .D .2.已知集合,则中元素的个数为 A .9B .8C .5D .43.函数的图像大致为4.已知向量,满足,,则 A .4B .3C .2D .05.双曲线,则其渐近线方程为A .B .C .D . 6.在中,,,,则 A .BCD .12i12i+=-43i 55--43i 55-+34i 55--34i 55-+(){}223A x y xy x y =+∈∈Z Z ,≤,,A ()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 22221(0,0)x y a b a b-=>>y =y =y =y x =ABC △cos 2C =1BC =5AC =AB =7.为计算,设计了右侧的程序框图,则在空白框中应填入 A . B . C . D .8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .B .C .D .9.在长方体中,,,则异面直线与所成角的余弦值为 A .BCD10.若在是减函数,则的最大值是A .B .C .D .11.已知是定义域为的奇函数,满足.若,则A .B .0C .2D .5012.已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为 A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分. 13.曲线在点处的切线方程为__________.11111123499100S =-+-++-…1i i =+2i i =+3i i =+4i i =+30723=+1121141151181111ABCD A BC D -1AB BC ==1AA =1AD 1DB 15()cos sin f x x x =-[,]a a -a π4π23π4π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 231213142ln(1)y x =+(0,0)14.若满足约束条件 则的最大值为__________.15.已知,,则__________. 16.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.学科*网 (一)必考题:共60分。

17.(12分)记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值. 18.(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.,x y 25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,z x y =+sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=S SA SB 78SA SAB△n S {}n a n 17a =-315S =-{}n a n S n Sy y t t 1217,,…,ˆ30.413.5y t =-+t 127,,…,ˆ9917.5yt =+19.(12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;学科&网(2)求过点,且与的准线相切的圆的方程. 20.(12分)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.21.(12分)已知函数.(1)若,证明:当时,; (2)若在只有一个零点,求.(二)选考题:共10分.请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率. 23.[选修4-5:不等式选讲](10分)24C y x =:F F (0)k k >l C A B ||8AB =l A B C P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC M PA C --30︒PCPAM C2()e x f x ax =-1a =0x ≥()1f x ≥()f x (0,)+∞a xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l设函数.(1)当时,求不等式的解集; (2)若,求的取值范围.()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.D 2.A 3.B 4.B5.A6.A 7.B8.C9.C10.A 11.C12.D二、填空题 13. 14.915. 16.三、解答题 17.解:(1)设的公差为d ,由题意得. 由得d =2.所以的通项公式为.(2)由(1)得.所以当n =4时,取得最小值,最小值为−16. 18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从20102y x =12-{}n a 13315a d +=-17a =-{}n a 29n a n =-228(4)16n S n n n =-=--n S ˆ30.413.519226.1y=-+⨯=ˆ9917.59256.5y=+⨯=30.413.5y t =-+年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.学科*网(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.解:(1)由题意得,l 的方程为. 设,由得. ,故.所以.由题设知,解得(舍去),. 因此l 的方程为.(2)由(1)得AB 的中点坐标为,所以AB 的垂直平分线方程为,即.设所求圆的圆心坐标为,则解得或 因此所求圆的方程为或. 20.解:ˆ9917.5yt =+(1,0)F (1)(0)y k x k =->1221(,),(,)A y x y x B 2(1),4y k x y x=-⎧⎨=⎩2222(24)0k x k x k -++=216160k ∆=+>122224k x k x ++=122244||||||(1)(1)x k AB AF BF k x +=+=+++=22448k k+=1k =-1k =1y x =-(3,2)2(3)y x -=--5y x =-+00(,)x y 00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩003,2x y =⎧⎨=⎩0011,6.x y =⎧⎨=-⎩22(3)(2)16x y -+-=22(11)(6)144x y -++=(1)因为,为的中点,所以,且连结.因为,所以为等腰直角三角形, 且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知可得.4APCP AC ===OAC OP AC⊥OP =OB 2AB BC AC ==ABC △OB AC ⊥122OB AC ==222OP OB PB +=PO OB ⊥,OP OB OP AC ⊥⊥PO ⊥ABC O OB uu u rx O xyz -(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u rPAC (2,0,0)OB =u u u r(,2,0)(02)M a a a -<≤(,4,0)AM a a =-u u u rPAM (,,)x y z=n 0,0APAM ⋅=⋅=uu u r uuu r n n 20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,)a a =--n cos ,OB =uu u rn |cos ,|OB =uu u r n.解得(舍去),.所以. 又,所以.所以与平面. 21.解:(1)当时,等价于.设函数,则.当时,,所以在单调递减. 而,故当时,,即. (2)设函数.在只有一个零点当且仅当在只有一个零点.(i )当时,,没有零点; (ii )当时,.当时,;当时,. 所以在单调递减,在单调递增.故是在的最小值. ①若,即,在没有零点;②若,即,在只有一个零点;4a =-43a =4()3=-n (0,2,PC =-u u u r cos ,PC =uu u r n PC PAM 1a =()1f x ≥2(1)e 10xx -+-≤2()(1)e1xg x x -=+-22()(21)e (1)e x x g'x x x x --=--+=--1x ≠()0g'x <()g x (0,)+∞(0)0g =0x ≥()0g x ≤()1f x ≥2()1exh x ax -=-()f x (0,)+∞()h x (0,)+∞0a ≤()0h x >()h x 0a >()(2)exh'x ax x -=-(0,2)x ∈()0h'x <(2,)x ∈+∞()0h'x >()h x (0,2)(2,)+∞24(2)1eah =-()h x [0,)+∞(2)0h >2e4a <()h x (0,)+∞(2)0h =2e4a =()h x (0,)+∞③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.22.解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.23.解:(1)当时,可得的解集为. (2)等价于.而,且当时等号成立.故等价于.(2)0h <2e4a >(0)1h =()h x (0,2)0x >2e x x >33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->()h x (2,4)a ()h x (0,)+∞()f x (0,)+∞2e4a =C 221416x y +=cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=1224(2cos sin )13cos t t ααα++=-+2cos sin 0αα+=l tan 2k α==-1a =24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥|||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥WORD 整理版分享范文范例 参考指导 由可得或,所以的取值范围是.|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞U。

相关文档
最新文档